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Abstract

Effectively handling instructions with extremely long context remains a
challenge for Large Language Models (LLMs), typically necessitating high-
quality long data and substantial computational resources. This paper
introduces Step-Skipping Alignment (SkipAlign), a new technique de-
signed to enhance the long-context capabilities of LLMs in the phase of
alignment without the need for additional efforts beyond training with
original data length. SkipAlign is developed on the premise that long-range
dependencies are fundamental to enhancing an LLM’s capacity of long
context. Departing from merely expanding the length of input samples,
SkipAlign synthesizes long-range dependencies from the aspect of posi-
tions indices. This is achieved by the strategic insertion of skipped positions
within instruction-following samples, which utilizes the semantic structure
of the data to effectively expand the context. Through extensive experi-
ments on base models with a variety of context window sizes, SkipAlign
demonstrates its effectiveness across a spectrum of long-context tasks. Par-
ticularly noteworthy is that with a careful selection of the base model and
alignment datasets, SkipAlign with only 6B parameters achieves it’s best
performance and comparable with strong baselines like GPT-3.5-Turbo-16K
on LongBench. The code and SkipAligned models are open-sourced at
https://github.com/nightdessert/SkipAlign

1 Introduction

The capacity to process and comprehend long contexts is pivotal to large language models
(LLMs), empowering them to tackle complex real-world applications involving extremely
long context, such as questions answering or summarizing from multiple-document (Caci-
ularu et al., 2023), understanding and processing repository-level code (Jimenez et al.,
2023). Recent advancements have significantly broadened the context window of LLMs, e.g.
achieving a context window of 128K tokens through continuous pretraining (Fu et al., 2024).

Despite these advancements on extending context window, the alignment of LLMs to
leverage their long-text capabilities to interpret long and complex instructions remains an
underexplored area. A primary obstacle is the lack of high-quality, open-source datasets
with long instructions, along with the challenges associated with annotating such data.
A promising approach to this challenge involves synthesizing long instructional samples
from common short ones. However, existing methods have primarily focused on simply
extending the length of instructional samples, neglecting the more critical aspect of effec-
tively building long-range dependency relations. For example, methods like LongChat
(Li et al., 2023) and LongLLAMA(Tworkowski et al., 2024) concatenate shorter samples to
create longer ones. Yet, the long-range relations constructed in these strategies are derived
from unrelated samples, which may not effectively simulate the long-range dependencies
necessary for tasks involving long context.

To overcome these challenges, this paper introduces a new method called Step-Skipping
Alignment (SkipAlign) which leverages positional indices of short instructions to create
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Figure 1: SkipAlign modifies positional indices in instruction-following samples to simulate
long-range dependency relations. The provided example showcases how SkipAlign takes
three distinct samples, each initially positioned within a 4096-token, and independently
applies three separate strategies to stretch their lengths to an impressive 100K tokens.

samples with meaningful long-range dependency relations. Drawing inspiration from
transformer’s reliance on positional indices, SkipAlign manipulates positional indices to
simulate long-range dependencies, enhancing the model’s ability to process long contexts
without the need for extensive data generation or modifying architecture. Our technique
involves the strategic insertion of skipping steps within the positional indices of instruction-
response pairs. This strategy is designed to ensure that the relative distances of synthesized
indices are uniformly distributed across an extended range of lengths, while maintaining
their continuity as much as possible. Leveraging the rich long-range dependencies within the
synthesized positions, LLMs are better equipped to learn how to process long instructions
during the alignment phase.

Our evaluation of SkipAlign involved base models with varying context window sizes,
including a LLAMA-2 model featuring a 4096-token window and a Yi-6B-200K model with
an 200K-token window. On LongBench benchmark, SkipAlign activates long-context capa-
bilities more effectively than conventional instruction finetuning and recent packing based
methods. A SkipAlign model with 6 billion parameters, when integrated with high-quality
base models and instruction datasets, matches the performance of GPT-3.5-Turbo-16k on
the LongBench. Moreover, in the Needle-in-a-Haystack test, SkipAlign demonstrates its
superior performance in extending the context window size and highlights the critical
importance of long-range dependencies in samples, rather than merely extending the se-
quence lengths. In summary, the advantages of SkipAlign are as follows: (1) Enhanced
Long Context Capabilities: SkipAlign improves models’ long context capabilities by simu-
lating long-range dependencies, which is essential for effective long context alignment. (2)
Computational Efficiency: SkipAlign avoids the need for additional longer data for training
or modifying the architecture of a LLM, making it a computationally efficient solution. (3)
Extended Context Window: SkipAlign additionally helps LLM with small context window
to handle inputs beyond their original context window.

2 Related Work

Long Context Scaling The goal of long context scaling is to empower current LLMs them
with the ability to cope with long context tasks. This process involves two key steps: context
window extension and instruction finetuning (Xiong et al., 2023). The majority of existing
research has concentrated on the former, exploring techniques such as manipulating posi-
tional embeddings (Chen et al., 2023a; Peng & Quesnelle, 2023; Jin et al., 2024), innovating
model architecture (Mohtashami & Jaggi, 2023; Yang et al., 2023; Tworkowski et al., 2024),
and continue pretraining (Chen et al., 2023b). In contrast, this study delves into the latter
step, focusing on long context instruction finetuning. To the best of our knowledge, previous
research has approached this stage by generating additional long-input data (Bai et al., 2024).
Our method, however, relies solely on the available short instruction data.
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Long Context Evaluation Initial studies have predominantly evaluated LLMs based on
their ability to maintain perplexity over extended context (Chen et al., 2023a; Peng et al.,
2023). However, recent findings have revealed that perplexity alone is insufficient to reflect
the long context capabilities of language models (Fu et al., 2024). As a result, two alternative
evaluation methods have emerged. One approach involves comprehensive evaluation
methods, such as LongBench (Bai et al., 2023) and L-Eval (An et al., 2023), which assess
long context capabilities through various downstream tasks, including question answering
(QA) and text summarization. The other approach, represented by Needle-in-a-Haystack
test1, applies synthetic tasks to pressure test specific types of long context capabilities at any
given position. In addition to assessing long context capabilities, it is crucial to evaluate a
model’s proficiency in managing short texts effectively (Xiong et al., 2023). In this paper, we
conduct a comprehensive evaluation by employing both types of long context evaluation
methods, while also reporting on the performance of short text tasks.

Skip Position Training The concept of skip position training has been previously utilized
for context window expansion. RandPos (Ruoss et al., 2023) randomly selects and projects
an ordered subset of position indices to accommodate longer contexts. Subsequently, PoSE
(Zhu et al., 2023) refined this technique by dividing long inputs into segments and randomly
shifting their position indices. The primary objective of these methods is to enhance memory
efficiency during the training of extremely long sequences. Our approach, on the other
hand, aims to stimulate long-range dependencies in long instruction-following data and
utilizing their inherent structure.

3 Methodology

3.1 Preliminary

Before introducing SkipAlign, we first introduce the background knowledge and the impor-
tant baselines of our method.

Instruction Tuning Pretrained models are often finetuned with instruction-following sam-
ples for alignment to learn to follow instructions. These samples are structured as instruction-
response pairs, arranged in continuous sequences (Wei et al., 2022). These sequences are
structured as formal instruction-response pairs. To formalize, let m = (x1, y1, . . . , xi, yi)
denote a sequence comprising i turns of such pairs. We train auto-regressive language
models using the following objective function:

L = −∑
m

log ∑
yj

p(yj|(x1, y1, . . . , xj)), (1)

In this dialogue-formatted sample, the model is tasked with predicting each response yj
conditioned on its preceding instruction xj and the sequence of prior pairs. This conventional
approach to instruction tuning is termed Normal-SFT throughout the remainder of this paper.

Packed-SFT It is crucial to highlight that the majority of existing datasets used for instruc-
tion tuning are characterized by short instructions. To address this limitation, a straightfor-
ward method proposed in LongChat (Li et al., 2023) involves concatenating multiple short,
unrelated instruction-following samples into a single sequence of k tokens in length. We
refer this baseline method as PackedSFT-k throughout the remainder of this paper.

Position Indices Transformer-based language models utilize positional information to
complement the input tokens, and this information is encoded through positional indices
(Vaswani et al., 2017b). While a variety of positional embedding techniques have been
proposed, they universally rely on positional indices to precisely convey the positional
information of tokens (Raffel et al., 2020; Su et al., 2024). By default, positional indices
are sequentially assigned as (0, 1, . . . , |m| − 1), with |m| representing the length of the

1https://github.com/gkamradt/LLMTest NeedleInAHaystack.
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input sequence. In this study, we concentrate on the recent popular relative positional
embedding approach, with a particular emphasis on the ROPE (Su et al., 2024). This method
characterizes the positional relationship between two tokens at indices i and j by their
relative distance, denoted as |i − j|.

3.2 SkipAlign

In this section, we provide an in-depth explanation of our proposed method, SkipAlign. To
generate a target response within an instruction-following sample, the essential information
relied upon is scattered across its corresponding instruction and the sequence of preceding
dialogue turns, as elaborated in Section 3.1. SkipAlign operates on the core assumption
that expanding the relative distance of such semantic structure to encompass a longer
scale is essential for unlocking the long-context capabilities of language models. SkipAlign
accomplishes this via strategically modifying positional indices. By selectively skipping
over certain positional indices in a instruction-following sample, we are able to extend the
relative distance of semantic dependencies, creating long-range dependency relations.

Skipping Positions via Shifting Our aim is to expand relative distances of semantic
dependency in an instruction dataset, surpassing the its maximum sample length l to reach
an extended maximum length L, where L is significantly greater than l. This is achieved
by reassigning positional indices, spreading the original positions from the interval [0, l]
to the extended interval [0, L]. We treat an instruction or response as a basic unit and
shift all of their positional indices simultaneously. Formally, given an i turn sample m, let
P(m) = (c1, c2, . . . , c2i−1, c2i) represent its original positional indices which is concatenated
by the positional indices of each block in a instruction-response pair. In P(m), odd and
even numbered subscript separately correspond to instructions and responses. We create
larger relative positions by shifting each positional block to the right by a bias vector
u = (u1, u2, . . . u2i), where each constant u ∈ u is a constant bias for the shift. By shifting
different block by a various scale, we can create skipping positions between them. The
reassigned positional indices of m are now given by:

Pu(m) = P(m) + u = (c1 + u1, c2 + u2, . . . , c2i + u2i). (2)

Because the basic requirement for valid position indices is incrementality, which requires the
minimum shifting bias ui is set to accumulated shifting bias of previous tokens ua

i = ∑j<i uj.
We introduce a skipped step denote as si, such that ui = ua

i−1 + si. A si of zero means no
skip occurs between ci and its precedent ci−1. A positive si introduces a skip of si positional
indices between these two positions. To achieve a uniform distribution of relative distances
within [0, L] after shifting, we sample si from a uniform distribution:

si ∼ U{1, L − |m| − ua
i−1}, (3)

where L − |m| − ua
i represents the maximum allowable skip length, taking into account the

sample length |m| and the already skipped positions ua
i−1. The remaining critical task is to

devise a skipping strategy for determining when to set si > 0 to introduce skipping steps.

Skipping Strategy We investigate three distinct skipping strategies, to study the contri-
butions of various semantic dependencies on the model’s long context capability. These
strategies apply skipped distances selectively to particular structures within the sample:

1. Skip-All: This strategy applies skipping across all roles within a sample, without
any selection.

2. Skip-Inner: This strategy adds skipping steps exclusively within pairs, i.e., between
an instruction and its response. Concisely, such strategy only adds si when ci is
from a response.

3. Skip-Otter: This strategy introduces skipping steps only between separate dialogue
turns. Concisely, such strategy only adds si when ci is from a instruction.

A straight forward illustration of how these strategies on positional indices is presented
in Figure 1. We use an indicator function DO SKIP() to determine if ci meets the criteria
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for adding skipping step. The function returns 1 if the conditions are met, and 0 otherwise.
Furthermore, to control the number of synthesized positions, we sub-sample p% of valid
position to add skipping steps. The overall rule are summarized as followings:

ui =

{
ua

i−1 + 1(ϵi ≤ p) ∗ si i > 0andDO SKIP(ci)

0 i = 0
, (4)

where ϵi is uniformly sampled from [0, 1] and determined by the indicator
function 1(·), which decides whether to add the skipped distance si. We
apply Skip-Outer as our default strategy as it achieve a better performance
in both long context and short context capability by ablation studies (2).
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Figure 2: The frequency of relative distance
in the Tülu V2 dataset. Comparing with the
original distribution, SkipAlign redistribute a
small subset of samples into a longer context.

Frequency of Relative Distances Distri-
bution of relative distances within a dataset
is the key to understand the impact of the
SkipAlign. This section provides a statis-
tical analysis of the frequency of relative
distances at the dataset level. We begin
by explaining the methodology to quantify
the range of relative distances present in
an individual sample. In the most straight-
forward scenario, a single-turn dialogue
(x1, y1) with a length of l, the set of pos-
sible relative distances for generating yi is
{0, 1, . . . , |l| − 1}. However, if a skipped
step si is inserted between x1 and y1, the
minimum distance between them is now
si, the revised range of relative distances is
{si, si + 1+ . . . , si + |l| − 1}, which expands
the relative distance of such dependency.
For more complex cases involving multiple
turns, we consider the union of the rela-
tive distance sets for generating responses
in each turn.

Following the aforementioned mehotd, we calculate the frequency of relative positions
in dataset-level. As depicted in Figure 2, Tülu V2 dataset’s initial relative distances are
confined to the interval [0, 4096]. After SkipAlign the distribution is extended to [0, 100K],
with the extended range from 4096 to 100K nearly uniform. This observation suggests that
the SkipAlign extends the positional indices of a p% of the dataset, making them to evenly
distributed to relative distances across the expanded interval.

4 Experimental Setup

Training Data Our experiments leverage the Tülu V2 2 dataset, which is a high-quality
data mixture consisting of manually annotated and GPT-generated conversational data.
This dataset provides a rich and diverse source for model training. Following their settings,
we truncate input samples to 4096 tokens. For the SkipAlign, we introduce additional
positional indices during pre-processing. The parameters for the SkipAlign are as follows:
the maximum extend length L is set to 100K, the sub-sampling ratio p is 0.5, and the default
skipping strategy is Skip-Outter.

Training Settings In response to the recent progress in extending the context window,
our study investigates the influence of these models on the alignment of long contexts.
We conduct our SFT experiments using two base models with varying context window
sizes: 1. The LLAMA-2 model (Touvron et al., 2023), which has a context window of 4094
tokens, serves as our baseline for comparison. 2. The Yi-6B-200K model 3, which significantly

2https://huggingface.co/datasets/allenai/Tülu-v2-sft-mixture
3https://huggingface.co/01-ai/Yi-6B-200K
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Model Avg. S-Doc QA M-Doc QA Summ Few-shot Code

GPT-3.5-Turbo-16k 44.6 39.7 38.7 26.5 67.0 54.2

LLAMA-2-7B Based Models
LLAMA-2-7B-chat-4k 35.2 24.9 22.5 25.0 60.0 48.1
SEext-LLAMA-2-7B-chat-16k 38.7 27.3 26.2 24.8 64.2 57.5
LongChat1.5-7B-32k 36.9 28.7 20.6 26.6 60.0 54.2
LLAMA-2-7B-NTK32k 31.7 16.2 7.3 15.4 66.7 63.4

+ Normal-SFT 41.5 31.3 32.7 26.0 65.3 57.4
+ PackedSFT-16k 42.6 31.6 32.8 26.2 67.9 60.5
+ PackedSFT-32k 41.6 30.0 32.2 26.2 67.3 58.0
+ PackedSFT-50k 43.6 36.0 37.0 27.7 63.8 58.5
+ SkipAlign 44.1 38.6 33.8 26.1 67.6 59.6

Yi-6B-200K Based Models
Yi-6B-200K 39.1 25.1 33.8 25.6 56.6 62.0

+ Normal-SFT 43.7 37.0 35.0 26.8 65.8 59.0
+ PackedSFT-16k 44.1 33.1 38.2 27.4 67.4 59.7
+ SkipAlign 45.3 40.3 38.7 26.1 66.3 60.0

Table 1: Results on LongBench, we report the average performance on all datasets and each
sub tasks of various long context alignment settings.

extends the Yi-6B model’s context window to an impressive 200K tokens through continuous
pre-training (AI et al., 2024). For models based on LLAMA-2, we employ the Neural Tangent
Kernel (NTK) (Peng & Quesnelle, 2023) to extend positional embeddings to the maximum
training or inference length prior to training. In contrast, for Yi-6B-200K models, additional
positional extension is unnecessary as the model’s inherent maximum embedding length is
already 200K. For the hyper-paramter settings for training, please refer to Appendix A.

Evaluation The evaluation of our models’ performance with long contexts is conducted
using LongBench (Bai et al., 2023), a comprehensive benchmark suite that encompasses
16 distinct datasets spread across 6 different task categories. These datasets are designed
to assess models with input lengths varying from 4K to 20K tokens. In the course of our
experiments, we observed significant instability in the performance of synthetic tasks within
LongBench when tested across multiple models and even at different checkpoints within
the same model. This variability prompted us to exclude synthetic tasks and any Chinese-
language datasets from our evaluation to ensure a more reliable and focused assessment.
We set the maximum testing length to 16K tokens.

5 Results

5.1 Results on LongBench

We present the results of our comprehensive experiments on LongBench in Table 1.

SkipAlign further benefits long context capability The results presented in the second
and third blocks of Table 1 highlight the consistent advantage of SkipAlign over Normal-
SFT and Packed-SFT on average scores. This is particularly evident when comparing
with Noraml-SFT, where SkipAlign almost demonstrates its superiority in every subtasks.
Utilizing the Yi-6B-200K model, SkipAlign outperforms GPT-3.5-Turbo-16k in the overall
average performance on LongBench.

Task-level Analysis After alignment, there is a noticeable enhancement in performance
across all sub-tasks, with the exception of a slight decline in the coding subtask. This is
largely attributed to the fact that the coding tasks in LongBench predominantly involve con-
tinuous code generation, a type of task that aligns more closely with the pretraining. Models
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(a) LLAMA-2-7B-NTK-50K (b) Normal-SFT-NTK-50K

(c) PackedSFT-50K (d) SkipAlign

Figure 3: Needle in the Haystack test for LLAMA-2-7B based models: LLAMA-2-7B-NTK-
50K denotes the straightforward expansion of LLAMA-2-7B using NTK to accommodate
50K tokens without further tuning. Normal-SFT-NTK-50K represents the adaptation of a
standard fine-tuned model for this extended context. PackedSFT-50K indicates the fine-
tuning process using samples artificially extended to 50K tokens for training.

need to pay “alignment tax” for this task. In task-level comparisions, the improvements
brought by SkipAlign, in descending order, are single-document QA, multi-document QA,
few-shot learning, and lastly, summarization. The driving force behind these improvements
is SkipAlign’s proficiency in simulating long-term dependencies. Conversely, the gains
observed in summarization tasks were more modest. This can be explained by the complex
nature of information aggregation inherent in summarization. The task requires identifying
salient information that is evenly dispersed throughout a long context. Constructing this
type of long-term structure is challenging for current skipping strategies, which are con-
strained by the given short data and the necessity to maintain consistency of their positional
indices.

Quality of base model and alignment dataset is important to the long context capabil-
ity Our investigation has revealed key insights into how the quality of base models and
alignmnt datasets significantly influence a language model’s ability to handle long contexts.
Notably, when using the same SFT dataset, Noraml-SFT, PackedSFT-16K, and SkipAlign
consistently show more improvements when they are based on the Yi-6B-200K model rather
than the LLAMA-7B model. Moreover, despite employing a similar packing strategy and
training sequence length, the PackedSFT-32K model, trained with the Tülü V2 dataset, out-
performs the LongChat1.5-7B-32k model, which was trained using ShareGPT, by a notable
4.7 points. This observation underscores the importance of both a high-quality alignment
dataset and s base model with inherent strong long context capabilities in achieving superior
overall performance.

5.2 Testing with Needle-in-a-Haystack

Settings To gain a clearer insight into the enhancement of long context capabilities by SFT
and our proposed SkipAlign, we conduct a Needle-in-a-Haystack test. This test evaluates a
model’s ability to retrieve information from any position within the context, as depicted in
Figure 3. We use a color scale ranging from deep red, indicating a 100% successful recall,

7



Model LongBench MMLU BBH TydiQA Codex-Eval

Yi-6B-200K 39.1 64.2 43.0 16.2 19.9
+Normal-SFT 43.7 60.5 44.6 32.6 30.4
+Skip-All 45.1 59.6 38.7 31.7 26.9
+Skip-Inner 42.4 59.5 41.5 31.0 29.3
+Skip-Outter (default) 45.3 61.1 42.6 30.3 28.5

Table 2: Results on both long and short tasks.

to green, representing a 0% complete failure. Given that the Yi-6B-200K model has already
achieved near-perfect performance in this test, we focus our evaluation on LLAMA-2-7B
based models.

SkipAlign is better at extending context window Directly applying NTK for inference,
as shown in Figure 3(a), yields suboptimal results. While initial fine-tuning followed by
NTK, as depicted in Figure 3(b), slightly expands the context window beyond the initial
4096 token limit. Conversely, fine-tuning with packed samples to accommodate a 50K token
context, as illustrated in Figure 3(c), manages to extend the successful retrieval window to
around 20K tokens, achieving an average accuracy score of 50. However, SkipAlign (Figure
3(d)), which does not rely on samples exceeding 4096 tokens, not only extends the retrieval
window to a extent of 28K but also significantly improves the average accuracy score to 61.6.
This outcome demonstrates SkipAlign’s superior ability to enhance the context window
without the need for excessively long input samples.

Long-term dependency are more important than sample’s length A detailed comparison
between PackedSFT-50K and SkipAlign reveals the critical role of long-term dependen-
cies. With PackedSFT-50K, the input sample size is uniformly concatenated to 50K tokens,
ensuring that each sample reaches this length. In contrast, SkipAlign employs a strategic
approach to enhance long-term dependencies without necessitating the creation of actual
long samples. From the perspective of relative distance, although PackedSFT-50K samples
are longer, the effective dependency relationships they capture are confined within a 4096
token relative distance. SkipAlign, on the other hand, explicitly extends these relation-
ships to a much broader range. This under-scoring the notion that the effective long-term
dependencies is a more critical factor than the mere length of the input sequences.

5.3 Ablation Study on short text capability and on skipping strategy

Evaluation Settings In addition to the long context evaluation previously discussed,
we conducted further tests to determine the influence of various SFT configurations on a
model’s fundamental short text processing capabilities. Following the evaluation settings in
Wang et al. (2023), we validate on 6 datasets: Massive Multitask Language Understanding
dataset (MMLU Hendrycks et al. (2020)) for measuring models’ factual knowledge, and
Big-Bench-Hard (BBH (Suzgun et al., 2022)) to evaluate models’ reasoning capabilities,
TyDiQA to evaluate models’ multilingual capabilities Clark et al. (2020), and Codex-Eval
which based on HumanEval dataset Chen et al. (2021) to evaluate coding capabilities.

Trade-offs in SkipAlign’s Performance Since SkipAlign samples a subset of the data to
synthesize long range dependency, thereby reallocating computational resources that would
have been directed towards short-text processing to optimize the handling of longer se-
quences. As illustrated in Table 2, since the overall content of the data remaining unchanged,
SkipAlign doesn’t affect the learning of factual knowledge. In fact, it shows a improvement
of 1.5 points on the MMLU metric when compared to Normal-SFT. For the performance on
BBH (Resoning), TydiQA (multilingual) and Codex-Eval (Coding), SkipAlign witness a 1-2
point decrease, which could potentially be attributed to the selective nature of SkipAlign. In
summary, SkipAlign strategically shifts some of the short-text capabilities of Normal-SFT to
enhance its long-context performance.
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Integrity of dialogue structure is crucial for SkipAlign The integrity of the dialogue
structure, specifically the consistency between instructions and responses, is crucial for
sustaining performance across both long and short text tasks. When skipping steps are
applied within an instruction-response pair (Skip-Inner), it negatively impacts the model’s
performance, regardless of the text length. Interestingly, the Skip-All strategy, which applies
skipping without any constraints, achieves a performance that lies between the extremes of
Skip-Inner and Skip-Outter. This observation highlights the significance of maintaining the
integrity of the dialogue structure.

5.4 Analysis on Hyper-parameter

Figure 4: Average score on LongBench for
SkipAlign aross various maximum extension
length L and sub-sampling ratio p p.

We conducted a thorough analysis of
how various hyper-parameters influence
SkipAlign’s performance.

L effects overall performance most, with
100K being the optimal setting Figure
4 demonstrates that, in comparison to p,
severely affect the overall performance of
SkipAlign. Among the evaluated lengths, L
set to 100K stands out as the most effective,
consistently delivering superior results to
both the Normal-SFT and the lengths of 50K
and 150K. It is noteworthy that the average
testing length on LongBench dataset is be-
low 50k, suggesting that utilizing a L that
significantly larger l, such as 100K or 150K,
can lead to better performance after alignment.

A moderate setting of p yields optimal performance With p across 0.2, 0.5, and 0.8,
SkipAlign consistently outperforms Normal-SFT and achieves peak performance at a proba-
bility of 0.5. This peak indicates that a moderate value of p enables SkipAlign to optimize
its performance effectively.

6 Conclusion and Future Research

In this study, we introduce SkipAlign, a new method designed to perform long context
alignment only with short instruction datasets. This technique employs a simple yet effec-
tive strategy of manipulating position indices within instruction-following samples, thereby
facilitating the creation of high-quality long dependency relations. Our extensive exper-
imental evaluation across a variety of long-context tasks demonstrates have consistently
shown that SkipAlign surpasses conventional instruction finetuning and other long-context
synthesis methods in performance. A key insight from our Needle in the Haystack experi-
ment is that the length of the training samples is secondary to the establishment of effective
long-term dependency relations, which are crucial for mastering long-context capabilities.

Looking ahead, there are two principal directions for the future studying of SkipAlign:
The first direction involves a deeper investigation into long-context alignment. Given
that SkipAlign currently synthesizes features with only short samples, future work could
examine its performance when integrated with actual, annotated long-context examples.
This integration could potentially enhance the model’s ability to generalize to even longer
contexts.

The second direction focuses on extending the context window through continued pre-
training. With the recent advancements in causal continuous pretraining, such as models
reaching 120K tokens trained on 80G GPUs, there is an opportunity to explore whether
SkipAlign’s skip-position training can elevate these pretraining efforts to accommodate
even longer contextual lengths, for example 1M context length. This exploration could lead
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to LLMs with unprecedented context windows, significantly expanding their applicability
in complex long tasks.
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A Hyper-parameters for Training
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