
ar
X

iv
:2

40
5.

03
94

4v
1 

 [
co

nd
-m

at
.s

of
t]

  7
 M

ay
 2

02
4

Integrated Lennard-Jones Potential between a Sphere and a Thin Rod

Junwen Wang1, 2, 3 and Shengfeng Cheng4, 2, 3, 1, ∗

1Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
2Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

3Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, USA
4Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

(Dated: May 8, 2024)

A compact analytical form is derived via an integration approach for the interaction between a
sphere and a thin rod of both finite and infinite lengths, with each object treated as a continuous
medium of materials points interacting by the Lennard-Jones 12-6 potential. Expressions for the
resultant forces and torques are obtained. Various asymptotic limits of the analytical sphere-rod
potential are discussed.

I. INTRODUCTION

The Lennard-Jones (LJ) 12-6 potential is one of the
most frequently used functional forms to represent inter-
atomic and intermolecular interactions.[1, 2] As a nat-
ural extension, integrated LJ potentials between con-
densed bodies with various geometrical shapes can find
applications in a wide range of computational studies
and theoretical analyses because of their simplicity,[3, 4]
though pairwise additivity is assumed in the so-called
Hamaker approach.[5] Furthermore, the parameters (e.g.,
the Hamaker constant setting the interaction strength)
in an integrated potential can be tuned to match realis-
tic cases, enhancing the applicability of such potentials.
Integrated forms of the LJ 12-6 potential have been de-
rived for a few spherical and planar geometries.[3, 6–9]
The integrated potential between two spheres has been
implemented in the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS).[10] The LJ poten-
tial has also been integrated between a point particle and
a plane/half-space and implemented in LAMMPS as var-
ious wall potentials.[11]
In addition to spheres, cylindrical objects are abundant

in synthetic and natural systems,[12] including liquid
crystal molecules, colloidal nanorods, nanopillars, carbon
nanotubes, nanowires, biofilaments (e.g., microtubules),
and rod-shaped virus (e.g., tobacco mosaic virus) and
microorganisms (e.g., Escherichia coli bacteria). In gen-
eral, it is more challenging to integrate the LJ potential
for cylinders. Most attempts have been made in studies
of carbon nanotubes [13–19] and some are limited to the
van der Waals (vdW) attraction only. The full LJ 12-6
potential was integrated by de Rocco and Hoover for two
thin rods in either collinear or parallel configurations.[6]
Hamady et al. derived an analytical expression for the
interaction between a nanorod and a three-dimensional
half-space filled with LJ point particles.[20] An approxi-
mate form of the integrated LJ potential was proposed by
Vesely for two sticks in more general settings.[4] Recently,
full analytical forms for both 1/r6 attraction and 1/r12
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repulsion have been obtained by Wang et al. for thin
LJ rods in arbitrary 3-dimensional arrangements,[21] by
means of Ostrogradski’s integration method.[22, 23]

To study mixtures of spheres and rods theoretically
and computationally, it is necessary to include their mu-
tual interactions. Several results have been previously
reported in the literature on the rod-sphere interactions.
Rosenfeld and Wasan obtained the exact result on the
nonretarded vdW attraction between a sphere and an
infinitely long cylinder with a finite radius by integrat-
ing the 1/r6 potential.[24] Kirsch later confirmed this re-
sult and further obtained the compact expression for the
retarded case (i.e., the integrated form of the 1/r7 at-
tractive potential).[25] Gu and Li studied both retarded
and nonretarded vdW interaction between a sphere and
a cylinder with a finite length and cross-section by com-
bining analytical and numerical integrations.[26] Mont-
gomery et al. calculated the dispersion forces for several
nontraditional geometries, including the case of a sphere
and an infinite cylinder.[27] He et al. obtained an analyti-
cal expression for the vdW attraction between a nanopar-
ticle and a nanorod with a finite length and radius under
certain approximations.[28] However, a compact form of
the integrated LJ potential between a sphere and a rod
has been elusive.

Here we report a fully analytical form of the interac-
tion between a sphere and a thin rod with either finite
or infinite lengths in an arbitrary configuration by inte-
grating the LJ 12-6 potential between a pair of particle.
The sphere is treated as a continuum and the thin rod
is modeled as a material line consisting of LJ particles.
The integrated sphere-rod potential is expressed as an
analytical function form and the associated expressions
for forces and torques are also presented. These forms
can be used in theoretical analysis and computational
modeling of sphere-rod mixtures.
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II. THEORETICAL MODEL OF SPHERE-ROD

INTERACTIONS

A. Integrated Sphere-Point Potential

The LJ 12-6 potential between two point particles
reads

ULJ(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

, (1)

where ǫ is an energy scale, σ is a length scale, and r is the
distance between particles. The LJ 12-6 potential has
been integrated between a point particle and a sphere
regarded as a uniform distribution of LJ particles at a
number density of 1.0σ−3.[3] The resulting sphere-point
potential can be expressed as

USP(r) =
2a3σ3Acs

9

[

(

5a6 + 45a4r2 + 63a2r4 + 15r6
)

σ6

15 (r2 − a2)9

− 1

(r2 − a2)
3

]

, (2)

where r is the center-to-center distance between the
point particle and sphere, a is the sphere radius, and
Acs = 24πǫ is a Hamaker constant setting the interac-
tion strength. Clearly, r > a is required in Eq. (2) as the
point particle cannot overlap with the sphere.

B. Integrated Sphere-Rod Potential

The sphere-point potential can be integrated further to
obtain the interaction between a sphere and a thin rod.
A general sphere-rod configuration is shown in Fig. 1.
By setting the x-axis along the central axis of the rod
and choosing one end of the rod as the origin, we can
build a polar coordinate system with the center of the
sphere located at (ρ, θ). It is always possible to build
such a frame with 0 ≤ θ ≤ π. The interaction potential
between the sphere and rod can then be denoted as a
function W (ρ, θ), which represents the integrated form

of the sphere-point interaction potential in Eq. (2).

W (ρ, θ) = λ

∫ L

0

USP(r)|r=√x2+ρ2
−2xρ cos θ

dx , (3)

where L is the length of the rod, λ the line number den-
sity of LJ material points that the rod consists of.
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FIG. 1. A polar coordinate system describing a general con-
figuration of a sphere and a thin rod.

With a change of variables, y = x − ρ cos θ and h =
ρ sin θ, the integral in Eq. (3) can be transformed into

W (ρ, θ) = λ

∫ L

0

USP(r)|r=√y2+h2
dx . (4)

Considering the form of USP(r) in Eq. (2), this integral is
an integral of rational functions, which can be evaluated
using Ostrogradski’s method.[22, 23] The result can be
written as

W (ρ, θ) =
2λa3σ3Acs

9
[G(L, ρ, θ)−G(0, ρ, θ)] (5)

where the function G(x, ρ, θ) is given by

G(x, ρ, θ) = σ6

[

8a6y

15 (h2 − a2) (h2 + y2 − a2)8
− 4y

(

4a6 − 9a4h2
)

35 (h2 − a2)2 (h2 + y2 − a2)7
+

y
(

11a6 − 9a4h2 + 63a2h4
)

105 (h2 − a2)3 (h2 + y2 − a2)6

+y
(

16a6 + 216a4h2 + 378a2h4 + 105h6
)

×
(

1

1050 (h2 − a2)
4
(h2 + y2 − a2)

5

+
3

2800 (h2 − a2)
5
(h2 + y2 − a2)

4
+

1

800 (h2 − a2)
6
(h2 + y2 − a2)

3

+
1

640 (h2 − a2)
7
(h2 + y2 − a2)

2
+

3

1280 (h2 − a2)
8
(h2 + y2 − a2)

)
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+
3
(

16a6 + 216a4h2 + 378a2h4 + 105h6
)

1280 (h2 − a2)17/2
arctan

(

y√
h2 − a2

)

]

−
[

y

4 (h2 − a2) (h2 + y2 − a2)
2
+

3y

8 (h2 − a2)
2
(h2 + y2 − a2)

+
3

8 (h2 − a2)
5/2

arctan

(

y√
h2 − a2

)

]

, (6)

where y = x− ρ cos θ and h = ρ sin θ. Here the repulsive
and attractive components of the interaction are clearly
separated.
Equation (6) holds as long as h > a, i.e., the x-axis in

Fig. 1 is outside the sphere. In the case of h < a, the
sphere intersects with the x-axis (i.e., the line along the
central axis of the rod). The argument of the arctan-

gent function in Eq. (6), y/
√
h2 − a2 becomes a complex

number. This is expected as the integrated sphere-rod
potential should diverge when the two overlap. However,
the potential should still be finite as long as the rod is
outside the sphere. Therefore, for h < a, the arctangen
term need to be transformed into

1√
h2 − a2

arctan

(

y√
h2 − a2

)

=
1

2
√
a2 − h2

ln

(√
a2 − h2 − y√
a2 − h2 + y

)

. (7)

It is easy to show that for a rod outside the sphere with
h < a, the argument of the logarithmic function in Eq. (7)
is negative for −ρ cos θ ≤ y ≤ L − ρ cos θ. Therefore,
directly using Eq. (7) still yields a complex value for

G(x, ρ, θ). However, since only G(L, ρ, θ)−G(0, ρ, θ) en-
ters the integrated potential, the relative term involves
the following expression

ln

(
√

a2 − ρ2 sin2 θ − L+ ρ cos θ
√

a2 − ρ2 sin2 θ + L− ρ cos θ

)

− ln

(
√

a2 − ρ2 sin2 θ + ρ cos θ
√

a2 − ρ2 sin2 θ − ρ cos θ

)

= ln

(

a2 − ρ2 − L
√

a2 − ρ2 sin2 θ + Lρ cos θ

a2 − ρ2 + L
√

a2 − ρ2 sin2 θ + Lρ cos θ

)

.(8)

The argument of the logarithmic function in the last line
of Eq. (8) is positive and the function value is thus real.

To make it clear, in the case of h < a, the integrated
potential can be explicitly written as

W (ρ, θ) =
2λa3σ3Acs

9
[Q(L, ρ, θ)−Q(0, ρ, θ) + P (ρ, θ)] ,

(9)
with

Q(x, ρ, θ) = σ6

[

8a6y

15 (h2 − a2) (h2 + y2 − a2)
8
− 4y

(

4a6 − 9a4h2
)

35 (h2 − a2)
2
(h2 + y2 − a2)

7
+

y
(

11a6 − 9a4h2 + 63a2h4
)

105 (h2 − a2)
3
(h2 + y2 − a2)

6

+y
(

16a6 + 216a4h2 + 378a2h4 + 105h6
)

×
(

1

1050 (h2 − a2)4 (h2 + y2 − a2)5

+
3

2800 (h2 − a2)
5
(h2 + y2 − a2)

4
+

1

800 (h2 − a2)
6
(h2 + y2 − a2)

3

+
1

640 (h2 − a2)
7
(h2 + y2 − a2)

2
+

3

1280 (h2 − a2)
8
(h2 + y2 − a2)

)]

−
[

y

4 (h2 − a2) (h2 + y2 − a2)
2
+

3y

8 (h2 − a2)
2
(h2 + y2 − a2)

]

, (10)

and

P (ρ, θ) =

[

3σ6
(

16a6 + 216a4h2 + 378a2h4 + 105h6
)

2560 (a2 − h2)
17/2

− 3

16 (a2 − h2)
5/2

]

×
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ln

(

a2 − ρ2 − L
√
a2 − h2 + Lρ cos θ

a2 − ρ2 + L
√
a2 − h2 + Lρ cos θ

)

, (11)

where y = x− ρ cos θ and h = ρ sin θ.

In the case of h = a, i.e., when the x-axis in Fig. 1 is
tangent to the sphere, the integrated potential between
the sphere and rod can be easily evaluated to be

W (ρ, θ) =
2λa3σ3Acs

9

[

1

5y5
− σ6

15

(

128a6

17y17
+

72a4

5y15

+
108a2

13y13
+

15

11y11

)]y=L−ρ cos θ

y=−ρ cos θ

. (12)

It can be shown that Equation (12) is the asymptotic
form of Eq. (6) in the limit of h = a, except for a singular
term that only depends on h and is thus canceled out
during the subtraction process in Eqs. (5) or (9).

For an infinitely long thin rod, the integrated sphere-
rod potential can be written as

W (ρ, θ) =
2λa3σ3Acs

9
lim

L→∞

[G(L, ρ, θ)−G(0, ρ, θ)

+G(L, ρ, π − θ)−G(0, ρ, π − θ)] . (13)

Note that G(0, ρ, θ) = −G(0, ρ, π − θ) and

lim
L→∞

G(L, ρ, θ)

= lim
L→∞

G(L, ρ, π − θ)

=
3πσ6

(

16a6 + 216a4h2 + 378a2h4 + 105h6
)

2560 (h2 − a2)
17/2

− 3π

16 (h2 − a2)5/2
. (14)

The integrated LJ potential between a sphere of radius
a and an infinite thin rod thus reads

W (h) =
πλa3σ3Acs

3

[

σ6
(

16a6 + 216a4h2 + 378a2h4 + 105h6
)

640 (h2 − a2)
17/2

− 1

4 (h2 − a2)
5/2

]

. (15)

As expected, the potential in this case only depends on
h, the distance between the sphere center and the cen-
tral axis of the rod. Obviously, in this case h > a is
required. The force between the sphere and rod can be
easily computed from F (h) = −dW (h)/dh. For example,
the attractive component is

5πλa3σ3Acs

12

h

(h2 − a2)
7/2

, (16)

which is identical to the thin-rod limit of the result ob-
tained by Rosenfeld and Wasan.[24]

C. Forces and Torques in Sphere-Rod Interactions

Using the coordinate system defined in Fig. 1, the force
on the sphere can be computed from the integrated po-
tential, W (ρ, θ), as

FS =
1

ρ sin θ

∂W

∂θ
nx −

(

∂W

∂ρ
+

cos θ

ρ sin θ

∂W

∂θ

)

nρ . (17)

The force on the rod is FR = −FS from the Newton’s
third law.
The torque on the rod is

τRz =

[

−L

2
sin θ

∂W

∂ρ
+

(

1− L

2ρ
cos θ

)

∂W

∂θ

]

nz , (18)

where nz ≡ 1
sin θnx × nρ. The torque is 0 for θ = 0 and

π where the central axis of the rod passes through the

sphere center. Furthermore, when ρ = L/(2 cosθ), i.e.,
when the sphere center is on the bisector of the rod, the
torque on the rod is also 0. These limits are encoded in
the symmetry of the sphere-rod system considered here.

III. VERIFICATION OF ANALYTICAL

RESULTS

The analytical results on the integrated potentials,
forces, and torques, which involve lengthy but compact
expressions, are compared to the results from numeri-
cally integrating the LJ 12-6 potential for a sphere-rod
system. A perfect agreement is found in all cases. Some
examples are shown in Fig. 2. The comparison further
validates our strategy [Eqs. (9), (10), and (11)] of dealing
with the special situations where ρ sin θ < a, i.e., where
the central axis of the rod intersects with the sphere. In
these situations, the integrated potential is still real and
finite as long as the rod is outside the sphere. The re-
sults in Fig. 2 confirms that this is indeed the case if the
operations in Eqs. (7) and (8) are adopted.

IV. CONCLUSIONS

The Lennard-Jones (LJ) 12-6 potential has been suc-
cessfully integrated for a sphere and a thin rod of both
finite and infinite lengths in arbitrary 3-dimensional con-
figurations, with the sphere and rod modeled as contin-
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FIG. 2. Comparison of analytical and numerical results on the integrated potentials (W ) [(a) and (d)], force components (Fx

and Fρ) [(b) and (e)], and torque on the rod (τ ) [(c) and (f)] vs. ρ. The results are for a sphere with a = 10σ and a thin rod
with L = 5σ at θ = π/6. The top row is for the case with ρ sin θ < a while the bottom row is for ρ sin θ > a.

uous media of LJ material points. The result has been
expressed in a compact analytical form. The expressions
of forces and torques are also presented. The integrated
sphere-rod potential can be used for theoretical descrip-
tions and computational modeling of soft matter systems
involving mixtures of cylindrical and spherical objects.
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