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Abstract

Complex non-local behavior makes designing high efficiency and multifunctional meta-

surfaces a significant challenge. While using libraries of meta-atoms provide a simple and

fast implementation methodology, pillar to pillar interaction often imposes performance lim-

itations. On the other extreme, inverse design based on topology optimization leverages

non-local coupling to achieve high efficiency, but leads to complex and difficult to fabricate

structures. In this paper, we demonstrate numerically and experimentally a shape optimiza-

tion method that enables high efficiency metasurfaces while providing direct control of the

structure complexity. The proposed method provides a path towards manufacturability of

inverse-designed high efficiency metasurfaces.

1

ar
X

iv
:2

40
5.

03
93

0v
1 

 [
ph

ys
ic

s.
op

tic
s]

  7
 M

ay
 2

02
4

mailto:dainesep@corning.com


1 Introduction

Wavefront shaping using metasurfaces has attracted significant scientific and technological interest

in recent years [1–6]. The ability to control many degrees of freedom of an incoming beam, including

phase, amplitude, polarization, and dispersion has led to a number of demonstrations in areas

ranging from imaging, polarization optics, communications, atom trapping, optical computing

and image processing, nonlinear optics and others [7–16]. This versatility stems from a large

design space enabled by engineering meta-atoms with different geometrical shapes and materials

readily available in nano-fabrication, which allows tapping into different mechanisms such as Mie

scattering, waveguide propagation phase, Pancharatnam-Berry phase, guided mode resonances,

and more broadly Bloch-mode engineering [17, 18]. Despite successful demonstrations, designing

metasurfaces is still a significant challenge due to the complex nature of such physical mechanisms,

particularly when sub-wavelength and often non-periodic arrangement leads to strong non-local

coupling between meta-atoms [5, 6, 19].

The most common design approach is based on libraries of meta-atoms (Figure 1a), using either

parametrized shapes or free-form meta-atoms [3, 7, 20–24]. The simplicity of this method relies on

the assumption that each meta-atom is placed on a unit cell with periodic boundary conditions,

allowing fast computation of its response using numerical methods. Metagratings, metalenses

and more complex devices have been created using libraries. However, except for truly periodic

arrays, this assumption is necessarily broken in real devices and pillar-to-pillar interaction imposes

a fundamental limitation to performance by perturbing the realized phase and intensity profile,

making it difficult to achieve high efficiency in general. Another limitation of the library method is

that the unit cell response is computed for a specific angle of incidence, typically normal, and for a

specific polarization. In general, however, an incoming beam may contain a spectrum of incidence

angles, as is the case even for a simple metalens illuminated with non-collimated light, and in more

general holograms used for vector beam generation, spatial mode multiplexing and many others.

To overcome these challenges, topology optimization based on the adjoint method has been

proposed [18, 25–28]. In this approach, an initial random refractive index distribution iteratively

converges to a final binary, i.e. manufacturable, structure (Figure 1b). Rigorous electromagnetic
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Figure 1: Metasurface design methodologies. In the library method (a), the phase and amplitude
response of pre-determined meta-atoms is calculated as a function of its parameters (e.g. diameter
for a circular pillar). The response is then used to create devices by dividing the surface in unit
cells, each containing a specific element of the library. In topology optimization (b), the design
domain is typically initialized with a randomized refractive index distribution, and the adjoint
algorithm is used to converge towards a final binarized geometry. In shape optimization (c), only
smooth variations in existing geometrical features are allowed.

simulation of the full device ensures that the interaction between meta-structures is fully consid-

ered. Furthermore, the adjoint formulation enables computing gradients of a given figure of merit

with respect to the refractive index at every pixel in the domain using only two electromagnetic

simulations (forward and adjoint simulations), critical for optimization problems with such high

dimensionality. Despite successful designs with very high efficiencies, controlling the complexity of

the final structure is a significant challenge, particularly for large scale manufacturing. During the

optimization process, the device structure evolves according to the topological derivative at each

iteration, and often leads to features that are difficult to control in patterning and etching pro-

cesses, such as the appearance of sharp boundaries and small features such as islands of materials,

small holes and small gaps between structures. These challenges have stimulated recent research

to incorporate manufacturing robustness in the design process [6, 25, 28, 29], either external to

the adjoint formulation such as applying structural blurring every so often during optimization,

or including penalty terms in the figure of merit to guide the topological derivative in a way to

minimize these issues.

The adjoint formulation can also be used to extract gradients of the figure of merit with

respect to boundary shifts at the interface between two materials. In this case, the topology of the

structure is unchanged during the optimization, and only deformations of the existing boundaries

occur (Figure 1c). This approach has been applied to optimize the shape of planar photonic

devices, such as waveguide splitters, crossing and bends in photonic crystal waveguides [30–32].
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Leveraging boundary gradients for metasurface design has had limited investigation, with only a

few examples where the basic meta-atom shape remained unchanged but their sizes were optimized.

This was applied to design metalenses by optmizing the side lengths of rectangular pillars [33],

the radii of circular pillars [33], as well as to design metagratings where the semi-axis of elliptical

pillars were optimized [34–36]. In this paper, we generalize this approach and investigate a shape

optimization method that achieves efficiencies higher than the library method by fully considering

pillar-to-pillar interaction, while providing greater control over the structure complexity compared

to topology optimization. The initial shape of each meta-atom in the device is smoothly deformed

throughout the process, with the shape complexity controlled through a Fourier decomposition of

the adjoint boundary gradients. Direct control of all boundaries naturally incorporates fabrication

constraints such as minimum feature size and minimum gap, and by construction, excludes the

appearance of holes. Similarly to topology optimization, shape optimization can be applied to any

kind of metasurface devices, can handle any input and target field distributions, as well as include

multiple objectives. The paper is organized as follows: we outline the formulation in Section 2,

and then apply the shape optimization method to design several high efficiency metagratings and

metalenses in Section 3. Experimental results are presented in Section 4, and we draw conclusions

in Section 5.

2 Shape optimization formulation

Topology and shape optimization in photonics are both inverse design techniques based on the

adjoint method [25, 26]. A flowchart of the shape optimization method is shown in Figure 2. The

design domain is initialized with a given set of meta-atoms, for example using a uniform array of

circular pillars, a library based device, or even a random distribution of pillars. At each iteration,

two electromagnetic simulations are performed, a forward and an adjoint simulation, from which

shape gradients for all pillars are computed for a given figure of merit. If at any iteration the

figure of merit of the device reaches a desired target or if it converges to a local maxima, the

optimization stops. Otherwise, the gradients are used to update the shapes and continue on to

the next iteration. Before updating the shapes, the gradients are first decomposed in Fourier basis
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and further fabrication constraints can be implemented.

�������� �����������������������
�����������

������
��
�����	������

��������

�������

�����
������

���������������������

����������������������

Figure 2: Flow chart of the optimization process. The design domain is initialized with a given set
of meta-atoms, for example with a library-based metasurface. Forward and adjoint simulations are
performed and the figure of merit computed. If the figure of merit satisfies the target or if it has
converged the optimization stops. If not, the shifting boundary gradients are calculated from the
simulated fields, followed by Fourier decomposition and possibly additional fabrication constraints.
The shape is then deformed according to the gradients and a new simulation is performed. The
process repeats until convergence.

The mathematical formulation of the adjoint shape gradient and subsequent Fourier decom-

position is outlined here, and more details can be found in Appendix A. As illustrated in Figure

3a, in the forward simulation the incident field propagates through the metasurface, while in the

adjoint simulation the target field propagates backwards. In this example, the forward field is

simply a plane wave incident at normal direction, and the target field is a plane wave propagating

at a certain deflection angle. Through a reciprocity argument [37], the forward (E) and adjoint

(Ea) fields at the surface of each pillar can be used to compute variations in the figure of merit (η)

due to an arbitrary (but small) boundary shift u⊥:

δη =
ωδϵ

2P
Re

[
jF ∗

∫
u⊥(E∥ · Ea,∥ +

1

ϵ1ϵ2
D⊥ ·Da,⊥) da

]
, (1)

where ω is the optical frequency, δϵ = ϵ2 − ϵ1 is the difference in dielectric permittivity between

the meta-atom and the surrounding medium, and P is a normalization power. The subscripts ∥

and ⊥ represent the tangential and normal components of the fields (F is related to the device

efficiency, η = |F |2). The integration in equation 1 is performed on every pillar’s surface. Since

we wish to retain vertical pillars for top-down fabrication, we enforce the boundary displacement

u⊥ to be uniform along z, and allow only variation along the cross-sectional boundary. With that,

we can explicitly write the efficiency change as an integral along the pillar closed cross-sectional
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Figure 3: Details of the shape optimization algorithm. The forward and adjoint fields are computed
in the design domain, and are then used to calculate a gradient function g on the surface of all
existing meta-atoms. (a) and (b) show the fields and the derived boundary gradients for TM
and TE polarizations. The gradient function determines the magnitude and direction that each
point on the surface must be displaced to increase the device efficiency. In (c), the resulting shape
gradient is plotted (blue) along with its Fourier decomposition (black) for the pillar highlighted in
(b). One can observe that the gradient containts significant contributions up to order m = 6.

boundary as:

δη =
ωδϵ

2P

∮
u⊥g ds, (2)

where the gradient function g is defined accordingly as:

g = Re

[
jF ∗

∫
(E∥ · Ea,∥ +

1

ϵ1ϵ2
D⊥ ·Da,⊥) dz

]
. (3)

From the expression of δη in equation 2, it is clear that the efficiency change is always positive

if we choose the boundary deformation u⊥ to follow the gradient function g, i.e., by choosing

u⊥ = hsign(δϵ)g, where h is a scaling factor. Mathematically, this is simply the projection of the

gradient function on itself, as the integral represents the inner product in the closed boundary

domain. The term (E∥ ·Ea,∥ +
1

ϵ1ϵ2
D⊥ ·Da,⊥) in equation 3 explicitly determines how the forward

and adjoint fields determine the shape gradient u⊥. This term is plotted on the pillars’ surface

in Figure 2b, with an arbitrary -1 to 1 color scale. There are several aspects worth discussing.

First, clearly some pillars tend to increase in size (red colors) while others tend to shrink (blue

colors), creating a size gradient that eventually will form the desired metagrating. Second, the

gradients are not symmetric along the circular boundary, indicating that the shapes will tend to
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deviate from simple circles. Physically, this asymmetry arises from the field discontinuities at

regions where the linearly polarized incident field is normal to the pillar surface. Finally, as a

consequence of the last point, TE and TM polarizations create different gradients, and tend to

deform the pillars differently. This is quite clearly seen in the second pillar from the left, where

the gradients seem somewhat rotated by 90 deg. This difference in gradients means that it is more

challenging to optimize a structure to simultaneously diffract both TE and TM polarizations with

high efficiencies. This argument can be extended to problems with multiple objectives, for example

optimizing a multi-wavelength device, where each wavelength tends to create different forward and

adjoint field distributions, and therefore different shape gradients.

The gradients discussed in Figure 3b continuously deform the shape at each iteration. As

discussed, it is essential for manufacturability that certain constraints are observed. The deforma-

tion function u⊥ = g may in general be very complicated, leading to complex shapes after many

iterations. Since we are dealing with a closed boundary, any function can be expanded in terms

of an appropriate basis defined in such domain. We chose Fourier as it easily allows restriction to

smooth round structures. Decomposing the gradient function g in a Fourier series, the boundary

displacement is expressed as:

u⊥ = h sign(δϵ)

(
a0
2

+
∞∑

m=1

amcosmθ + bmsinmθ

)
, (4)

where (am, bm) are the expansion coefficients. With that, the efficiency variation in equation 2 is

then written as:

δη =
ωδϵ

4P
h s sign(δϵ)

[
a20
2

+
∞∑

m=1

(a2m + b2m)

]
, (5)

Note that because we use a set of orthogonal basis (Fourier in this example), each coefficient

appears squared in the brackets. This means that each term of the expansion independently con-

tributes to increasing the metasurface efficiency. We can freely choose to drop certain coefficients

and still, the remaining ones will always push the efficiency upwards (or remain unchanged if a

local optimum has been reached, but never reduce the efficiency). For example, one might choose
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to keep only the zero-order (m = 0) coefficient, ensuring that the pillars remain circular through-

out the optimization process (of course their diameters are allowed to change). Controlling the

Fourier order m gives explicit control of the trade-off between performance and complexity at every

iteration. To illustrate this point, we show in Figure 3c the shape gradient and its decomposition

for one of the pillars (highlighted in Figure 3b). As one can see, restricting to zero-order m = 0

simply increases the pillar diameter. Adding the first-order term m = 1 introduces a shift in the

center position of the pillar, while the second-order m = 2 creates a certain ellipticity. Finally,

adding up to the sixth m = 6 order is sufficient to closely represent the full gradient function for

this particular case. In the numerical examples presented in Section 3, we show various devices

designed with different Fourier orders, illustrating the ability control the device complexity.

Another important constraint for fabrication is to ensure that the gap between particles is not

too small, which can severely intensify the issue of gap-dependent etch rate, leading to under- or

over-etching regions and sidewall angle variations. In the shape optimization method, at every

iteration we have the explicit boundary coordinates ri before deformation and ri+1 = ri + u⊥ni

after deformation, where ni is the normal unit vector at a given point on the boundary. In the

simplest form, we can limit the scaling factor h so that the deformed boundary always respects a

target gap to the unit cell boundary. Finally, it is also important to limit the minimum feature

size to avoid challenges with patterning, etching and pillars falling over, and again, this becomes

straightforward given direct knowledge of the boundary coordinates.

3 Numerical results

To illustrate the method, we applied shape optimization to design several metagratings and met-

alenses at 1.55 µm operating wavelength, all based on 1 µm tall amorphous silicon (aSi) pillars

on a glass substrate. In every example discussed here, we imposed minimum gap between pillars

of 90 nm and minimum feature size of 80 nm. Furthermore, we targeted polarization insensitive

operation and therefore simultaneously optimized for TE and TM incident polarizations. In the

first example, a meta-grating was designed to deflect light at 51◦. The initial structure was created

based on the library approach, and contains 4 circular pillars, each on a 500 nm unit cell. In the
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library method, the pillars’ diameters are chosen so that they impart a phase profile with steps of

2π/N (N = 4 in this example). The phase imparted by the first unit cell is, however, arbitrary,

as different values simply represent different global phases. One can therefore freely choose the

diameter of the first pillar as long as subsequent diameters correspond to a 2π/N phase shift. De-

spite nominally imparting equivalent phase profiles, these meta-gratings with different pillar sizes

exhibit distinct non-local interaction, and may perform very differently. This is exactly the case

observed here for the 51◦, in which certain choices of the first pillar diameter create a resonance

that severely reduces the first order diffraction efficiency for TE light. We applied shape optimiza-

tion to two metagratings differing only by the choice of the first pillar diameter, one exhibiting low

efficiency due to the appearance of a resonance for TE, and another with the highest efficiency for

this library (which was found after sweeping the first pillar diameter for all values available in the

library from 100 nm to 410 nm).

The initial library design for the resonant metagrating has first order diffraction efficiency of

only about 30% for TE polarization (see iteration = 0 in Figure 4a), while it is as high as 85% for

TM polarization. Such low performance for TE cannot be predicted from the performance of the

individual meta-atoms, as all values of pillar diameters in the library are highly transmissive (above

80%), and of course their respsonse is polarization independent by symmetry. We then applied

shape optimization and observed that the performance is significantly improved as shown in Figure

4a. The enhancement was observed either when the Fourier order is restricted to m = 0 (dashed

lines, final geometry in upper inset) or when we allowed up to m = 6 (solid lines, final geometry

in lower inset). Note that in both cases, at the beginning of the optimization over the first few

iterations, the improvement in TE polarization comes at the expense of the TM efficiency. This

initial degradation in the TM efficiency could not be recovered with the m = 0 case, demonstrating

a clear limitation in restricting the shapes to circles. With higher Fourier orders, eventually the

TM efficiency recovers leading to a device with efficiencies of 82% and 84% for TE and TM,

respectively. Despite allowing higher Fourier order, the final shapes are still smooth and respect

the gap and minimum feature constraints. In the second case shown in Figure 4b, the initial

structure was the highest average TE/TM efficiency obtained with this library. Despite that, the
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Figure 4: Optimization of a dual-polarization 51-degree beam deflector. Shape optimization was
applied to two library designs differing only by the choice of the first pillar diameter: in (a), the
initial design exhibits low efficiency due to the appearance of a resonance for TE polarization while
in (b) the initial structure exhibited the highest efficiency possible for such library. The curves show
the evolution of the absolute efficiency at each iteration, where dashed curves represent restricting
the gradient function to m = 0 Fourier order (i.e. maintaining circular shape), while solid line
allows up to m = 6. The final structures for both Fourier orders are shown in the insets. In
(c), shape optimization was applied to design meta-gratings from 0 to 70 degrees (final geometries
shown as insets). The color legend on top of the figure applies to all plots.

initial efficiency of 76% for TE was still significantly improved to 85%, with no degradation on

the TM efficiency (which actually slightly improved from 88% to 90%). This example illustrates

that the shape optimization can be used to eliminate resonances that are not possible to predict

from the library alone, as well as to push the performance beyond the highest achievable with such

library. Degradation in efficiency due to non-local effects is not specific to this 51◦ metagrating,

and was observed in other deflection angles from 10 to 70 degrees, in some cases TE and in other

cases for TM polarizations. Furthermore, a choice of initial diameter that leads to relatively good
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performance for one deflection angle is not necessarily the best choice for another angle, illustrating

another challenge of relying solely on the library approach. We designed various other metagratings

using shape optimzation from angles varying between 10 and 70 degrees, with the final efficiencies

and shapes shown in Figure 4c. For example, the 70 degrees metagrating showed average TE/TM

efficiency of 74%.

As mentioned, the shape optimization method is not limited to metagratings and can be applied

to any general metasurface. To illustrate this, we designed a metalens operating at 1.55 µm and

the results are shown in Figure 5. The optimization domain was again initialized with a structure

based on a library of aSi circular pillars on a glass substrate. The library unit cell is 500 nm and

the pillars range from 100 to 410 nm in diameter, with height of 1 µm. The lens was designed to

impart a phase transformation ϕ = k(
√

r2 + f 2 − f) with focus of 5.3 µm over a total diameter

of 2r = 23 µm, nominally resulting in a numerical aperture of NA = sin[tan−1(r/f)] = 0.92.

However, the lens was illuminated with a Gaussian beam with waist radius w = 5.2 µm, which

focused at f = 5.3 µm limits the NA of the system to approximately NA = 0.83. We optimized

two metalenses that differ only by a global phase, represented by the diameter of the innermost

pillars of d = 250 nm and d = 300 nm. As can be seen on Figure 5a, these nominally equivalent

metalenses have different efficiencies of 75% and 81% (values at iteration 0), respectively. Shape

optimization was applied with Fourier decomposition up to m = 6, and again with minimum gap

of 90 nm and minimum feature of 80 nm. Given the circular symmetry of the device, we only

simulated one-quarter of the structure, and only one polarization (TE). Polarization insensitivity

is enforced by computing the gradient for TM polarization from the TE gradient rotated by 90 deg.

The optimization results in Figure 5a show that the efficiency is substantially improved for both

initial structures, reaching 88% and 90%.

These results reinforce two aspects already observed for metagratings: first, shape optimization

can improve the efficiency of library structures, regardless of the specific initial choice. This is not

to say that every choice leads to the same final efficiency though (as is clear in Figure 5a). Second,

the efficiency is improved beyond what could be achieved with such library. Figure 5a shows cuts

of the z-component of Poynting vector in the xz plane (z being the propagation direction), starting
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Figure 5: (a) evolution of the absolute efficiency for two different initial structures; cuts of the
z-component of Poynting vector in the xz plane in (b) and in the xy plane in (c). The color scale
shown in (c) also applies for (b). The full metalens structure is shown in (d), and a zoomed region
at the metalens center before and after shape optimizaiton is shown in (e).

at z = 0 (base of the pillars) and in the free-space region (above the 1 µm pillar height) with very

little undesired diffraction observed. The beam at the focus plane is shown in Figure 5c. The full

metalens structure for the d = 300 nm case is shown Figure 5d, and Figure 5e shows a zoomed

region at the metalens center before and after shape optimization. As can be seen, all features

have smooth boundaries, the minimum feature size is approximately 130 µm, and respecting the

80 nm minimum gap. As outlined in Appendix A, all values reported here represent the absolute

efficiency, defined as the projection of the output field onto the target field divided by the power

incident on the metasurface.

4 Fabrication and characterization

To validate the method, various metagratings were fabricated and characterized experimentally.

The samples were fabricated using a conventional top-down approach, allowing for high-throughput

and reproducibility. Choosing amorphous silicon as the nanopillars’ material allows for low losses

and high contrast refractive index across the telecommunications c-band. The metasurfaces were

fabricated on a 500 µm thick fused silica wafer, coated with 1 µm aSi using PECVD. An adhesive
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layer (HDMS) is spun on the wafer to promote adhesion of the negative e-beam resist (ma-N

2400) and the latter is then baked and coated with a charging dissipating solution (e-spacer). The

nanopillars pattern is then exposed using e-beam lithography and developed in AZ 726 developer,

while the e-spacer layer is removed in water. Exploiting a RIE (SPTS Rapier) technique, with

simultaneous injection of etcher (SF6) and passivation (C4F8) gases in the chamber, the pattern is

transferred onto the a-Si, using the resist as etching mask. The residual resist is then removed with

oxygen plasma asher (Matrix Plasma Asher). After fabrication, the samples were characterized

using a tuneable laser to measure the diffraction efficiency over a wide spectral range for both

TE and TM polarizations. All values reported here represent the absolute diffraction efficiencies,

defined as the ratio between the output power in the first order diffraction and the power incident

on the metasurface, exactly how it is defined in the simulations (often in the literature, relative

diffraction efficiencies are reported, and some times, even absolute efficiencies values don’t properly

consider Fresnel reflections at the glass-air interface). A detailed description of the experimental

setup and procedure is provided in Appendix B.

Figures 6a and b show the simulated and experimental spectral responses for the resonant 51◦

metagrating design from Figure 4a. We only show the TE polarization as the efficiency for TM
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Figure 6: Simulated (a) and measured (b) TE spectral responses for the resonant 51-degree beam
deflector. Different colors show the first order diffraction efficiency for the initial and shape opti-
mized designs with Fourier order m = 0 and m = 6 (the color legend applies to both (a) and (b)
plots). A scanning electron microscope image of the fabricated structures for m = 6 is shown in
the inset (scale bar is 200 nm). In (c), the efficiency at the design wavelength is plotted for TE
and TM polarizations.
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is relatively flat in this wavelength region. The initial library design (in blue) exhibits a clear

resonance at 1.55 µm. In the experiment, this resonance was slightly red-shifted to 1.58 µm,

which we attribute to small variations in the fabrication parameters such as refractive index, small

sidewall angle and pillar sizes. For the sake of comparison between experiment and simulations,

all efficiencies were then measured at the resonance wavelength, as indicated by the solid dots in

the figures. In both, simulations and experiments, the shape optimized metagratings exhibited

improved efficiencies. Comparing their spectra, we observe that shape optimization improves

the diffraction efficiency by shifting by shifting the resonance away from the design wavelength.

Furthermore, one can see that the shape optimization induces a tilt in the spectrum and the

efficiency at the design wavelength, to the right of the resonance, is further increased. Remarkably,

these spectral signatures, shift and tilt, are clearly observed in the experimental results in Figure

6b. A comparison of the efficiencies predicted in simulations and observed experimentally is shown

in Figure 6c for both TE and TM, with reasonably good agreement. It is also remarkable that

the experimental results show the trade-off predicted in the TE-TM efficiency for the two different

Fourier orders: simple circles (m = 0) increase the TE at the expense of TM while m = 6 breaks

this trade-off.
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Figure 7: Simulated (a) and measured (b) TE spectral responses for the non-resonant 51-degree
beam deflector. Different colors show the first order diffraction efficiency for the initial and shape
optimized designs with Fourier order m = 0 and m = 6 (the color legend applies to both (a) and
(b) plots). An scanning electron microscope image of the fabricated structures for m = 6 is shown
in the inset (scale bar is 300 nm). In (c), the efficiency at the design wavelength is plotted for TE
and TM polarizations.
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We also fabricated the non-resonant 51◦ meta-grating design from Figure 4b, and the results for

TE are shown in Figure 7. As mentioned, this was the highest efficiency obtained with this library

and one can see that differently from the previous case, it pushed away the resonance approximately

34 nm above the design wavelength. Again the spectrum is slightly shifted in the experiment, and

therefore all measurements were shifted accordingly. Differently than in the previous resonant

case, the shape optimization now does not lead to significant shifts in the resonance, and mostly

push the spectrum upwards at the design wavelength. The experimental results exhibit the same

behavior as predicted in simulations, and a quantitative comparison in the efficiencies is shown in

Figure 7c. Similarly to the resonant case, here we also observe that the higher Fourier order m = 6

exhibits high efficiency for both TE and TM, reaching about 83% and 84% absolute efficiencies

(higher than both the library design and the m = 0 device).

Finally, we then designed and fabricated a 70◦ metagrating, showing broadband and polariza-

tion insensitive operation. The spectral efficiencies for the initial library design and for the shape

optimized metagratings are shown in Figure 8 in dashed and solid lines, respectively. The experi-

mental results in (b) reproduce qualitatively the simulations in (a), with measured peak efficiency

above 70%. The shape optimized meta-gratings with Fourier order m = 6 exhibit a relatively flat
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Figure 8: Simulated (a) and measured (b) spectral responses for both TE and TM polarizations
for a meta-gratings at 70-degree deflection angle. Different colors show the first order diffraction
efficiency for the initial and shape optimized designs with Fourier order m = 6 (the color legend
applies to both (a) and (b) plots). An scanning electron microscope image of the fabricated
structures is shown in the inset (scale bar is 200 nm). In (c), the efficiency at the design wavelength
is plotted for TE and TM polarizations.
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spectrum centered at 1.55 µm, with substantially higher efficiencies than the library for both TE

and TM. A quantitative comparison between the simulation and experimental efficiencies is shown

in Figure 8c.

5 Discussion

The shape optimization method discussed in this paper presents an alternative to conventional

library approach in metasurface design and to the more general topology optimization. As dis-

cussed, despite being simple and computationally fast, the library method falls short in many

aspects, most notably by not capturing non-local coupling effects and not being amenable to gen-

eral waveform incidences. Our results demonstrate that library structures exhibiting low efficiency

due to the aforementioned limitations can be substantially improved with shape optimization. We

show results where a resonant library structure with only 30% TE efficiency was enhanced to 82%,

while still maintaining high TM efficiency at 84%, smooth boundaries and respecting minimum

features size and minimum gaps. Furthermore, we showed that even the highest efficiency library

is also significantly improved going from 76% to 85% for TE, while maintaining high efficiency for

TM at 90%, and again respecting fabrication constraints. The general shape optimization explores

more degrees of freedom than parametrized structures, and it is not therefore surprising that it

leads to higher efficiencies. For example, parametrized aSi elliptical pillars were used to design 50

deg gratings at 900 nm wavelength and obtained absolute efficiency of 64% for a single polarization

[36]. Comparatively, shape optimization leads to TE and TM efficiency of 85% and 90%. Using

rectangular pillars, a metalens with 0.78 numerical aperture operating at 850 nm was designed

using parametrized rectangular aSi pillars, and obtained efficiency of 78% (no minimum feature

size or gap constraints). In contrast, shape optimized metalens with slightly higher NA of 0.83

resulted in efficiency of 90%, including fabrication constraints.

Compared to topology optimization, shape optimization explores a reduced design space. In

topology, the output structure can contain many more detailed features, and it most likely leads

to higher overall efficiencies than shape optimization. For example, topology optimized gratings

showed theoretical efficiencies for a 70 degrees deflection angle around 96% (average TE/TM)
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[18]. Comparatively, shape optimization obtained lower values of 74% average TE/TM as shown

in Figure 4c. However, as discussed such topology optimized structures are more difficult to

fabricate than shape optimized structures. Another topology optimized metagrating at 75 degrees

deflection angle that was actually fabricated showed experimental efficiencies of 74% and 75%, for

TE and TM, respectively [18]. The definition of efficiency here was the power in the deflected beam

normalized to the power transmitted through the bare silicon dioxide substrate. This definition

differs from ours in the sense that we compute efficiency as the power in the deflected beam

normalized by the power incident on the metasurface. The difference is the Fresnel reflection,

which if adjusted brings the measured values to 71% and 72%. Comparatively, the measured

efficiencies for the 70 degrees shape optimized structures from Figure 8 were on a similar level at

70%.

As a final note, the shape optimization algorithm was demonstrated here for two objective

functions, i.e., TE and TM polarization, but it can be easily extended to more objectives such as

multiple wavelengths or multiple angles of incidence etc. The computational cost of this optimiza-

tion method is expensive, as it requires solving Maxwell equations for both forward and adjoint

fields. In our optimization, we used a commercial finite-element solver in the frequency domain.

Multi-wavelength optimization can greatly benefit from finite-difference time domain solvers, as

the fields for all wavelengths can be obtained from only one forward and one adjoint simulations.

Finally, combining this approach with GPU-accelerated FDTD can greatly speed up solving the

fields [38, 39]. In general, the adjoint formulation tends to converge to a local optimum, with

different initial conditions converging to different local optima, as was illustrated in the examples

discussed here. Coupling the optimization method with parallelization is therefore beneficial to

allow many starting geometries to be explored efficiently.

In summary, we presented a general shape optimization method that enables optimization of

high efficiency metasurfaces. Coupled with a Fourier decomposition of the boundary gradient, the

method enables high performance devices while providing greater control over the structure com-

plexity and rigorously enforcing minimum feature size and minimum gaps. Various metagratings

and metalenses were simulated, with experimental results validating the expected efficiencies. We

17



believe these results provide a path towards manufacturability of inverse-designed high efficiency

metasurfaces.
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A Mathematical formulation

The adjoint formulation is discussed in A.1, including the definition of the boundary gradient.

A validation of the gradient with two numerical examples is provided in A.2, and the Fourier

decomposition is discussed in A.3. Finally, a generalization to an arbitrary figure of merit is

discussed in A.4.

A.1 Adjoint-based boundary gradient

The objective when designing a metasurface is to determine a specific configuration in the con-

stituent materials, meaning their geometrical shapes and dielectric permittivity, so that an incom-

ing field is transformed into a target field Et at the output surface S (Figure 9a). Suppose we

start with an arbitrary configuration represented by a dielectric permittivity distribution ϵ, which

in general varies in space, and then change it from ϵ′ = ϵ + δϵ by modifying a certain region χ

within the optimization domain (Figure 9b). For example, ϵ may represent an arrangement of

meta-atoms (with permittivity ϵ2) embedded in a background material (with permittivity ϵ1). En-

larging one of the meta-atoms changes the permittivity in the region χ from the background value

ϵ1 to the meta-atom’s permittivity ϵ2. In general, a set of perturbations create a new configuration

represented by ϵ′. The question we want to answer is where and how to change the structure so

that the field changes from E to E ′ = E + δE, moving in a direction closer to our target field Et

at the output surface S.

Typically, a figure of merit is used to ‘measure’ how close the field E is to the target Et. For

example, Et might be the mode of a waveguide positioned at the output of the domain or simply a

desired field in free-space (such as a particular diffraction order in a grating or a focused Gaussian

beam and so on). We can express the projection of the field E into the target field Et as:

F =
1

4 P

∫
S

(E ×H∗
t + E∗

t ×H) · nda, (6)

where n is the normal unit vector at the output surface S, pointing outwards from the simulation

domain. If we normalize both the incoming and target fields (P=1 W), then the efficiency of our
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device is directly obtained by η = |F |2. Any modification in the metasurface structure that changes

the fields by (δE, δH) impacts the efficiency as:

δη = 2 Re [F ∗δF ] , (7)

where

δF =
1

4 Pt

∫
S

(δE ×H∗
t + E∗

t × δH) · nda

=
1

4 Pt

∫
S

[− (n×H∗
t ) · δE + (n× E∗

t ) · δH] da.

(8)

The challenge is to determine how to modify the metasurface geometry in each iteration so δη

increases, as opposed to brute force trial and error every possible modification. The derivation

goes as follows: we first perform two simulations to extract information in the existing medium

configuration, so called forward and adjoint simulations. In the forward simulation, we calculate

the field E for the unperturbed medium ϵ excited by our input source. This allows us to estimate

any new polarization currents Jδ that might be generated when the medium is modified by δϵ (i.e.,

any small amount of material placed on the surface that generates a new polarization current),

as illustrated in Figure 9c. In the adjoint simulation, we place specific currents sources Ja on the

output surface S that excites our medium backwards, generating a field in our domain denoted

by Ea. We choose the currents such the adjoint field is equivalent to propagating our target

Figure 9: (a) an incident field interacts with a material configuration with permittivity ϵ to generate
a field E in space; (b) a new configuration ϵ′ = ϵ + δϵ generates a field E ′ = E + δE (note that
the region where the permittivity changed is denoted by χ). In (c), the same field correction δE
can be produced in the initial configuration ϵ when a proper current Jδ is added in the perturbed
region χ.
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field backwards into the medium. The next step is to relate these currents Ja and Jδ using the

reciprocity theorem. This will give us a recipe for choosing where to place Jδ (i.e. where to place

δϵ) that ensures our efficiency increases. We now follow these steps mathematically.

The field correction δE obtained in the perturbed medium ϵ′ can be generated in the ‘known’

configuration ϵ if a proper current Jδ is placed in the perturbed regions χ, where:

Jδ = jωδϵ E ′, (9)

This is illustrated in Figure 9c. Physically, this current is the time derivative of the additional

polarization in the medium Jδ = ∂tδP = ∂tδϵE
′ = jωδϵE ′, where we assume all fields are harmonics

with dependency ejωt. In other words, Jδ are the polarization currents in the medium. This can

be seen by directly writing down Ampère’s law in a source free region in both perturbed and

unperturbed medium:

∇× H = jωϵ E, and ∇× H ′ = jωϵ′E ′, (10)

where again ϵ′ = ϵ+ δϵ and E ′ = E + δE. Subtracting one from the other we obtain directly:

∇× δ H = jωϵδ E + Jδ. (11)

The last equation states that the fields (δE, δH) are generated in the unperturbed medium ϵ

by the current source Jδ. At first this expression does not seem to be very useful because we do not

yet know the perturbed field E ′ (and therefore we can’t determine Jδ = jωδϵE ′). However, note

that we do not need to know E ′ everywhere in space, we only need to find an approximation for

E ′ in the perturbation regions χ, i.e., where δϵ is non-zero. This is illustrated in Figure 10. The

dashed line represents the original boundary of a given feature (a circular pillar in this case) that

is then distorted by an amount u⊥, which of course can vary along the perimeter of the shape. The

tangential component of the electric field is continuous across the boundary and therefore can be

considered approximately unchanged if the boundary displacement is infinitesimal (i.e. E ′
∥ = E∥

for u⊥ → 0). This is however not true for the normal electric field. Since it is discontinuous, the
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Figure 10: an initial boundary (dashed line) is deformed by a normal displacement field u⊥. In
regions where u⊥ is positive the permittivity changes by δϵ = ϵ2 − ϵ1, while where u⊥ is negative
δϵ = ϵ1− ϵ2. In the perturbed regions (i.e. near the boundaries), the corrected electric field can be
estimated by considering the continuous tangential electric E∥ and normal displacement D⊥ fields,
obtained in the original configuration.

field change is finite no matter how small the boundary displacement is [40]. We can circumvent

this problem by noting that the normal displacement field D⊥ is continuous, and therefore:

E ′ ∼= E∥ +
1

ϵ′
D⊥, (12)

and so

Jδ ∼= jωδϵ

(
E∥ +

1

ϵ′
D⊥

)
, (13)

Note that this approximation treats correctly abrupt material boundaries, i.e., with discon-

tinuous permittivity across the boundary [40]. In most topological optimization algorithms, the

medium is represented by an approximate continuous permittivity, in which case the field is always

continuous and therefore E ′ ∼= E. This means that in topology optimization, the material slowly

evolves from a continuous distribution, eventually converging to a binary index distribution (i.e.

manufacturable medium). This evolution however makes it difficult to control appearances of new

boundaries, which can be dealt directly with shape optimization as discontinuous boundaries are

naturally treated.

For the adjoint simulation, we illuminate the structure with an incident field (−E∗
t , H

∗
t ), where

the minus reflects the reversed propagation direction (i.e. propagating into the domain). This

can be done through the Principle of Equivalence [41], which states that any incident field into a

domain can be produced by equivalent electric and magnetic currents Ja and Ka on the surface S
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enclosing this domain, where:

Ja = −n×H∗
t , and Ka = −n× E∗

t , (14)

where again these surface currents produce a field in our unperturbed domain denoted by Ea. The

interpretation of this is clear, it is just the response of the metasurface when excited by our target

field instead of our original incident field.

These considerations result in two current-field pairs with a meaningful physical interpretation:

the first pair comes from the forward simulation, where we determine that polarization currents

Jδ located in the ‘to-be-perturbed’ regions χ produces the field correction (δE, δH). The second

pair comes from the adjoint simulation, where the currents (Ja, Ka) located on the domain surface

S produce the adjoint field (Ea, Ha). The goal is now to find a relation between these two pairs

that tells us where the currents Jδ should be placed so that E + δE → Et. This is accomplished

by evoking the Lorentz reciprocity theorem [37], which states that in a medium characterized by

symmetric (ϵ, µ), the fields (E1, H1) and (E2, H2), respectively produced by two different sets of

localized currents (J1, K1) and (J2, K2), satisfy the relationship:

∫
Ω

(J1 · E2 −K1 ·H2) dv =

∫
Ω

(J2 · E1 −K2 ·H1) dv. (15)

Using the Dirac’s delta to represent our surface current as volume currents (Ja, Ka) ∗ δS,

where δS is surface differential, the volume integrals involving the adjoint currents become surface

integrals, and therefore the Lorentz reciprocity applied to our pairs of current-field becomes:

∫
S

(Ja · δE −Ka · δH) da =

∫
χ

(Jδ · Ea)dv. (16)

Note that the volume integrals involving Jδ is performed only in the region χ, because only

there Jδ is non-zero. Furthermore, because of our choice for the adjoint currents, we can express

the differential in the figure of merit as:
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δF =
1

4 P

∫
S

[− (n×H∗
t ) · δE + (n× E∗

t ) · δH] da

=
1

4 P

∫
S

[Ja · δE −Ka · δH] da

=
1

4 P

∫
χ

(Jδ · Ea)dv.

(17)

Using the expression for Jδ and writing Ea = Ea,∥ +
1
ϵ2
Da,⊥(which is exact), we obtain:

δF =
jωδϵ

4 P

∫
χ

(
E∥ · Ea,∥ +

1

ϵ ϵ′
D⊥ ·Da,⊥

)
dv. (18)

The reciprocity theorem allows us to predict the change in the figure of merit by performing an

integration involving quantities directly at the metasurface region, and not on the output surface

S. This also means that maximizing this integral in χ directly maximizes our figure of merit. The

integration in the volume χ can be mapped to an integration on the surface of the original shape.

Say s denotes the arc length along the closed boundary Γ encircling the nanopillar and u⊥ is the

normal component of the boundary displacement (Figure 10). The volume element is therefore

dv = u⊥dsdz. Assuming the shape only changes in the x,y plane (i.e. all pillars are uniform along

the propagation direction z), then:

δF =
jωδϵ

4 P

∫
u⊥

(
E∥ · Ea,∥ +

1

ϵ ϵ′
D⊥ ·Da,⊥

)
dsdz, (19)

and the change in efficiency can be written finally as:

δη =
ωδϵ

2 P

∫
Γ

(u⊥g)ds, (20)

where we define a gradient function g = Re
[
jF ∗ ∫ (E∥ · Ea,∥ +

1
ϵ ϵ′D⊥ ·Da,⊥

)
dz
]
, which in-

cludes an integration along the pillar height. The efficiency change is always positive if we choose

u⊥ = h sign (δϵ) g, where h is a scaling factor.

With that, the algorithm is summarized as follows:

• Initialize the structure with a set of known geometrical features (meta-atoms), with any

shape. For example, a set of uniform circular pillars or a metasurface previously design with

28



a library approach;

• Compute the forward E and adjoint Ea fields;

• With these fields, calculate the gradient function g along the boundary of every pillar;

• Update the boundary shape by displacing every point in its perimeter by u⊥ = h sign (δϵ) g.

Go back to step 2 until the efficiency reaches a local maximum;

The scaling factor h does not alter the deformation function u⊥ but simply scales how much

the overall shape is deformed. Obviously if h is too large, the approximation for E ′ and thus for

Jδ eventually becomes a poor one. There are many ways in which h could be chosen. A simple

method is to first calculate h so that the efficiency change is bounded (say no more than 1% or no

less than 0.01% or any other value). Then, one might impose the maximum of u⊥ (say less than 5

nm) and re-scale h. A more general method to deform the boundary is using level-set functions.

A.2 Gradient validation

To validate the gradients obtained using the adjoint formulation, we computed how the first order

diffraction efficiency change as the parameters of the geometries are varied. In Figure 11a, the

diffraction efficiency is plotted as a function of the width w of a rectangular ridge for both TE

(y-pol) and TM (x-pol) polarized light. The derivatives were then numerically calculated and

plotted in solid lines in Figure 11c. For comparison, the derivatives obtained directly from the

adjoint gradient are shown in circles, in excellent agreement with the exact ones. In Figure 11b,

the efficiency of a metasurface that contains two circular pillars is calculated as a function of d2,

diameter of the second pillar (while d1 is fixed). Again, the derivates computed from the efficiency

curves (solid lines) match the one obtained from the adjoint gradient, as shown in Figure 11d.

A.3 Fourier decomposition

It is often desirable to restrict the shape to simple smooth geometries, for example to simplify

fabrication. The deformation function u⊥ calculated as outlined here may be very complicated,
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Figure 11: Validation of the boundary gradient calculation. In (a), the efficiency of a metagrating
containing only one rectangular nanopillar is numerically calculated as a function of the width w,
and in (b) the efficiency of a metasurface with two circular pillars is calculated as a function of
the diameter of one of them (d2). Here, blue and orange represent efficiency for x-polarized (along
larger domain direction) and y-polarized light (along smaller domain direction), respectively. From
the efficiency, the exact gradient (solid line) is calculated for the two metasurfaces and compared
with the gradient obtained from the boundary shift expression (open dots). Top and bottom
figures share the same horizontal axis.

with sharp peaks or valleys. Since we are dealing with a closed boundary, any function can be

expanded in terms of an appropriate basis. We chose Fourier as it easily allows restriction to

smooth round structures (the arguments presented here can be generalized to any basis). The

gradient function g can be expanded in terms of its Fourier components:

g =
a0
2

+
∞∑

m=1

am cosmθ + bm sinmθ, (21)

where

am =
1

π

∫ π

−π

g cosmθdθ, bm =
1

π

∫ π

−π

g sinmθdθ, andθ = 2π
s

st
. (22)

Here, st is the total boundary length of a given meta-atom. A circular shape is maintained if

we retain only the zero-order term a0: u⊥ = h sign (δϵ) a0
2
. Retaining first order terms represent
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slight displacements, second order terms represent elliptical distortions and so on. In general:

u⊥ = h sign (δϵ)

(
a0
2

+
∞∑

m=1

am cosmθ + bm sinmθ

)
(23)

and therefore, the change in efficiency is:

δη =
ωδϵ

4 P
hstsign (δϵ)

[
a20
2

+
∞∑

m=1

(
a2m + b2m

)]
(24)

Note that due to the orthogonality of the Fourier basis, each term contributes independently

to an increase in efficiency. Therefore, we can choose to retain a finite number of terms. Finally,

if we want to optimize for multiple parameters, for example TE and TM polarizations, one way is

to define multiple figures of merit, each leading to its own gradient functions:

δηTE =
ωδϵ

2 P

∫
Γ

u⊥gTEds, and δηTM =
ωδϵ

2 P

∫
Γ

u⊥gTMds. (25)

They can be combined in different ways, for example by using the inverse of efficiency as

a weighing function (wTE,TM = 1/ηTE,TM) so that the optimization tends to balance well the

performance of both polarizations, g = (wTMgTM + wTEgTE) / (wTM + wTE). One may also define

a single figure of merit as the sum of multiple figures of merit, for example to take into account

different wavelengths.

A.4 General figure of merit

The formulation here was based on a specific definition of the figure of merit, expressed as the pro-

jection of the output field into the target field, i.e., η = |F |2 where F = 1
4 Pt

∫
S
(E ×H∗

t + E∗
t ×H) · nda.

This can be generalized as follows:

F =

∫
V

f (E,H) dv, (26)

where for convenience, we normalize f so that it has units of inverse of volume. The change in

efficiency is then expressed as:
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δF =

∫
V

(
∂f

∂E
· δE +

∂f

∂H
· δH

)
dv, andδF =

1

4 Pt

∫
S

(Ja · δE −Ka · δH) da, (27)

where care must be taken to deal with derivatives with respect to complex vectorial fields. The

formulation then follows identically if we choose the adjoint currents as:

(Ja, Ka) δS =

(
∂f

∂E
,− ∂f

∂H

)
. (28)

B Experimental setup

A schematic of the experimental setup is shown above in Figure 12. The linearly polarized output

from a Santec TSL-570 tunable laser is collimated and sent through a focusing lens to create

a smaller sized beam at the focal plane. A λ/2 plate is placed after the lens to control the

orientation of the linear polarization. The sample is located at the focal plane of the lens, which

is set to coincide with the image plane of the camera. A 10x objective and a tube lens are used

to image the sample onto the camera which is used for alignment. A power meter is placed at

different positions along the beam path to input power and diffracted power.

Figure 12: Schematic of the experimental setup used to measure diffraction efficiency.

Alignment: first, the beam is aligned onto the camera without the sample in the system. Then,

the position of the focusing lens is adjusted until the focus of the beam coincides with the image

plane of the camera. With a focal length of 100 mm, the focusing lens produces a beam with a

diameter of approximately 100 µm at the focus for a wavelength of λ=1550 nm. This beam size is

chosen to ensure that the beam is small enough to fit entirely within one of the 250 µm x 250 µm

grating patterns. Next, the polarization is set by rotating the λ/2 plate to minimize the power
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passing through a linear polarizer that is set to x-pol (horizontal) or y-pol (vertical), relative to

the table. Then, the sample is placed at the focus of the beam in the image plane of the camera.

With the sample positioned so that the beam passes through the bare glass substrate, interference

fringes resulting from a tilt of the sample are visible on the camera. The sample is aligned for

normal incidence by adjusting the tilt angle until these interference fringes disappear. Finally, the

sample is positioned so that the beam passes through one of the grating patterns and is rotated

until the height of the diffracted beam matches the height of the input beam.

Measurement Procedure: the input power is measured by placing the power meter in the beam

path right before the sample. The power is measured as the tuneable laser is swept from 1480 nm

– 1640 nm in steps of 0.1 nm. Then, the beam is centered onto one of the grating patterns with the

help of the imaging system. The diffracted power is measured by placing the power meter in the

path of the 1st-order diffracted beam, positioned as close as possible to the sample while ensuring

that the 0-order beam is not detected by the sensor (2 cm). Again, the power is measured while

the tuneable laser is swept over the same wavelength range.

Figure 13: (a) The measured transmission through the bare substrate (blue line) and the 1st-order
diffraction of one of the gratings (orange line). (b) Diagram of the Fabry-Perot model for both
the bare substrate and one of the grating patterns. The blue- and orange-colored arrows represent
where the transmission was measured for the bare substrate and grating, respectively.

Data Processing: in our simulations, the diffraction efficiency of the device is defined relative

to the power inside the substrate before interaction with the metasurface. During measurement,

however, we can only measure the power before the substrate and use this as our reference. This
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results in many oscillations in the measured transmission due to interference within the fused silica

substrate, as shown in Figure 13a. This can be understood by recognizing that the substrate acts

as a Fabry-Perot cavity between the surfaces of the substrate and the 0th-order reflection from the

metasurface. A diagram is shown in Figure Figure 13b. The transmission of a Fabry-Perot cavity

for normal incidence is given by:

T =
T1T2

1 +R1R2 − 2
√
R1R2cos[2kn(λ)d]

, (29)

where d = 500 µm is the thickness of the substrate, n(λ) is the wavelength-dependent refractive

index of fused silica, k = 2π/λ is the wavenumber, and λ = 1550 nm. In this equation, the

parameter T2 represents the transmission of purely the second interface of the sample, without

any interference effects from the first interface. It is the transmission of the sample relative to the

power inside the substrate, exactly how we define the diffraction efficiency. With knowledge of the

transmission and reflection coefficient for the first interface (T1 and R1), the value of T2 can be

extracted from T , which we measure directly. Consider the maximum and minimum values of the

Fabry-Perot transmission function. We find:

Tmax =
T1T2(

1−
√
R1R2

)2 and Tmin =
T1T2(

1 +
√
R1R2

)2 . (30)

The values of Tmax and Tmin can be extracted from the measurements. R1 and T1 are the

reflection and transmission coefficient for the back surface of the substrate, with values given by

the Fresnel equations. For normal incidence from air to fused silica we have,

R1 =

∣∣∣∣1− n (λ)

1 + n (λ)

∣∣∣∣2 and T1 = 1−R1, (31)

where n(λ) is given by the Sellmeier equation for fused silica. By rearranging the equations for

Tmax and Tmin we can find T2 by first solving for the unknown quantity
√
R1R2 using the equations

below:

34



Figure 14: (a) The values of Tmax (green curve) and Tmin (red curve) are interpolated from the
measured transmission (blue curve) through bare substrate. (b) The extracted value of T2(blue
curve) is compared with the exact value given by the Fresnel equations (dashed black line).

√
R1R2 =

(
1−

√
Tmin

Tmax

)
(
1 +

√
Tmin

Tmax

) and T2 =
Tmax

(
1−

√
R1R2

)2
T1

. (32)

To verify this procedure for extracting T2, we first consider the case of a beam passing through

the bare substrate for which T2 can be readily calculated according to the Fresnel equations. The

results are shown below in Figure 14.

Using the procedure outlined above for the case of transmission through the bare substrate, we

find an average value of T2,measured = 0.9670079 which agrees very well with the value given by the

Fresnel equations T2,F resnel = 0.9670084. The same processing is used for the 1st-order transmission

measurements of the meta-gratings to calculate the diffraction efficiency. An example is shown

below in Figure 15.
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Figure 15: : (a) The values of Tmax (green curve) and Tmin (red curve) are interpolated from the
measured 1st-order transmission (blue curve) of a meta-grating. (b) The extracted value of T2

(blue curve), defining the measured diffraction efficiency.
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