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ABSTRACT
As a deep learning model, Visual Mamba (VMamba) has a low

computational complexity and a global receptive field, which has
been successful applied to image classification and detection. To
extend its applications, we apply VMamba to crowd counting and
propose a novel VMambaCC (VMamba Crowd Counting) model.
Naturally, VMambaCC inherits the merits of VMamba, or global
modeling for images and low computational cost. Additionally, we
design a Multi-head High-level Feature (MHF) attention mecha-
nism for VMambaCC. MHF is a new attention mechanism that
leverages high-level semantic features to augment low-level seman-
tic features, thereby enhancing spatial feature representation with
greater precision. Building upon MHF, we further present a High-
level Semantic Supervised Feature Pyramid Network (HS2PFN) that
progressively integrates and enhances high-level semantic informa-
tion with low-level semantic information. Extensive experimental
results on five public datasets validate the efficacy of our approach.
For example, our method achieves a mean absolute error of 51.87
and a mean squared error of 81.3 on the ShangHaiTech_PartA
dataset. Our code is coming soon.
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1 INTRODUCTION
Crowd counting refers to the task of quantifying the number of

individuals in images or videos using computer vision techniques.
This task is of significant importance to predicting crowd trends
and optimizing resource allocation, and can provide crucial infor-
mation for many practical applications, such as urban planning
[27], security surveillance [3], and retail analysis [21].
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For crowd counting tasks, there has been challenges including
high density, occlusion, and small targets. To meet these challenges,
current crowd counting models are mainly constructed based on
two architectures: Convolutional Neural Networks (CNNs) [3, 4,
15, 21, 31] and Transformer [16, 29].

CNN is a kind of deep learning model specifically designed for
processing data like images. There are many classic CNN models
for crowd counting, such as Multi-Column CNN (MCNN) [31],
Congested Scene Recognition Network (CSRNet) [15], Context-
Aware Feature Network (CANNet) [19], Attention Scaling NetWork
(ASNet) [11], Shallow Feature Based Dense Attention Network
(SDANet) [22], and Fine-Grained Extraction Network (FGENet)
[21]. These models leverage CNN to extract features and fuse multi-
scale features for counting individuals. However, these methods are
sensitive to changes in position and scale. In addition, as Kolesnikov
et al. [13] point out that CNN-based models struggle to obtain a
global receptive field; thus, these models are restricted when dealing
with multi-scale individuals.

Transformer is a kind of deep learning model originally designed
for processing time sequence data. By dividing spatial positions
and image patches into sequences, Kolesnikov et al. [13] proposed a
Visual Transformer (ViT) based on Transformer to capture relation-
ships between pixels in images. Transformer-based models mainly
use ViT to extract features from images. Typical models are Crowd
Localization TRansformer (CLTR) [16] and Local features by Vision
Transformer for Crowd counting (LoViTCrowd) [29]. These meth-
ods possess a global receptive field. However, the computational
complexity of Transformer-based models exponentially increases
as the size of the input images, leading to reduced efficiency in
tasks with large computational costs [8].

Recently, Gu and Dao [8] proposed a Mamba model, which is a
state space model, for natural language processing. Mamba enables
each element in a sequence to interact with any previously scanned
element, thereby reducing the quadratic complexity of the attention
mechanism in Transformer to the linear complexity. Inspired by
the Mamba, Liu et al. [20] proposed a Visual Mamba (VMamba)
model. VMamba designs a Cross-Scan Module (CSM) that adopts
a four-way scanning strategy, starting from the four corners of
the image. In doing so, VMamba can have a global attention and
maintain the linear computational complexity.

Building upon VMamba, we propose a versatile VMambaCC
model that is capable of crowd counting and crowd localization.
VMambaCC not only captures global information but also tackles
the multi-scale variations caused by the perspective effect. Our
network stands out from popular Transformer-based or CNN ar-
chitectures by providing linear scaling of feature sizes. Fig. 1 plots
the curves of computational complexity (flops) vs. image size ob-
tained by our method and other three mainstream methods. These
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Figure 1: Comparison curves of flops vs. image size obtained
by four methods.

curves imply that our method is capable of handling the processing
more efficiently, with the computational complexity consistently
maintained at a lower level. Our main contributions are as follows:

• A novel VMambaCC model is proposed, which is the first
visual state space model for crowd counting that is a high-
density task. VMambaCC has not only a global receptive
field but also a fast learning and inference speed.

• VMambaCC contains a Multi-head High-level Feature (MHF)
enhancement mechanism that is newly designed for enhanc-
ing low-level semantic information by reinforcing high-level
semantic features.

• On the basis of the MHF attention mechanism, this study
presents a feature fusion network, or the High-level Semantic
Supervised Feature Pyramid Network (HS2FPN). This net-
work gradually integrates information from different scales
and partially preserves high-level semantic features.

The subsequent sections of this paper are structured as follows.
In Section 2, we provide a concise review of the relevant literature
pertaining to crowd counting tasks. Section 3 delves into a detailed
exposition of the VMambaCC model, encompassing its architecture,
design philosophy, and the innovative components including the
MHF attention mechanism and the HS2FPN feature fusion network.
Section 4 presents the results of our counting, localization, and
ablation studies, offering a comprehensive evaluation and analysis
of our model. Finally, Section 5 summarizes this paper.

2 RELATEDWORK
Crowd counting has attracted widespread attention in the field of

computer vision. For decades, methods for crowd counting include
detection-based [5, 28, 32], density map-based [3, 4, 15, 17, 19, 29–
31], and point-based approaches [16, 21, 27].

Detection-based methods transform the crowd counting task
into an object detection problem by detecting individuals in the
image for counting. These methods typically utilize object detec-
tion algorithms such as faster region-CNN [23] and YOLO [7] to
detect individuals in an image and count them based on the de-
tected instances. Although detection-based methods can provide

more accurate localization and counting of individuals, their perfor-
mance may be affected when dealing with high-density and heavily
occluded scenarios.

On the basis of the principle of density estimation, density map-
based methods generate a grayscale image, where each pixel rep-
resents the estimated density of individuals at corresponding lo-
cations. Typically, density estimation is performed using some
schemes, such as Gaussian kernel functions [2], where each an-
notated point in the original image is convolved with a Gaussian
kernel to obtain the density estimation for each pixel and form a
density map. Popular density map-based methods include MCNN
[31], CSRNet [15], and others. However, density maps, as an esti-
mate of the overall distribution of the crowd, lose the individual
location information, leading to limitations in individual tracking
and recognition. In addition, the superposition of Gaussian kernels
can introduce additional noise to the data [3].

Point-based methods employ an effective approach to crowd
counting by representing individuals as points and estimating the
total number of individuals in the image [27]. Compared to other
methods, the point-based framework offer better robustness and
computational efficiency as it only requires detecting the positions
of individuals rather than complete body detection boxes, reducing
computational complexity. This kind of approaches are commonly
used in crowded scenes such as stations and squares for real-time
monitoring and analysis of crowd behavior, with broad application
prospects. Some classic point methods include P2PNet [27], FGENet
[21], and CLTR [16]. So does our model.

3 PROPOSED MODEL
This section first introduces the framework of VMambaCC, then

discusses the newly proposed the MHF enhancement mechanism,
and finally describes the fusion network, HS2FPN.

First of all, we clarify some notations. The set of annotated points
in an image is denoted as 𝑆𝑎 = {(𝑥𝑖 , 𝑦𝑖 ) |𝑖 = 1, · · · , 𝑁 }, where 𝑁 is
the number of points, and 𝑥𝑖 and 𝑦𝑖 represent the horizontal and
vertical coordinates of the 𝑖-th individual in the image, respectively.
Let 𝑆𝑝 = {(𝑥 𝑗 , 𝑦 𝑗 , 𝑐 𝑗 ) | 𝑗 = 1, · · · , 𝑀} be the set of predicted points,
where 𝑥 𝑗 and 𝑦 𝑗 represent the predicted horizontal and vertical
coordinates of the 𝑗-th individual in the image, respectively, 𝑐 𝑗 is
the confidence score that the 𝑗-th predicted point is an individual,
and𝑀 is the number of predicted points.

3.1 Framework of VMambaCC
VMambaCC is the first Mamba-based model specifically tailored

for crowd counting tasks. Because VMambaCC has the advan-
tages of VMamba, it addresses the issue of Transformer’s quadratic
growth in computational cost with image block size and retains the
global receptive field.

As shown in Fig. 2, VMambaCC consists of three stages: feature
extraction, feature fusion, and prediction. The input of this model is
an image, and the output is a set of predicted points with confidence
scores. Therefore, VMambaCC can be taken as a kind of point-based
counting model. For a given crowd imageX, VMamba is first used to
extract its feature maps with three scales, denoted as F𝑠 , 𝑠 = 1, 2, 3.
Subsequently, these feature maps pass through the feature fusion
stage. By progressively fusing features at three scales, HS2FPN
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Figure 2: Architecture of VMambaCC model.

preserves high-level feature supervision and captures individual
information at different resolutions. Finally, our model outputs both
positions and confidence scores of individuals in the image X after
passing through the prediction stage.

For training VMambaCC, we utilize a Three-Task Combination
(TTC) loss function that involves matching annotated points with
predicted points. We treat this as a bipartite graph matching prob-
lem and use the Hungarian algorithm to match points in 𝑆𝑎 with
those in 𝑆𝑝 . Without loss of generality, the first 𝑁 predicted points
in 𝑆𝑝 are matched successfully with annotated points in 𝑆𝑎 in order.

In VMambaCC, we design a novel MHF attention mechanism
and then propose a fusion network (NS2PFN) based on this new
attention mechanism. By effectively combining the semantic infor-
mation from high-level features with the detailed information from
low-level features, MHF can help our model improve its perfor-
mance when handling multi-scale data. In the following, we discuss
them further.

3.2 MHF attention mechanism
Fig. 3 shows the structure of MHF attention. Roughly, the MHF

attention can be divided into three parts: the Channel Enhance-
ment Module (CEM), the Multi-head Spatial Enhancement Module
(MSEM), and the High-level CEM (HCEM).

3.2.1 CEM. The purpose of CEM is to assign attention weights
to channels, allowing the model to better select and emphasize
important features. In this module, the high-level feature maps are
passed through max-pooling and average-pooling layers.

Let Fℎ , F𝑚 and F𝑎 be the high-level, max-pooled and average-
pooled features, respectively. That is,

F𝑚 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (Fℎ) (1)

and
F𝑎 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (Fℎ) (2)

where𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (·) and𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (·) are the operations ofmax-pooling
and average-pooling, respectively.

Figure 3: Structure of MHF attention mechanism.

Let F𝑜𝑢𝑡1 be the output of CEM. Then, F𝑜𝑢𝑡1 can be obtained by

F𝑜𝑢𝑡1 (𝑐) =𝑊 (𝑐)Fℎ (𝑐) (3)

where F𝑜𝑢𝑡1 (𝑐) and Fℎ (𝑐) are the feature maps in the 𝑐-th channel of
F𝑜𝑢𝑡1 and Fℎ , respectively, W = [𝑊 (1), · · · ,𝑊 (𝑐)]𝑇 is the channel
weight vector that is defined as

W = Sigmoid (𝐶𝑜𝑛𝑣𝑠 (F𝑚) +𝐶𝑜𝑛𝑣𝑠 (F𝑎)) (4)

𝐶𝑜𝑛𝑣𝑠 (·) represents a sequence of convolutional layers with shared
weights, and 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (·) denotes the Sigmoid activation function.

3.2.2 MSEM. The role of MSEM is to make the model focus on
useful information, which could improve the robustness of the
model. If we extract only the maximum and average values in
feature maps among all channels, then it is highly possible to lose
lots of grained information. Therefore, we divide feature maps into
multiple groups and design multi-head spatial features to focus on
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grained information from different groups. After obtain the output
of CEM, we divide F𝑜𝑢𝑡1 into 4 groups according to channels. That
is,

F𝑔𝑖 = 𝐺𝑟𝑜𝑢𝑝 (F𝑜𝑢𝑡1 ), 𝑖 = 1, 2, 3, 4 (5)
where 𝐺𝑟𝑜𝑢𝑝 (·) is the operation of dividing feature maps into
groups.

Then, the output of MSEM can be expressed by

F𝑜𝑢𝑡2 = 𝐶𝑜𝑛𝑐𝑎𝑡 (G1, · · · ,G4) (6)

where G𝑖 = 𝐶𝑜𝑛𝑣 (𝑀𝑎𝑥 (F𝑔𝑖 ), 𝐴𝑣𝑔(F𝑔𝑖 )), 𝐶𝑜𝑛𝑐𝑎𝑡 (·) is the feature
map concatenation, 𝐶𝑜𝑛𝑣 (·) filters the extracted feature maps,
𝑀𝑎𝑥 (·) and 𝐴𝑣𝑔(·) are functions of taking the maximum and aver-
age values among the channels, respectively.

3.2.3 HCEM. The main purpose of this module is to enhance im-
portant channels and upsample feature maps. After MSEM, there
may be some redundant information. In order to filter out the redun-
dant information, we need to enhance F𝑜𝑢𝑡2 in terms of channels,
then fuse the feature maps and multiply them onto the low-level
features.

F𝑜𝑢𝑡3 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (𝐶𝑜𝑛𝑣 (𝐶𝑜𝑛𝑣𝑠 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (F𝑜𝑢𝑡2 )) (7)
+𝐶𝑜𝑛𝑣𝑠 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (F𝑜𝑢𝑡2 )))) (8)

where𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (·) stands for upsampling.

3.3 HS2FPN
We make a thorough analysis on existing crowd counting mod-

els and find that existing feature fuse networks have a limitation
when dealing with high-density and complex scenes. The main
constraints lie in the insufficient global perception capability of
these networks, which fails to effectively capture the overall infor-
mation in images, and the inadequate extraction and representation
of key features in scenes, especially when dealing with occlusion
and varying scales of crowds. Therefore, HS2FPN aims to address
these issues, thereby improving the accuracy and robustness of
crowd counting.

HS2FPN mainly consists of multiple Visual State Space (VSS)
and MHF attention blocks. VSS, a module from VMamba [20], can
effectively enhance the model’s perception of global information
in images through a four-way scanning strategy, enabling a more
comprehensive understanding of scenes and improving the capa-
bility to capture distribution features of crowds in complex scenes.
This strategy provides the model with a unique perspective to ob-
serve and process image data, significantly reducing computational
complexity while maintaining global perception capability.

Figure 4: MHF Attention block connection.

MHF attention blocks enhance the model’s ability to capture
and represent important features by integrating high-level features
when handling occlusion and multi-scale crowds. Additionally, we
also design the enhancement scheme for enhancing low-level fea-
tures using high-level features, as shown in Fig. 4. Let F𝑙 be low-level
features. Then, our enhancement scheme can be described as

F𝑜𝑢𝑡4 = F𝑙 ⊙ F𝑜𝑢𝑡3 (9)

where ⊙ is the element-wise multiplication operator, F𝑜𝑢𝑡3 is the
output of MHF attention block, which is obtained from high-level
features Fℎ . Ultimately, HS2FPN achieves the fusion of crucial fea-
ture extraction and representation capabilities for multi-scale fea-
tures.

4 EXPERIMENTS
To validate the effectiveness of VMambaCC, we performed ex-

periments on four public crowd datasets and compared it with
state-of-the-art models.

4.1 Experimental Setups
Datasets. Four challenging datasets were used here: Shanghai

Tech [31], UCF_QNRF [10], JHU-Crowd [26] and UCF_CC_50 [9].
The detailed information of these dataset is shown in Table 1, where
both SHT_A and SHT_B belong to the Shanghai Tech dataset.

• Shanghai Tech is a large-scale crowd counting dataset con-
sisting of 1198 images and 330,165 annotations. This dataset
covers various scene types and densities. There is some im-
balance in the number of images with different densities.
SHT_A and SHT_B are its two subsets, where SHT_A has
significantly higher density than SHT_B.

• UCF-QNRF is a dataset containing 1535 challenging images
and 1,251,642 annotations, with diverse image scenes, angles,
densities, and lighting variations.

• JHU-Crowd is a large-scale dataset with 4250 images and
1,114,785 annotations, averaging 262 individuals per image.
Additionally, this dataset provides rich annotations, includ-
ing point-level, image-level, and head-level annotations.

• UCF_CC_50 is a challenging dataset containing 50 images
with an average of 1280 annotations per image. This dataset
contains a variety of scenes and perspectives, such as con-
certs, protests, stadiums and marathons.

Data Augmentation. Some data augmentation strategies were
adopted here, including random scaling with a probability of 0.5
(scaling factors ranging from 0.7 to 1.3), random horizontal flipping
with a probability of 0.5, color adjustments, Gaussian noise addi-
tion, and random cropping to the size of 128 × 128. For the QNRF
dataset, we constrained the maximum size to not exceed 1408 and
maintained the aspect ratio of the original images.

Hyperparameter Settings. The Adam [12] optimizer was ap-
plied to our model with a learning rate of 10−4. For each image in
all datasets except QNRF, we set a reference point every two pixels.
For the QNRF dataset, we generated a reference point every two
pixels vertically and horizontally.

Evaluation Metrics. For crowd counting tasks, Mean Absolute
Error (MAE) and Mean Squared Error (MSE) are two common
evaluation metrics. MAE represents the average of the absolute
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Table 1: Statistics of crowd counting datasets.

Dataset #Number of images #Training/Validation/Test Total Min Average Max
SHT_A 482 300/0/182 241,677 33 501.4 3139
SHT_B 716 400/0/316 88,488 9 123.6 578
UCF_QNRF 1,535 1201/0/334 1,251,642 49 815 12,865
JHU-CROWD 4250 3888/0/1062 1,114,785 - 262 7286
UCF_CC_50 50 - 63,974 94 1,280 4,543

Table 2: Performance comparison of mainstream crowd counting models on three datasets.

Method Localization Architecture SHT_A SHT_B UCF_QNRF JHU-Crowd
MAE MSE MAE MSE MAE MSE MAE MSE

MCNN[31] × CNN 110.2 – 26.4 – – – 160.6 377.7
CSRNet[15] × CNN 68.2 115.0 10.6 16 120.3 208.5 72.2 249.9
CANNet[19] × CNN 62.3 100.0 7.8 12.2 107.0 183 100.1 314.0
ASNet[11] × CNN 57.78 90.13 – – 91.59 159.71 – –
SDANet[22] × CNN 63.6 101.8 7.8 10.2 – – 59.3 248.9
SCARNet[6] × CNN 66.3 144.1 9.5 15.2 – – – –
GauNet[3] × CNN 54.8 89.1 6.2 9.9 81.6 153.7 69.4 262.4
P2PNet[27]

√
CNN 52.7 85.1 6.3 9.9 85.32 154.5 – –

FGENet[21]
√

CNN 51.66 85.00 6.34 10.53 85.2 158.76 – –
CLTR[16]

√
Transformer 56.9 95.2 6.5 10.6 85.8 141.3 59.5 240.6

LoViTCrowd[29] × Transformer 54.8 80.9 8.6 13.8 87 141.9 – –
VMambaCC

√
Mamba 51.87 81.3 7.48 12.47 88.42 144.73 54.41 201.93

errors between predicted and true values, while MSE is the average
of the squared errors between predicted and true values. These two
metrics help us assess the accuracy and precision of the model in
crowd counting tasks, which are defined as

MAE =
1

𝑁𝑈𝑀

𝑁𝑈𝑀∑︁
𝑗=1

|𝑁 𝑗 −𝑀𝑗 |

and

MSE =
1

𝑁𝑈𝑀

√√√√𝑁𝑈𝑀∑︁
𝑗=1

(𝑁 𝑗 −𝑀𝑗 )2

where 𝑁 𝑗 and 𝑀𝑗 are the numbers of annotation and predicted
points in the 𝑗-th test image, and𝑁𝑈𝑀 is the number of test images.
Lower values of the both metrics indicate better performance of a
model.

For localization tasks, Precision (P), Recall (R), and F1-score (F1)
are the evaluation metrics. Following [16], we define

√︃
𝑑2𝑤 + 𝑑2

ℎ
/2

as the distance between annotated points and matched predicted
points, where 𝑑𝑤 is the horizontal distance between the predicted
and true points, and 𝑑ℎ is the vertical distance between the matched
predicted point and the annotated point. The annotated points are
treated as positive samples. Now, we need to judge which matched
predicted points are positive or negative. Let 𝜎 be the judgment
threshold. Specifically, a matched predicted point is positive if the
distance between it and the corresponding annotated point is less
than 𝜎 ; otherwise, it is negative. In this case, these metrics can be

described as

𝑃 =
𝑇𝑃

𝑁

and

𝑅 =
𝑇𝑃

𝑀

where 𝑇𝑃 is the number of positive matched predicted points, 𝑁 is
the number of annotated points, and𝑀 is the number of predicted
points. Because F1-score is the harmonic mean of precision and
recall, it provides a single score that balances both of thesemeasures,
which is defined as

𝐹1 = 2 × 𝑃 × 𝑅

𝑃 + 𝑅

4.2 Counting Experiments
For crowd counting tasks, VMambaCC was compared with

11 mainstream methods, including 9 CNN-based models (MCNN
[31], CSRNet [15], CANNet [19], ASNet [11], SDANet [22], Spatial-
Channel-wise Attention Regression (SCARNet) [6], Gaussian ker-
nels Network (GauNet) [3], P2PNet [27], and FGENet [21]) as well
as 2 Transformer-based models (CLTR [16] and LoViTCrowd [29]).

Experimental results on Shanghai Tech, UCF_QNRF, and JHU-
Crowd datasets are shown in Table 2, where the best values are in
bold font, and the second best are underlined. From Table 2, we
can see that in terms of MSE, VMambaCC achieves the second best
result on SHT_A, which is 0.4 points lower compared to the best
method LoVitCrowd. In terms of MAE, our method differs from
FGENet by 0.21 points. We consider that there is some annotation
inaccuracy in SHT_A.
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Figure 5: Demonstration of the predictive effect of our model.

Additionally, GauNet (a CNN-based model) performs the best
on SHT_B and our model (a VMamba-based model) is not so good,
which is possibly due to insufficient samples and fewer annotated
points in SHT_B. In this case, there has a certain gap between
VMambaCC and existing methods.

On the UCF_QNRF dataset, there is also a certain gap be-
tween VMambaCC and the current best method. Some samples in
UCF_QNRF have tens of thousands of annotations, which increases
the computational effort of the Hungarian matching algorithm. Ow-
ing to experimental equipment limitations, our method cannot use
an appropriate batch_size in the training process; thus, VMambaCC
could not achieve its best performance.

VMambaCC achieves the best results on the JHU-Crowd dataset,
with an improvement of 4.89 in MAE compared to the second-
ranked SDANet method and an improvement of 38.67 in MSE com-
pared to the second-ranked CLTR method.

On the UCF_CC_50 dataset, five-fold cross-validation was em-
ployed. Results are presented in Table 3. The comparison with
other methods is listed in Table 4. Observation on Table 4 indicates
that our method achieves significant improvements over other
approaches on the UCF_CC_50 dataset. Compared to the second-
ranked FGENet, VMambaCC has an improvement of 78.22 points in
MAE and 137.16 points in MSE. Obviously, Our method has reached
the state-of-the-art level on this datasets.

Table 3: Five-fold cross-validation of VMambaCC on
UCF_CC_50.

Fold MAE MSE
1 84.00 103.96
2 37.70 47.04
3 53.90 66.84
4 68.20 78.97
5 77.90 96.75

Mean 64.34 78.712

4.3 Localization Experiments
To compare VMambaCC with other methods, we conducted

localization experiments on SHT_A because this dataset has a large

Table 4: Performance comparison of mainstream crowd
counting models on UCF_CC_50.

Method MAE MSE
MCNN [31] 377.6 –
CSRNet [15] 266.1 397.5
CANNet [19] 212.2 243.7
ASNet [11] 174.84 251.63
SDANet [22] 227.6 316.4
SCARNet [6] 227.6 316.4
GauNet [3] 186.3 256.5
P2PNet [27] 172.7 256.1
FGENet [21] 142.56 215.87
VMambaCC 64.34 78.71

scale variation. Comparison methods are Localization-based Fully
CNN (LCFCN) [14],Method in [24], Locate-Size and Count CNN
(LSC-CNN) [25], Topological constraints Count (TopoCount) [1],
and CLTR [16]. Here, we set 𝜎 = 4 and 𝜎 = 8.

Experimental results are shown in Table 5. We can see that
VMambaCC achieves the best localization performance. When 𝜎 =

4, VMambaCC outperforms the second-best method by 16.2% in
precision, 17.6% in recall, and 16.85% in F1-score. If 𝑠𝑖𝑔𝑚𝑎 = 8, our
method surpasses the second-best method by 3.16% in precision,
5.21% in recall, and 4.18% in F1-score. Findings demonstrate the
effectiveness of VMamba in localization tasks.

To further validate the localization performance of VMam-
baCC, we also performed experiments on SHT_B, JHU-Crowd, and
UCF_QNRF datasets. The results are shown in Table 6. It is evident
that our approach has achieved commendable performance across
these three datasets. Moreover, the outcomes provide a benchmark
for comparison that will be instrumental for subsequent research
endeavors.

4.4 Ablation experiments
MHF. Simple ablation experiments about the MHF attention

mechanism were conducted on the SHT_A dataset . The possible
ablation components are CEM, MSEM, HLCEM, the number of
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Table 5: Localization performance comparison obtained by
six methods on SHT_A.

Method 𝜎=4 𝜎=8
P(%) R(%) F(%) P(%) R(%) F1(%)

LCFCN [14] 43.30% 26.00% 32.50% 75.10% 45.10% 56.30%
Method in [24] 34.90% 20.70% 25.90% 67.70% 44.80% 53.90%
LSC-CNN [25] 33.40% 31.90% 32.60% 63.90% 61.00% 62.40%
TopoCount[1] 41.70% 40.60% 41.10% 74.60% 72.70% 73.60%
CLTR [16] 43.60% 42.70% 43.20% 74.90% 73.50% 74.20%
VMamba 59.80% 60.3% 60.05% 78.06% 78.71% 78.38%

Table 6: Localization experiments of VMambaCC on different
datasets.

Dataset 𝜎 P(%) R(%) F(%)
SHT_B 4 63.77% 63.21% 63.49%
SHT_B 8 80.77% 80.06% 80.41%
JHU-Crowd 4 47.89% 46.18% 47.02%
JHU-Crowd 8 64.63% 62.32% 63.45%
UCF_QNRF 4 43.59% 42.91% 43.25%
UCF_QNRF 8 69.75% 68.67% 69.21%

heads, and connection position. Thus, we ablated them separately,
as shown in Table 7.

From Table 7, it can be seen that the baseline model without MHF
(the first row in this table) obtained an MAE of 54.75 and an MSE of
88.46 on the SHT_A dataset. When adding CEM alone (the second
row in Table 7), the model performance deteriorates compared to
the baseline because some noise may be introduced through directly
multiplying channels of high-level features with low-level features.
However, when adding both CEM and MSEM with one head (the
third row in Table 7), bothMAE andMSE of this model are improved
because this operation retains spatial information in high-level
features. Additionally, setting Head Nums to 4, the fusion effect of
multiple sets of weights extracted byMSEM is not good, resulting in
worse results compared to no multi-head operation. To determine
the correct position for element-wise multiplication, we compared
feature enhancement before and after feature fusion. The results
show that performing element-wise multiplication after feature
fusion leads to crossover effects, which may introduce noise. Thus,
it is better to perform the operation of element-wise multiplication
before feature fusion.

Table 7: Ablation Experiments on MHF

CEM MSEM HLCEM #Head Connection position SHT_A
MAE MSE

× × × – – 54.75 88.46
✓ × × – before 61.71 101.31
✓ ✓ × 1 before 52.16 83.92
✓ ✓ × 1 post 52.21 87.85
✓ ✓ × 4 before 54.3 90.83
✓ ✓ ✓ 4 post 63.88 97.52
✓ ✓ ✓ 4 before 51.87 81.30

Feature Fusion Comparative experiments on the feature fusion
part were also conducted. Our feature fusion network could be
replaced by other networks, such as FPN [18] and FGFP [21]. In

Table 8: Ablation experiments on stage of feature fusion.

Feature fusion SHT_A
MAE MSE

FPN [18] 60.53 105.36
FGFP [21] 56.28 90.83
HS2FPN (Without MHF) 54.75 88.46
HS2FPN (ours) 51.87 81.30

addition, our HS2FPN could delete the MHF attention mechanism.
Thus, four feature fusion networks were compared, as shown in
Table 8.

When using FPN in the feature fusion stage, our model obtains
60.53 MAE and 105.36 MSE. We believe that FPN simply adds dif-
ferent features may lead to the loss of many important semantic
information. VMambaCC with FGFP obtains 56.28 MAE and 90.83
MSE, which is better than VMambaCC with FPN. The improvement
reason lies in the fact that FGFP weights the spatial and channel
dimensions, allowing the model to focus more on important infor-
mation. VMambaCC with HS2FPN has the best results in both MAE
and MSE. Compared to FGFP, HS2FPN shows improvements of 4.41
MAE and 9.53 MSE. This advantage is mainly due to our reasonable
utilization of high-level semantic features to supervise low-level
semantic features.

4.5 Visualization
The comprehensive set of experiments has substantiated the

efficacy of our approach in the domain of counting and localiza-
tion. These validations not only affirm the dependability of our
method but also lay down a solid theoretical groundwork for the
advancement and refinement of future models. The results of our
predictions are shown in Figure 5. We are confident that these
achievements will significantly propel research in the field and lay
the foundation for subsequent technological innovations.

5 CONCLUSION
In this study, we introduce VMamba and propose an innovative

crowd counting model, VMambaCC. This counting model has a
global receptive field and the linearly escalating computational
complexity in the context of crowd counting. A new attention
mechanism, MHF, is design in this study. MHF employs high-level
semantics to guide the refinement of lower-level semantic details;
thus, it can avoid the loss of high-level semantic information during
feature fusion. By leveraging the MHF mechanism as a foundation,
we have further developed the feature fusion network, HS2FPN.
Extensive experimental validation confirms the pronounced su-
periority of our model in confronting contemporary challenges
in crowd counting and localization. Therefore, VMambaCC con-
tributes significant insights and a reference framework for further
research and practical applications within crowd counting domain.



ACM MM, 2024, Melbourne, Australia Hao-Yuan Ma, Li Zhang, and Shuai Shi

REFERENCES
[1] Shahira Abousamra, Minh Hoai, Dimitris Samaras, and Chao Chen. 2021. Local-

ization in the Crowd with Topological Constraints. In AAAI. 872–881.
[2] Timo Ahonen, Jiří Matas, Chu He, and Matti Pietikäinen. 2009. Rotation invariant

image description with local binary pattern histogram fourier features. In SCIA.
61–70.

[3] Zhi-Qi Cheng, Qi Dai, Hong Li, Jingkuan Song, Xiao Wu, and Alexander G
Hauptmann. 2022. Rethinking Spatial Invariance of Convolutional Networks for
Object Counting. In CVPR. 19638–19648.

[4] Zhi Qi Cheng, JunXiu Li, Qi Dai, XiaoWu, Jun YanHe, andAlexanderHauptmann.
2019. Improving the Learning of Multi-column Convolutional Neural Network
for Crowd Counting. (2019).

[5] Lan Dong, Vasu Parameswaran, Visvanathan Ramesh, and Imad Zoghlami. 2007.
Fast crowd segmentation using shape indexing. In ICCV. 1–8.

[6] Junyu Gao, QiWang, and Yuan Yuan. 2019. SCAR: Spatial-/channel-wise attention
regression networks for crowd counting. Neurocomputing (2019).

[7] Zheng Ge, Songtao Liu, Feng02 Wang, Zeming Li, and Jian Sun. 2021. YOLOX:
Exceeding YOLO Series in 2021. (2021).

[8] Albert Gu and Tri Dao. 2023. Mamba: Linear-Time Sequence Modeling with
Selective State Spaces. (2023). https://doi.org/10.48550/arXiv.2312.00752

[9] Haroon Idrees, Imran Saleemi, Cody Seibert, and Mubarak Shah. 2013. Multi-
source Multi-scale Counting in Extremely Dense Crowd Images. In CVPR. 2547–
2554.

[10] Haroon Idrees, Muhmmad Tayyab, Kishan Athrey, Dong Zhang, Somaya Al-
Maadeed, Nasir Rajpoot, and Mubarak Shah. 2018. Composition Loss for Count-
ing, Density Map Estimation and Localization in Dense Crowds. In ECCV. 532–
546.

[11] Xiaoheng Jiang, Li Zhang, Mingliang Xu, Tianzhu Zhang, Pei Lv, Bing Zhou, Xin
Yang, and Yanwei Pang. 2020. Attention Scaling for Crowd Counting. In CVPR.
4706–4715.

[12] Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: A Method for Stochastic
Optimization. In ICLR.

[13] Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold,
Jakob Uszkoreit, Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil
Houlsby, Sylvain Gelly, Thomas Unterthiner, and Xiaohua Zhai. 2021. An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale. In ICLR.

[14] Issam H. Laradji, Negar Rostamzadeh, Pedro O. Pinheiro, David Vázquez, and
Mark Schmidt. 2018. Where Are the Blobs: Counting by Localization with Point
Supervision. In ECCV. 560–576.

[15] Yuhong Li, Xiaofan Zhang, and Deming Chen. 2018. CSRNet: Dilated Convo-
lutional Neural Networks for Understanding the Highly Congested Scenes. In
CVPR. 1091–1100.

[16] Dingkang Liang, Wei Xu, and Xiang Bai. 2022. An End-to-End Transformer
Model for Crowd Localization. In ECCV. 38–54.

[17] Hui Lin, Zhiheng Ma, Rongrong Ji, Yaowei Wang, and Xiaopeng Hong. 2022.
Boosting Crowd Counting via Multifaceted Attention. In CVPR. 19628–19637.

[18] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan,
and Serge J. Belongie. 2017. Feature Pyramid Networks for Object Detection. In
CVPR. 936–944.

[19] Weizhe Liu, Mathieu Salzmann, and Pascal Fua. 2019. Context-Aware Crowd
Counting. In CVPR. 5099–5108.

[20] Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang,
Qixiang Ye, and Yunfan Liu. 2024. VMamba: Visual State Space Model. (2024).
https://doi.org/10.48550/arXiv.2401.10166

[21] Hao-Yuan Ma, Li Zhang, and Xiang-Yi Wei. 2024. FGENet: Fine-Grained Extrac-
tion Network for Congested Crowd Counting. In MultiMedia Modeling - 30th
International Conference (MMM).

[22] Yunqi Miao, Zijia Lin, Guiguang Ding, and Jungong Han. 2020. Shallow Feature
Based Dense Attention Network for Crowd Counting. In AAAI. 11765–11772.

[23] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. 2017. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans.
Pattern Anal. Mach. Intell. (2017).

[24] Javier Ribera, David Guera, Yuhao Chen, and Edward J. Delp. 2019. Locating
Objects Without Bounding Boxes. In CVPR. 6479–6489.

[25] Deepak Babu Sam, Skand Vishwanath Peri, Mukuntha Narayanan Sundararaman,
Amogh Kamath, and R. Venkatesh Babu. 2021. Locate, Size, and Count: Accurately
Resolving People in Dense Crowds via Detection. TPAMI (2021), 2739–2751.

[26] Vishwanath A. Sindagi, Rajeev Yasarla, and Vishal M. Patel. 2022. JHU-
CROWD++: Large-Scale Crowd Counting Dataset and A Benchmark Method.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2022), 2594–2609.

[27] Qingyu Song, Changan Wang, Zhengkai Jiang, Yabiao Wang, Ying Tai, Chengjie
Wang, Jilin Li, Feiyue Huang, and Yang Wu. 2021. Rethinking Counting and
Localization in Crowds:A Purely Point-Based Framework. In ICCV. 3365–3374.

[28] Venkatesh Bala Subburaman, Adrien Descamps, and Cyril Carincotte. 2012.
Counting people in the crowd using a generic head detector. In AVSS. 470–475.

[29] Nguyen Hoang Tran, Ta Duc Huy, Soan Thi Minh Duong, Nguyen Phan, Dao Huu
Hung, Chanh D. Tr. Nguyen, Trung H. Bui, and Steven Quoc Hung Truong.

[n. d.]. Improving Local Features with Relevant Spatial Information by Vision
Transformer for Crowd Counting. In 33rd British Machine Vision Conference 2022,
BMVC 2022, London, UK, November 21-24, 2022.

[30] Jia Wan, Ziquan Liu, and Antoni B Chan. 2021. A Generalized Loss Function for
Crowd Counting and Localization. In CVPR. 1974–1983.

[31] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. 2016. Single-
Image Crowd Counting via Multi-Column Convolutional Neural Network. In
CVPR. 589–597.

[32] Tao Zhao and Ramakant Nevatia. 2003. Bayesian human segmentation in crowded
situations. In CVPR. II–459.

https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2401.10166

	Abstract
	1 Introduction
	2 Related work
	3 Proposed model
	3.1 Framework of VMambaCC
	3.2 MHF attention mechanism
	3.3 HS2FPN

	4 Experiments
	4.1 Experimental Setups
	4.2 Counting Experiments
	4.3 Localization Experiments
	4.4 Ablation experiments
	4.5 Visualization

	5 Conclusion
	References

