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Abstract

Random numbers are incredibly important in a variety of fields,
and the need for their validation remains important. A Quantum
Random Number Generator (QRNG) can theoretically generate truly
random numbers however this does not remove the need to thoroughly
test their randomness. Generally, the task of validating random num-
bers has been delegated to different statistical tests such as the tests
from the NIST Statistical Test Suite (STS) which are often slow and
only perform one task at a time. Our work presents a deep learning
model that utilizes the transformer architecture to encode some of the
tests from the NIST STS in a single model that also runs much faster.
This model performs multi-label classification on these tests and out-
puts the probability of passing each statistical test that it encodes. We
perform a thorough hyper-parameter optimization to converge on the
best possible model and as a result, achieve a high degree of accuracy
with a sample f1 score of above 0.9.

Keywords: Transformers, Random numbers, Multi-label classification

1 Introduction

Random numbers serve an important purpose in many fields, having numer-
ous applications amongst each. Within cryptography, they are extensively
studied and utilized to ensure secure encryption schemes keep our data safe
[6, 25, 10, 7]. In physics, random numbers are highly studied in their ap-
pearances in quantum mechanics and thermodynamics [21, 3]. With random
numbers having such a vast array of applications, obtaining and validating
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them also becomes a great issue[15]. Most of our encryption schemes to-
day use pseudo-random numbers generated through pseudo-random number
generators, and their validation has been delegated to a variety of statistical
tests [1].

Along with using statistical tests for validating random numbers, deep
learning and it’s derivatives can be used for determining the randomness of
random numbers [8]. The uses of deep learning in this area have branched to
to all of its facets, from Convolutional Neural Networks (CNNs), to Recurrent
Neural Networks (RNNs), and Long Short Term Memory (LSTMs) which are
types of RNNs [20, 26, 11].

More recently, the introduction of the transformer model has allowed
further exploration of this deep learning method in the context of validating
random numbers[27]. In the applications of the transformer models, the
self-attention head is designed to detect sequential patterns[28]. Thus, in
many applications where sequential data is available and easy to represent,
the transformer has been quite successful, especially in the field of Natural
Language Processing (NLP) but also in many others [13, 17, 22, 9, 4].

Since a random number by definition would have minimal sequential pat-
terns and a non-random number would be the opposite, the self-attention
mechanism in the transformer architecture should be quite effective at quan-
tifying the randomness of random numbers. In the context of random num-
bers, traditionally, LSTMs were a popular deep learning method for qualify-
ing the randomness of random numbers, but due to their complex nature as
well as their inability to be parallelized, they were slow and often still inac-
curate. As Li et. al. describe, these problems with LSTMs were solved by
the transformer architecture [16]. Although the transformer architecture is
well equipped for prediction of the next token, we focus on the quantification
on the quality of randomness rather than what the next random number will
be.

In this paper, we present a encoder-only transformer model that can ac-
curately encode the statistical tests that were used quantify the quality of
random numbers. The goal is to be able to encode multiple statistical tests
(discussed further in the Methods section) into a single model that can be
run once on a single binary sequence. We experiment with different archi-
tectures of this model as well as different hyper parameters to converge on
the most optimized architecture for this problem. We show that by utilizing
the transformer architecture, our model can accurately describe the type and
degree of randomness of a binary sequence while improving efficiency over
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the statistical tests.

2 Methods

Non-deep learning based methods of validating random numbers include us-
ing a variety of statistical test suites such as the DIEHARD and DIEHARDER
statistical test suites along with the NIST Statistical Test Suite (STS) [5, 18,
24]. These suites contain a multitude of tests that each test for a particular
type of randomness. The purpose of this work is to encode a portion of these
tests into a single transformer in order to test random numbers on multiple
different tests at the same time.

2.1 Dataset

In general, we prepare the data to train our model by by first generating truly
random numbers using a Quantum Random Number Generator (QRNG),
augmenting it to have non random numbers as well as random numbers in
the dataset, and then running the NIST STS to generate labels for our data.
The purpose of the model is to run multi-label classification on given data so
that the user can find out which tests the random number passes and which
ones it fails. Thus, our model outputs a vector where each entry would be
the probability of the random number passing the corresponding test. There
were seven tests from the NIST STS that we encoded: Frequency, Block Fre-
quency, Runs, Longest Run of Ones, Discrete Fourier Transform, Nonperiodic
Template Matchings, Cumulative Sums. Out of the seven, we augmented
data to generate non-random results for five of the tests: Frequency, Block
Frequency, Runs, Longest Run of Ones, Nonperiodic Template Matching. In
our findings we found that augmenting the data specifically tailored to these
tests also resulted in the numbers failing the Discrete Fourier Transform and
Cumulative Sums tests, which we did not augment the data for. Therefore,
it was not necessary to augment the data to introduce non-randomness for
these tests in order for the model to encode them.

2.2 Data Augmentation Techniques

The specific details of how these tests work are outline clearly by Ruhkin et
al. in their definition of NIST STS[24]. The data augmentation techniques
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were adopted from Nagy et al. with negligible adjustments[20]

2.2.1 Frequency

We augment the frequency of either 0s or 1s in a stream by manually flipping
a certain percentage of the bits to either 0 or one (depending on whether we
are skewing the sequence to 0 or 1). A random number would have a roughly
equal number of 0s and 1s. The aim of this test is to disrupt that balance.

2.2.2 Block Frequency

To augment a sequence to fail a block frequency test, we begin by dividng
the sequence into M bit long chunks such that there are an even amount of
evenly sized chunks, and then performing the frequency augmentation from
above to each of these chunks. This preserves the overall ratio of 0s and 1s
in the sequence, but within each chunk, the ratio is skewed to either 0 or 1.
A random sequence broken into chunks would roughly preserve the ratio of
half 0s and half 1s and the aim of this test is to disrupt that.

2.2.3 Runs

A ”run” is a sequence of like bits. A random sequence is full of small runs with
larger runs becoming exponentially rarer the bigger they get. We augment
the data to fail the runs test by offsetting the ratio of 0s and 1s in the sequence
in chunks in an attempt to create fewer and larger runs, but keeping the
overall ratio of 0s and 1s in the sequence constant. We do this by splitting
the queue into M chunks with the same criteria as the Block Frequency test,
and then offsetting the ratio of 0s and 1s in the chunk in the same way as the
augmentation technique for the frequency test. We then scramble the runs
to hide the subsequent checkerboard pattern.

2.2.4 Longest Run of Ones

To fail this test, instead of modifying the number of runs in the sequence,
we aim to increase the length of the longest run. As mentioned before, it
becomes exponentially rarer to get longer runs and so the longest run of a
random sequence likely will not be too long. We again break the sequence
into chunks as before, but instead of modifying the ratio of bits in each chunk,
we insert a run of 1s and a run of 0s in the other to create long runs.
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2.2.5 Nonperiodic Template Matching

The NIST STS provides a set of nonperiodic templates. The aim of this
augmentation technique is to mimic a generator that produces the same
binary sequences but not necessarily in a periodic fashion. A random number
will feature the same binary sequences from time to time but they are quite
rare. To train our model, we inserted 9 bit templates from the template set
in each queue that was augmented to fail this test.

2.3 Model Training and Validation

Figure 1: Model Architecture. We trained 3 main models, one with 1 encoder
layer, another with 3, and another with 4.

We begin by taking the binary sequence and tokenizing it to reduce its di-
mensionality. We trained many models to experiment with hyper-parameters
which included tweaking the input size. We used inputs of size 1024 as well as
2048 bits to train our models. Our tokenization technique was simply getting
the integer representation of every 16 bits. This would create a vocabulary
for the transformer of size 65536 which was sufficiently large for model train-
ing. This means that our input would reduce to 64 or 128 tokens, which we
would then run through the model whose architecture is shown above 1.

To monitor how well the model was training, we used aggregate f1 to
measure model performance per batch as well as loss that best pertains to
multi-label classification[2, 29]. We use a combination of sigmoid, binary
cross entropy loss with the Adam optimizer with default parameters to train
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the model, and macro, micro, weighted, and sample f1 scores to validate
it[14].

2.4 Handling Varying Input Size

One of the great perks of transformer models is their ability to handle data
with no fixed input size [30]. However, as seen in Figure 1, since the output
of the encoder is then flattened and connected into a fully connected layer,
the input size must be fixed as a fully connected layer of an ANN cannot
handle varying input size.

Figure 2: The effects on the shape of the input are illustrated. The averaging
layer averages along each column to reduce the sequence length dimension
to 1. The result is a vector that is the length of the embedding size. This
vector is then passed into the fully connected layer as in Figure 1.

Our solution to this was quite simple. Since the fully connected layer
can only take a fixed input length, we collapsed the only dimension that was
varying which is the sequence length dimension. The drawback of this of
course is that there is some information lost through the averaging process
and how this affects model performance is discussed later.

3 Results

We set out with the goal of creating the best possible model for this task that
can be used as an alternative to the statistical test suites. To find the model
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with the best hyper-parameters, we ran tests with different hyper-parameter
settings to converge on the best possible model that we can find with our cur-
rent architecture. The hyper-parameters that we tested for were the number
of encoder layers, the size of the input, and the number of attention heads in
the multi-headed attention section of the encoder. For brevity’s sake, we are
only showing the sample f1 scores and omitting the other aggregate measures.

3.1 Encoder Layers

(a) Loss with 1 encoder
layer

(b) Loss with 3 encoder
layers

(c) Loss with 6 encoder
layers

(d) F1 with 1 encoder
layer

(e) F1 with 3 encoder
layers

(f) F1 with 6 encoder
layers

Figure 3: Training curves for different models with varying numbers of en-
coder layers where loss and f1 scores are shown. There were three different
encoder configurations tested: 1 layer, 3 layers and 6 layers. Each of these
models have 8 attention heads and took a fixed input of 128 tokens.

As Huang et al. show, more transformer encoder layers should improve
the model accuracy and in our case, f1 score [12]. While we did observe
this to be true, there are some important caveats. Namely, the effects were
only beneficial until a certain point; in our case, once the number of encoder
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layers exceeded 3, the model stopped learning and failed to converge as seen
in Figure 3. A possible conclusion that can be drawn from this is that the
model became too large for the input and ended up adding too much noise
for any useful information to be perceptible in later layers.

3.2 Input Size

(a) Loss with a fixed to-
ken size of 64

(b) Loss with a fixed to-
ken size of 128

(c) Loss with a varying
token size of 128

(d) F1 with a fixed token
size of 64

(e) F1 with a fixed token
size of 128

(f) F1 with a varying to-
ken size of 128

Figure 4: Training curves for different models varying input sizes where loss
and f1 scores are shown. We tested inputs which were 64 tokens, 128 tokens,
and varying of length (they included the averaging layer). Each of these
models had 3 encoder layers and 8 self-attention heads.

Token size for transformer models has been studied extensively and we
wanted to see how previous findings would compare to ours[23]. In this ex-
periment, we had two main input sizes that were varied. We inputted binary
strings of size 1024 bits and 2048 bits which equated to 64 and 128 token
inputs respectively. 3 encoder layers was a stable amount of encoder layers
that did not lead to problems when testing on multiple input lengths and so
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we chose that to be fixed. As seen in Figure 4 the size of the input did not
really matter all that much as the model seemed to converge quite well and
in fact even quicker when the input size was larger. However, the problems
arose when we had to average the output from the transformer encoder as
described in Section 2.4. Due to the information lost from averaging the
output from the encoder, the model converged at quite a high loss and over-
trained quite quickly. The f1 score curve was also quite choppy, indicating
that the model was struggling to converge at all.

3.3 Number of Attention Heads

(a) Loss with 1 self-
attention head

(b) Loss with 8 self-
attention heads

(c) Loss with 24 self-
attention heads

(d) F1 with 1 self-
attention head

(e) F1 with 8 self-
attention heads

(f) F1 with 24 self-
attention heads

Figure 5: Training curves for different models with a varying number of
self-attention heads where loss and f1 scores are shown. Each model had 3
encoder layers and was inputted a fixed 128 tokens

The number of attention heads in the multi-headed attention layer is
important to finding the most optimized model as the number of attention
heads can quite readily affect the performance of a model [19]. Therefore,
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we also experimented with the number of multi-headed attention layers to
find the most optimized model. As seen in Figure 5, the number of heads
did not play a large role in the performance of the model with 8 heads being
barely better than 1 head if at all. However, there was a downfall to adding
too many attention heads as the model completely failed to converge with
24 attention heads suggesting that there is a limit to how many attention
heads can be added to the model. It is probably a good practice to not use
more than 8 heads anyways since adding more parameters adds overhead and
also seems unnecessary seeing as the improvement was marginal from 1 to 8
heads.
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A Appendix

A.1 F1 Scores

Here are the equations used to define the f1 metrics which were used to
validate our model.
Micro F1 Score:

Micro F1 =
2 × Micro Precision × Micro Recall

Micro Precision + Micro Recall
(1)

Macro F1 Score:

Macro F1 =
1

N

N∑
i=1

2 × Precisioni × Recalli
Precisioni + Recalli

(2)

Weighted F1 Score:

Weighted F1 =
1

Total Support

N∑
i=1

(Supporti × F1i) (3)

Sample F1 Score:

Sample F1 =
2 × True Positives

2 × True Positives + False Positives + False Negatives
(4)
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