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Structured Click Control in Transformer-based
Interactive Segmentation

Long Xu', Yongquan Chen'*, Rui Huang', Feng Wu', Shiwu Lai?

Abstract—Click-point-based interactive segmentation has re-
ceived widespread attention due to its efficiency. However, it’s
hard for existing algorithms to obtain precise and robust re-
sponses after multiple clicks. In this case, the segmentation
results tend to have little change or are even worse than
before. To improve the robustness of the response, we propose a
structured click intent model based on graph neural networks,
which adaptively obtains graph nodes via the global similarity of
user-clicked Transformer tokens. Then the graph nodes will be
aggregated to obtain structured interaction features. Finally, the
dual cross-attention will be used to inject structured interaction
features into vision Transformer features, thereby enhancing the
control of clicks over segmentation results. Extensive experiments
demonstrated the proposed algorithm can serve as a general
structure in improving Transformer-based interactive segmenta-
tion performance. The code and data will be released at SCC.

Index Terms—Interactive segmentation, control of clicks,
graph neural network, structured interaction, click intent

I. INTRODUCTION

Interactive segmentation algorithms based on click points
have garnered considerable attention in the field of computer
vision for their efficiency. These algorithms allow users to
interact directly with the image data, guiding the segmentation
process through a series of clicks.

However, previous work mostly focused on improving seg-
mentation accuracy with fewer clicks, often neglecting the
user’s ability to control network output through clicks. Specifi-
cally, this type of method [1]-[5] typically constructs the user’s
positive and negative clicks into a simple 2-channel click map,
guiding the network to understand interactive information by
concatenating it with the input. Instead, recent works [6], [7]
have integrated click information during decoding, avoiding
duplicate encoding to input image.

Due to the sparse nature of click information, these methods
have difficulty understanding user intent and producing robust
outputs that meet user expectations. Furthermore, this can re-
sult in the network becoming fixated on local clicked regions,
while the output tends to show minimal or even worsening
changes compared to the initial state. As shown in Figure 1.
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Fig. 1. The performance of various algorithms after multiple clicks in
complex scenarios. The red dots represent negative clicks, while the green
dots represent positive clicks. (a) represents a class of click-point modeling
algorithms represented by FocalClick [3], and (b) represents a class of click-
point modeling algorithms represented by SAM. The results indicate that both
types of algorithms exhibit issues with uncontrollable network outputs when
applied to conventional image data as well as remote sensing data

To achieve precise control of network output for user
interaction, many solutions have been proposed.

Lin, et al. [8] proposed a first click attention algorithm,
which improves results with focus invariance, location guid-
ance, and error-tolerant ability. However, this algorithm fo-
cuses too much on the first click and cannot build user intent
under continuous clicks. Yang, et al. [?] introduced discrim-
inability in the modeling of user intent, effectively reducing the
number of clicks. Minghao Zhou, et al. [9] proposed a binary
classification model based on pixel-level Gaussian processes,
which can effectively propagate click information throughout
the entire image, thereby enhancing the control of clicks on
segmentation results. Such methods improve the robustness of
the network to click categories, but lack effective modeling of
user intent.

Ding, et al. [10] proposed the feature-interactive map and
interactive nonlocal block, which significantly improved the
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Fig. 2. Overall structure of the proposed algorithm. (1). Input of the algorithm is including input image, previous mask, and click maps. The patch embedding
module will encoding them as tokens then input to the ViT backbone. (2). The most common used ViT are divided into two types including ’Single-Scale’

and ’Multi-Scale’, which can adopt the proposed algorithm easily.

dynamic click transformer network, which improved the per-
formance by employing better click modeling. Such methods
enhance their control over the output by introducing new click
models, but lack effective structural information, resulting in
insufficient robustness.

To address the problem of insufficient control over model
output in existing methods, this paper proposes a structured
click control model that uses graph neural networks to learn
structural information and utilizes dual cross-attention to fuse
structural information with raw features to improve click-to-
output control.

The main contributions of this article are as follows:

o Proposed a generic click control enhancement algorithm
based on GNN, which effectively improves the user’s
control over network output.

e Proposed a dual cross-attention module for effective
integration of structured interaction features.

II. RELATED WORK

The proposed algorithm is based on the patchfied structure
of Vision Transformer (ViT), and therefore it is not applicable
to CNN-based algorithms. Therefore, related work includes
Transformer-based interactive segmentation and graph neural
networks for structuring and modeling interactive information.

A. Interactive segmentation based on transformer

SimpleClick [4] is an interactive image segmentation algo-
rithm with a ViT backbone. To obtain multi-scale features,
SimpleClick leverages SimpleFPN [12] to transform image
features into four scales during the decoding stage. Addi-
tionally, it utilizes a segmentation head similar to Segformer
[13] to obtain the final segmentation result. Focalclick [3]
utilizes Segformer as its primary segmentation framework.
Furthermore, it incorporates a compact refiner network to
safeguard the stability of the segmented results. Both methods

use 2-channel click maps to model user interactions, based on
these, many related works have been derived [14], [15].

SAM [6] and HQ-SAM [7] both use ViT as image en-
coder. Unlike SimpleClick, which processes click information
through the image encoder, the click information in this
approach is handled directly in the decoder. While this method
may offer higher efficiency when multiple clicks are made, it
does not guarantee the stability of the segmentation results.
At the same time, its input size is fixed at 1024 x 1024,
which results in a decrease in efficiency compared to other
algorithms.

B. Graph Neural Network

Through an analysis of the structure of the ViT, we discov-
ered that different tokens can be viewed as graph nodes, which
are fused by self-attention for downstream tasks. However,
self-attention relies heavily on the position of tokens, and it is
difficult to incorporate the priori of importance based on user
clicks. It is difficult to construct structured interactive features.

An intuitive solution is to use Graph Convolutional Network
(GCN) [16] to fuse interactive feature nodes. However, GCN
relies heavily on the structure of the graph [17], and the graph
nodes of interaction features are dynamically selected, which
cannot guarantee the consistency of the graph structure.

Graph Attention Networks (GATs) proposed by Velickovié
Petar, et al. [17] is a better choice. Unlike GCN, which
relies on the Laplacian matrix and degree matrix under a
fixed graph structure, GAT is structure-independent when
aggregating node features, requiring only consideration of the
features of neighboring nodes.

In addition, Yun Seongjun et al. [18] proposed Graph
Transformer Networks (GTN), which can learn effective node
representations on graphs by identifying useful meta-paths.
However, GTN requires prior edge information, which is not
applicable to our dynamic structured graph.
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III. METHOD

The overall framework of the proposed algorithm is shown
in Figure 2.

In Transformer-based interactive segmentation, input image
Timg € REXWXH will be divided into L = W H /s? patches
according to patch size s. These patches will be encoded
by the patch embedding module into tokens, which will be
processed by single (multi-)scale self-attention to obtain vision
transformer feature x; € REXEXC. O denotes the dimension
of the token.

Among the tokens corresponding to these patches, we
believe that those that are clicked are more important. Based
on this assumption, we construct a general interactive segmen-
tation framework based on graph neural networks.
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Fig. 3. Overall structure of the GNN Block. “Top-k selection” refers to
selecting tokens with scores greater than 0.95, and the number of tokens
selected does not exceed 32. In situations where tokens have fewer similarities
with the clicked token, the number of selected tokens is also significantly less
than 32. In the GNN Block, any graph neural network can be chosen for node
feature fusion. In this paper, we select GCN and GAT.

A. Graph nodes selection based on user click intention

We represent the clicked tokens as z!, € RBXQ'%C yhere

[ € [0,1] represents the click category (positive or negative),
QO represents the set of B different clicks under the current
category.

Based on %, we can get the average feature 2, € RB*C of
positive and negative clicks respectively. These features are
used to represent the user’s click intention, as illustrate in
formula (1).

1

= o] Z xclb,i,:), beL2 .., B (1)

ieQ!

210

where z:® represents the bth click intent feature of class [.
This intent feature will be used to filter out tokens that might
be of interest to the user, as shown in formula (2).
I . ~l =lb
s = sigmoid(w(Z,, ;")) 2

c)

where st € RBXN denotes the score of all tokens associated
with the [th class of click intent, which is used to select

tokens that match the hypothesis as graph nodes, and N
denotes the number of tokens. &, = ¢(al) € RB*2x2C
Lt = ¢(2h?) € REX1X2C 4(.) represents a simple two-layer
feedforward neural network (FNN), which is used to project
similarity calculation to another space. w(-,-) is a one-layer
FNN for importance score calculation.

The formula (3) allows the network to learn a robust
similarity computation capability.

1
1 st — 413
=y 220 3
L 2; ¥ 3)

where 3! denotes the importance score label for different
categories and N denotes the number of tokens.

B. Incorporating GNN-Derived Structures into Token Interac-
tions

We use Pytorch’s top-k function to get the highest L/16
scores 32 € RB*% and corresponding tokens. These tokens
serve as a collection of graph nodes V! € RB*16%C to obtain
interactive features.

During training, due to the heterogeneity of different im-
ages, we use parallelization (vmap) to process batch data. For
convenience of description, we disregard the batch size in the
following, and use Vi€ R%6%C and A € R% %% to denote
the node and neighbour matrix of a sample, respectively.

Due to the lack of an adjacency matrix, graph neural
networks cannot be directly used for feature fusion.

Therefore, we propose a node similarity assumption:

o The higher the similarity between two nodes, the closer
their relationship is, and the greater the weight of the
corresponding edge.

e The lower the similarity, the smaller the weight of the
corresponding edge.

Based on this assumption, the adjacency matrix can be
calculated using equation (4).

A= VI|r - IV'IIE )

where || - || represents the Frobenius norm, which is used to
ensure numerical stability while introducing self-loops. - rep-
resents matrix multiplication, 7 represents matrix transpose.
1) GCN fusion algorithm: After obtaining the adjacency
matrix, GCN needs to normalize the adjacency matrix using
a degree matrix, which can be obtained by the formula (5).

N

> lAL 0 e 0
. 0 Y lALol 0
D= : : - : ®)
0 0 0 > |A2,L/16|

where | - | represents an absolute value operation. The degree
matrix D' € R16%7 is a diagonal matrix.

After obtaining the degree matrix, the adjacency matrix can
be normalized using equation (6).

Al — DlAl(Dl)T (6)
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Next, we use a two-layer GCN network to fuse node
features, as shown in equation (7).

Vi = Alg(AV'WhHw! (7)

where W} and W} represent the weights of the network,
respectively. o(-) denotes a nonlinear activation function
(GeLU).

2) GAT fusion algorithm: GAT needs to calculate the atten-
tion coefficient of different graph nodes based on neighboring
nodes, as shown in the formula (8).

eij = a([ViWs||V/ W), j € N (8)

where W € RE*2C is a linear projection for feature aug-
mentation, [-]-] denotes a feature concatenating operation.
a(-) : R — R is a score function which is a single-layer
FNN.

Then the attention score can be calculated by formula (9).

7 exp(LeakyReLU(e;;))
~ Yken, exp(LeakyReLU(e;))

The output feature can be aggregated by using the formula
(10).

€))

Oél'j

VI(H) = lilyo | D olyviwg
JEN;

(10)

where ||, denotes the multi-head attention, H denotes the
number of head. o(-) is an Exponential Linear Unit (ELU)
activation function.

GNN can fully learn structured features that match the user’s
intent to build robust click control. In the experimental section,
we will compare the performance of GCN vs. GAT.

C. Dual cross-attention for improving segmentation control
robustness

The structured interaction features obtained using GNN can
be used to guide the ViT features, making them better meet
the user’s interaction intentions.

To fully utilize user clicks, we use the formula (11) to
concatenate the positive and negative interaction features as
the final guiding feature.

0 0 vl 1

g ="+, V +7] (11)

where z, € RE*§%C denotes the final guiding feature.

4t € R 1XC represents the token used to distinguish between
positive and negative clicks.

We use dual cross attention to ensure a better fusion of
interaction features and ViT features, as shown in the formula
(12).

Zq = x4 + cross-attn(zq, xs)
Ty = xy + cross-attn(x s, T,) (12)
&y =2y +FNN(Zy)
where cross-attn(-,-) represents cross attention operation,
FNN(-) represents FNN. &, will be used for target object
segmentation.

IV. EXPERIMENT

In this chapter, we detail the basic settings, training, and
interactive validation strategy of the proposed algorithm. It’s
compared with existing SOTA algorithms in accuracy and
speed, and its effectiveness is further confirmed through abla-
tion studies. The proposed algorithm is referred to as SCC in
subsequent sections.

A. Experimental Configuration

Model selection. We selected three representative algo-
rithms to validate the effectiveness of SCC as a universal click
control model. These algorithms include Vision Transformer-
based [19] SimpleClick [4], the Segformer-based [13] Fo-
calClick [3], and recent popular Segment Anything (SAM)
[6], [7] algorithms.

Training settings.

The training data size is 448 x 448, iterative learning [20]
and click sample strageties are adopted for click simulation,
maximum clicks is 24 with 0.8 decay probability. AdamW
optimizer is used, with 81 = 0.9, 8> = 0.999. Each epoch
comprises 30,000 samples, totaling 230 epochs. The initial
learning rate is 5 x 107%, reducing by 10x at epochs 50 and
70. Training on six Nvidia RTX 3090 GPUs.

Evaluation strategy. The widely used evaluation techniques
[20]-[22] usually sample each point from the largest error
locations in previous predictions, aiming for an Intersection
Over Union (IOU) close to the target.

However, we found in practice that users often have diffi-
culty identifying the maximum error point, and the locations
they click on often exhibit significant randomness. Therefore,
this strategy fails to effectively reflect the performance of the
algorithm in practical applications.

Therefore, we propose a new click generation strategy,
which randomly samples click positions from the set of top-
k locations, thereby better reflecting the performance of the
algorithm in practical applications. In this article, we set
k = 50 to better simulate real user interaction

For fairness comparison, both strategies will be employed.

The evaluation concludes upon reaching the desired IOU or
maximum click count. The standard Number of Clicks (NoC)
metric and the Number of Failures (NoF) metric are adopted

[3].

B. Comparison with State-of-the-Art

This section compares the proposed algorithm with current
SOTA in accuracy and complexity, further analyzing SCC’s
effectiveness.

1) Overall performance on mainstream benchmarks.

All algorithms are trained on the COCO+LVIS dataset.
We first compared the overall performance using the largest
error” point sampling strategy, and the results on key bench-
marks are shown in Table 1.

As shown in Table I, the proposed SCC-based algorithms
can significantly improve performance in different bench-
marks. Especially the GAT-based algorithm demonstrate better
performence than GCN.
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TABLE I
EVALUATION RESULTS ON GRABCUT, BERKELEY, SBD, DAVIS, COCO MVAL, AND PASCAL VOC. ’NOC 85/90° DENOTES THE AVERAGE NUMBER OF
CLICKS REQUIRED THE GET IOoU OF 85/90%. ALL METHODS ARE TRAINED ON COCO [23] AND LVIS [24] DATASETS. BOLD FONT: BEST

PERFORMANCE
Arch Method GrabCut [25]  Berkeley [26] SBD [27] DAVIS [28] COCO MVal [29] PascalVOC [30]
NoC 90 NoC 90 NoC 85  NoC 90 NoC 90 NoC 85 NoC90 NoC 85 NoC 90

f-BRS-B-hrnet32 [22] 1.69 2.44 4.37 7.26 6.50 - - - -

CNN RITM-hrnet18s [20] 1.68 2.60 4.25 6.84 5.98 - 3.58 2.57 -
RITM-hrnet32 [20] 1.56 2.10 3.59 5.71 5.34 2.18 3.03 221 2.59

EdgeFlow-hrnet18 [31] 1.72 2.40 - - 5.77 - - - -
FocalClick-segformer-B3-S2 [3] 1.68 1.71 3.73 5.92 5.59 2.45 3.33 2.53 2.97
FocalClick-segformer-B3-S2+GCN 1.52 1.61 3.78 5.96 441 2.54 3.49 2.56 3.02
FocalClick-segformer-B3-S2+GAT 1.52 1.48 3.66 591 3.77 2.34 3.16 242 2.87
HQ-SAM-VIiT-H [7] 1.84 2.00 6.23 9.66 5.58 3.81 5.94 2.50 2.93
HQ-SAM-ViT-B [7] 2.28 4.26 11.11 13.57 8.19 6.41 9.54 4.86 6.27
HQ-SAM-ViT-B+GCN 2.34 3.74 9.46 12.99 7.38 5.87 8.84 5.80 8.21
Transformer HQ-SAM-ViT-B+GAT 2.02 3.87 9.11 12.76 7.16 5.54 8.33 4.50 5.58
SimpleClick-ViT-B [4] 1.48 1.97 3.43 5.62 5.06 2.18 2.92 2.06 2.38
SimpleClick-ViT-L [4] 1.46 2.33 2.69 4.46 5.39 - - 1.95 2.30
SimpleClick-ViT-B+GCN 1.34 1.60 3.11 5.00 4.58 2.17 2.95 1.71 1.94
SimpleClick-ViT-B+GAT 1.34 1.41 2.98 4.88 4.39 221 3.04 1.69 1.92
SimpleClick-ViT-L+GCN 1.32 1.34 2.60 4.28 4.03 2.01 2.77 1.58 1.76
SimpleClick-ViT-L+GAT 1.34 1.43 2.52 421 3.95 1.99 2.73 1.56 1.73

It can be seen that both GCN and GAT in SCC show sig-
nificant improvements in different algorithms and evaluation
metrics, which validates the effectiveness of SCC in enhancing
algorithm performance.

To evaluate effectiveness of SCC in real applications, we
also compared the overall performance using the “top-k error”
point sampling strategy. Due to layout and space limitations,
we only adopted this strategy in algorithm Simplick and eval-
uated on SBD and DAVIS. In addition, due to the randomness
in the selection of top-k clicks, we use the average of ten
evaluations as the final result, as shown in Table II.

TABLE I
IN ACTUAL USE, THE EFFECTIVENESS OF SCC PERFORMANCE IS
DEMONSTRATED. THE NUMBER IN PARENTHESES REPRESENTS THE TOTAL
NUMBER OF SAMPLES IN THE BENCHMARK

Method DAVIS SBD
NoC 90 NoF 90 NoC 85  NoC 90 NoF 90

SimpleClick-ViT-B 5.10 50/(345) 3.81 6.29 1056/(6671)
+GAT 4.67 48/(345) 3.54 5.71 918/(6671)
HQ-SAM-ViT-B 8.19 117/(345) 10.14 13.57 4123/(6671)
+GAT 7.16 91/(345) 9.11 12.76 3789/(6671)
FocalClick-B3-S2 4.88 26/(345) 4.0 6.31 1024/(6671)
+GAT 3.77 31/(345) 3.66 591 870/(6671)

To simplify the experiments, we only tested GAT in real-
world scenarios. It can be observed that in simulated scenarios
reflecting real user usage, the proposed algorithm still effec-
tively improves the performance of the baseline algorithm in
various aspects.

Furthermore, the experimental results in Table II do not
show significant performance differences compared to those
in Table I on small-scale datasets. However, on large-scale
datasets like SBD, conventional evaluation methods may not
adequately reflect the algorithm’s actual performance. From
this perspective, the performance comparison experiments
under real-world scenarios proposed in this paper can provide
more robust performance benchmarks for individuals using
interactive segmentation algorithms in practice.

2) Complexity Analysis

We evaluate the complexity of algorithms by comparing
their parameters count, floating point operations per second

(FLOPs), and inference speed. The experimental results are
listed in Table III.

TABLE III
THE ANALYSIS OF THE COMPUTATIONAL COMPLEXITY OF SCC,
INCLUDING PARAMETER COUNT (PARAMS) AND FLOATING POINT
OPERATIONS (FLOPS)

Model Type SCC Params (MB) FLOPs (G)
. . +GCN +10.564 +13
HQ-SAM & SimpleClick +GAT +8.275 +10.333
. +GCN +6.955 +0.539
FocalClick +GAT +3.867 +0.511

The experimental results indicate that GCN requires slightly
more parameters compared to GAT, while the parameter
count of both models does not exhibit a significant increase
compared to the parameter count of the original algorithm.

For instance, the parameter count of FocalClick-B3-S2 is
45.66MB, where the parameter count of GAT in four stages
only accounts for 8% of it. For HQ-SAM-ViT-B, with a
parameter count of 637.23MB, the parameter count of GAT
in two stages only constitutes 1.3% of it. Similarly, for
SimpleClick-ViT-B, with a parameter count of 84.49MB, the
parameter count of GAT in two stages only occupies 9.8% of
1t.

In summary, the proposed algorithm significantly improves
algorithm performance without a noticeable increase in algo-
rithm complexity.

C. Ablation Study

The ablation study results are shown in Table I. Which can
be seen that the proposed SCC can significintly improve the
performance in reducing the click times.

The performance of GCN fails to improve click performance
on certain datasets, mostly concentrated in SBD, PascalVOC,
and COCO MVal datasets. This indicates that GCN models
based on fixed adjacency matrices may not effectively model
user interactions in large-scale complex scenarios. In contrast,
the proposed GAT model consistently improves algorithm per-
formance across almost all performance metrics. This validates
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that the mechanism based on local node attention may be more
suitable for modeling user clicks in complex scenarios.

D. Performance for Mask Correction

The mask correction task involves adjusting given masks
with typical IOU values ranging from 0.7 to 0.85. Since SAM
does not directly utilize the mask from the previous frame, we
have not evaluated its performance on mask correction tasks.
To simplify the experimental complexity, we directly utilized
GAT for comparison. The performance of the proposed algo-
rithm in improving baseline on this task (DAVIS-585 [3]) is
shown in Table IV.

TABLE IV
QUANTITATIVE RESULTS ON DAVIS-585 BENCHMARK. THE METRICS
‘NOC’ AND ‘NOF’ MEAN THE AVERAGE NUMBER OF CLICKS REQUIRED
AND THE NUMBER OF FAILURE EXAMPLES FOR THE TARGET IOU.

DAVIS585-SP DAVIS585-ZERO

NoC85 NoC90  NoF85| NoC85 NoC90  NoF85
RITM-hrnet18s [20] 371 5.96 49 534 7.57 52
RITM-hrnet32 [20] 3.68 5.57 46 4.74 6.74 45
SimpleClick-ViT-B [4] 2.24 3.10 25 4.06 5.83 42
+GAT 2114539 2.8318.7% 23 3.7846.0% 53318.6% 42
SimpleClick-ViT-L [4] 1.81 2.57 25 3.39 4.88 36
FocalClick-hrnet32-S2 [3] 2.32 3.09 28 4.77 6.84 48
FocalClick-B3-S2 [3] 2.00 2.76 22 4.06 5.89 43
+GAT 2.00 2.5318.3% 20 | 3774709 5424799 42

The experimental results indicate that the proposed algo-
rithm achieved an average improvement of 8% in the per-
formance metric of NoC 90 for the mask correction task.
Simultaneously, the proposed algorithm also exhibited a sig-
nificant improvement over the baseline algorithm in the NoF
metric. These results validate the effectiveness of the proposed
algorithm in mask correction.

E. Click Control Evaluation

To evaluate the effectiveness of the proposed algorithm in
enhancing user clicks for adjusting model outputs, we assessed
the relationship between the number of clicks and mloU (mean
Intersection over Union), and plotted the curve illustrating
their relationship.

In our experiment, we utilized 20 clicks and employed
two large-scale datasets, SBD (containing 6671 instances)
and LoveDA (containing 1666 instances), as well as a finely
annotated dataset, DAVIS (containing 345 instances). The
experimental results are depicted in Figure 4.

Analyzing the experimental results, we observe that the
proposed algorithm effectively enhances the accuracy of the
baseline model after a single click across all three datasets,
particularly demonstrating significant improvement on finely
annotated datasets like DAVIS.

However, in the initial clicks, the improvement magnitude
of the proposed algorithm on HQ-SAM-ViT-B is significantly
lower compared to FocalClick and SimpleClick. This is be-
cause we conducted full-parameter training for FocalClick and
SimpleClick, while only performing partial parameter fine-
tuning on HQ-SAM-ViT-B.

It is worth noting that although the overall accuracy of
HQ-SAM-ViT-B decreases with the user’s clicks increasing,
the proposed algorithm exhibits a clear trend of suppressing

performance degradation. This result effectively demonstrates
the effectiveness of the proposed algorithm in enhancing user
click control.

To quantitatively analyze the effectiveness of the proposed
algorithm in enhancing control performance, we have listed
the corresponding AUC performance improvement metrics on
three datasets, as shown in Table V.

TABLE V
PERFORMANCE EVALUATION OF CLICK CONTROL BASED ON AREA UNDER
THE CURVE
Method LoveDA DAVIS SBD
SimpleClick-ViT-B 16.66 18.22 18.13
SimpleClick+GCN 16.6710.06% 18.58 199, 18.2540.6%
SimpleClick+GAT 16.7710.6% 18.6249 29 18.2940.8%
FocalClick 16.79 18.36 18.04
FocalClick+GCN 16.87+0.5% 18.6341 49 17.89
FocalClick+GAT 17.0041 3% 18.68+1.7% 18.0740.16%
HQ-SAM-ViT-B 13.60 16.03 13.95
HQ-SAM+GCN 13.60 16.2441 39 14.1041 0%
HQ-SAM+GAT 13.6410.3% 16.2641 4% 14.24499

The experimental results indicate that the improvement of
the proposed algorithm on large-scale datasets like LoveDA
and SBD generally ranges from 0.06% to 1.3%, while on
DAVIS, the improvement is more significant, ranging from
1.3% to 2.2%.

Although on average, the improvement of the proposed
algorithm on large-scale datasets is relatively small, as de-
picted in Figure 4, we observe a significant performance
improvement on more practically meaningful metrics such as
performance after one click and five clicks. These experimental
results demonstrate that the proposed algorithm can effectively
enhance the efficiency of user control over network outputs
while also improving model output accuracy.

F. Quantitative analysis

In this section, we first analyze the effectiveness of the
proposed algorithm itself, namely the degree of match be-
tween the results output by different components in practical
computations and the expected outcomes. Then, we present a
representative scenario of click failure faced by the baseline
algorithm, and analyze the effectiveness of the proposed
algorithm in addressing this scenario.

To evaluate the effects of the GNN module in affecting
network decision, we analysised the similarity and attention
calculation during click control. Some results are visualized
in Figure 5.

It can be observed that GAT effectively computes the
similarity between user-clicked tokens and the target, which
is crucial for subsequent computations. Furthermore, it can
be noted that the similarity computed from deep features
exhibits higher quality, whereas the similarity computed from
shallow features tends to be relatively lower. This trend is
further reflected in the attention calculation of deep and
shallow features. The attention obtained from shallow-scored
structured tokens is coarser compared to that obtained from
deep-scored structured tokens.

The visualization results of these intermediate variables
indicate that the proposed algorithm effectively realizes the
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expected assumptions, thereby guiding the model’s attention
layers to focus more on the target regions that align with user
intent. Additionally, the interaction between shallow and deep
features brings about significant feature diversity, enabling the
algorithm to better capture precise user intent from multiple
perspectives.

Finally, to intuitively evaluate the effectiveness of the pro-
posed algorithm in addressing the issue of click loss, we
further quantitatively analyzed the performance comparison
between the proposed algorithm and the baseline algorithm
in some typical scenarios. The experimental results are shown
in Figure 6.

It can be observed that GAT demonstrates a significant
performance improvement compared to the baseline algorithm
in the “one-click” scenario for all three algorithms. This is
because GAT filters out a larger range of user intent through
similarity selection, ensuring that a single click can have a
similar impact to multiple clicks.

Furthermore, compared to the baseline algorithm, GAT also
exhibits better click control ability in scenarios involving
multiple clicks. In some cases, eliminating erroneous regions
in the output requires only a few clicks. In contrast, the
baseline algorithm requires more negative clicks to eliminate
undesired outputs. This trend is particularly pronounced in the
SAM model.
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Number of Clicks

17 1 5 17

5 )
Number of Clicks

Overall, through the analysis of GNN intermediate variables
and the effectiveness of the proposed algorithm in improving
baseline performance, we found a high degree of consistency
between the GNN intermediate variables and our expectations
within our framework. Additionally, the performance of the
proposed algorithm also demonstrated better performance than
the baseline algorithm in both single-click and multiple-click
scenarios. These experimental results validate the effectiveness
of the proposed algorithm.

G. Generalization Evaluation on Remote Sensing Images

In our study, all compared algorithms are trained on COCO-
LVIS. However, COCO-LVIS’ focus on common image types
and scenes means it lacks generalization in some special visual
data like remote sensing images.

In this section, we test all methods on the remote sensing
dataset LoveDA [32] and Rice [33], as shown in Table VI.

Experimental results indicate that the proposed algorithm
can improve the baseline in most cases. This experimental
result demonstrates that the proposed algorithm also exhibits
a significant performance improvement when tested on cross-
domain data, further validating its effectiveness as a general
click-point enhancement module.
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Fig. 5. Analysis of intermediate variables in the GAT model. PS represents the scores of tokens similar to positive clicks, NS represents the scores of tokens
similar to negative clicks, PA represents attention calculated from tokens filtered by PS, NA represents attention calculated from tokens filtered by NS. shallow

represents shallow features, while deep represents deep features

TABLE VI
COMPARISON OF ALGORITHM GENERALIZATION PERFORMANCE ON
LOVEDA [32] AND RICE [33]. NONE OF THE ALGORITHMS WERE
TRAINED ON REMOTE SENSING IMAGES

LoveDA [32]

NoC 80 NoC 85 NoC 90 NoF 90
HQ-SAM-ViT-B 11.17 14.70 17.73 1409/(1666)
+GAT 11.37 14.59 17.70 1408/(1666)
FocalClick-B3-S2 5.79 7.72 10.64 384/(1666)
+GAT 5.39 7.34 10.54 311/(1666)
SimpleClick-ViT-B 591 7.65 10.44 302/(1666)
+GAT 5.53 7.05 9.57 251/(1666)

Rice [33]

NoC 80 NoC 85 NoC 90 NoF 90
HQ-SAM-ViT-B 15.68 17.50 18.95 537/(585)
+GAT 15.24 17.25 18.72 535/(585)
FocalClick-B3-S2 8.62 11.78 15.90 426/(585)
+GAT 7.96 11.06 15.27 349/(585)
SimpleClick-ViT-B 9.62 12.42 15.91 407/(585)
+GAT 8.74 11.50 15.30 332/(585)

V. CONCLUSION

Our paper introduces a vision transformer-based structured
tokens interaction algorithm to overcome weak click control
challenges in interactive segmentation. This paper first utilizes
similarity calculation to filter out image tokens that users may

focus on, and further employs a GNN model to perform struc-
tured aggregation on these specific location tokens, thereby
obtaining structured user intent features. Further, dual cross-
attention is utilized to fuse the base tokens with the user intent
features, thereby achieving structured click control. To validate
the effectiveness of the proposed algorithm, we conducted
experiments on three mainstream visual transformer-based
algorithms. Extensive experiments validate the effectiveness
and advancement of the proposed algorithm in addressing
weak click control issue.
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