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SwinFi: a CSI Compression Method based on Swin
Transformer for Wi-Fi Sensing

Jichen Bian

Abstract—Wi-Fi sensing is a transformative approach that en-
ables a large of applications through CSI analysis. The challenge
lies in the high computational and communication costs with the
increasing granularity of CSI data. In this letter, we propose
SwinFi, a pioneering solution that compresses CSI at the edge
into a succinct feature image and reconstructs at the cloud
for further processing. SwinFi employs a Swin Transformer-
based autoencoder-decoder architecture that ensures SOTA per-
formance in both CSI reconstruction and sensing tasks. We
utilize a dataset for PIR task and conduct extensive experiments
to evaluate SwinFi. The results show that SwinFi achieves the
reconstruction quality with the NMSE of -37.74dB and the
classification accuracy of 95.3% at the same time.

Index Terms—CSI compression, Wi-Fi sensing, Swin Trans-
former, autoencoder-decoder.

I. INTRODUCTION

W I-FI sensing has emerged as a pivotal technology in

a variety of applications, ranging from human activity

recognition to object sensing and localization. Its widespread

adoption is underpinned by the unique advantages it offers

over traditional sensing methods, notably its cost-effectiveness,

device-free nature, and privacy-preserving characteristics. This

burgeoning field leverages the extraction of Channel State

Information (CSI) to establish key mappings from channel

states to recognition targets, facilitating a multitude of sensing

capabilities [1]. The advancement of Multiple-Input Multiple-

Output (MIMO) and Orthogonal Frequency-Division Multi-

plexing (OFDM) technologies endow CSI with higher granu-

larity, providing robust support for Wi-Fi sensing technologies.

This enhancement, however, brings a substantial increase in

computational resource requirements. While cloud and edge

computing capabilities offer viable solutions to alleviate com-

putational burdens, they concurrently impose a considerable

strain on communication systems due to the extensive data

transmission involved. In response, CSI compression tech-

nology stands out for its ability to markedly reduce data

processing and transmission requirements, thereby bolstering

the efficiency and practicality of Wi-Fi sensing systems.

Recent developments in deep learning contribute to new

methods in the field of CSI compression. [2] introduces

CsiNet, which applies convolutional neural networks (CNN)

for the learning and reconstruction of CSI features. Building

on this, further studies incorporated temporal dynamics into

CSI processing. The integration of CNN with Long Short-

Term Memory (LSTM) networks in [3] enables the extraction

of both spatial and temporal features from CSI data, leading
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to enhancements in reconstruction accuracy, particularly in

environments with dynamic network conditions. Additionally,

[4] explores the application of Transformer models, utilizing

multi-head self-attention (MSA) mechanisms to adeptly handle

long-range dependencies in CSI data.

However, the aforementioned works are primarily oriented

towards 5G communication, where CSI feedback plays a

crucial role in ensuring high-quality precoding and efficient

communication transmission, with the emphasis on correct re-

construction. [5] presents a different perspective, asserting that

CSI compression for Wi-Fi sensing fundamentally diverges

from the approach in 5G communication. Although the tasks

in both domains are similar, in Wi-Fi sensing, the compressed

CSI data requires not only reconstructability but also discrimi-

native feature to support various sensing applications. In other

words, the compressed feature map should preserve essential

characteristics for both recognition and sensing tasks.

In this letter, we propose an innovative method for CSI

compression of Wi-Fi sensing. Inspired by [5], we focus on

both reconstruction accuracy and classification features as key

metrics. To capture the spatial and temporal dynamics of CSI,

we treat a sequence of CSI matrices over time as a unique

form image. Leveraging the principles of Swin Transformer,

we design an autoencoder-decoder architecture tailored for Wi-

Fi sensing applications. The contributions of this letter are

summarized as follows:

1) To reduce the communication and computational costs

of Wi-Fi sensing, we propose SwinFi, a novel method

that compresses CSI data into a compact feature image

at the edge and reconstructs the original CSI data at the

cloud for further processing.

2) We design a multitask joint model that, building upon

the SwinFi Encoder, integrates a linear classification

head to enable the recognition of categorical features

within CSI feature images.

3) To evaluate the performance of SwinFi, we produce a

dataset for personnel identity recognition (PIR) tasks

based on Wi-Fi CSI. We compare SwinFi with several

state-of-the-art (SOTA) methods and the results show

that SwinFi achieves the best reconstruction quality

with the Normalized Mean Squared Error (NMSE) of

-37.74dB, while concurrently attaining a classification

accuracy of 95.3%.
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II. METHODOLOGIES

We tend to adapt the latest computer vision (CV) methods

to CSI processing. Therefore, in this section, we first introduce

two SOTA methods based on Transformer. Then we delve into

the architecture and details of our proposed SwinFi.

A. Vision Transformer

Vision Transformer (ViT) is introduced in [6], representing

a significant breakthrough in CV. ViT adapts the Transformer

architecture, traditionally used in natural language processing

(NLP), for image analysis tasks. This adaptation demonstrates

remarkable success in CV, including classification, segmenta-

tion, and object detection.

The core idea of ViT is to treat an image as a sequence

of fixed-size patches, analogous to the words in a text. The

patches are then linearly embedded into a sequence of vectors.

The model applies a Transformer encoder to these embeddings

to capture the complex relationships between the patches.

The encoder consists of multiple layers, each containing two

main components: MSA and a fully connected feed-forward

network. After the encoder, the output is leveraged for various

downstream tasks.

B. Swin Transformer

While ViT treats images as sequences of patches similar

to words, this approach leads to exponential increases in

computational cost with image size due to global MSA.

Furthermore, the patch method may overlook the details within

itself, leading to a loss of local structural information.

Based on ViT, Swin Transformer [7] proposes several key

innovations that further adapt the Transformer architecture

for CV. Swin Transformer incorporates the notion of local

windows into ViT architecture, similar in spirit to the receptive

fields of convolutional neural networks (CNN). The input

image is divided into patches smaller than ViT does. Instead of

processing all patches at once, Swin Transformer applies MSA

within local windows. Another pivotal innovation is the shift

window mechanism, which enables information to flow across

the entire image by alternating the window positions across

layers. This mechanism effectively achieves a global receptive

field while maintaining a linear computational complexity with

the image size. The complexity comparison between MSA and

window MSA (W-MSA) is as follows:

Ω(MSA) = 4hwC2 + 2(hw)2C,

Ω(W −MSA) = 4hwC2 + 2M2hwC,
(1)

where h and w are the patch number, C is the dimension of

patch, and M is the window size.

C. SwinFi

In the context of CSI compression and reconstruction, the

data, characterized by its multi-dimensional nature (subcar-

riers, time, and multiple antennas), presents a formidable

challenge. To adapt CV methods for CSI data, we consider

each CSI matrix as an ”image” where each pixel represents

the amplitude or phase of a subcarrier at a specific time.

Inspired by Swin Transformer, we propose SwinFi as

shown in Fig 1, a novel method employing an end-to-end

autoencoder-decoder architecture, specifically for CSI com-

pression and PIR tasks. SwinFi is designed to capture the

spatial and temporal dynamics of CSI data, enabling efficient

and effective compression. The components of SwinFi are as

follows:

1. Encoder: Encoder consists of a patch embedding block

and an encoder block. The patch embedding block transforms

the input X ∈ R
B×D×S×T into X ∈ R

B×N×C , where B is

the batch size, D is the number of channels, S is the number of

subcarriers, T is the number of time slots, N is the number of

patches, and C is the patch embedding dimension. The patch

focuses on the temporal dimension, with each patch being of

size pS × pT ×D. The encoder block comprises several Swin

Transformer Block layers and Patch Merge layers, each Swin

Transformer Block including a W-MSA, a window position

encoding layer, and an MLP layer.

2. Decoder: Decoder mirrors the architecture of Encoder

but with Patch Merge layers replaced by Patch Split layers. It

decodes the encoded CSI feature image back into the original

space. During training, the parameters of Encoder and Decoder

are jointly optimized to minimize the NMSELoss between the

original CSI data and the reconstructed data.

3. Classifier: Classifier is a straightforward linear structure

to identify the categorical features within feature images for

PIR tasks. Training of Classifier utilizes the CrossEntropyLoss

to update its parameters.

It is noteworthy that, unlike the square shapes commonly

utilized in CV, both the patch and window sizes in SwinFi

adopt rectangular dimensions, with a patch width of 1, mean-

ing that each time slot occupies a separate patch. Similarly, the

windows have a length of 1, as we aim to avoid computing

MSA across patches that are neither adjacent in time slots

nor subcarriers, a measure grounded in the belief that such

quantities lack physical significance. The superiority of this

approach will be substantiated in the experimental section.

III. EXPERIMENTAL RESULTS

In this section, we first present the CSI datasets made for

PIR tasks. Then we introduce the experimental setup and

evaluation of SwinFi.

A. Datasets

In this letter, we produce a specialized Wi-Fi CSI dataset

designed for PIR tasks. The dataset is assembled using two

802.11ac routers equipped with Nexmon tools [8], [9], set

up in a meeting room as depicted in Figure 2. We recorded

the CSI data of 20 participants, each freely moving within

the room. A single-antenna transmitter transmits signals at

an 80MHz frequency every 10 milliseconds, while a receiver

with four antennas captures the CSI data, which includes gait

characteristics crucial for identifying individuals.

The raw communication cost of this setup, without any

preprocessing, is calculated to be 4×256×100×2×4 Bytes/s,

equivalent to approximately 6.55Mbps. This corresponds to 8
bytes per measurement, with each complex number (detailing

amplitude or phase) stored using two floating points: 4 bytes
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Fig. 1. The architecture of SwinFi.

each for the real and imaginary parts. Based on the aforemen-

tioned setup, we conduct experiments that involve collecting

five minutes of CSI data for each of the 20 participants, as

well as for an empty meeting room, resulting in a dataset that

categorizes 21 different classes.

T
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T Transmitter

Multi-path

Fig. 2. Layout of the experimental scene.

As identified in [10], phase errors in CSI measurements can

stem from several sources related to hardware imperfections.

These include packet detection delay (PDD), sampling fre-

quency offset (SFO), carrier frequency offset (CFO), random

initial phase offset, and phase ambiguity. Such errors compro-

mise the accuracy of phase information.

To address these issues, we implement a two-step correction

process, as shown in Fig 3. The initial step involves phase

unwrapping along the subcarrier dimension, effectively mit-

igating discontinuities that arise due to the cyclic nature of

phase measurements. This unwrapping process is described
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Fig. 3. Phase error processing, illustrated in three stages. On the left, raw
phase data are presented, showcasing inherent noise and discontinuities. The
figure in the center depicts the phase after unwrapping, where discontinuities
are corrected. Finally, the figure on the right demonstrates the phase error
after processing, representing the linear fitting to rectify the phase error.

as:

φ̂m+1 =











φ̂m+1 − 2π if φ̂m+1 − φ̂m ≥ π,

φ̂m+1 + 2π if φ̂m+1 − φ̂m ≤ −π,

φ̂m+1 otherwise,

(2)

where φ̂k represents the phase of the k-th subcarrier.
Following the unwrapping, the phase data is subjected to a

linear fitting process. The process is governed as:

a =
φ̂n − φ̂1

kn − k1
−

2πδ

N
, (3)

b =
1

n

n
∑

j=1

φ̂j −
2πδ

nN

n
∑

j=1

kj + β, (4)

φ̃j = φ̂j − (akj + b), (5)

where kj denotes the index of the j-th subcarrier, and a and

b are the coefficients determined through the fitting. The real

phase is then recalculated by subtracting the derived linear

term akj + b from the measured phase φ̂j , resulting in a

corrected phase profile.
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Here are the examples of CSI data, as shown in Fig 4.
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(d) Phase (participant 5)

Fig. 4. Amplitude (in dB scale) and phase of CSI data for the participant
4 (a)-(b) and 5 (c)-(d). Each trace is about 2.56 seconds long (x-axis) and
shows the amplitude or the phase on each subcarrier (y-axis). Note that CSI
is not available on the control carriers and pilot carriers, so there are 234
carriers left to use.

B. Experimental Setup

Criterion: For evaluating the performance of models, the

primary factors we consider are the rate of compression, the

quality of reconstruction, and the accuracy of classification.

The compression rate is calculated as the ratio of the commu-

nication cost of the raw data to the communication cost of the

compressed data, as follows:

γ =
S × T ×D

S
pS

× T
pT

× C/4len(depth)−1

=
pS × pT ×D × 4len(depth)−1

C
,

(6)

where C is the number of feature dimensions, pS and pT
are the patch sizes in the spatial and temporal dimensions,

respectively.

The quality of reconstruction is measured by NMSE in

decibels (dB), calculated as:

NMSE = 10× log10

(

∑N

i=1 ||Xi − X̂i||
2

∑N

i=1 ||Xi||2

)

, (7)

The classification accuracy is calculated as the percentage

of correctly classified samples.

Baseline: We compare the performance of SwinFi with sev-

eral SOTA methods. For the single task of CSI reconstruction,

we compare with CSINet [2], WiWho [11], and AutoID [12].

For the task of PIR, we compare with SimpleViTFi [13]. For

the joint task, the relevant method is EfficientFi [5].

C. Evaluation and Disscussion

We first evaluate the performance of SwinFi with the base-

line methods mentioned above in Table II. From Equation 6,

the compression rate γ is decided by several factors. Given our

intention to maintain a finely-grained window receptive field

through the use of small patch sizes, we are thus constrained

to modulate the compression ratio gamma by adjusting the

feature dimensions and the configuration of Swin Transformer

blocks. We design a series of experiments as shown in Table I,

allowing the compression ratio to vary from 64 to 1024. Note

that the mixed data contain amplitude and phase for each of

the 4 channels. To maintain the same compression ratio, Dim

is doubled.

TABLE I
SETUP OF DIFFERENT COMPRESSION RATIO

Input Patch size Dim Depth γ

Amplitude or 8× 1 32 [2,2,6,2] 64
Phase 8× 1 16 [2,2,6,2] 128

4× 256 × 256 8× 1 32 [2,2,2,6,2] 256
8× 1 16 [2,2,2,6,2] 512
8× 1 32 [2,2,2,2,6,2] 1024

Mixed 8× 1 64 [2,2,6,2] 64
8× 256 × 256 8× 1 32 [2,2,6,2] 128

8× 1 64 [2,2,2,6,2] 256
8× 1 32 [2,2,2,6,2] 512
8× 1 64 [2,2,2,2,6,2] 1024

In Table II, it is observed that SwinFi outperforms the

baseline methods in terms of the least reconstruction error

with the NMSE of -37.74dB. Even at high compression rates,

SwinFi maintains a high quality of reconstruction along with

superior classification accuracy. This performance stands on

par with, or even surpasses, that of single-task models.

TABLE II
COMPARISON OF DIFFERENT METHODS.

Method γ NMSE (dB) Accuracy (%)

CSINet [2] 4 -29.18 N/A
16 -26.18 N/A
32 -20.40 N/A
64 -18.07 N/A

WiWho [11] N/A N/A 67.3
AutoID [12] N/A N/A 77.6
SimpleViTFi [13] N/A N/A 96.7
EfficientFi [5] 66.8 -35.18 84.5

148.4 -34.23 81.6
334.0 -30.19 82.7
763.4 -29.18 82.1
1781.3 -27.70 83.3

SwinFi 64 -37.74 95.3
128 -37.56 93.8
256 -35.81 92.2
512 -31.47 90.4

1024 -29.19 87.3

The baseline methods focus exclusively on CSI amplitude.

Accordingly, the comparative experiments of SwinFi also

utilize only the amplitude. Subsequently, we conduct a series

of experiments on both the phase and mixed data of CSI. These

experiments aim to provide a comprehensive understanding

of the extent to which SwinFi can effectively process and

leverage the full spectrum of CSI signal components.

Table III provides a comparison of the performance across

phase and mixed data. Combined with amplitude results in

Table II, while SwinFi can handle phase data effectively,

the reconstruction quality and classification accuracy are less

satisfactory. However, by mixed data, SwinFi achieves the best

classification accuracy. This suggests that the distinct features
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of human gait, used for classification, are distributed across

both amplitude and phase components of the CSI data.

TABLE III
COMPARISON OF DIFFERENT INPUTS.

Input γ NMSE (dB) Accuracy (%)

Phase 64 -15.16 93.3
128 -15.73 80.2
256 -16.85 91.4
512 -16.14 84.4
1024 -13.87 89.4

Mixed 64 -30.13 97.8
128 -27.08 93.8
256 -25.24 98.3
512 -25.13 93.4
1024 -22.93 89.6

Finally, we investigate the impact of different patch shapes

and window shapes on the performance of SwinFi. The results

are shown in Table IV. It is observed that the rectangular

shapes outperform the square shapes in both NMSE and

classification accuracy under the similar γ. This result is

consistent with the intuition that rectangular shapes can better

capture the spatial and temporal dynamics of CSI data.

TABLE IV
COMPARISON OF DIFFERENT PATCH SIZE AND WINDOW SIZE.

Window size Patch size γ NMSE (dB) Accuracy (%)

4× 4 3× 3 72 -32.63 90.8
4× 4 3× 3 288 -27.79 89.2
1× 16 8× 1 64 -37.74 95.3
1× 16 8× 1 256 -35.81 92.2

IV. CONCLUSION

In this letter, we introduce SwinFi, leveraging Swin Trans-

former within an autoencoder-decoder architecture for the

efficient compression and reconstruction of CSI data in Wi-

Fi sensing. The approach not only reduces computational and

communication demands but also demonstrates SOTA perfor-

mance in reconstruction quality and classification accuracy.

Through extensive experiments, SwinFi achieves satisfactory

results and outperforms existing methods.

Anticipating future research, we will explore the integration

of compressed feature images with Diffusion model as shown

in Fig 1. Our aim is to investigate the potential of Diffusion

model for generating synthetic CSI data to augment the exist-

ing datasets. Considering computational efficiency, we propose

utilizing the compressed latent variables as inputs to Diffusion,

where the output generated data are then reconstructed to

achieve a lightweight generative process.
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