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A new computational framework for spinor-based relativistic exact two-component (X2C)

calculations is developed using contracted basis sets with a spin-orbit contraction scheme.

Generally contracted j-adapted basis sets using primitive functions in the correlation-

consistent basis sets are constructed for the X2C Hamiltonian with atomic mean-field spin-

orbit integrals (the X2CAMF scheme). The contraction coefficients are taken from atomic

X2CAMF Hartree-Fock spinors, hereby following the simple concept of linear combina-

tion of atomic orbitals (LCAOs). Benchmark calculations of spin-orbit splittings, equi-

librium bond lengths, and harmonic vibrational frequencies demonstrate the accuracy and

efficacy of the j-adapted spin-orbit contraction scheme.
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I. INTRODUCTION

Relativistic effects1–9, including scalar relativistic and spin-dependent effects, play impor-

tant roles in chemistry and molecular physics involving heavy atoms. The most rigorous but

computationally expensive treatments of relativistic effects in quantum chemistry are offered by

four-component methodologies5,10–24 based on and the Dirac-Coulomb (-Breit) Hamiltonian. To

alleviate the computational cost, two-component methods25–32 have been developed by decou-

pling the electronic and positronic degrees of freedom and using the resulting “electrons-only”

Hamiltonian. Further reduction of computational costs can be achieved via spin separation33–35

to include only the scalar-relativistic terms. Variational treatment of scalar-relativistic effects, for

its simplicity and compatibility with non-relativistic quantum chemistry programs, has become

the standard practice for calculations involving heavy elements. In contrast, calculations with

a variational treatment of spin-orbit coupling at the orbital level, i.e., calculations in the spinor

representation, are less used in practical calculations because of higher computational costs. Apart

from spin-symmetry breaking, an important reason for the computational overheads in spinor-

based relativistic two-component calculations is the significant increase of the number of basis

functions due to the use of uncontracted basis sets. For example, the uncontracted cc-pVTZ basis

set for a 6p-block element36 has 270 basis functions, to be compared with 68 basis functions in the

standard, contracted cc-pVTZ set. Therefore, it is of importance to enable spinor-based relativistic

quantum-chemical calculations using contracted basis sets.

Four-component theories that treat electronic and positronic degrees of freedom on an equal

footing have intrinsic difficulty37 using contracted Gaussian-type orbitals (GTOs).38,39 Using con-

tracted basis functions for the large component and basis functions generated using the kinetic

balance condition40 for the small component leads to significant deviations in orbital energies

from those obtained using uncontracted basis functions41. Contraction coefficients for Dyall’s

correlation-consistent basis sets42–44 have been developed for four-component calculations based

on the atomic balance condition. However, variational instability has still been observed when

the contracted large and small-component basis functions are used separately. On the other hand,

two-component theories possess only electronic degrees of freedom and are compatible with the

use of contracted basis sets. Scalar-relativistic contracted basis sets for spin-free two-component

calculations have the same structure as the corresponding non-relativistic ones, i.e., contracted
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basis functions representing atomic orbitals with the same principal quantum number n and or-

bital angular momentum l share the same contraction coefficients. Scalar-relativistic contracted

basis sets42,44–57 have been developed and widely used for a variety of spin-free relativistic two-

component approaches, including the scalar-relativistic effective core potentials (ECPs)58–60,

spin-free Douglas–Kroll-Hess (DKH) approach61,62, spin-free zeroth-order regular approximation

(ZORA)26, and spin-free exact two-component theory in its one-electron variant (the SFX2C-1e

scheme)32,63.

In spinor-based relativistic two-component calculations, atomic spinors with the same n, l val-

ues but different total angular momentum j values are energetically and spatially distinct. The use

of scalar-relativistic contracted basis functions thus could lead to significant errors64 due to this

mismatch between basis functions and actual atomic spinors. Weigend and collaborators64 have

shown that the errors can be mitigated by adding steep functions to the basis sets. They have con-

structed contracted basis sets for two-component calculations using spin-orbit ECPs (the XZVP-2c

basis sets)65 and all-electron X2C-1e Hamiltonian (the XZVPall-2c basis sets)64,66. These basis

sets have the same structure as scalar-relativistic ones and can exploit the available computational

framework for the evaluation of integrals and construction of Fock matrices. On the other hand,

the exponents for the additional steep functions need to be optimized. The inclusion of these

functions also increases the number of virtual spinors and hence the cost of electron-correlation

calculations. Furthermore, the segmented contraction scheme adopted in the work by Weigend

and collaborators may potentially suffer from linear dependencies when one aims at approaching

the basis-set limit in treatments of electron correlation, since X2C calculations involve solution of

four-component eigenvalue equations in the matrix representation of uncontracted basis functions.

The recent development of spinor-based relativistic exact two-component wavefunction-based

methods67–75 call for development of the corresponding generally contracted basis sets. In this pa-

per, we develop a “j-adapted” spin-orbit contraction scheme using separate contraction coefficients

for spinors with the same n and l values but different j values. We report the construction of j-

adapted contracted basis sets for the X2C Hamiltonian27,31,32 with atomic mean-field76 spin-orbit

integrals (the X2CAMF scheme)77,78. We have adopted the primitive GTOs in the correlation-

consistent basis sets developed by Dyall42,44,79, by Dunning and co-workers80–82, and by Bross

and Peterson36, and have taken coefficients of X2CAMF-HF atomic spinors as the contraction co-
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efficients. This j-adapted contraction scheme represents a faithful implementation of the generic

idea of linear combination of atomic orbitals (LCAOs) and also eliminates the need to optimize

additional steep functions. The use of a j-adapted contracted basis set increases the number of

scalar basis functions, but the number of total molecular spinors remains only twice that of the

corresponding spin-free contracted basis set. This scheme thus enhances the computational effi-

ciency for electron-correlation calculations. In the following we will present the computational

scheme to construct and use j-adapted spin-orbit contracted basis sets together with benchmark

calculations to demonstrate its accuracy.

II. CONSTRUCTION OF CONTRACTED BASIS SETS AND COMPUTATIONAL

IMPLEMENTATION

In a relativistic two-component calculation, a Gaussian-type function with angular momentum

l > 0 in general falls into one of three categories. It may contribute 2l spinor basis functions with

j = l − 1
2 or 2l + 2 spinor basis functions with j = l + 1

2 . Or it may provide 4l + 2 spinor basis

functions of both types with j = l± 1
2 . In an uncontracted or spin-free contracted basis set, all basis

functions belong to the third category. In the present j-adapted spin-orbit contraction scheme, the

contracted basis functions that represent atomic spinors within the minimum basis (MB) belong

to the first or second category. The remaining uncontracted basis functions including polarization

and correlating functions belong to the third category.

Take the cc-pVTZ sets for Bi as an example. We use “cc-pVTZ-SF” and “cc-pVTZ-SO” to

denote the spin-free and j-adapted spin-orbit contracted sets. The primitive set (30s26p17d11 f )

has 270 scalar basis functions. The cc-pVTZ-SF set is an [8s7p5d2 f ] set, and has 68 scalar basis

functions. It is obtained by augmenting the MB [6s5p3d1 f )] with a set of uncontracted functions

(2s2p2d1 f ). In the j-adapted contraction scheme, the MB consists of 6 contracted s functions, 5

contracted p1/2 functions, 5 contracted p3/2 functions, 3 contracted d3/2 functions, 3 contracted

d5/2 functions, 1 contracted f5/2 function, and 1 contracted f7/2 function. The MB thus has a

size of [6s10p6d2 f ] in terms of scalar basis functions. Namely, the number of scalar p, d, and f

functions within the MB is doubled in the j-adapted contraction scheme. All uncontracted func-

tions belong to the third category. Altogether, the cc-pVTZ-SO set is an [8s12p8d3 f ] set with

105 scalar basis functions. As illustrated in Fig. 1, the spin-orbit contraction scheme in general
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FIG. 1. Number of scalar basis functions in spin-free (SF), spin-orbit (SO), and uncontracted (unc) basis

sets of triple-zeta quality.

significantly reduces the number of basis functions compared to the uncontracted basis sets. We

should emphasize that, although the cc-pVTZ-SO set has 37 more scalar basis functions than the

cc-pVTZ-SF set, the cc-pVTZ-SO set generates 136 spinors, which is exactly twice the number of

scalar basis functions in the cc-pVTZ-SF set.

For comparison, let us look at the the x2c-SVPall-SO [7s11p7d2 f ] set, which is obtained by

augmenting the corresponding spin-free relativistic contracted basis set x2c-SVPall [7s7p4d2 f ]

with 4 additional p and 3 additional d steep functions. The x2c-TZVPall-SO set has 89 scalar basis

functions and generates 178 spinor basis functions. As mentioned above, the cc-pVTZ-SO set has

105 scalar basis functions and generates 136 spinor basis functions. Although it has a smaller

number of scalar basis functions, the x2c-SVPall-SO set generates 42 more virtual spinors than

the cc-pVTZ-SO set, and the extra virtual spinors generated from the additional tight functions

do not improve the correlating space for valence correlation. This example demonstrates that the

j-adapted spin-orbit contraction scheme is more efficient for electron-correlation calculations than

augmenting spin-free contracted sets with additional steep functions.

Two-component X2CAMF calculations involve only non-relativistic molecular two-electron

integrals. As explained above, each contracted function with l > 0 within the MB has two scalar

basis functions, while each uncontracted function or contracted s functions corresponds to one

scalar basis function. If we have nc contracted functions with l > 0 and the number of the rest

of the functions is nu, the number of scalar basis functions is 2nc + nu. Our implementation
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within the CFOUR program package83,84 evaluates the atomic-orbital (AO) one- and two-electron

integrals and constructs the Fock matrix in the representation of the scalar basis functions. The

dimension of this Fock matrix is 2(2nc +nu). Then we transform the Fock matrix into the spinor

representation, i.e., the representation of j-adapted spin-orbit contracted basis functions. The di-

mension of the Fock matrix in the spinor representation is 2(nc + nu). The Fock matrix in the

spinor representation is then diagonalized to obtain molecular spinors. This procedure enhances

the computational efficiency by avoiding the transformation of AO two-electron integrals into the

spinor representation. We note that, even if the atomic spinors with the same n and l values but

different j values have similar radial parts (e.g., for the p1/2 and p3/2 spinors of light elements),

these atomic spinors are mutually orthogonal because of the orthogonality of their spin-angular

parts. As a consequence, solving the generalized eigenvalue equations in the spinor representation

is free from the linear dependency problems resulting from similar radial functions.

The present work is focused on the spin-orbit contracted basis sets of p-block elements for the

X2CAMF scheme.77,78 The primitive Gaussian functions are taken from the double-zeta (DZ),

triple-zeta (TZ), and quadruple-zeta (QZ) correlation-consistent basis sets developed by Dun-

ning and co-workers,80–82 by Bross and Peterson,36 and by Dyall42,44,79. We have adopted the

X2CAMF scheme based on the Dirac-Coulomb Hamiltonian in this work. Atomic X2CAMF

Hartree-Fock (HF) calculations using these primitive basis functions have been performed with

the atomic spherical symmetry enforced using the average-of-configuration approach85 for open-

shell p-block atoms, that is, the electronic occupations involving open-shell p-orbitals are equally

weighted in these calculations. We have used the point nuclear model for calculations using the

primitive functions developed by Dunning and co-workers and by Bross and Peterson, and the

Gaussian nuclear model86 for calculations using Dyall’s basis sets, to ensure that the nuclear model

matches that used for the basis set optimization in each case.

The atomic HF calculations have been performed using the X2CAMF program reported

previously78, which is available at https://github.com/Warlocat/x2camf.

The contraction coefficients for the spin-orbit contracted basis sets are obtained as the X2CAMF-

HF atomic spinor coefficients. In the spin-orbit contracted basis sets, for contracted basis func-

tions with orbital angular momentum l > 0, two sets of contraction coefficients are obtained as

X2CAMF-HF coefficients of atomic spinors with orbital angular momentum l and total angular

momentum j = l + 1/2 or j = l − 1/2. The uncontracted primitive GTOs, including the valence
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correlating and polarization functions, are taken as the primitive GTOs recommended in the origi-

nal basis sets. For comparison, we also construct spin-free contracted basis sets for the SFX2C-1e

scheme using the SFX2C-1e-HF atomic orbital coefficients. The spin-free and spin-orbit con-

tracted correlation-consistent basis sets using the primitive functions of Dunning’s basis sets and

Bross and Peterson’s basis sets are denoted as “cc-pVXZ-SF” and “cc-pVXZ-SO” basis sets, re-

spectively. The corresponding basis sets using primitive functions of Dyall’s basis sets are denoted

as “dy-VXZ-SF” and “dy-VXZ-SO” basis sets. The exponents and coefficients for these basis sets

are summarized in the supplementary materials. Note that, while the present spin-free contraction

scheme uses AOC SFX2C-1e-HF atomic orbitals, the standard spin-free contraction scheme uses

atomic coefficients for the atomic ground-state configuration. The present cc-pVXZ-SF basis sets

thus differ slightly from the standard SFX2C-1e recontracted basis sets87.

III. BENCHMARK CALCULATIONS OF ATOMIC AND MOLECULAR

PROPERTIES

Benchmark HF and coupled-cluster singles and doubles (CCSD)88 augmented with a non-

iterative triples correction [CCSD(T)]89 calculations have been carried out for the spin-orbit split-

tings of 2P atoms and 2Π diatomic molecules as well as structural parameters for representative

diatomic molecules, to assess the quality of the contracted basis sets. For spinor-based calcula-

tions, the X2CAMF scheme based on the Dirac-Coulomb Hamiltonian has been adopted. The CC

calculations have only correlated the valence electrons (the ns and np electrons for the np-block

elements). For calculations using uncontracted basis sets, the unoccupied molecular spinors with

energies higher than 100 hartree have been frozen in the CC calculations. The CFOUR program

package69,77,78,83,84,90,91 has been used throughout the calculations.

A. Spin-orbit splittings of 2P atomic states

The atomic spin-orbit splittings (SOSs) between 2P1/2 and 2P3/2 states of Ga, In, Tl, Br, I, and

At atoms have been calculated with uncontracted, spin-free contracted, and spin-orbit contracted

triple-zeta basis sets at X2CAMF-HF and X2CAMF-CCSD(T) levels. The absolute deviations of

SOSs obtained using contracted basis sets from those using uncontracted basis sets are plotted in

Fig. 2.
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FIG. 2. Absolute deviations (in cm−1) for calculated atomic spin-orbit splittings between 2P1/2 and 2P3/2

states of Ga, In, Tl, Br, I, and At atoms with contracted triple-zeta basis sets at X2CAMF-HF and X2CAMF-

CCSD(T) level, respectively, from those obtained using uncontracted basis sets.

Calculations using spin-orbit contracted basis sets consistently recover more than 99.5% of the

atomic spin-orbit splittings computed using uncontracted basis sets. In contrast, the deviations

of the results obtained using spin-free contracted basis sets from those obtained using the uncon-

tracted basis sets are in general one or two orders of magnitude greater. For example, X2CAMF

calculations using spin-free contracted basis sets underestimate the atomic SOSs by around 10%

for 4p-elements Ga and Br and by around 25% for 6p-elements Tl and At. The largest abso-

lute deviations of X2CAMF-CCSD(T) atomic SOSs obtained using spin-orbit contracted basis

sets compared to those obtained using uncontracted basis sets amount to 16 cm−1 for Bross and

Peterson’s basis sets and 75 cm−1 for Dyall’s basis sets both in the case of the At atom. For

comparison, the corresponding errors of the results obtained using spin-free contracted basis sets

amount to more than 5000 cm−1.

B. Spin-orbit splittings of 2Π diatomic molecules

Benchmark calculations for spin–orbit splittings of 2Π radicals including XO (X = N, P, As,

Sb, and Bi) and XF (X = C, Si, Ge, Sn and Pb) series have been carried out at the X2CAMF-

CCSD(T) level using cc-pVXZ and dy-VXZ (X=D, T, Q) basis sets. Here we also adopt a hybrid

scheme, which uses the spin-free contracted basis sets for 2p elements (C, N, O, F) and spin-orbit

contracted basis sets for the heavier elements. The calculated spin-orbit splittings using this hy-

brid scheme are essentially indistinguishable from the results obtained using j-adapted contracted
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TABLE I. Calculated spin–orbit splittings (in cm−1) of 2Π radicals XO (X = N, P, As, Sb, and Bi) and XF

(X = C, Si, Ge, Sn and Pb) series at X2CAMF-CCSD(T) level with contracted and uncontracted (unc-) basis

sets. Spin-free contracted basis sets have been used for 2p elements (C, N, O, F) while spin-orbit contracted

basis sets have been used for other elements.

NO PO AsO SbO BiO CF SiF GeF SnF PbF

cc-pVDZ 124.5 238.1 969.7 - - 82.2 169.4 849.1 - -

unc-cc-pVDZ 126.9 241.7 980.3 - - 83.8 170.5 855.2 - -

cc-pVTZ 131.6 234.9 1004.5 2256.1 7261.4 85.9 167.6 828.8 2203.0 7807.4

unc-cc-pVTZ 131.4 234.9 1006.0 2259.5 7311.1 85.7 167.7 828.1 2207.6 7832.7

cc-pVQZ 133.3 233.9 1018.8 2310.5 7444.4 86.5 166.7 819.7 2211.5 7878.2

unc-cc-pVQZ 133.0 234.5 1018.1 2310.4 7439.6 86.3 166.9 819.4 2209.7 7874.5

dy-VDZ 130.7 235.0 975.1 2205.6 7004.7 85.4 168.5 855.3 2200.7 7829.2

unc-dy-VDZ 133.0 238.3 992.8 2216.8 7068.0 87.1 169.7 853.9 2219.5 7881.2

dy-VTZ 132.2 233.2 1001.8 2275.0 7305.2 85.4 166.5 825.1 2196.5 7820.5

unc-dy-VTZ 134.0 234.1 1009.4 2284.2 7352.2 86.8 166.8 823.4 2206.3 7854.6

dy-VQZ 134.1 233.8 1013.0 2314.4 7432.9 86.2 166.5 819.9 2206.7 7866.2

unc-dy-VQZ 134.3 234.1 1018.6 2322.4 7450.9 86.7 166.5 817.6 2210.3 7868.5

basis sets for all elements (see the supporting information for details). Therefore, for simplicity,

this combination of contracted basis sets are referred to as cc-pVXZ and dy-VXZ basis sets in

the following discussions. Experimental equilibrium bond lengths92 (1.15077 Å for NO, 1.476

Å for PO, 1.6236 Å for AsO, 1.825 Å for SbO, 1.934 Å for BiO, 1.272 Å for CF, 1.601 Å for

SiF, 1.745 Å for GeF, 1.944 Å for SnF, 2.0575 Å for PbF) have been used in these calculations.

The calculated SOSs at X2CAMF-CCSD(T) level are summarized in Table I. The X2CAMF-HF

results can be found in the supporting information.

The calculated spin-orbit splittings using the hybrid scheme agree well with the splittings

obtained using the uncontracted basis sets. The agreement in general becomes better with the

increase of the size of the basis sets. Take the calculated SOSs of AsO using Dyall’s basis sets as

an example. The results obtained using spin-orbit contracted basis sets differ from those obtained
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using the uncontracted basis sets by 18, 8, and 6 cm−1 for DZ, TZ, QZ basis sets, respectively.

The spin-orbit contracted basis sets show similar convergence patterns with respect to the cardinal

number of the basis sets as the uncontracted basis sets. The basis sets of Dunning and co-workers

and of Bross and Peterson show similar performance to the corresponding Dyall basis sets in these

calculations.

While the use of the spin-free contracted basis sets for 2p elements works well in calculations

of SOSs, the use of spin-free contracted basis sets for heavier atoms introduce significant errors.

For example, we have performed calculations for PO and SiF using spin-free contracted basis sets

for P and Si. The corresponding calculated SOSs amount to 219.9 cm−1 for PO and 153.3 cm−1

for SiF using the cc-pVQZ-SF sets and to 221.4 cm−1 for PO and 155.5 cm−1 for SiF using the

dy-cc-VQZ-SF sets. Similar to the atomic calculations, these SOSs are underestimated by 5-10%

compared to the results obtained using uncontracted or spin-orbit contracted basis sets. The use

of spin-orbit contracted basis sets is thus required for accurate calculations of SOSs for molecules

containing 3p and heavier elements.

C. Structural parameters for diatomic molecules

Benchmark calculations of equilibrium bond lengths and harmonic frequencies for the closed-

shell diatomic molecules F2, Cl2, Br2, I2, At2, N2, P2, As2, Sb2, Bi2, AsN, BiN, BrCl, GaCl

have been performed at the SFX2C-1e-HF, SFX2C-1e-CCSD(T), X2CAMF-HF, and X2CAMF-

CCSD(T) levels of theory with cc-pVTZ basis sets. The uncontracted and spin-free contracted

basis sets have been used in the SFX2C-1e calculations, while the uncontracted, spin-free con-

tracted, and spin-orbit contracted basis sets have been used for X2CAMF calculations. The

calculated structural parameters are summarized in Tables II and III, together with the errors of

the contraction schemes obtained as the difference between the calculations using uncontracted

and contracted basis sets.

The differences between the results obtained using spin-free contracted and uncontracted ba-

sis sets in SFX2C-1e calculations correspond to the errors in the basis-set contraction. These

errors are in general small. As shown in Tables II and III, the largest basis-set contraction er-

rors in SFX2C-1e-CCSD(T) calculations amount to 0.0137 Å for bond lengths in the case of At2
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TABLE II. Calculated equilibrium bond lengths (in Å) and harmonic frequencies (in cm−1) for diatomic

molecules at SFX2C-1e- and X2CAMF-HF level with uncontracted cc-pVTZ basis sets (UNC), as well as

the errors for the spin-free (∆SF) and spin-orbit (∆SO) contraction schemes.

Bond lengths (in Å) Harmonic frequencies (in cm−1)

SFX2C-1e X2CAMF SFX2C-1e X2CAMF

UNC ∆SF UNC ∆SF ∆SO UNC ∆SF UNC ∆SF ∆SO

F2 1.3288 0.0006 1.3288 0.0006 0.0006 1268.7 -2.6 1268.7 -2.6 -2.6

Cl2 1.9842 0.0005 1.9843 0.0004 0.0005 613.6 -1.1 613.4 -1.1 -1.1

Br2 2.2720 0.0004 2.2742 -0.0004 0.0005 355.5 -0.3 353.1 0.5 -0.3

I2 2.6665 0.0002 2.6799 -0.0057 0.0002 237.0 -0.1 228.8 3.1 -0.1

At2 2.8399 0.0073 2.9667 -0.0732 0.0094 169.3 -0.1 131.0 16.8 -0.7

N2 1.0660 0.0009 1.0660 0.0009 0.0009 2730.3 0.5 2730.2 0.5 0.5

P2 1.8563 0.0002 1.8563 0.0002 0.0002 910.1 0.1 910.1 0.1 0.1

As2 2.0523 0.0004 2.0529 0.0004 0.0004 510.8 0.1 509.5 0.3 0.0

Sb2 2.4369 0.0001 2.4432 -0.0001 0.0001 328.9 0.0 321.2 1.6 -0.1

Bi2 2.5714 0.0050 2.6671 -0.0176 0.0061 230.0 0.4 171.2 20.8 0.3

AsN 1.5661 0.0010 1.5666 0.0009 0.0010 1309.7 0.5 1302.9 1.6 0.3

BiN 1.8414 0.0081 1.9760 -0.0109 0.0123 1007.8 -2.1 594.8 18.5 -2.7

GaCl 2.2336 0.0002 2.2335 0.0004 0.0002 356.8 0.1 356.8 0.1 0.1

BrCl 2.1279 0.0004 2.1294 0.0001 0.0004 486.6 -0.6 484.4 0.1 -0.6

and -4.6 cm−1 for harmonic frequencies in the case of N2. The basis-set contraction errors in

X2CAMF calculations can be defined as the difference between X2CAMF results obtained using

spin-orbit contracted basis functions and uncontracted basis functions. They take similar values

to the basis-set contraction errors in SFX2C-1e calculations. This indicates the consistency in

the spin-free and spin-orbit contraction schemes. In contrast, the deviations of X2CAMF results

obtained using spin-free contracted basis sets arise not only from the basis-set contraction but

also from the mismatch between contracted basis functions and the relativistic Hamiltonian. The

largest errors in X2CAMF-CCSD(T) calculations using spin-free contracted basis sets amount to

as large as -0.0952 Å for bond lengths and 23.6 cm−1 for harmonic frequencies, both in the case
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TABLE III. Calculated equilibrium bond lengths (in Å) and harmonic frequencies (in cm−1) for diatomic

molecules at SFX2C-1e- and X2CAMF-CCSD(T) level with uncontracted cc-pVTZ basis sets (UNC), as

well as the errors for spin-free (∆SF) and spin-orbit (∆SO) contractions.

Bond lengths (in Å) Harmonic frequencies (in cm−1)

SFX2C-1e X2CAMF SFX2C-1e X2CAMF

UNC ∆SF UNC ∆SF ∆SO UNC ∆SF UNC ∆SF ∆SO

F2 1.4151 0.0010 1.4152 0.0010 0.0010 923.4 -3.9 923.4 -3.9 -3.9

Cl2 2.0175 0.0009 2.0176 0.0009 0.0009 545.5 -0.7 545.3 -0.7 -0.7

Br2 2.3058 0.0025 2.3086 0.0013 0.0025 318.8 -0.5 315.8 0.5 -0.5

I2 2.6970 0.0036 2.7135 -0.0042 0.0038 215.9 -0.7 205.9 3.3 -0.8

At2 2.8712 0.0137 3.0286 -0.0952 0.0186 155.1 -1.3 107.8 23.6 -1.8

N2 1.1021 0.0015 1.1021 0.0015 0.0015 2349.2 -4.6 2349.2 -4.5 -4.5

P2 1.9143 0.0011 1.9143 0.0011 0.0011 769.0 -0.5 769.0 -0.6 -0.6

As2 2.1262 0.0017 2.1264 0.0017 0.0017 424.1 -1.2 423.6 -0.8 -1.1

Sb2 2.5313 0.0019 2.5337 0.0022 0.0019 267.5 -1.0 264.9 -0.1 -0.9

Bi2 2.6792 0.0091 2.7103 0.0000 0.0104 183.4 -1.1 167.3 11.7 -1.4

AsN 1.6323 0.0016 1.6322 0.0015 0.0016 1061.6 0.4 1062.3 0.6 0.3

BiN 1.9579 0.0122 1.9818 0.0077 0.0133 758.8 -4.4 717.9 -6.5 -1.3

GaCl 2.1606 0.0018 2.1624 0.0013 0.0018 435.5 -0.8 433.0 0.0 -0.8

BrCl 2.2653 0.0012 2.2657 0.0011 0.0012 384.6 0.4 385.1 0.2 0.4

of At2. Therefore, it is necessary to use spin-orbit contracted basis sets rather than the spin-free

contracted basis sets to obtain accurate X2CAMF results.

We note that, for molecules containing elements from the first two long rows, e.g., F2, Cl2, N2,

and P2, the difference between an X2CAMF bond length or harmonic frequency obtained using the

spin-free contraction scheme and the corresponding value obtained using the spin-orbit contraction

scheme is insignificant. It appears sufficient to use spin-free contracted basis functions for these

elements in calculations of structural parameters. We have performed further calculations for the

AsN, BiN, GaCl, and BrCl molecules using a hybrid scheme, in which the spin-free contracted

12



TABLE IV. Calculated equilibrium bond lengths (in Å) and harmonic frequencies (in cm−1) for diatomic

molecules AsN, BiN, GaCl, and BrCl at X2CAMF-HF and X2CAMF-CCSD(T) levels with spin-orbit con-

tracted basis sets and the hybrid contracted basis sets. The hybrid contraction scheme uses cc-pVTZ-SF

basis sets for N and Cl and cc-pVTZ-SO basis sets for As, Bi, Ga, and Br.

Bond lengths (in Å) Harmonic frequencies (in cm−1)

cc-pVTZ-SO Hybrid cc-pVTZ-SO Hybrid

X2CAMF-HF

AsN 1.5676 1.5676 1303.2 1303.2

BiN 1.9882 1.9882 592.1 592.2

GaCl 2.2337 2.2337 356.9 356.9

BrCl 2.1298 2.1298 483.8 483.8

X2CAMF-CCSD(T)

AsN 1.6338 1.6338 1062.6 1062.6

BiN 1.9950 1.9950 716.6 716.6

GaCl 2.2669 2.2669 385.5 385.5

BrCl 2.1642 2.1642 432.1 432.1

basis sets are used for N and Cl and the spin-orbit contracted basis sets are used for the heavier

elements. The comparison between hybrid and spin-orbit contracted basis sets are given in Table

IV. The calculated bond lengths and harmonic frequencies with the hybrid basis sets are almost

indistinguishable from those obtained using spin-orbit contracted basis sets. The hybrid contracted

basis sets using spin-free contracted basis sets for 2p and 3p elements are thus recommended for

relativistic two-component calculations of structural parameters. We emphasize that, as we have

shown in the last subsection, accurate calculations of spin-orbit splittings requires the use of spin-

orbit contracted basis sets for 3p elements.

IV. SUMMARY AND OUTLOOK

We have developed a j-adapted spin-orbit contraction scheme and constructed generally con-

tracted basis sets for p-block elements for spinor-based relativistic two-component calculations

based on the exact two-component Hamiltonian with atomic mean-field spin-orbit integrals (the

X2CAMF scheme). The contraction coefficients have been obtained as the coefficients of the

13



atomic X2CAMF-HF spinors. Calculated atomic and molecular spin-orbit splittings using the

spin-orbit contracted basis sets exhibit excellent agreement with the corresponding results ob-

tained using uncontracted basis sets, showcasing the robust performance of the spin-orbit contrac-

tion scheme and the new basis sets. Benchmark calculations of structural parameters including

equilibrium bond lengths and harmonic frequencies show that the basis-set contraction errors in

X2CAMF calculations using spin-orbit contracted basis sets are consistent with those in scalar-

relativistic calculations using spin-free contracted basis sets. In contrast, the use of spin-free con-

tracted basis sets in X2CAMF calculations leads to significant errors due to the mismatch between

basis functions and the relativistic Hamiltonian. Future work will be focused on expanding the

new basis sets to incorporate (semi-)core-correlating functions, as well as constructing spin-orbit

contracted basis sets for a broader range of elements, especially the d- and f -block elements.

SUPPLEMENTARY MATERIAL

Calculated atomic and molecular spin-orbit splittings using contracted and uncontracted basis

sets.
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