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ZERO ORDER MEROMORPHIC SOLUTIONS OF q-DIFFERENCE

EQUATIONS OF MALMQUIST TYPE

RISTO KORHONEN AND YUEYANG ZHANG∗

Abstract. We consider the first order q-difference equation

(†) f(qz)n = R(z, f),

where q 6= 0, 1 is a constant and R(z, f) is rational in both arguments. When |q| 6= 1, we
show that, if (†) has a zero order transcendental meromorphic solution, then (†) reduces
to a q-difference linear or Riccati equation, or to an equation that can be transformed to
a q-difference Riccati equation. In the autonomous case, explicit meromorphic solutions
of (†) are presented. Given that (†) can be transformed into a difference equation,
we proceed to discuss the growth of the composite function f(ω(z)), where ω(z) is an
entire function satisfying ω(z+1) = qω(z), and demonstrate how the proposed difference
Painlevé property, as discussed in the literature, applies for q-difference equations.

1. Introduction

An ordinary differential equation is said to possess the Painlevé property if all of its
solutions are single-valued about all movable singularities. It is widely believed that all
ordinary differential equations that possess the Painlevé property are integrable. In [1],
Ablowitz, Halburd and Herbst introduced Nevanlinna theory (see, e.g., [16]) to study
the integrability of difference equations and suggested that the existence of sufficiently
many finite-order meromorphic solutions of a difference equation is a good candidate for
a difference analogue of the Painlevé property. Halburd and Korhonen [14] implemented
this idea to the second order difference equation

(1.1) f(z + 1) + f(z − 1) = R(z, f),

where R(z, f) is rational in f with meromorphic coefficients having slower growth than
f(z) in terms of Nevanlinna theory, and showed that if equation (1.1) has a meromorphic
solution f of finite order, then either f satisfies a difference Riccati equation, or a linear
transformation of (1.1) reduces it to one in a short list of difference equations which con-
sists solely of difference Painlevé equations and equations related to them, linear equations
and linearizable equations. It was shown that the finite-order condition of the proposed
difference Painlevé property can be relaxed to hyper-order strictly less than one in [15],
and later to minimal hyper-type (i.e. log T (r, f) = o(r) as r → ∞) in [18, 30].

When detecting the integrability of q-difference equation, it is natural to consider the
zero order meromorphic solutions. One of the main purposes of this paper is to display
how the proposed difference Painlevé property works for q-difference equations. We shall
consider the first order q-difference equation

(1.2) f(qz)n = R(z, f),
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where n ∈ N, q 6= 0, 1 is a constant and R(z, f) is rational in both arguments. Equation
(1.2) is the q-difference version of the first order difference equation

(1.3) g(z + 1)n = R(z, g),

where n ∈ N and R(z, g) is rational in g with meromorphic coefficients having slower
growth than g(z). In fact, we may perform the transformation z → ω(z) to equation (1.2)
with an entire function ω(z) satisfying ω(z+1) = qω(z). We may choose ω(z) = κ(z)ez log q

with an arbitrary entire function κ(z) such that κ(qz) = κ(z). Denoting g(z) = f(ω(z)),
then g(z + 1) = f(qω(z)), and g(z) is a meromorphic solution of the difference equation

(1.4) g(z + 1)n = R̂(z, g),

where R̂(z, g) is now rational in g with coefficients that are rational in ω(z). According
to a result of Edrei and Fuchs [9] (see also [16, Lemma 2.6]), we have

lim
r→∞

T (r, f(ω(z)))

T (r, ω(z))
= ∞.(1.5)

Since, by the Valiron–Mohon’ko identity [22,24] (see also [21]), the characteristic function

of each coefficient of R̂(z, g), say â(z), satisfies T (r, â(z)) = n̂T (r, ω(z)) +O(log r), where
n̂ is some integer, all coefficients of (1.4) have growth of type o(T (r, g)) when the solution
f(z) of (1.2) is transcendental. Under the condition that each coefficient of (1.3), say
ã(z), satisfies T (r, ã(z + k)) = o(T (r, g)) for any finite positive integer k, where r → ∞
outside an exceptional set of finite logarithmic measure (i.e.

∫

E
dr/r < ∞), the present

authors [19,20,29] used Yamanoi’s Second Main Theorem [25,26] to provide a classification
for equation (1.3), including a list of 33 equations of canonical form. In particular, in
the autonomous case all these equations can be solved in terms of elliptic functions,
exponential type functions or functions which are solutions to a certain autonomous first-
order difference equation. These results provide a complete difference analogue of the
results on Malmquist type differential equations f ′(z)n = R(z, f) due to Steinmetz [23]
and Bank and Kaufman [3]; see also [21, Chapter 10].

Now, if equation (1.2) has a zero order transcendental meromorphic solution f , then it
follows from an estimate for the proximity function m(r, f(qz)/f(z)) in [4] (see also [28])
and the Valiron–Mohon’ko identity that

degf (R(z, f))T (r, f) = T (r, R(z, f)) +O(log r)

= T (r, f(qz)n) +O(log r)

= nT (r, f(qz)) +O(log r)

= nT (r, f) + o(T (r, f)),

where r → ∞ on a set of logarithmic density 1 (i.e. limr→∞(
∫

E∩[0,r]
dt/t)/ log r = 1). This

implies that degf(R(z, f)) = n. Together with previous discussions, we now discard the
assumption that f(z) is of zero order and conclude from the results in [19,20] for equation
(1.3) with degf(R(z, f)) = n that: If the q-difference equation (1.2) has a transcendental
meromorphic solution f , then either f satisfies a q-difference linear or Riccati equation

f(qz) = a1(z)f(z) + a2(z),(1.6)

f(qz) =
b1(z)f(z) + b2(z)

f(z) + b3(z)
,(1.7)

where ai(z) and bj(z) are rational functions, or, by implementing a transformation f → αf
or f → 1/(αf) with an algebraic function α of degree at most 3, (1.2) reduces to one of
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the following equations

f(qz)2 = 1− f(z)2,(1.8)

f(qz)2 = 1−
(

δ(z)f(z)− 1

f(z)− δ(z)

)2

,(1.9)

f(qz)2 = 1−
(

f(z) + 3

f(z)− 1

)2

,(1.10)

f(qz)2 =
f(z)2 − κ(z)

f(z)2 − 1
,(1.11)

f(qz)3 = 1− f(z)−3,(1.12)

where δ(z) 6≡ ±1 is an algebraic function of degree at most 2 and κ(z) 6≡ 0, 1 is a rational
function such that κ(qz) = κ(z), or to one of the following equations

f(qz)2 = δ1(z)(f(z)
2 − 1),(1.13)

f(qz)2 = δ2(z)(1 − f(z)−2),(1.14)

f(qz)2 =
δ3(qz)f(z)

2 − 1

f(z)2 − 1
,(1.15)

f(qz)2 = θ
f(z)2 − δ4(z)f(z) + 1

f(z)2 + δ4(z)f(z) + 1
,(1.16)

f(qz)3 = 1− f(z)3,(1.17)

f(qz)2 =
1

2

(1 + δ5(z))
2

1 + δ5(z)2
(f(z)− 1)(f(z)− δ5(z)

2)

(f(z)− δ5(z))2
,(1.18)

where θ = ±1 and δ1, δ2, δ3, δ4 and δ5 are rational or algebraic functions, each of which
satisfying

δ1(qz)(δ1(z) + 1) + 1 = 0,(1.19)

δ2(qz)δ2(z) = δ2(qz) + δ2(z),(1.20)

δ3(qz)δ3(z) = 1,(1.21)

δ4(qz)(δ4(z)− 4) = 2(1− θ)δ4(z)− 8(1 + θ),(1.22)

8δ45(qz)(δ
2
5(z) + 1)δ5(z) = (δ5(z) + 1)4,(1.23)

respectively. From the proof in [19,20] we know that solutions of (1.10) are still meromor-
phic after the transformation f → αf or f → 1/(αf). Concerning zero order meromorphic
solutions of (1.2), we shall prove the following

Theorem 1.1. Suppose that |q| 6= 1 in (1.2). If equation (1.2) has a zero order tran-

scendental meromorphic solution, then either f satisfies (1.6) or (1.7) with rational coef-

ficients, or, by a transformation f → αf or f → 1/(αf) with an algebraic function α of

degree at most 2, (1.2) reduces to (1.9).

By combining the results in the first two parts of Section 2, we have actually shown
that, if |q| 6= 1, then equation (1.2) can have transcendental meromorphic solutions only
in the case of the four equations (1.6), (1.7), (1.9) and (1.18).

The rather simple q-difference equation f(z)− a(z)f(qz) = 0, where a(z) is a noncon-
stant polynomial, has a zero order transcendental entire solution [7, Theorem 1]. In fact,
Bergweiler, Ishizaki and Yanagihara [6] have previously shown that all meromorphic solu-
tions of the q-difference equation

∑m
j=0 aj(z)g(q

iz) = Q(z), where q ∈ C, 0 < |q| < 1, and
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Q and the aj are polynomials, are of zero order. They also showed that, under a suitable
assumption on a0(z) and a1(z), the q-difference equation g(q2z)+a1(z)g(qz)+a0(z)g(z) =
0 has a transcendental meromorphic solution g(z). Letting f(z) = g(qz)/g(z), then f(z)
satisfies the q-difference Riccati equation f(qz) = −[a1(z)f(z) + a0(z)]/f(z). With this
result we may construct zero order meromorphic solutions of equation (1.9) for noncon-
stant δ. From [19] we know that the solution f(z) of equation (1.9) is represented as
f(z) = (γ(z) + γ(z)−1)/2, where γ(z) satisfies a q-difference Riccati equation

(1.24) γ(qz) =

{

−θ
(±iδ(z) −

√

1− δ(z)2)γ(z)± i

γ(z)− δ(z)± i
√

1− δ(z)2

}θ

, θ = ±1.

Consider the case θ = −1 and ± is chosen to be −. We choose δ = 1
2
(α(z)+α(z)−1) with

a suitable polynomial α(z) so that a1(z) = −(α(qz) + iα(z)) and a0(z) = 2iα(z). Then,
by letting Γ(z) = γ(z) + α(z), we have

(1.25) Γ(qz) =
(α(qz) + iα(z))Γ(z) − 2iα(z)2

Γ(z)
.

In the autonomous case, the meromorphic solutions of the q-difference linear and Riccati
equations (1.6) and (1.7) have been clearly characterised in [13]. In Section 2 we shall
present some explicit meromorphic solutions for these two equations.

In the proof of Theorem 1.1, we show that δ5(z) in (1.18) must be a constant. Then
we can determine all nonconstant meromorphic solutions of equation (1.18), which are
actually of positive even order. However, in the case of the seven equations (1.11)–(1.17),
the existence of transcendental meromorphic solutions does not necessarily imply that the
coefficients of (1.2) are constants. Nonetheless, when all coefficients of equation (1.2) are
constants, we may remove the condition |q| 6= 1 in Theorem 1.1 and obtain the following

Corollary 1.2. If equation (1.2) with constant coefficients has a nonconstant zero order

meromorphic solution, then either f satisfies (1.6) or (1.7) with constant coefficients, or,

by a transformation f → αf or f → 1/(αf) with a constant α, (1.2) reduces to equations

(1.8), (1.9), (1.10) with constant coefficients.

We remark that, when |q| = 1, equation (1.2) with nonconstant rational coefficients
can also have zero order transcendental meromorphic solutions in the case of equation
(1.8). From [19] we know that the solution f(z) of (1.8) is represented as f(z) =
(h(z) + h(z)−1)/2, where h(z) satisfies h(qz) = ih(z)θ, and θ = ±1. If f(z) is writ-
ten as f(z) = g(z)/α(z) for an algebraic function α(z) such that α(z)2 is a rational
function and α(qz)2 = α(z)2, then we see that h(z) takes the form h(z) = w(z)/α(z) for
a meromorphic function w(z) such that w(qz)/α(z) = i(w(z)/α(z))θ. This equation can
have zero order transcendental meromorphic solutions when |q| = 1.

This paper is structured as follows. In Section 2, we first present meromorphic solutions
for equation (1.2) in the autonomous case. The 11 equations (1.8)–(1.18) are solved in
terms of rational functions or elliptic functions. Together with these solutions, we then
provide a proof for Theorem 1.1. Since equation (1.2) can be transformed to an equation
of the form in (1.3), in the final part of Section 2, we discuss the relationship between
solutions of equation (1.2) and (1.3) by analysing the growth of the composite function
g(z) = f(ω(z)), where ω(z) is an entire function such that ω(z + 1) = qω(z). We point
out that the existence of sufficiently many zero order meromorphic solutions of the q-
difference equation (1.2) implies the existence of sufficiently many minimal hyper-type
meromorphic solutions of the difference equation (1.3). Finally, in Section 3 we make two
comments on the integrability of q-difference equations.
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2. Zero order meromorphic solutions of equation (1.2)

2.1. Meromorphic solutions of (1.2) in the autonomous case. In this section we
present meromorphic solutions of equation (1.2) in the autonomous case. In particular,
we will show that the five equations (1.6)–(1.10) indeed have zero order meromorphic
solutions and nonconstant meromorphic solutions of the eight equations (1.11)–(1.18)
have even positive order or infinite order.

For the autonomous q-difference linear equation (1.6): f(qz) = af(z) + b, where a, b
are constants, the general solution is f(z) = zlog a/ log q + b/(1 − a) when |a| 6= 1; or
f(z) = κ(z)zlog a/ log q + b/(1 − a) when |a| = 1 but a 6= 1, where κ(z) is an arbitrary
function such that κ(qz) = κ(z); or f(z) = κ(z) + b log z/ log q when a = 1, where κ(z)
is an arbitrary function such that κ(qz) = κ(z). When a 6= 1, if the solution f(z) is
meromorphic, then the constant q should satisfy log a/ log q = k for an integer k; when
a = 1, if the solution f(z) is meromorphic, then the coefficient b should vanish. In
particular, we may choose κ(z) to be a zero order transcendental meromorphic (entire)
function. We remark that, if |q| 6= 1 or |q| = 1 and q = e2πiθ for an irrational number
θ ∈ [0, 1), then the equation κ(qz) = κ(z) does not have any non-rational zero order
meromorphic solutions. This is due to the fact that any possible zeros or poles of the
solution accumulate (so they must be Picard exceptional) and a nonconstant zero order
meromorphic function has at most one Picard exceptional value.

For the autonomous q-difference Riccati equation (1.7), by a result of Ishizaki [17], after
doing certain transformations we obtain the q-difference Riccati equation

f(qz) =
f(z) + A

1 − f(z)
(2.1)

or

f(qz) =
B

f(z)
,(2.2)

where A and B 6= 0 are two constants. For equation (2.1), let a1 and a2 be two nonzero
constants and b = −2a1a2/(a

2
1 + a22). When A = −b2 and a is a constant such that

eia = (a1 − a2)
2/(a1 + a2)

2, we have the solution

(2.3) f(z) = −
(

2a1a2
a21 + a22

)

κ(z)za/ log q − a1
κ(z)za/ log q + a2

,

where κ(z) is an arbitrary function such that κ(qz) = κ(z). For equation (2.2), letting
a3 be a nonzero constant, then we have the solution f(z) = a3Bw(z)/w(qz), where w(z)
is an arbitrary entire function such that w(q2z) = a23B

2w(z). Obviously, we may choose
κ(z) or w(z) to be a transcendental meromorphic function of zero order, as mentioned in
previous discussions on equation (1.6).

Look at the three equations (1.8), (1.9) and (1.10). They are so-called Fermat q-
difference equations. Recall that a Fermat equation is a function analogue of the Fermat
diophantine equation xn + yn = 1, i.e., x(z)n + y(z)n = 1, where n ≥ 2 is an integer.
Meromorphic solutions to Fermat equations have been clearly characterized; see [2,11,12],
for example. Solutions of the three equations (1.8), (1.9) and (1.10) are solved in a
similar way as in [19]. For equation (1.8), the solution f(z) is represented as f(z) =
(β(z) + β(z)−1)/2, where β(z) satisfies β(qz) = iβ(z)±1. For equation (1.9), the solution
f(z) is represented as f(z) = (γ(z) + γ(z)−1)/2, where γ(z) satisfies

(2.4) γ(qz) =

{

−θ
(iδ −

√
1− δ2)γ(z) + i

γ(z)− δ + i
√
1− δ2

}θ

, θ = ±1,
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where δ is a constant. Moreover, based on the discussions in [20] we know that equation
(2.4) can be transformed into equation (2.1) when 2δ2 6= 1 and can be transformed into
equation (2.2) when 2δ2 = 1. For equation (1.10), the solution f(z) is represented as

f(z) = 8λ(z)2−(λ(z)2+1)2

(λ(z)2+1)2
, where λ(z) satisfies

(2.5) λ(qz) =

{

−θ
−(1 +

√
2)λ(z) + i

λ(z)− i+ i
√
2

}θ

, θ = ±1.

Equation (2.5) can be transformed into equation (2.1). Thus meromorphic solutions of the
three equations (1.8), (1.9) and (1.10) are solved in terms of functions which are solutions
of certain q-difference linear or Riccati equation.

Now look at the six equations (1.11), (1.13), (1.14), (1.15), (1.16) and (1.18). The
nonconstant solutions of these equation are Jacobi elliptic functions composed with entire
functions.

We first take the equation (1.18) as an example and show that all nonconstant mero-
morphic solutions of this equation have even positive order. From the proof in [20]
we know that a meromorphic solution f(z) of equation (1.18) is twofold ramified over
each of ±1,±δ25 . Then there exists an entire function φ(z) such that f(z) is written as
f(z) = sn(φ(z)), where sn(φ) = sn(φ, 1/δ25) is the Jacobi elliptic function with modulus
1/δ25 and satisfies the first order differential equation sn′(φ)2 = (1−sn(φ)2)(1−sn(φ)2/δ45).
Let z0 be a point such that f(z0) = sn(φ(z0)) = 1. It follows from (1.18) that f(qz0) =
sn(φ(qz0)) = 0. Using the differential equation sn′(φ)2 = (1 − sn(φ)2)(1 − sn(φ)2/δ45) to
compute the Taylor series for sn(φ) and sn(φ(qz)) around the point z0, respectively, we
get

sn(φ(z)) = 1− 1

2

δ45 − 1

δ45
(φ(z)− φ(z0))

2 + · · ·

= 1− 1

2

δ45 − 1

δ45
φ′(z0)

2(z − z0)
2 + · · ·

(2.6)

and

sn(φ(qz)) = φ(qz)− φ(qz0) + · · · = qφ′(qz0)(z − z0) + · · · .(2.7)

By substituting the above two expressions into (1.18) and then comparing the second-
degree terms on both sides of the resulting equation, we find

q2φ′(qz0)
2 =

1

4

(1 + δ5)
4

δ45
φ′(z0)

2.(2.8)

Define G(z) := q2φ′(qz)2 − 1
4
(1+δ5)4

δ4
5

φ′(z)2. Similarly as in [20], we can use (1.5) to prove

that equation (2.8) holds for all z ∈ C, so that G(z) ≡ 0. It follows by integration that

φ(qz) = b1φ(z) + b2, b1 = ±1

2

(1 + δ5)
2

δ25
.(2.9)

where b2 is a constant. (The coefficient b1 is different from the one in equation (2.34)
in [20]. The calculation there contains an error.) Since δ5 6= ±i, we see that |b1| 6= 1 and
thus φ is a polynomial of the form B1z

k + B2 with k being a positive integer such that
qk = b1. Since sn(z) has order 2, then by a result of Bergweiler [8, Satz 3.2] we have that
the order of f(z) = sn(φ(z)) is equal to 2k.

Similarly, for each of the five equations (1.11), (1.13), (1.14), (1.15) and (1.16), we
can show that the nonconstant solutions are written as f(z) = sn(φ1) = sn(φ1, δ), where
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sn(φ1) is the Jacobi elliptic function with a certain modulus δ and an entire function φ1

satisfying a q-difference linear equation

(2.10) φ1(qz) = b3φ1(z) + b4,

where b3 and b4 are two constants such that |b3| = 1. In particular, for equation (1.11),
we have b3 = ±1. We show that b3 = 1 is impossible. Otherwise, from the previous
discussions on equation (1.6) we see that b4 = 0. Recall the Maclaurin series for sn ε:

sn ε = ε− (1 + δ20)
ε3

3!
+ (1 + 14δ20 + δ40)

ε5

5!
+ · · · .(2.11)

Since κ 6= 0, 1 and sn(φ1(qz)) = sn(φ1(z)), then substitution into equation (1.11) yields a
contradiction. If φ1 is a polynomial, then f(z) has finite order 2k1 for some positive integer
k1; if φ1 is transcendental, then f(z) has infinite order by a result of [16, Theorem 2.9].

Then look at the third degree Fermat q-difference equations (1.12) and (1.17). From
[2, 11, 12] we know that all meromorphic solutions of the equation x(z)3 + y(z)3 = 1 can
be represented as: x = H(ϕ), y = ηG(ϕ) = ηH(−ϕ) = H(−η2ϕ), where ϕ = ϕ(z) is an
entire function and η is a cubic root of 1, and

(2.12) H(z) =
1 + ℘′(z)/

√
3

2℘(z)
, G(z) =

1− ℘′(z)/
√
3

2℘(z)
,

where ℘(z) is the particular Weierstrass elliptic function satisfying ℘′(z)2 = 4℘(z)3 − 1.
For equation (1.12), we have f(qz) = H(ϕ1) and f(z)−1 = ηG(ϕ1) with an entire function
ϕ1(z). An elementary series analysis on f(z) as for equation (1.18) shows that ϕ1(z)
satisfies a first order q-difference linear equation

(2.13) ϕ1(qz) = c1ϕ1(z) + c2,

where c1 and c2 are constants such that c31 = 1. Moreover, by the same arguments as for
equation (1.11), we may show that c1 6= 1. For equation (1.17), we have f(qz) = H(ϕ2)
and f(z) = ηG(ϕ2) with an entire function ϕ2. An elementary series analysis on f(z) as
for equation (1.18) shows that ϕ2(z) satisfies a first order q-difference linear equation

(2.14) ϕ2(qz) = c3ϕ2(z) + c4,

where c3 and c4 are constants such that c32 = −1. Note that the Weierstrass elliptic
function ℘(z) has order 2. If ϕ1 (or ϕ2) is a polynomial, then the solution f(z) of (1.12)
(or (1.17)) has finite order 2m for some positive integer m; if ϕ1 (or ϕ2) is transcendental,
then the solution f(z) of (1.12) (or (1.17)) has infinite order.

Finally, we show how to determine the nonconstant rational solutions of the five equa-
tions (1.6)–(1.10) in the autonomous case. From the remarks in [10, Section 2] we know
that the autonomous q-difference linear and Riccati equations (1.6) and (1.7) have only
rational solutions when |q| 6= 1. We see that the autonomous q-difference linear equa-
tion (1.6) can have nonconstant rational solutions in both of the two cases |q| 6= 1 and
|q| = 1. Below we shall show that equation (1.7) has no nonconstant rational solutions
when |q| 6= 1.

We only need to consider the two q-difference equations (2.1) and (2.2). Suppose
that equation (2.1) has a nonconstant rational solution f(z). We may write f(z) as
f(z) = P (z)/Q(z), where P (z) and Q(z) are two coprime polynomials of degrees s1 and
s2 respectively. Denote the leading coefficients of P (z) and Q(z) by a and 1, respectively.
Note that A 6= −1. When A 6= 0, it is easy to see that P (z) and Q(z) have the same
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degrees, say s, and also that P (0) 6= 0 and Q(0) 6= 0. Since a 6= 1, then by substituting
f(z) = P (z)/Q(z) into (2.1), we may have

q−sP (qz) = (1− a)−1[P (z) + AQ(z)],

q−sQ(qz) = (1− a)−1[−P (z) +Q(z)].
(2.15)

From the above two equations we get

P (q2z) = 2(1− a)−1qsP (qz)− (1− a)−2q2s(1 + A)P (z).(2.16)

We write the formal form of P (z):

P (z) = asz
s + as−1z

s−1 + · · ·+ a0,(2.17)

where as = a and a0 6= 0. By substituting P (z) into (2.16) and then comparing the
coefficients of the resulting polynomials on both sides, we get

as−i = [2(1− a)−1qi − (1− a)−2(1 + A)q2i]as−i, i = 0, 1, · · · , s.(2.18)

By the two equations in (2.18) in the case i = 0 and i = s, we obtain qs = 1. We see
that as = a is determined by the equation 2(1 − a)−1 − (1 − a)−2(1 + A) = 1. Further,
denoting by ŝ the largest factor of s such that qŝ = 1, say s/ŝ = m, then the coefficients
aŝ, a2ŝ, · · · , amŝ can be chosen arbitrarily while the other coefficients vanish. Then we can
also give the form of Q(z) using the identities in (2.15). On the other hand, when A = 0,
it is easy to see that s1 ≤ s2. If s1 = s2, then we have equations in (2.15) with A = 0
and by comparing the leading coefficients of the polynomials on both sides of the first
equation in (2.15) we get a = 0, a contradiction. If s1 < s2, then we have the following
two equations

q−sP (qz) = P (z),

q−sQ(qz) = −P (z) +Q(z),
(2.19)

from which we get P (qz) = qsP (z) and Q(q2z) = qsQ(qz)−(q2s−qs)Q(z). Since Q(0) 6= 0,
then by the same arguments as in the case A 6= 0 we get qs = 1. However, it follows that
Q(qz) = Q(z), which is impossible.

Similarly, for equation (2.2), substitution of f(z) = P (z)/Q(z), where P (z) and Q(z)
are two coprime polynomials of the same degree s and that P (0) 6= 0 and Q(0) 6= 0, gives

q−sP (qz) = a−1BQ(z),

q−sQ(qz) = a−1P (z).
(2.20)

It follows that P (q2z) = a−2q2sBP (z), which yields that q2s = 1. Similarly as for equation
(2.1), explicit forms for P (z) and Q(z) can be obtained from the system of two equations
in (2.20). Then all nonconstant rational solutions of the five equations (1.8)–(1.10) with
constant coefficients can be obtained after doing some transformations.

2.2. Proof of Theorem 1.1. From the discussions in the introduction, we only need to
consider the 13 equations (1.6)–(1.18). Below we first consider the four equations (1.13),
(1.14), (1.15) and (1.16).

From the discussions in [19] we know that, if we let w = f + 1/f for a solution f of
equation (1.16), then w satisfies either an equation of the form in (1.13) when θ = 1 or an
equation of the form in (1.14) when θ = −1. Moreover, by the Valiron–Mohon’ko identity



q-DIFFERENCE EQUATIONS OF MALMQUIST TYPE 9

the characteristic function of w satisfies T (r, w) = 2T (r, f) +O(1). Further, for equation
(1.14), if we define a function g(z) to be such that −g(z)2 = f 2(z)− 1, then g(z) satisfies

g(qz)2 = [δ̂2(qz)g(z)
2 − 1]/(g(z)2 − 1),(2.21)

where δ̂2(z) satisfies δ̂2(qz)δ̂2(z) = 1. This is just equation (1.15). Moreover, by the
Valiron–Mohon’ko identity the characteristic function of f(z)2 satisfies T (r, f 2) = T (r, g2)+
O(1). Therefore, we only need to consider the two equations (1.13) and (1.14).

Consider equation (1.13). In general, under the assumptions of Theorem 1.1 the solution
f(z) may have some algebraically branched points, but f(z)2 is a meromorphic function.
By iterating equation (1.13) together with the relation in (1.19) we find that

f(q2z)2 = − δ1
1 + δ1

f 2(z) + 1,

f(q3z)2 = f(z)2.

(2.22)

Then, at the origin f(z)2 has a series expansion

f(z)2 = a−kz
−k + · · ·+ a0 + a1z + · · · .(2.23)

It follows that

f(q3z)2 = a−kq
−3kz−k + · · ·+ a0 + a1q

3z + · · ·(2.24)

at the origin. From the above two series we conclude that q3k = 1 for some integer k, which
is a contradiction to our assumption. Also, for equation (1.14), by iteration together with
the relation in (1.20) we easily find that f(q4z)2 = f(z)2. Then by the same arguments
as for equation (1.13) we have a contradiction. From the above reasoning, we conclude
that in the case of equations (1.13), (1.14), (1.15) and (1.16), equation (1.2) cannot have
any zero order transcendental meromorphic solutions when |q| 6= 1. In fact, when |q| 6= 1,
we see that these equations cannot have any transcendental meromorphic solutions.

By the the same arguments as for equation (1.13) we can show that, in the case of the
four equations (1.8), (1.11), (1.12) and (1.17), equation (1.2) cannot have any transcen-
dental meromorphic solutions when |q| 6= 1.

For equation (1.18), we recall from [20] that δ5(z) 6≡ 0,±1,±i. We shall show that δ5(z)
is a constant. Otherwise, from the proof in [20] we know that δ5(z) may be written as
δ5(z) = β(z)/α1(z), where β(z) is a rational function and α1(z) is in general an algebraic
function, namely α1(z) satisfies an equation of the form a2(z)α(z)

2 + a1(z)α(z) + a0(z) =
0 with some polynomials a0(z), a1(z), a2(z). Moreover, letting α2(z) also satisfy this
equation, we have α2(z)/α1(z) = δ5(z)

2 and δ5(z) satisfies an equation of the form
2ap(z)/α1(qz)

2 = (1 + δ(z))2/(1 + δ(z)2), where ap(z) is a nonzero rational function.
Together with the relation in (1.23), we find that β(z)2 = α1(z)α2(z) and

H2(z)δ5(z)
2 −H1(z)δ5(z) +H2(z) = 0,(2.25)

where H1(z) and H2(z) are two relatively prime polynomials such that H1(z)/H2(z) =
2ap(z)

2/β(qz)4. Then δ5(z) is in general an algebraic function defined on two-sheeted
Riemann surface. From the relation in (1.23) we see that δ5(z) does not tend to 0, ±i and
also does not tend to ∞ as z → ∞. This implies that the degrees of H1(z) and H2(z) are
the same. We may write δ5(z) as

δ5(z) =
G1(z)

G2(z)
=

H1(z) +
√

H1(z)2 − 4H2(z)2

2H2(z)
.(2.26)
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Then we have from the relation in (1.23) that

8
G1(qz)

4

G2(qz)4
· G1(z)

2 +G2(z)
2

G2(z)2
· G1(z)

G2(z)
=

[G1(z) +G2(z)]
4

G2(z)4
.(2.27)

Let z0 be a zero of H2(z) with least order. Then δ5(z) has an (algebraic) pole at the point
z0. From equation (2.27) we see that qz0 is also an (algebraic) pole of δ5(z). However,
by comparing the order of the poles of the functions on both sides of (2.27), we get a
contradiction. Thus δ5(z) must be a constant. Then from the discussions in previous
section we know that equation (1.18) cannot have zero order transcendental meromorphic
solutions.

Finally, for equation (1.10), by the results in [19] we know that the solution f(z) of

equation (1.10) is meromorphic and is represented as f(z) = 8λ(z)2−(λ(z)2+1)2

(λ(z)2+1)2
, where λ(z)

satisfies the q-difference Riccati equation in (2.5), which can be transformed to equation
(2.1). However, from previous discussion we know that equation (2.1) can have only
constant solutions when |q| 6= 1. Therefore, equation (1.10) does not have transcendental
meromorphic solutions when |q| 6= 1. We complete the proof.

2.3. Growth of the composite function f(ω(z)). Let f(z) be a nonconstant mero-
morphic solution of equation (1.2) in the autonomous case. In this section we discuss
the growth of the composition g(z) = f(ω(z)), where ω(z) is an entire function such that
ω(z + 1) = qω(z).

We first look at the equation (1.18). Then the function g(z) = f(ω(z)) satisfies the
difference equation

(2.28) g(z + 1)2 =
1

2

(1 + δ5)
2

1 + δ25

(g(z)− 1)(g(z)− δ25)

(g(z)− δ5)2
,

where δ5 is a constant such that 8δ45(δ
2
5 + 1)δ5 = (δ5 + 1)4. Moreover, from the proof

in [20] we know that g(z) is written as g(z) = sn(ϕ(z)), where sn(ϕ) is the Jacobi elliptic
function with modulus 1/δ25 and ϕ is an entire function of z satisfying the difference linear
equation

(2.29) ϕ(z + 1) = c1ϕ(z) + c2, c1 = ±1

2

(1 + δ5)
2

δ25
,

where c2 is a constant. Then T (r, ϕ) ≥ Lr for some L > 0 and all r ≥ r0 with some
r0 ≥ 0.

We estimate the characteristic function T (r, g) using sn and ϕ as in [20, Lemma 2.7]. For
the composite function g(z) = sn(ϕ(z)), since sn(z) has positive exponent of convergence
of zeros, say λ, and ϕ has at most one finite Picard’s exceptional value, we may choose
a constant w1 > 0 such that ϕ takes in |z| < t every value w in the annulus w1 < |w| <
M(t, ϕ), provided that t is large enough. Here M(t, ϕ) denotes the maximum modulus of
ϕ on the circle |z| = t. Let sn have µ(t) zeros in this annulus, counted according to their
multiplicity. Then by the definition of λ, we actually have

(2.30) lim sup
r→∞

log n(r)

log r
= lim sup

t→∞

logµ(t)

logM(t, ϕ)
= λ > 0.

Hence, for some τ > 0, there exists a sequence (tn) such that

(2.31) µ(tn) > (M(tn, ϕ))
τ ≥

(

ebtn
)τ

,
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where b is a positive constant. The second inequality above follows by the fact that
logM(t, ϕ) ≥ T (t, ϕ) for all large t. Now, sn ◦ϕ has at least µ(t) zeros in |z| < t. Making
use of (2.30), we have

(2.32) lim sup
r→∞

log n(r, 1/sn ◦ ϕ)
r

≥ lim sup
tn→∞

log µ(tn, 1/sn ◦ ϕ)
tn

≥ bτ.

By the definitions of N(r, 1/g) and n(r, 1/g) we can deduce that N(2r, 1/g) ≥ 1
2
n(r, 1/g).

Then, by the fact that T (r, 1/sn◦ϕ) ≥ N(r, 1/sn◦ϕ), we conclude that there is a sequence
(rn) such that the characteristic function T (rn, g) satisfies

(2.33) log T (rn, g) ≥
1

2
bτrn

for all large n. Similarly, from the discussions in previous section we know that the
nonconstant solutions of each of the seven equations (1.11)–(1.17) have positive even
order or infinite order and thus also gives the estimate in (2.33).

On the other hand, for the composite function g(z) = f(ω(z)), for any ε > 0, we have
from [8, Satz 2.2] that

(2.34) T (r, f(ω)) ≤ (1 + ε)T (M(r, ω) + ω(0), f),

for all r ≥ r1 and some r1 > 0. We may choose the entire function ω(z) to be such
that T (r, ω) ≤ lr for some constant l > 0 and all r ≥ 0, say ω(z) = ez log q. Then
logM(r, ω) ≤ 3T (2r, ω) by an elementary inequality for the relationship between T (r, ω)
and M(r, ω) (see [16]). If f(z) is a zero order transcendental meromorphic solution of
equation (1.2), then by the definition of order, it follows from the inequality in (2.34)
that, for any ε > 0,

(2.35) log T (r, g) ≤ log T (M(r, ω) + ω(0), f) +O(1) ≤ εr,

for all r ≥ r2 and some r2 > 0. This implies that log T (r, g) = o(r). Comparing this with
the estimate in (2.33), we see that the only possible equations in (1.2) that can have zero
order transcendental meromorphic solutions are (1.6), (1.7), (1.8), (1.9) or (1.10).

3. Concluding remarks

The integrability of difference equations has been demonstrated to be closely related to
the existence of meromorphic solutions with minimal hyper-type, as is shown in [1,14,30].
The natural integrability criterion for q-difference equations is the existence of zero or-
der meromorphic solutions. This is because the transformation z → ω(z) with an entire
function ω(z), satisfying ω(z+1) = qω(z), sends q-difference equations to difference equa-
tions, and the estimate in (2.35) together with the results in [30] shows that the existence
of sufficiently many zero order meromorphic solutions of a q-difference equation implies
the proposed difference Painlevé property for the related difference equation. However,
we should note that the two q-difference equations (1.11) and (1.12) do not have any
nonconstant zero order meromorphic solutions that are transformed to finite order mero-
morphic solutions of the two difference equations f(z + 1)2 = (f(z)2 − κ)/(f(z)2 − 1) or
f(z + 1)3 = 1− f(z)−3.

Finally, we remark that the transformation z → ez log q allows us to consider zero order
meromorphic solutions of equation (1.2) in the punctured complex plane C−{0}. Recall
the Jacobi elliptic function sn(z) = sn(z, k) with the modulus 0 < k < 1 and the complete
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elliptic integral K and K ′. Then sn(z) has order 2 and satisfies the first order differential
equation sn′(z)2 = (1− sn(z)2)(1− k2sn(z)). Let

τ = iK ′/K, q = exp(πiτ) = exp(−πK ′/K).(3.1)

Then sn(z) has the following expression

sn(z) = 2q1/4k−1/2 sin
πz

2K

∞
∏

n=1

(

1− 2q2n cos πz
K

+ q
4n

1− 2q2n−1 cos πz
K

+ q4n−2

)

.(3.2)

The above expression can be found in [5]. To avoid confusion, in the above expression we
have used the notation q instead of the usual q there. Look at the q-difference equation
(1.11). By the transformation z → ez log q we have f(ez log q) = sn(z) is a solution of the
equation f(z + 1)2 = (f(z)2 − κ)/(f(z)2 − 1). Thus

f(z) = 2q1/4k−1/2 sin
π log z

2K log q

∞
∏

n=1

(

1− 2q2n cos π log z
K log q

+ q
4n

1− 2q2n−1 cos π log z
K log q

+ q4n−2

)

.(3.3)

Recall that sin z = eiz−e−iz

2i
and cos z = eiz+e−iz

2
. If the constant q satisfies iπ

2K log q
= m

for some nonzero integer m, i.e., q = exp(iπ/2mK), then the series in (3.3) represents a
zero order meromorphic function in the punctured complex plane C−{0} that solves the
q-difference equation (1.11).
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