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Abstract

While Vector Symbolic Architectures (VSAs) are promising
for modelling spatial cognition, their application is currently
limited to artificially generated images and simple spatial
queries. We propose VSA4VQA — a novel 4D implementation
of VSAs that implements a mental representation of natural
images for the challenging task of Visual Question Answer-
ing (VQA). VSA4VQA is the first model to scale a VSA to
complex spatial queries. Our method is based on the Seman-
tic Pointer Architecture (SPA) to encode objects in a hyper-
dimensional vector space. To encode natural images, we ex-
tend the SPA to include dimensions for object’s width and
height in addition to their spatial location. To perform spa-
tial queries we further introduce learned spatial query masks
and integrate a pre-trained vision-language model for answer-
ing attribute-related questions. We evaluate our method on
the GQA benchmark dataset and show that it can effectively
encode natural images, achieving competitive performance to
state-of-the-art deep learning methods for zero-shot VQA.

Keywords: vector symbolic architecture, spatial semantic
pointer, spatial queries, visual question answering

Introduction

Vector Symbolic Architectures (VSAs) have shown signifi-
cant potential for cognitive modelling (Stewart, Choo, & Elia-
smith, 2012; Komer, Stewart, Voelker, & Eliasmith, 2019; Lu,
Voelker, Komer, & Eliasmith, 2019; Bartlett, Stewart, & Or-
chard, 2022; Hersche, Zeqiri, Benini, Sebastian, & Rahimi,
2023). At the core of VSAs are hyper-dimensional vectors as
well as adding and binding operations to build vector compo-
sitions that can be reversed and disentangled with almost no
loss. Representing concepts or symbols using these vectors
enables VSAs to model cognitive processes with composi-
tionality and systematicity (Plate, 2003). While VSAs have
been used to facilitate abstract reasoning on various tasks,
such as Raven’s Progressive Matrices (Choo, 2018; Hersche
et al., 2023), they have also been shown to efficiently encode
continuous spaces for building mental image representations
(Komer et al., 2019; Lu et al., 2019) or to improve the robust-
ness in 2D spatial navigation tasks (Bartlett et al., 2022).
However, existing VSA models have only been evaluated
on artificially generated images with icons (Komer et al.,
2019) or MNIST digits (Lu et al., 2019), where simple ques-
tions about spatial relations between objects were used to
evaluate their spatial memory capabilities. While underlin-
ing the significant potential of VSAs, it is unknown whether
these results generalise to images of natural scenes: Natural
images are significantly more visually complex and typically
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Figure 1: Example question from GQA (Hudson & Manning,
2019). Our VSA4VQA method performs three steps: 1. se-
lect the lamp, 2. find items fo the right of the lamp with a
spatial query mask encoded in SSPs, and 3. filter the positive
proposals to find furniture, yielding the correct answer “bed”.
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contain numerous objects of different size and appearance.
In addition, natural images exhibit more complex spatial re-
lations between objects that are not covered in artificial im-
ages, e.g. objects can be in front of or behind other objects.
Answering questions on natural images thus requires a more
general understanding of objects’ spatial relations (Banerjee,
Gokhale, Yang, & Baral, 2021), which is still lacking in cur-
rent approaches (Subramanian et al., 2022).



Question: What is on the shelf made of metal?
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Figure 2: Overview of VSA4VQA. Object bounding boxes’ (x,y)-location, width w, and height / are encoded into SSP memory.
The program generator from Chen et al. (2020) maps the question to functions. Our method then implements these functions
with (1) SSP unbinding, (2) CLIP, (3) SSP query masks, and finally queries the name of the resulting object (4) to answer the
question. For implementation details on all functions see Table 1.

We propose VSA4VQA — the first VSA model that can an-
swer complex spatial queries on natural images. VSA4VQA
builds on the Semantic Pointer Architecture (SPA) proposed
in (Eliasmith, 2013). The SPA encodes spatial semantic
pointers (SSPs) — hyper-dimensional vectors — to encode spa-
tial locations in two dimensions. By encoding objects in an
image and binding them to their spatial locations, a cogni-
tively plausible mental representation of the image can be
created (Komer et al., 2019). Further, the SPA allows for
querying this mental image representation with spatial re-
gions in relation to other objects. While previously these
spatial queries have only been tested with simple rectangu-
lar regions representing the four quadrants of an image, we
introduce a novel method to learn query masks that encode
spatial relations in natural images .

To evaluate the mental image representation generated by
VSA4VQA, we report experiments on GQA (Hudson &
Manning, 2019) — a widely used Visual Question Answer-
ing (VQA) dataset. VQA is a challenging multimodal task
that involves answering questions by reasoning about visual
information contained in an image (Cao & Jiang, 2023).
VQA is particularly promising as an evaluation task because
it requires a compositional understanding of spatial rela-
tions (Banerjee et al., 2021). To implement compositional
reasoning, our method uses programs generated by a seq-to-
seq model (Chen et al., 2020) and assigns each function in
the program to a dedicated module (Andreas, Rohrbach, Dar-
rell, & Klein, 2016). For functions that query attributes of
objects, such as colour or shape, we additionally integrate a
pre-trained vision and language model (Radford et al., 2021).

Taken together, the specific contributions of our work are
three-fold: (1) We scale a VSA to model cognitively plau-
sible representations of natural images. We further propose
zero-shot VQA as a particularly suitable task to evaluate the
resulting mental image representation in terms of their use-
fulness for reasoning with complex spatial queries. (2) We
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introduce 37 novel spatial query masks that we learn from re-
lation annotations in the GQA dataset and map them to more
than 300 spatial relations. (3) We report extensive analyses
on error cases and the impact of the dimensionality of VSA
vectors on the performance.

Method

Our method performs VQA on natural images by imple-
menting a VSA as image representation. Figure 2 shows an
overview of our method. First, we encode the bounding boxes
of all objects in the image into SSP memory. Then, we use
programs that map questions to functions (Chen et al., 2020)
to perform sequential reasoning. To verify attributes that are
not present in SSP memory we incorporate CLIP (Radford et
al., 2021), a pre-trained vision-language model. For relation
queries we use our learned spatial query masks.

Image Encoding

For building a cognitively plausible mental representation of
natural images, we extend the fractional binding method of
SSPs to encode additional dimensions for width and height of
objects. To this end, we adjust the mathematical formulation,
introduced by (Komer et al., 2019), to include a total number
of four dimensions:

SSP = SP® S(x,y, w,h) 0

S(x,y,w,h) =X* @Y’ @W" @ H" @)
m

M = ZSPi@S(xiayi)Wivhi) (3)

i=1

Here, a semantic pointer (SP) is a hyper-dimensional vector
with fixed dimension, which is a compressed representation
of an object in the image. x and y are the object’s spatial lo-
cations in the coordinate system of the image, while w and &
encode width and height of the object’s bounding box. Bind-
ing all SPs representing an object with the object’s location,
width, and height and summing them, yields the mental im-

https://perceptualui.org/publications/penzkofer24 _cogsci age representation M, further referred to as SSP memory.



Before encoding images, we set four random SP vectors
as (X, Y, W, H)-axes and pre-compute all location vectors
in the SSP vector space. This yields a discretised grid of
100x100x10x10 points and constitutes our clean-up mem-
ory (see (Lu et al., 2019) for details). The images in GQA
vary in size and orientation, therefore, the longer side is al-
ways selected to be scaled to fit within the 100x 100 vector
space. For building the SSP memory M, we need bound-
ing boxes for each object in the image. For this, we use the
ground truth object annotations given in the scene graphs of
the GQA dataset.

For each detected object we generate a random SP. We then
compute the objects point S(x,y,w,h) as defined in Equation
2 and bind the object’s SP and point S together as described
in Equation 1. We add each object to the image’s SSP mem-
ory using element-wise addition, which is the superposition
operation in Holographic Reduced Representations (HRR).

Query Masks

In previous work (Komer et al., 2019; Lu et al., 2019) it was
shown that regions can be encoded as a sum of spatial lo-
cations. Such encoded regions were then used to query all
objects located within the respective area. However, these re-
gion queries were limited to simple rectangles encoding the
four quadrants of an image. In contrast, we learn representa-
tions for 37 unique query masks, which enables the encoding
of more than 300 spatial relations.

The query masks are generated from the relation annota-
tions available in the scene graphs of the training split of GQA
(Hudson & Manning, 2019). The dataset provides 50.65 rela-
tions per image on average, while samples per relation range
from two (shorter than / bigger than) to over one million (to
the right of | to the left of ). For each relation with more than
1,000 samples we generate a spatial query mask by adding up
all samples of relative objects, i.e. the objects that the relation
applies to. However, before adding each sample, all objects
need to be normalised: (1) both objects bounding boxes are
scaled so that the bounding box of all queried objects is uni-
form (50x50 pixels) and (2) the new position of this bound-
ing box is extracted and used to calculate the translation vec-
tor for moving it into the centre of a 500x 500px image.

In Figure 3, we show the full process of the query mask
generation for relation fo the right of. After normalisation, the
areas of all objects that are in relation to the queried object are
summed up and averaged. Thresholding the resulting image
to exclude areas that have only appeared in less than 5% of
samples, yields the binary query masks depicted in the right-
most image. The rest of the 37 query masks are obtained in
the same way and yield qualitatively plausible representations
of the respective relations.

Programs & Modules

To answer natural language questions on images, we follow
the Neural Module Network (NMN) paradigm (Andreas et
al., 2016), where questions are mapped to programs that can
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Figure 3: Query mask generation for relation to the right of.
For all samples of the relation (1): create object masks (2),
normalise masks to same scale and center position (3), and
add them to obtain final relation mask (4).

be executed in sequential steps by separate modules. Simi-
lar to Mod-Zero-VQA (Cao & Jiang, 2023), the state-of-the-
art deep learning approach for zero-shot VQA, we use the
programs generated by the pre-trained sequence-to-sequence
model of Chen et al. (2020). For the GQA dataset (Hudson
& Manning, 2019), the programs consist of 10 different func-
tion types (see Table 1) and 48 fine-grained functions, which
are chained together yielding a list of steps to be performed
sequentially. For each step, the result of the respective func-
tion is saved for access in the following steps. Almost all
programs start with the selection of an object, only excep-
tions are “full” functions that query the entire scene, which
are denoted with an _f. The lengths of programs are up to 9
steps. While the functions relate, filter, and verify pro-
duce outputs that can be reused in following steps, choose
and query, directly yield answers and terminate the program.

For example in Figure 2, the question “What is on the
shelf made of metal?” is mapped into four functions:
select (shelf), filter(0, metal), relate_inv(l,
on), and query_name (2). The result of the selection from
SSP memory is reused in step two, where it is filtered to be
made from metal. If indeed it is a metal shelf, the program
continues with step three, where all objects are queried that
are on the shelf. This returns the SSP of a bowl as the most
likely candidate, which is returned in the final step.

We implement five of the program functions with our SSP
memory. With the image encoded in the SSP memory, we
can use the unbinding operation M ® OBJ~! to perform the
select function for any encoded object. In general, the
unbinding operation yields the respective SSP and the ob-
ject’s encoded (x,y,w,h)-coordinates. For performing rela-
tion queries, our generated query masks are loaded and en-
coded as aregion in SSPs, then, shifted to the correct position.
The region query returns all objects that are positively similar
to the queried region as proposals. If the function does not
specify the relative object it is looking for, the proposal with
the highest similarity is returned. If there is an additional at-
tribute in the function that specifies the name of the queried
object, the proposal that matches the name or the most similar
object that belongs to the named class is returned.

CLIP Integration

For functions that require attribute verification, we employ
the pre-trained model CLIP (Radford et al., 2021). CLIP is



Table 1: Program function types and our implementation. Functions within one type are sorted by the number of arguments.
For details on function types exist, common, different, same, and, or see the original implementation by Chen et al. (2020).

Type Function Implementation Args Output Example

Select select SSP Unbinding 1 Position select (tool)

Relate relate, relate_inv SSP Query Mask 2 Proposal relate (basket, on)
relate_name, relate_inv_name  SSP Query Mask 3 Proposal relate_name (man, with, hat)

Filter filter_v, filter_h Position 2 True /False filter_h(bottle, left)
filter, filter_not CLIP 2 True / False filter (refridgerator, red)

Verity verify_f CLIP 1 True / False verify_f (beach)
verify CLIP 2 True / False verify (umbrella, black)
verify_rel, verify_rel_inv SSP Query Mask 3 True / False verify_rel(fry, on, tray)

Choose  choose_v, choose_h Position 1 Answer choose_v (car, top, bottom)
choose_f CLIP 2 Answer choose_f (indoors, outdoors)
choose_subj CLIP 3 Answer choose_subj (boy, man, older)
choose_attr CLIP 4 Answer choose_attr (car, color, gray, red)
choose_rel_inv SSP Query Mask 4 Answer choose_rel (boy, car, left, right)

Query query._n, query_v, query_h Position 1 Answer query_h (chair)
query_f CLIP 1 Answer query_f (place)
query CLIP 2 Answer query (fence, material)

a large vision-language model, trained on 400 million image-
text pairs without labels. The model learns visual representa-
tions with natural language supervision by enforcing a joined
embedding of texts and images. With this, CLIP is capable of
predicting which text has the highest similarity to an image
and can be used for zero-shot image classification. Recently,
Shtedritski et al. (2023) showed that visual prompt engineer-
ing CLIP by drawing a red circle around a part of the image,
where objects of interest are located, improves performance.
This method enables the use of location information gained
from our SSP memory, while still offering CLIP an image
with global information to provide context.

We use CLIP to filter, verify, choose, and query at-
tributes of objects. In detail, we use an attribute dictionary
and generate sentences based on the attribute type and the
object of interest, e.g. “The colour of the chair is red”. We
feed these sentences to CLIP with the corresponding image,
where a red circle marks the object of interest. CLIP then re-
turns the likelihood for each image sentence pair. By select-
ing the sentence with the highest similarity, we find the most
likely attribute. Attribute types include colour and shape, but
also more difficult types such as weather, materials, or age.

Experimental Design

We evaluate the overall performance of our SSP representa-
tion of natural images and the corresponding reasoning ca-
pabilities by computing the zero-shot accuracy on the GQA
dataset (Hudson & Manning, 2019). VQA is a difficult task
that requires object detection, scene understanding, and spa-
tial relation understanding. Zero-shot further defines that no
training on the specific data set occurs (Cao & Jiang, 2023),
ensuring the generalisability of the methods used. We have
selected the GQA dataset for evaluation, as it specifically
focuses on spatial reasoning (Banerjee et al., 2021). We
evaluate our method on the GQA validation set, which con-
sists of 132,062 questions, paired with 10,234 unique images.

Around 54% of questions in the validation set include a spa-
tial relation query. We hypothesise that the fractional binding
method of SSPs excels at such spatial queries and specifically
analyse this by evaluating the performance of our method on
the different types of questions. Further, we analyse the types
of errors our reasoning pipeline exhibits.

Scaling VSAs to VQA on natural images requires exten-
sions to previous SSP methods (Komer et al., 2019; Lu et al.,
2019). For instance, we extended the 2D SSPs to four dimen-
sions. As a result, the capacity of our SSP memory needs to
be higher than in the 2D case, where 512 dimensions were
found to perform best, while being in line with human ca-
pacity limits of working memory (Lu et al., 2019). We anal-
yse the decoding capacity of our 4D SSP memory for dimen-
sionalities: 512, 1,024, and 2,048. Specifically, we compute
the mean squared error (MSE) of recalled 2D locations, the
intersection-over-union (IoU) of the decoded objects bound-
ing boxes, and the percentage of correctly recalled objects in
one image, where correct is defined as JoU > 0.5. IoU is cal-
culated as the overlapped area divided by the area of union
of two bounding boxes: IoU = % and is a common
metric that evaluates the accuracy of bounding boxes.

Another novelty of our method is the generated query
masks for spatial relation queries in natural language. We
evaluate our 37 generated query masks qualitatively by com-
paring them to the common understanding of the spatial re-
lation. For example, the relation to the right of, which is de-
picted in the query mask in Figure 1, shows the region of
interest to be on the right side of the queried object that is set
in the centre of the mask.

Results

Following (Cao & Jiang, 2023; Song, Dong, Zhang, Liu, &
Wei, 2022), we calculate the overall accuracy of our model
VSA4VQA on the GQA validation set with three different ran-
dom seeds and achieve 46.5% (std 0.09%). See Table 2 for
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comparison to other zero-shot methods. The current state-of-
the-art deep learning method Mod-Zero-VQA (Cao & Jiang,
2023) also employs the NMN paradigm (Andreas et al., 2016)
and uses three different pre-trained deep learning models to
implement the functions for answering the questions. How-
ever, their method does not encode a cognitively plausible
image representation and requires 621 million model parame-
ters, i.e.significantly more than the 150 million used by CLIP.

In Figure 4, we show a more detailed performance analysis
split across the different modules. Questions that use a re-
lation function, implemented via query masks on SSP mem-
ory, in comparison to attribute functions that are implemented
with CLIP. While there are more questions with relational
queries (52%), accuracy of CLIP and relations implemented
via SSP memory are almost the same, i.e. 37% in comparison
to 38%. However, it is important to note here that the per-
centages given are based on the overall correct answer to the
question, so they involve additional steps, where errors could
occur. For example, 96% of questions include a select func-
tion and while the SSP unbinding operation correctly decodes
87% of items, the accuracy of questions including the select
operation is also only 47%. The number of questions, where
both relational queries and attribute queries were combined
are shown in the right bar, where accuracy further decreased
as more steps are needed.

A possible reason for the wrong answers in relational
queries is the size of the query masks, where it was sug-
gested (Lu et al., 2019) that a higher region size will reduce
decoding accuracy. We have tested this hypothesis by cal-
culating the pearson correlation coefficient between accuracy
and query mask size, resulting in a weak correlation of —0.30
(one-sided p = 0.09). Another possible source of errors is
the inherent stochasticity in the SPA. Each SP is chosen ran-
domly, therefore, the vectors are sometimes more or less suit-
able for the question. We have balanced this effect by running
multiple random seeds, however, running the same question
with multiple random seeds and choosing the majority answer
might further improve performance. This was computation-

Table 2: Overall accuracy of zero-shot models on GQA vali-
dation set. Our method VSA4VQA is comparable to state-of-
the-art deep learning method Mod-Zero-VQA.

Method Accuracy
TAP-C (Song et al., 2022) 36.3%
Mod-Zero-VQA (Cao & Jiang, 2023) 47.3%
VSA4VQA (ours) 46.5%

ally infeasible in our case, due to the large dataset size, but
should be tested in future work on other datasets.

We have further highlighted the amount of questions with
no answer in Figure 4. These occur if a select operation
did not find the requested object or if a filter operation re-
turns the wrong result and incorrectly terminates the program.
Other causes also include functions that are not implemented
due to nesting, e.g. finding objects that are the same or dif-
ferent. In relation queries this amounts to 20% and in CLIP
queries to 16%. We highlight these questions as open direc-
tions, where further improvements are possible.

Capacity Analysis

To analyse the impact of model capacity on performance, re-
flected in the dimensionality of the SSP vectors, we evalu-
ated on a reduced set of 10,000 questions to save computation
time, as done in previous work (Komer et al., 2019). Perfor-
mance results for SSP vector dimensions of size 512, 1,024,
and 2,048 are summarised in Table 3. 512 dimensions were
chosen in previous work as it achieved high decoding accu-
racy for up to 10000 random SSPs (Komer et al., 2019). As
can be seen from the table, here, 512 dimensions result in a
high MSE and low IoU between bounding boxes, which is
most likely due to the increase in dimensions of the vector
space from 2D to 4D. At the same time, however, the choice
of dimensions does not seem to significantly impact the ac-
curacy: Using 512-dimensional vectors results in similar per-
formance as for higher dimensions. This suggests that SSP
decoding accuracy only plays a minor role in overall perfor-
mance of VSA4VQA on question answering. Further, 2,048
dimensions do not significantly increase accuracy, which in-
dicates that 1,024 dimensions are sufficient, while requiring
less computation time and resources.

Table 3: Capacity analysis. Decoding accuracy of items with
different dimension of SSP vectors, measured with mean-
squared-error (MSE), intersection-over-union (IoU), percent-
age of correct items, and VQA accuracy.

Dimensions MSE | IoU{ Items? Accuracy
512 51.46 0.59 63.47% 45.03%
1,024 26.23 0.80 86.71% 46.02 %
2,048 23.09 0.84 89.78% 45.96%




Error Analysis

We further analyse the types of errors that can occur on a few
selected questions. We found four distinctive types of errors:
(1) wrong SSP encoding/decoding, (2) wrong CLIP predic-
tion, (3) bad programs, and (4) ambiguous questions. In the
first case, the select method returns the wrong location for
the requested object. As we have seen in the capacity anal-
ysis, this might be due to the vector’s dimension and subse-
quent noise. When there are many objects, the orthogonal-
ity principle of the hyper-dimensional vector space no longer
holds and object SSPs are no longer orthogonal in the vector
space, which in turn results in overlapping SSPs that cannot
be disentangled correctly in the clean-up process.

In the second case, wrong CLIP predictions can lead to a
false answer or no answer at all. CLIP is sensible to the selec-
tion of proposal sentences. We have tested different options:
only giving the attribute, using the object name plus the at-
tribute, and building a full sentence. We found that the full
sentence, where possible, gives the best result On the other
hand, CLIP is also sensible to the processing of the image.
We have selected the red circle method proposed by Shtedrit-
ski et al. (2023), as it showed improved performance.

The third type of error is due to incorrect programs. Here,
we found two main causes: terms with more than one word
and incorrect split of filter v and filter_h. While the
latter could be remedied in our implementation, the for-
mer is difficult to address. For example, the term “soccer
ball” gets incorrectly split so that the program looks like
select (soccer), which naturally does not yield a result
when querying the SSP memory, where only soccer ball
was encoded. A possible solution would be to have a dictio-
nary with all terms that encompass more than two words and
recreate the programs with a respective check of the dictio-
nary. This will be left for future work.

The final type of error stems from ambiguous questions in
the GQA dataset. For example, one question is “who is wear-
ing a shirt?”, but in the corresponding image both a girl and
a boy are wearing shirts, while the correct answer is “girl.”
This example illustrates that questions can be ambiguous, i.e.
even humans might answer them incorrectly. In fact, human
subjects tested on 4000 random questions from GQA only
achieved an average accuracy of 89.3% (Hudson & Manning,
2019). Approaches on other datasets have addressed this is-
sue by using soft VQA scores that account for multiple cor-
rect answers, for details see (Cao & Jiang, 2023; Song et al.,
2022). GQA, however, does not provide the required annota-
tions.

Discussion

In our detailed error analysis we found four causes for er-
rors: wrong SSP decoding, incorrect CLIP predictions, bad
programs, and ambiguous questions. While the latter two are
due to the dataset selection and might not be as pronounced
on different datasets, the first two could be improved upon.
Specifically, the incorrect CLIP predictions might be circum-

vented by extracting the attributes such as colour or shape
with more specialised feature extractors and encoding them
into the SSP memory. However, such a feature extractor
model needs to be trained and as we have seen in our capacity
analysis, the additional encoding of attributes in SSPs would
require higher vector dimensions.

We have chosen to use 1,024 dimensional SSP vectors to
stay comparable to previous work and within human capac-
ity limits (Komer et al., 2019). For future work, however,
it would make sense to distinguish between a real memory
task, where all objects need to be retained in memory over
time, and the VQA task, where the image stays available.
The former setting is subject to biological capacity limits and
should therefore be implemented with limitation on vector
size. VQA, on the other hand, could allow for higher vector
dimensions without loss of biological realism.

A current limitation of our method is the use of ground
truth object annotations. In future work, we want to address
this by using pre-trained object detectors. While GQA pro-
vides detections of a fine-tuned Faster-RCNN (Ren, He, Gir-
shick, & Sun, 2015), they do not include the labels of bound-
ing boxes, which are critical for our approach and could not
be reproduced. Furthermore, handling multiple objects of the
same type is difficult in the current method. In previous work
(Komer et al., 2019) this was solved by computing an average
across multiple random seeds.

Similarly, we found that encoding objects as regions did
not work in our setting. This is, again, likely due to the lim-
itation of random seeds — this approach would allow for de-
coding the full region with higher precision (Lu et al., 2019)
but is not possible for the computationally more demanding
VQA task on natural images. Instead, we chose to extend the
VSA to four dimensions to encode objects’ width and height.
In future work, we are interested in finding a more cognitively
inspired method. In general, VSA4VQA could be improved by
moving towards a fully neural implementation on dedicated
hardware, which would improve efficiency and, therefore, al-
low for probabilistic inference with multiple random seeds.

Conclusion

Our proposed model, VSA4VQA, is capable of answering
complex compositional questions on natural images. We have
tested our model on a dataset that focuses on spatial queries
and achieved comparable performance to current zero-shot
deep learning approaches. To the best of our knowledge,
VSA4V(QA is the first model to implement a cognitively plau-
sible image representation of natural images, which can be
used to answer complex spatial queries. We have effec-
tively scaled a VSA to encode additional dimensions for
width and height of objects. Further, we generated 37 spa-
tial query masks from data to answer relation-based questions
and integrated a pre-trained vision-language model to answer
attribute-related questions. Our extensive analysis on ques-
tions, errors, and capacity limits provides valuable insights
for future work.
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