
Simple Drop-in LoRA Conditioning on Attention Layers Will
Improve Your Diffusion Model

Joo Young Choi lthilnklover@snu.ac.kr
Department of Mathematical Sciences
Seoul National University

Jaesung R. Park ryanpark7@snu.ac.kr
Department of Mathematical Sciences
Seoul National University

Inkyu Park inkyupark@krafton.com
KRAFTON

Jaewoong Cho jwcho@krafton.com
KRAFTON

Albert No albertno@yonsei.ac.kr
Department of Artificial Intelligence
Yonsei University

Ernest K. Ryu ernestryu@snu.ac.kr
Department of Mathematical Sciences
Seoul National University

Res Block Attn Block

Scale-Shift LoRA

Res Block Attn Block

Scale-Shift LoRA

Res Block Attn Block

Scale-Shift LoRA

Res Block

Scale-Shift

Res Block Attn Block

Scale-Shift LoRA

Res Block Attn Block

Scale-Shift LoRA

Figure 1: The standard U-Net architecture for diffusion models conditions convolutional layers in residual
blocks with scale-and-shift but does not condition attention blocks. Simply adding LoRA conditioning on
attention layers improves the image generation quality.

Abstract

Current state-of-the-art diffusion models employ U-Net architectures containing convolutional
and (qkv) self-attention layers. The U-Net processes images while being conditioned on
the time embedding input for each sampling step and the class or caption embedding input
corresponding to the desired conditional generation. Such conditioning involves scale-and-shift
operations to the convolutional layers but does not directly affect the attention layers. While
these standard architectural choices are certainly effective, not conditioning the attention
layers feels arbitrary and potentially suboptimal. In this work, we show that simply adding
LoRA conditioning to the attention layers without changing or tuning the other parts of the
U-Net architecture improves the image generation quality. For example, a drop-in addition of
LoRA conditioning to EDM diffusion model yields FID scores of 1.91/1.75 for unconditional
and class-conditional CIFAR-10 generation, improving upon the baseline of 1.97/1.79.

1

ar
X

iv
:2

40
5.

03
95

8v
1

 [
cs

.C
V

]
 7

 M
ay

 2
02

4

Dataset Model Type NFE # basis rank FID↓ # Params

CIFAR-10 (uncond.)

IDDPM
baseline 4000 - - 3.69 52546438

only LoRA 4001 11 4 3.64 47591440
with LoRA 4001 11 4 3.37 54880528

EDM (vp)
baseline 35 - - 1.97 55733891

only LoRA 35 18 4 1.99 53411675
with LoRA 35 18 4 1.96/1.91 57745499

CIFAR-10 (cond.)

IDDPM
baseline 4000 - - 3.38 52551558

only LoRA 4001 (11, 10) 4 2.91 48513040
with LoRA 4001 (11, 10) 4 3.12 55807248

EDM (vp)
baseline 35 - - 1.79 55735299

only LoRA 35 18 4 1.82 53413083
with LoRA 35 18 4 1.75 57746907

ImageNet64 (uncond.) IDDPM
baseline 4000 - - 19.2 121063942

only LoRA 4001 11 4 18.2 113602960
with LoRA 4001 11 4 18.1 139278224

FFHQ64 (uncond.) EDM (vp)
baseline 79 - - 2.39 61805571

only LoRA 79 20 4 2.46 58935795
with LoRA 79 20 4 2.37/2.31 63941631

Table 1: Image generation results. We compare three different conditionings for each setting: (baseline)
conditioning only convolutional layers in residual blocks with scale-and-shift; (only LoRA) conditioning
only attention layers using LoRA conditioning and not conditioning convolutional layers; (with LoRA)
conditioning both convolutional layers and attention layers with scale-and-shift and LoRA conditioning,
respectively. For unconditional CIFAR-10 and FFHQ64 sampling using EDM with LoRA, we also report the
FID score obtained by initializing the base model with pre-trained weights.

1 Introduction

In recent years, diffusion models have led to phenomenal advancements in image generation. Many cutting-
edge diffusion models leverage U-Net architectures as their backbone, consisting of convolutional and (qkv)
self-attention layers Dhariwal & Nichol (2021); Kim et al. (2023); Saharia et al. (2022); Rombach et al.
(2022); Podell et al. (2024). In these models, the U-Net architecture-based score network is conditioned
on the time, and/or, class, text embedding Ho & Salimans (2021) using scale-and-shift operations applied
to the convolutional layers in the so-called residual blocks. Notably, however, the attention layers are not
directly affected by the conditioning, and the rationale behind not extending conditioning to attention layers
remains unclear. This gap suggests a need for in-depth studies searching for effective conditioning methods
for attention layers and assessing their impact on performance.

Meanwhile, low-rank adaptation (LoRA) has become the standard approach for parameter-efficient fine-tuning
of large language models (LLM) Hu et al. (2022). With LoRA, one trains low-rank updates that are added to
frozen pre-trained dense weights in the attention layers of LLMs. The consistent effectiveness of LoRA for
LLMs suggests that LoRA may be generally compatible with attention layers used in different architectures
and for different tasks Chen et al. (2022); Pan et al. (2022); Lin et al. (2023); Gong et al. (2024).

In this work, we introduce a novel method for effectively conditioning the attention layers in the U-Net
architectures of diffusion models by jointly training multiple LoRA adapters along with the base model. We
call these LoRA adapters TimeLoRA and ClassLoRA for discrete-time settings, and Unified Compositional
LoRA (UC-LoRA) for continuous signal-to-ratio (SNR) settings. Simply adding these LoRA adapters in a
drop-in fashion without modifying or tuning the original model brings consistent enhancement in FID scores
across several popular models applied to CIFAR-10, FFHQ 64x64, and ImageNet datasets. In particular,
adding LoRA-conditioning to the EDM model Karras et al. (2022) yields improved FID scores of 1.75,
1.91, 2.31 for class-conditional CIFAR-10, unconditional CIFAR-10, and FFHQ 64x64 datasets, respectively,
outperforming the baseline scores of 1.79, 1.97, 2.39. Moreover, we find that LoRA conditioning by itself is

2

Scale-Shift

Group Norm

SiLU

Convolution

Group Norm

SiLU

Convolution

Input Conditioning

Linear

Input

QKV

Group Norm

ω-scale

LoRA

LoRA

Dot Product

Projection ω-scale

LoRA

LoRA

MLP

MLP

Conditioning

A1 Am

B1 Bm

ω1(t) ωm(t)

W

A′
c

B′
c

· · ·

A1 Am

B1 Bm

ω1(cond) ωm(cond)

W · · ·

cond.

MLP

Unified compositional LoRA

TimeLoRA and ClassLoRA

Attn. Block

LoRA

U-Net block LoRA conditioning of attention block

Figure 2: Conditioning of U-Net Block: (left) scale-and-shift conditioning on the convolutional block (middle)
LoRA conditioning on the attention block (right) top: TimeLoRA and ClassLoRA for the discrete-time
setting, bottom: unified composition LoRA for the continuous-SNR setting.

powerful enough to perform effectively. Our experiments show that only conditioning the attention layers
using LoRA adapters (without the conditioning convolutional layers with scale-and-shift) achieves comparable
FID scores compared to the baseline scale-and-shift conditioning (without LoRA).

Contribution. Our experiments show that using LoRA to condition time and class information on attention
layers is effective across various models and datasets, including nano diffusion Lelarge et al. (2024), IDDPM
Nichol & Dhariwal (2021), and EDM Karras et al. (2022) architectures using the MNIST Deng (2012),
CIFAR-10 Krizhevsky et al. (2009), and FFHQ Karras et al. (2019) datasets.

Our main contributions are as follows. (i) We show that simple drop-in LoRA conditioning on the attention
layers improves the image generation quality, as measured by lower FID scores, while incurring minimal
(∼10%) added memory and compute costs. (ii) We identify the problem of whether to and how to condition
attention layers in diffusion models and provide the positive answer that attention layers should be conditioned
and LoRA is an effective approach that outperforms the prior approaches of no conditioning or conditioning
with adaLN Peebles & Xie (2023).

Our results advocate for incorporating LoRA conditioning into the larger state-of-the-art U-Net-based diffusion
models and the newer experimental architectures.

2 Prior work and preliminaries

2.1 Diffusion models

Diffusion models Sohl-Dickstein et al. (2015); Song & Ermon (2019); Ho et al. (2020); Song et al. (2021b)
generate images by iteratively removing noise from a noisy image. This denoising process is defined by the
reverse process of the forward diffusion process: given data x0 ∼ q0, progressively inject noise to x0 by

q(xt | xt−1) = N
(√

1 − βtxt−1, βtI
)

for t = 1, . . . , T and 0 < βt < 1. If βt is sufficiently small, we can approximate the reverse process as

q(xt−1 | xt) ≈ N (µt(xt), βtI)

3

where

µt(xt) = 1√
1 − βt

(xt + βt∇ log pt(xt)).

A diffusion model is trained to approximate the score function ∇ log pt(xt) with a score network sθ, which
is often modeled with a U-Net architecture Ronneberger et al. (2015); Song & Ermon (2019). With
sθ ≈ ∇ log pt(xt), the diffusion model approximates the reverse process as

pθ(xt−1|xt) = N
(

1√
1 − βt

(xt + βtsθ(xt, t)), βtI
)

≈ q(xt−1 | xt).

To sample from a trained diffusion model, one starts with Gaussian noise xT ∼ N (0, (1 − ᾱT)I), where
ᾱt =

∏t
s=1(1−βs), and progressively denoise the image by sampling from pθ(xt−1|xt) with t = T, T −1, . . . , 2, 1

sequentially to obtain a clean image x0.

The above discrete-time description of diffusion models has a continuous-time counterpart based on the
theory of stochastic differential equation (SDE) for the forward-corruption process and reversing it based on
Anderson’s reverse-time SDE Anderson (1982) or a reverse-time ordinary differential equation (ODE) with
equivalent marginal probabilities Song et al. (2021a). Higher-order integrators have been used to reduce the
discretization errors in solving the differential equations Karras et al. (2022).

Architecture for diffusion models. The initial work of Song & Ermon (2019) first utilized the CNN-based
U-Net architecture Ronneberger et al. (2015) as the architecture for the score network. Several improvements
have been made by later works Ho et al. (2020); Nichol & Dhariwal (2021); Dhariwal & Nichol (2021);
Hoogeboom et al. (2023) incorporating multi-head self-attention Vaswani et al. (2017), group normalization
Wu & He (2018), and adaptive layer normalization (adaLN) Perez et al. (2018). Recently, several alternative
architectures have been proposed. Jabri et al. (2023) proposed Recurrent Interface Network (RIN), which
decouples the core computation and the dimension of the data for more scalable image generation. Peebles
& Xie (2023); Bao et al. (2023); Gao et al. (2023); Hatamizadeh et al. (2023) investigated the effectiveness
of transformer-based architectures Dosovitskiy et al. (2021) for diffusion models. Yan et al. (2023) utilized
state space models Gu et al. (2022) in DiffuSSM to present an attention-free diffusion model architecture. In
this work, we propose a conditioning method for attention layers and test it on several CNN-based U-Net
architectures. Note that our proposed method is applicable to all diffusion models utilizing attention layers.

2.2 Low-rank adaptation

Using trainable adapters for specific tasks has been an effective approach for fine-tuning models in the realm
of natural language processing (NLP) Houlsby et al. (2019); Pfeiffer et al. (2020). Low-rank adpatation
(LoRA, Hu et al. (2022)) is a parameter-efficient fine-tuning method that updates a low-rank adapter: to
fine-tune a pre-trained dense weight matrix W ∈ Rdout×din , LoRA parameterizes the fine-tuning update ∆W
with a low-rank factorization

W + ∆W = W + BA,

where B ∈ Rdout×r, A ∈ Rr×din , and r ≪ min{din, dout}.

LoRA and diffusion. Although initially proposed for fine-tuning LLMs, LoRA is generally applicable to a
wide range of other deep-learning modalities. Recent works used LoRA with diffusion models for various
tasks including image generation Ryu (2023); Gu et al. (2023); Go et al. (2023), image editing Shi et al.
(2023), continual learning Smith et al. (2023), and distillation Golnari (2023); Wang et al. (2023b). While all
these works demonstrate the flexibility and efficacy of the LoRA architecture used for fine-tuning diffusion
models, to the best of our knowledge, our work is the first attempt to use LoRA as part of the core U-Net for
diffusion models for full training, not fine-tuning.

4

2.3 Conditioning the score network

For diffusion models to work properly, it is crucial that the score network sθ is conditioned on appropriate
side information. In the base formulation, the score function ∇xpt(x), which the score network sθ learns,
depends on the time t, so this t-dependence must be incorporated into the model via time conditioning. When
class-labeled training data is available, class-conditional sampling requires class conditioning of the score
network Ho & Salimans (2021). To take advantage of data augmentation and thereby avoid overfitting, EDM
Karras et al. (2022) utilizes augmentation conditioning Jun et al. (2020), where the model is conditioned
on the data augmentation information such as the degree of image rotation or blurring. Similarly, SDXL
Podell et al. (2024) uses micro-conditioning, where the network is conditioned on image resolution or cropping
information.

Finally, text-to-image diffusion models Saharia et al. (2022); Ramesh et al. (2022); Rombach et al. (2022);
Podell et al. (2024) use text conditioning, which conditions the score network with caption embeddings so
that the model generates images aligned with the text description.

Conditioning attention layers. Prior diffusion models using CNN-based U-Net architectures condition
only convolutional layers in the residual blocks by applying scale-and-shift or adaLN (see (left) of Figure
2). In particular, attention blocks are not directly conditioned in such models. This includes the state-
of-the-art diffusion models such as Imagen Saharia et al. (2022), DALL·E 2 Ramesh et al. (2022), Stable
Diffusion Rombach et al. (2022), and SDXL Podell et al. (2024). To clarify, Latent Diffusion Model Rombach
et al. (2022) based models use cross-attention method for class and text conditioning, but they still utilize
scale-and-shift for time conditioning.

There is a line of research proposing transformer-based architectures (without convolutions) for diffusion
models, and these work do propose methods for conditioning attention layers. For instance, DiT Peebles
& Xie (2023) conditioned attention layers using adaLN and DiffiT Hatamizadeh et al. (2023) introduced
time-dependent multi-head self-attention (TMSA), which can be viewed as scale-and-shift conditioning
applied to attention layers. Although such transformer-based architectures have shown to be effective,
whether conditioning the attention layers with adaLN or scale-and-shift is optimal was not investigated. In
Section 5.5 of this work, we compare our proposed LoRA conditioning on attention layers with the prior
adaLN conditioning on attention layers, and show that LoRA is the more effective mechanism for conditioning
attention layers.

Diffusion models as multi-task learners. Multi-task learning Caruana (1997) is a framework where a
single model is trained on multiple related tasks simultaneously, leveraging shared representations between
the tasks. If one views the denoising tasks for different timesteps (or SNR) of diffusion models as related but
different tasks, the training of diffusion models can be interpreted as an instance of the multi-task learning.
Following the use of trainable lightweight adapters for Mixture-of-Expert (MoE) Jacobs et al. (1991); Ma
et al. (2018), several works have utilized LoRA as the expert adapter for the multi-task learning Caccia et al.
(2023); Wang et al. (2023a; 2024); Zadouri et al. (2024). Similarly, MORRIS Audibert et al. (2023) and
LoRAHub Huang et al. (2023) proposed using the weighted sum of multiple LoRA adapters to effectively
tackle general tasks. In this work, we took inspiration from theses works by using a composition of LoRA
adapters to condition diffusion models.

3 Discrete-time LoRA conditioning

Diffusion models such as DDPM Ho et al. (2020) and IDDPM Nichol & Dhariwal (2021) have a predetermined
number of discrete timesteps t = 1, 2, . . . , T used for both training and sampling. We refer to this setting as
the discrete-time setting.

We first propose a method to condition the attention layers with LoRA in the discrete-time setting. In
particular, we implement LoRA conditioning on IDDPM by conditioning the score network with (discrete)
time and (discrete) class information.

5

3.1 TimeLoRA

TimeLoRA conditions the score network for the discrete time steps t = 1, . . . , T . In prior architectures, time
information is typically injected into only the residual blocks containing convolutional layers. TimeLoRA
instead conditions the attention blocks. See (right) of Figure 2.

Non-compositional LoRA. Non-compositional LoRA instantiates T independent rank-r LoRA weights

A1, A2, . . . , AT , B1, B2, . . . , BT .

The dense layer at time t becomes

Wt = W + ∆W (t) = W + BtAt

for t = 1, . . . , T . To clarify, the trainable parameters for each linear layer are W , A1, A2, . . . , AT , and
B1, B2, . . . , BT . In particular, W is trained concurrently with A1, A2, . . . , AT , and B1, B2, . . . , BT .

However, this approach has two drawbacks. First, since T is typically large (up to 4000), instantiating T
independent LoRAs can occupy significant memory. Second, since each LoRA (At, Bt) is trained independently,
it disregards the fact that LoRAs of nearby time steps should likely be correlated/similar. It would be
preferable for the architecture to incorporate the inductive bias that the behavior at nearby timesteps are
similar.

Compositional LoRA. Compositional LoRA composes m LoRA bases, A1, . . . , Am and B1, . . . , Bm, where
m ≪ T . Each LoRA basis (Ai, Bi) corresponds to time ti for 1 ≤ t1 < · · · < tm ≤ T . The dense layer at time
t becomes

Wt = W + ∆W (t) = W +
m∑

i=1
(ωt)i BiAi,

where ωt = ((ωt)1 , . . . , (ωt)m) is the time-dependent trainable weights composing the LoRA bases. To clarify,
the trainable parameters for each linear layer are W , A1, A1, . . . , Am, B1, B1, . . . , Bm, and ωt.

Since the score network is a continuous function of t, we expect ωt ≈ ωt′ if t ≈ t′. Therefore, to exploit
the task similarity between nearby timesteps, we initialize (ωt)i with a linear interpolation scheme: for
tj ≤ t < tj+1,

(ωt)i =

tj+1 − t

tj+1 − tj
i = j

t − tj

tj+1 − tj
i = j + 1

0 otherwise.

In short, at initialization, ∆W (t) uses a linear combination of the two closest LoRA bases. During training,
ωt can learn to utilize more than two LoRA bases, i.e., ωt can learn to have more than two non-zeros through
training. Specifically, (ω1, . . . , ωT) ∈ Rm×T is represented as an m × T trainable table implemented as
nn.Embedding in Pytorch.

3.2 ClassLoRA

Consider a conditional diffusion model with C classes. ClassLoRA conditions the attention layers in the score
network with the class label. Again, this contrasts with the typical approach of injecting class information
only into the residual blocks containing convolutional layers. See (right) of Figure 2.

Since C is small for CIFAR-10 (C = 10) and the correlations between different classes are likely not strong,
we only use the non-compositional ClassLoRA:

Wc = W + ∆W (c) = W + B′
cA′

c

for c = 1, . . . , C. In other words, each LoRA (A′
c, B′

c) handles a single class c. When C is large, such as in
the case of ImageNet1k, one may consider using a compositional version of ClassLoRA.

6

4 Continuous-SNR LoRA conditioning

Motivated by (Kingma et al., 2021), some recent models such as EDM Karras et al. (2022) consider
parameterizing the score function as a function of noise or signal-to-noise ratio (SNR) level instead of time.
In particular, EDM Karras et al. (2022) considers the probability flow ODE

Xt = − ˙σ(t)σ(t)sθ(x; σ(t)) dt,

where sθ(x; σ) is the score network conditioned on the SNR level σ. We refer to this setting as the continuous-
SNR setting.

The main distinction between Sections 3 and 4 is in the discrete vs. continuous parameterization, since
continuous-time and continuous-SNR parameterizations of score functions are equivalent. We choose to
consider continuous-SNR (instead of continuous-time) parameterizations for the sake of consistency with the
EDM model Karras et al. (2022).

Two additional issues arise in the present setup compared to the setting of Section 3. First, by considering
a continuum of SNR levels, there is no intuitive way to assign a single basis LoRA to a specific noise level.
Second, to accommodate additional conditioning elements such as augmentations or even captions, allocating
independent LoRA for each conditioning element could lead to memory inefficiency.

4.1 Unified compositional LoRA (UC-LoRA)

Consider the general setting where the diffusion model is conditioned with N attributes cond1, . . . , condN ,
which can be a mixture of continuous and discrete information. In our EDM experiments, we condition the
score network with N = 3 attributes: SNR level (time), class, and augmentation information.

Unified compositional LoRA (UC-LoRA) composes m LoRA bases A1, . . . , Am and B1, . . . , Bm to simulta-
neously condition the information of cond1, . . . condN into the attention layer. The compositional weight
ω = (ω1, . . . , ωm) of the UC-LoRA is obtained by passing cond1, . . . condN through an MLP.

Prior diffusion models typically process cond1, . . . , condN with an MLP to obtain a condition embedding v,
which is then shared by all residual blocks for conditioning. For the j-th residual block, v is further processed
by an MLP to get scale and shift parameters γj and βj :

v = SharedMLP(cond1, . . . , condN)
(γj , βj) = MLPj(v).

The (γj , βj) is then used for the scale-and-shift conditioning of the j-th residual block in the prior architectures.

In our UC-LoRA, we similarly use the shared embedding v and an individual MLP for the j-th attention
block to obtain the composition weight ωj(v):

v = SharedMLP(cond1, · · · , condN)
ωj(v) = MLPj(v).

Then, the j-th dense layer of the attention block becomes

W (cond1, . . . , condN) = W + ∆W (cond1, . . . , condN)

= W +
m∑

i=1
ωj,i(v)BiAi.

To clarify, the trainable parameters for the j-th dense layer are W , A1, A2, . . . , Am, B1, B2, . . . , Bm, and
the weights in MLPj . Shared across the entire architecture, the weights in SharedMLP are also trainable
parameters.

7

5 Experiments

In this section, we present our experimental findings. Section 5.1 describes the experimental setup. Section 5.2
first presents a toy, proof-of-concept experiment to validate the proposed LoRA conditioning. Section 5.3
evaluates the effectiveness of LoRA conditioning on attention layers with a quantitative comparison between
diffusion models with (baseline) conventional scale-and-shift conditioning on convolutional layers; (only
LoRA) LoRA conditioning on attention layers without conditioning convolutional layers; and (with LoRA)
conditioning both convolutional layers and attention layers with scale-and-shift and LoRA conditioning,
respectively. Section 5.4 investigates the effect of tuning the LoRA rank and the number of LoRA bases.
Section 5.5 compares our proposed LoRA conditioning with the adaLN conditioning on attention layers.
Section 5.6 explores the robustness of ClassLoRA conditioning compared to conventional scale-and-shift
conditioning in extrapolating conditioning information.

5.1 Experimental Setup

Diffusion models. We implement LoRA conditioning on three different diffusion models: nano diffusion
Lelarge et al. (2024), IDDPM Nichol & Dhariwal (2021), and EDM-vp Karras et al. (2022). With nano
diffusion, we conduct a proof-of-concept experiment. With IDDPM, we test TimeLoRA and ClassLoRA for
the discrete-time setting, and with EDM, we test UC-LoRA for the continuous-SNR setting.

Datasets. For nano diffusion, we use MNIST. For IDDPM, we use CIFAR-10 for both unconditional and
class-conditional sampling, and ImageNet64, a downsampled version of the ImageNet1k, for unconditional
sampling. For EDM-vp, we also use CIFAR-10 for both unconditional and class-conditional sampling and
FFHQ64 for unconditional sampling.

Configurations. We follow the training and architecture configurations proposed by the baseline works
and only tune the LoRA adapters. For IDDPM, we train the model for 500K iterations for CIFAR-10 with
batch size of 128 and learning rate of 1 × 10−4, and 1.5M iterations for ImageNet64 with batch size of 128
and learning rate of 1 × 10−4. For EDM, we train the model with batch size of 512 and learning rate of
1 × 10−3 for CIFAR-10, and with batch size of 256 and learning rate of 2 × 10−4 for FFHQ64. For sampling,
in IDDPM, we use 4000 and 4001 timesteps for the baseline and LoRA conditioning respectively, and in
EDM, we use the proposed Heun’s method and sample images with 18 timesteps (35 NFE) for CIFAR-10 and
40 timesteps (79 NFE) for FFHQ64. Here, NFE is the number of forward evaluation of the score network
and it differs from the number of timesteps by a factor of 2 because Heun’s method is a 2-stage Runge–Kutta
method. Appendix A provides further details of the experiment configurations.

Note that the baseline works heavily optimized the hyperparameters such as learning rate, dropout probability,
and augmentations. Although we do not modify any configurations of the baseline and simply add LoRA
conditioning in a drop-in fashion, we expect further improvements from further optimizing the configuration
for the entire architecture and training procedure.

LoRA. We use the standard LoRA initialization as in the original LoRA paper Hu et al. (2022): for the
LoRA matrices (A, B) with rank r, A is initialized as Aij ∼ N (0, 1/r) and B as the zero matrix. Following
Ryu (2023), we set the rank of each basis LoRA to 4. For TimeLoRA and ClassLoRA, we use 11 and 10
LoRA bases, and for UC-LoRA we use 18 and 20 LoRA bases for CIFAR-10 and FFHQ.

Due to our constrained computational budget, we were not able to conduct a full investigation on the optimal
LoRA rank or the number LoRA bases. However, we experiment with the effect of rank and number of LoRA
bases to limited extent and report the result in Section 5.4.

5.2 Proof-of-concept experiments

We conduct toy experiments with nano diffusion for both discrete-time and continuous-SNR settings. Nano
diffusion is a small diffusion model with a CNN-based U-Net architecture with no skip connections with
about 500, 000 trainable parameters. We train nano diffusion on unconditional MNIST generation with

8

3 different conditioning methods: conventional scale-and-shift, TimeLoRA, and UC-LoRA. As shown in
Figure 3, conditioning with TimeLoRA or UC-LoRA yields competitive result compared to the conventional
scale-and-shift conditioning.

Figure 3: MNIST samples generated by nano diffusion trained with (1st row) conventional scale-and-shift
conditioning; (2nd row) TimeLoRA with linear interpolation initialization; (3rd row) UC-LoRA; and (4th
row) TimeLoRA with random initialization.

Initialization of ωi(t) for TimeLoRA. As shown in Figure 3 the choice of initialization of ωi(t) for
TimeLoRA impacts performance. With randomly initialized ωi(t), nano diffusion did not converge after
100 epochs, whereas with ωi(t) initialized with the linear interpolation scheme, it did converge. Moreover,
Figure 4 shows that even in UC-LoRA, ω(t) shows higher similarity between nearby timesteps than between
distant timesteps after training. This is consistent with our expectation that ωi(t) ≈ ωi(t′) if t ≈ t′.

250 500 750 1000
t1

200

400

600

800

1000

t 2

250 500 750 1000
t1

1.0

0.5

0.0

0.5

1.0

Figure 4: Cosine similarity between ω(t1) and ω(t2) for UC-LoRA applied to nano diffusion (left) at
initialization and (right) after training. At initialization, the cosine similarity between ω(t1) and ω(t2) has
no discernible pattern. After training, however, the cosine similarity between ω(t1) and ω(t2) for t1 ≈ t2 is
close to 1, implying their high similarity.

5.3 Main quantitative results

Simply adding LoRA conditioning yields improvements. To evaluate the effectiveness of the drop-in
addition of LoRA conditioning to the attention layers, we implement TimeLoRA and ClassLoRA to IDDPM
and UC-LoRA to EDM, both with the conventional scale-and-shift conditioning on the convolutional layers
unchanged. We train IDDPM with CIFAR-10, ImageNet64 and EDM with CIFAR-10, FFHQ64. As reported
in Table 1, the addition of LoRA conditioning to the attention layers consistently improves the image
generation quality as measured by FID scores Heusel et al. (2017) across different diffusion models and
datasets with only (∼10%) addition of the parameter counts. Note these improvements are achieved without
tuning any hyperparameters of the base model components.

9

Initializing the base model with pre-trained weights. We further test UC-LoRA on pre-trained EDM
base models for unconditional CIFAR-10 and FFHQ64 generations. As reported in Table 1, using pre-trained
weights showed additional gain on FID score with fewer number of interations (∼ 50%). To clarify, although
we initialize the base model with pre-trained weights, we fully train both base model and LoRA modules
rather than finetuning.

LoRA can even replace scale-and-shift. We further evaluate the effectiveness of LoRA conditioning
by replacing the scale-and-shift conditioning for the convolutional layers in residual blocks with LoRA
conditioning for the attention blocks. The results of Table 1 suggest that solely using LoRA conditioning
on attention layers achieves competitive FID scores while being more efficient in memory compared to the
baseline score network trained with scale-and-shift conditioning on convolutional layers. For IDDPM, using
LoRA in place of the conventional scale-and-shift conditioning consistently produces better results. Significant
improvement is observed especially for class-conditional generation of CIFAR-10. For EDM, replacing the
scale-and-shift conditioning did not yield an improvement, but nevertheless performed comparably. We note
that in all cases, LoRA conditioning is more parameter-efficient (∼10%) than the conventional scale-and-shift
conditioning.

5.4 Effect of LoRA rank and number of LoRA bases

We investigate the effect of tuning the LoRA rank and the number of LoRA bases on the EDM model for
unconditional CIFAR-10 generation and report the results in Table 2. Our findings indicate that using more
LoRA bases consistently improves the quality of image generations. On the other hand, increasing LoRA
rank does not guarantee better performance. These findings suggest an avenue of further optimizing and
improving our main quantitative results of Section 5.3 and Table 1, which we have not yet been able to
pursue due to our constrained computational budget.

basis rank FID # Params

Varying # basis
9 4 1.99 57185519
18 4 1.96 57745499
36 4 1.95 58865459

Varying rank
18 2 1.93 57192539
18 4 1.96 57745499
18 8 1.96 58851419

Table 2: Effect of the number of LoRA bases and the LoRA rank on unconditional CIFAR-10 sampling of
EDM with LoRA

5.5 Comparison with adaLN

We compare the effectiveness of our proposed LoRA conditioning with adaLN conditioning applied to attention
layers. Specifically, we conduct an experiment on EDM with scale-and-shift conditioning on convolutional
layers removed and with (i) adaLN conditioning attention layers or (ii) LoRA conditioning attention layers.
We compare the sample quality of unconditional and class-conditional CIFAR-10 generation and report the
results in Table 3. We find that LoRA conditioning significantly outperforms adaLN conditioning for both
unconditional and conditional CIFAR-10 generation. This indicates that our proposed LoRA conditioning is
the more effective mechanism for conditioning attention layers in the U-Net architectures for diffusion models.

Type uncond. cond.
adaLN conditioning 2.16 2.0
LoRA conditioning 1.99 1.82

Table 3: Comparison of adaLN conditioning and LoRA conditioning on attention layers on EDM (without
conditioning convolutional layers). We consider both unconditional and conditional CIFAR-10 generation.

10

5.6 Extrapolating conditioning information

We conduct an experiment comparing two class-conditional EDM models each conditioned by scale-and-shift
and ClassLoRA, for the CIFAR-10 dataset. During training, both models receive size-10 one-hot vectors
(ci)j = δij representing the class information.

First, we input the linear interpolation αci +(1−α)cj (0 ≤ α ≤ 1) of two class inputs ci and cj (corresponding
to ‘airplane’ and ‘horse’, respectively) to observe the continuous transition between classes. As shown in the
top of Figure 5, both the scale-and-shift EDM and ClassLoRA EDM models effectively interpolate semantic
information across different classes. However, when a scaled input βci is received, with β ranging from -1
to 1, scale-and-shift EDM generates unrecognizable images when β < 0, while ClassLoRA EDM generates
plausible images throughout the whole range, as shown in the bottom of Figure 5. This toy experiment shows
that LoRA-based conditioning may be more robust to extrapolating conditioning information beyond the
range encountered during training. Appendix C provides further details.

Figure 5: Results of (Top) interpolation of class labels in class-conditional EDM with (row1) ClassLoRA;
(row2) scale-and-shift; (bottom) extrapolation of class labels in class-conditional EDM with (row1) Class-
LoRA; (row2) scale-and-shift

6 Conclusion

In this work, we show that simply adding Low-Rank Adaptation (LoRA) conditioning to the attention layers
in the U-Net architectures improves the performance of the diffusion models. Our work shows that we should
condition the attention layers in diffusion models and provides a prescription for effectively doing so. Some
prior works have conditioned attention layers in diffusion models with adaLN or scale-and-shift operations,
but we find that LoRA conditioning is much more effective as discussed in Section 5.5.

Implementing LoRA conditioning on different and larger diffusion model architectures is a natural and
interesting direction of future work. Since almost all state-of-the-art (SOTA) or near-SOTA diffusion models
utilize attention layers, LoRA conditioning is broadly and immediately applicable to all such architectures.
In particular, incorporating LoRA conditioning into large-scale diffusion models such as Imagen Saharia et al.
(2022), DALL·E 2 Ramesh et al. (2022), Stable Diffusion Rombach et al. (2022), and SDXL Podell et al.
(2024), or transformer-based diffusion models such as U-ViT Bao et al. (2023), DiT Peebles & Xie (2023),
and DiffiT Hatamizadeh et al. (2023) are interesting directions. Finally, using LoRA for the text conditioning
of text-to-image diffusion models is another direction with much potential impact.

11

References
Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications,

1982.

Alexandre Audibert, Massih R Amini, Konstantin Usevich, and Marianne Clausel. Low-rank updates of
pre-trained weights for multi-task learning. ACL, 2023.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth words: A
ViT backbone for diffusion models. CVPR, 2023.

Lucas Caccia, Edoardo Ponti, Zhan Su, Matheus Pereira, Nicolas Le Roux, and Alessandro Sordoni. Multi-head
adapter routing for cross-task generalization. NeurIPS, 2023.

Rich Caruana. Multitask learning. Machine Learning, 1997.

Shoufa Chen, Chongjian GE, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo. Adaptformer:
Adapting vision transformers for scalable visual recognition. NeurIPS, 2022.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 2012.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis. NeurIPS,
2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer is a strong
image synthesizer. ICCV, 2023.

Hyojun Go, Yunsung Lee, Jin-Young Kim, Seunghyun Lee, Myeongho Jeong, Hyun Seung Lee, and Seungtaek
Choi. Towards practical plug-and-play diffusion models. CVPR, 2023.

Pareesa Ameneh Golnari. LoRA-Enhanced distillation on guided diffusion models. arXiv preprint
arXiv:2312.06899, 2023.

Yuan Gong, Hongyin Luo, Alexander H Liu, Leonid Karlinsky, and James Glass. Listen, think, and understand.
ICLR, 2024.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured state spaces.
ICLR, 2022.

Yuchao Gu, Xintao Wang, Jay Zhangjie Wu, Yujun Shi, Yunpeng Chen, Zihan Fan, Wuyou Xiao, Rui Zhao,
Shuning Chang, Weijia Wu, Yixiao Ge, Ying Shan, and Mike Zheng Shou. Mix-of-show: Decentralized
low-rank adaptation for multi-concept customization of diffusion models. NeurIPS, 2023.

Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. DiffiT: Diffusion vision
transformers for image generation. arXiv preprint arXiv:2312.02139, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. NeurIPS Workshop on Deep Generative
Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. Simple diffusion: End-to-end diffusion for high
resolution images. ICML, 2023.

12

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. ICML, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. ICLR, 2022.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. LoraHub: Efficient
cross-task generalization via dynamic LoRA composition. arXiv preprint arXiv:2307.13269, 2023.

Allan Jabri, David J Fleet, and Ting Chen. Scalable adaptive computation for iterative generation. ICML,
2023.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures of local
experts. Neural Computation, 1991.

Heewoo Jun, Rewon Child, Mark Chen, John Schulman, Aditya Ramesh, Alec Radford, and Ilya Sutskever.
Distribution augmentation for generative modeling. ICML, 2020.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. CVPR, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. NeurIPS, 2022.

Dongjun Kim, Yeongmin Kim, Se Jung Kwon, Wanmo Kang, and Il-Chul Moon. Refining generative process
with discriminator guidance in score-based diffusion models. ICML, 2023.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. NeurIPS, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent space.
ICLR, 2023.

Marc Lelarge, Andrei Bursuc, and Jill-Jênn Vie. Dataflowr. https://dataflowr.github.io/website/,
2024.

Yan-Bo Lin, Yi-Lin Sung, Jie Lei, Mohit Bansal, and Gedas Bertasius. Vision transformers are parameter-
efficient audio-visual learners. CVPR, 2023.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H. Chi. Modeling task relationships in
multi-task learning with multi-gate mixture-of-experts. ACM SIGKDD, 2018.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. ICML,
2021.

Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hongsheng Li. St-adapter: Parameter-efficient image-to-
video transfer learning. NeurIPS, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. ICCV, 2023.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. FiLM: Visual
reasoning with a general conditioning layer. AAAI, 2018.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. AdapterHub: A framework for adapting transformers. EMNLP, 2020.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. ICLR, 2024.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

13

https://dataflowr.github.io/website/

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. CVPR, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. MICCAI, 2015.

Simo Ryu. Low-rank adaptation for fast text-to-image diffusion fine-tuning.
https://github.com/cloneofsimo/lora, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho,
David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language
understanding. NeurIPS, 2022.

Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vincent YF Tan, and Song Bai. DragDiffusion:
Harnessing diffusion models for interactive point-based image editing. arXiv preprint arXiv:2306.14435,
2023.

James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia Jin.
Continual diffusion: Continual customization of text-to-image diffusion with c-lora. arXiv preprint
arXiv:2304.06027, 2023.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. ICML, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. ICLR, 2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
NeurIPS, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. ICLR, 2021b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Haowen Wang, Tao Sun, Cong Fan, and Jinjie Gu. Customizable combination of parameter-efficient modules
for multi-task learning. ICLR, 2024.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for better
multi-task learning. arXiv preprint arxXiv:2311.11501, 2023a.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. ProlificDreamer:
High-fidelity and diverse text-to-3D generation with variational score distillation. NeurIPS, 2023b.

Yuxin Wu and Kaiming He. Group normalization. ECCV, 2018.

Jing Nathan Yan, Jiatao Gu, and Alexander M Rush. Diffusion models without attention. arXiv preprint
arXiv:2311.18257, 2023.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker. Pushing
mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning. ICLR, 2024.

14

https://github.com/cloneofsimo/lora

A Experimental details

Here, we provide the detailed experiment settings. Note that apart from the conditioning method, we mostly
follow base codes and configurations provided by Dataflowr, IDDPM repository, and EDM repository for
nano diffusion, IDDPM and EDM respectively.

A.1 Nano Diffusion

We mostly followed the base code provided by Dataflowr with 3 exceptions. First, the sinusoidal embedding
implemented in the original code was not correctly implemented. Although it did not have visible impact on
TimeLoRA and UC-LoRA, it significantly deteriorated the sample quality of the scale-and-shift conditioning
(see Figure 6). Second, during training process, the input image is normalized with mean = 0.5 and std = 0.5.
However, it is not considered in the visualization process. Lastly, we extended the number of training epochs
from 50 to 100 for better convergence.

Figure 6: MNIST image generated with incorrect sinusoidal embedding and scale-and-shift conditioning,
(top) after 100 epochs of training, (bottom) after 400 epochs of training.

A.2 IDDPM

Here we provide the training setting used in IDDPM experiments based on the IDDPM repository.

A.2.1 CIFAR-10

For CIFAR-10 training, we construct U-Net with model channel of 128 channels, and 3 residual blocks per each
U-Net blocks. We use Adam optimizer with learning rate of 1 × 10−4, momentum of (β1, β2) = (0.9, 0.999),
no weight decay, and dropout rate of 0.3. We train the model with Lhybrid proposed in the original paper for
500k iterations with batch size of 128. The noise is scheduled with the cosine scheduler and the timestep is
sampled with uniform sampler at training. For sampling, we use checkpoints saved every 50k iterations with
exponential moving average of rate 0.9999, and sample image for 4000 steps and 4001 steps for the baseline
and LoRA conditioning, respectively.

Training flags used for unconditional CIFAR-10 training.

MODEL_FLAGS="--image_size 32 --num_channels 128 --num_res_blocks 3 --learn_sigma True --dropout 0.3"
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
TRAIN_FLAGS="--lr 1e-4 --batch_size 128"

Training flags used for class-conditional CIFAR-10 training.

MODEL_FLAGS="--image_size 32 --num_channels 128 --num_res_blocks 3 --learn_sigma True --dropout 0.3 --class_cond True"
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
TRAIN_FLAGS="--lr 1e-4 --batch_size 128"

A.2.2 ImageNet64

For ImageNet64 training, we use the same U-Net construction used in CIFAR-10 experiment. The model
channel is set as 128 channels, and each U-Net block contains 3 residual blocks. We use Adam optimizer with
learning rate of 1 × 10−4, momentum of (β1, β2) = (0.9, 0.999), no weight decay and no dropout. We train
the model with Lhybrid proposed in the original paper for 1.5M iterations with batch size of 128. The noise

15

https://dataflowr.github.io/website/modules/18a-diffusion/
https://github.com/openai/improved-diffusion/tree/main
https://github.com/NVlabs/edm
https://dataflowr.github.io/website/modules/18a-diffusion/
https://github.com/openai/improved-diffusion/tree/main

is scheduled with the cosine scheduler and the timestep is sampled with uniform sampler at training. For
sampling, we use checkpoints saved every 500k iterations with exponential moving average of rate 0.9999,
and sample images for 4000 steps and 4001 steps for the baseline and LoRA conditioning, respectively.

Training flags used for ImageNet64 training.

MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3 --learn_sigma True"
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
TRAIN_FLAGS="--lr 1e-4 --batch_size 128"

A.3 EDM

Here we provide the training setting used in EDM experiments based on the EDM repository.

A.3.1 CIFAR-10

For CIFAR-10 training, we use the DDPM++ Song et al. (2021b) with channel per resolution as 2, 2, 2. We
use Adam optmizer with learning rate of 1 × 10−3, momentum of (β1, β2) = (0.9, 0.999), no weight decay and
dropout rate of 0.13. We train the model with EDM preconditioning and EDM loss proposed in the paper for
200M training images (counting repetition) with batch size of 512 and augmentation probability of 0.13. For
sampling, we used checkpoints saved every 50 iterations with exponential moving average of 0.99929, and
sample image using Heun’s method for 18 steps (35 NFE).

Training flags used for unconditional CIFAR-10 training.

--cond=0 --arch=ddpmpp

Training flags used for class-conditional CIFAR-10 training.

--cond=1 --arch=ddpmpp

A.3.2 FFHQ64

For FFHQ training, we use the DDPM++ Song et al. (2021b) with channel per resolution as 1, 2, 2, 2. We
use Adam optmizer with learning rate of 2 × 10−4, momentum of (β1, β2) = (0.9, 0.999), no weight decay and
dropout rate of 0.05. We train the model with EDM preconditioning and EDM loss proposed in the paper for
200M training images (counting repetition) with batch size of 256 and augmentation probability of 0.15. For
sampling, we used checkpoints saved every 50 iterations with exponential moving average of about 0.99965,
and sample image using Heun’s method for 40 steps (79 NFE).

Training flags used for FFHQ training.

--cond=0 --arch=ddpmpp --batch=256 --cres=1,2,2,2 --lr=2e-4 --dropout=0.05 --augment=0.15

A.4 LoRA basis for TimeLoRA

As IDDPM uniformly samples the timestep during training, we follow the similar procedure for selecting the
timestep ti assigned for the LoRA basis (Ai, Bi) in TimeLoRA. To be specific, we set t1 = 1, tm = T , and
equally distribute ti in between:

ti = 1 + (i − 1) · T − 1
m

.

Note here, for simplicity we assumed that m divides T − 1, and choose T = 4001 instead of T = 4000 used in
the baseline work.

16

https://github.com/NVlabs/edm

A.5 MLP for composition weights of UC-LoRA

For the composition weights of UC-LoRA, we used 3-layer MLP with group normalization and SiLU activation.
Specifically, each LoRA module contains a MLP consisting of two linear layers with by group normalization
and SiLU activation followed by a output linear layer. MLP takes the shared condition embedding v ∈ Rdemb

as the input and outputs the composition weight ω(v) ∈ Rm, where demb is the embedding dimension (512
for EDM) and m is the number of LoRA bases. This is implemented in Pytorch as

self.comp_weights = nn.Sequential(
Linear(in_features=embed_dim, out_features=128),
GroupNorm(num_channels=N1, eps=1e-6),
torch.nn.SiLU(),
Linear(in_features=N1, out_features=N2),
GroupNorm(num_channels N2, eps=1e-6),
torch.nn.SiLU(),
Linear(in_features=N2, out_features=num_basis),

)

In our experiment, we set (N1, N2) = (50, 50) for nano diffusion and (N1, N2) = (128, 64) for EDM. Note
the choice of depth, and the width of the MLP is somewhat arbitrary and can be further optimzied.

B Cosine similarity between ωts in nano diffusion

We present cosine similarity between ωt and ω500 for all LoRA bases in UC-LoRA for nano diffusion in Figure
7. As observed in Section 5.2 and Figure 4, cosine similarity is consistently high for t close to 500, proving
that there is a task similarity between nearby timesteps for all layers of the network. However, the patterns
varied depending on the depth of the layer within the network. This could be an interesting point for future
research to further understand the learning dynamics of the diffusion models.

17

0 200 400 600 800 1000
Time step t

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
os

Si
m

(
(t)

,
(5

00
))

at init
after training

Down block 1

0 200 400 600 800 1000
Time step t

0.5

0.0

0.5

1.0

C
os

Si
m

(
(t)

,
(5

00
))

at init
after training

Up block 3

0 200 400 600 800 1000
Time step t

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
os

Si
m

(
(t)

,
(5

00
))

at init
after training

Down block 2

0 200 400 600 800 1000
Time step t

0.0

0.2

0.4

0.6

0.8

1.0

C
os

Si
m

(
(t)

,
(5

00
))

at init
after training

Up block 2

0 200 400 600 800 1000
Time step t

0.5

0.0

0.5

1.0

C
os

Si
m

(
(t)

,
(5

00
))

at init
after training

Down block 3

0 200 400 600 800 1000
Time step t

0.5

0.0

0.5

1.0

C
os

Si
m

(
(t)

,
(5

00
))

at init
after training

Middle block

0 200 400 600 800 1000
Time step t

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
os

Si
m

(
(t)

,
(5

00
))

at init
after training

Up block 1

Figure 7: Cosine similarity between ωt and ω500 for UC-LoRA applied to nano diffusion.

C Extrapolating conditioning information with Class LoRA

We present a more detailed analysis along with comprehensive results of the experiments introduced in
Section 5.6. The class-conditional EDM model used for comparison was trained with the default training
configurations explained in Appendix A.3. For ClassLoRA-conditioned EDM, we used the unconditional
EDM as the base model and applied ClassLoRA introduced in Section 3.2 for the discrete-time setting. We
did not use UC-LoRA for this ablation study, with the intent of focusing on the effect of LoRA conditioning
on class information.

We provide interpolated and extrapolated images as introduced in 5.6 for various classes in Figure 8 and
Figure 9, corroborating the consistent difference between the two class conditioning schemes across classes.
We also experiment with strengthening the class input, where we use scaled class information input βci with
β > 1. Fig. 10 shows that LoRA conditioning shows more robustness in this range as well.

Considering the formulation of ClassLoRA, interpolating or scaling the class input is equivalent to interpolating
or scaling the class LoRA adapters, resulting in a formulation similar to Compositional LoRA or UC-LoRA:

Wt = W + ∆W (c) = W +
C∑

i=1
ωiB

′
cA′

c,

18

where ωi corresponds to the interpolation or scaling of the class inputs. From this perspective, the ω weights
could be interpreted as a natural ‘latent vector’ capturing the semantic information of the image, in a
similar sense that was highlighted in Kwon et al. (2023). While our current focus was exclusively on class
information, we hypothesize that this method could be extended to train style or even text conditioning,
especially considering the effectiveness of LoRA for fine-tuning.

(a) Class-conditional EDM with ClassLoRA

(b) Class-conditional EDM with scale-and-shift

Figure 8: Results of interpolation of class labels for various classes

19

(a) Class-conditional EDM with ClassLoRA

(b) Class-conditional EDM with scale-and-shift

Figure 9: Results of extrapolation of class labels for various classes

20

(a) Class-conditional EDM with ClassLoRA

(b) Class-conditional EDM with scale-and-shift

Figure 10: Results of class labels scaled from 1 to 5 for various classes

21

D Image generation samples

D.1 IDDPM

D.1.1 Unconditional CIFAR-10

Figure 11: Unconditional CIFAR-10 samples generated by IDDPM with LoRA

D.1.2 Class-conditional CIFAR-10

(a) Bird (b) Car

Figure 12: Class conditional CIFAR-10 samples generated by IDDPM with LoRA

22

(c) Cat (d) Deer

(e) Dog (f) Frog

Figure 12: Class conditional CIFAR-10 samples generated by IDDPM with LoRA

23

(g) Horse (h) Plane

(i) Ship (j) Truck

Figure 12: Class conditional CIFAR-10 samples generated by IDDPM with LoRA

24

D.1.3 ImageNet64

Figure 13: ImageNet64 samples generated by IDDPM with LoRA

25

D.2 EDM

D.2.1 Unconditional CIFAR-10

Figure 14: Unconditional CIFAR-10 samples generated by EDM with LoRA

D.2.2 Class-conditional CIFAR-10

(a) Bird (b) Car

Figure 15: Class conditional CIFAR-10 samples generated by EDM (vp) with LoRA

26

(c) Cat (d) Deer

(e) Dog (f) Frog

Figure 15: Class conditional CIFAR-10 samples generated by EDM (vp) with LoRA

27

(g) Horse (h) Plane

(i) Ship (j) Truck

Figure 15: Class conditional CIFAR-10 samples generated by EDM (vp) with LoRA

28

D.2.3 FFHQ

Figure 16: FFHQ samples generated by EDM (vp) with LoRA

29

	Introduction
	Prior work and preliminaries
	Diffusion models
	Low-rank adaptation
	Conditioning the score network

	Discrete-time LoRA conditioning
	TimeLoRA
	ClassLoRA

	Continuous-SNR LoRA conditioning
	Unified compositional LoRA (UC-LoRA)

	Experiments
	Experimental Setup
	Proof-of-concept experiments
	Main quantitative results
	Effect of LoRA rank and number of LoRA bases
	Comparison with adaLN
	Extrapolating conditioning information

	Conclusion
	Experimental details
	Nano Diffusion
	IDDPM
	CIFAR-10
	ImageNet64

	EDM
	CIFAR-10
	FFHQ64

	LoRA basis for TimeLoRA
	MLP for composition weights of UC-LoRA

	Cosine similarity between ts in nano diffusion
	Extrapolating conditioning information with Class LoRA
	Image generation samples
	IDDPM
	Unconditional CIFAR-10
	Class-conditional CIFAR-10
	ImageNet64

	EDM
	Unconditional CIFAR-10
	Class-conditional CIFAR-10
	FFHQ

