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Abstract

Drill string communications are important for drilling efficiency and
safety. The design of a low latency drill string communication sys-
tem with high throughput and reliability remains an open chal-
lenge. In this paper a deep learning autoencoder (AE) based end-
to-end communication system, where transmitter and receiver imple-
mented as feed forward neural networks, is proposed for acoustic
drill string communications. Simulation shows that the AE sys-
tem is able to outperform a baseline non-contiguous OFDM sys-
tem in terms of BER and PAPR, operating with lower latency.

Keywords: neural network, autoencoder, acoustic communications, drill
string, measurement while drilling

1 Introduction

During drilling a borehole for oil or gas extraction, a large amount of data,
acquired from the drilling rig sensors, has to be transmitted to the surface
in real-time. This process is known as measurement while drilling (MWD).
Nowadays, the most promising method for high speed MWD communications
is acoustic drill string transmission [1].
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Drill string acoustic channel has frequency-selective fading and a long
impulse response [2, 3]. Orthogonal frequency-division multiplexing (OFDM)
is widely used for MWD communications [4–6], as it is robust to frequency-
selective fading. OFDM based MWD systems provide good throughput and
reliability, but have poor latency because of a long impulse response of the
channel. A cyclic prefix (CP) which is required to mitigate the intersymbol
interference (ISI) should be as long as channel impulse response and, conse-
quently, to achieve the acceptable CP overhead, OFDM operates with symbols
of long duration. For drill string acoustic communications a design of low
latency system with respect to reliability and throughput requirements remains
an open challenge.

Deep learning autoencoder (AE) based end-to-end communication systems
are the current state-of-the-art, where transmitter and receiver are imple-
mented by neural networks (NN). They are trained as an autoencoder to adapt
to a specific communication channel. During training transmitter and receiver
are optimized jointly for end-to-end performance. As a result autoencoder
learns signal waveforms, which are resistant to channel impairments.

It was shown that AE systems are able to perform as good as uncoded
quadrature amplitude modulation (QAM) and Hamming coded QAM mod-
ulation schemes under additive white Gaussian noise (AWGN) and flat
Rayleigh fading channels [7, 8]. Under certain fading channels AE outper-
forms QAM scheme with minimum mean square error (MMSE) equalization
[9], and bi-directional recurrent NN based AE is comparable with QAM with
maximum-likelihood sequence estimation (MLSE) equalizer [10].

In real-world applications, when channel model is known, but is too compli-
cated to derive an optimal modulation scheme, AE is able to provide a better
solution than conventional systems. Much attention is payed to AE systems
in context of optical communications [11–13] including those using nonlinear
dispersive channels; an AE system was designed and applied for human body
communications [14]; AE is applicable for molecular communications [15] as
well.

In this paper the perspective of applying AE for acoustic drill string
communications is studied. An AE communication system is proposed and
evaluated. Its performance in terms of bit error rate (BER) and signal
peak-to-average power (PAPR) is compared with a baseline OFDM system.
Simulation shows that for drill string communications AE may provide reliable
transmission with lower latency at the same throughput.

2 Drill String Communication Channel

In acoustic MWD system a downhole transmitter generates mechanical longi-
tudinal waves, which propagate along a drill string to a surface receiver. In the
conventional acoustic channel model of a drill string (e.g. [1]) the transmitted
signal x(t) with the added downhole drill bit noise nd(t) flows through acous-
tic channel with an impulse response h(t). Then the signal is affected by the
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surface noise ns(t) produced by drilling equipment. Thus, at the receiver side
the signal y(t) is given as

y(t) = x(t) ∗ h(t) + nd(t) ∗ h(t) + ns(t).

2.1 Frequency Response of Drill String

A drill string consists of alternating drill pipes and tool joints. Such structure
results in multiple reflections of acoustic waves and, therefore, channel response
(Fig. 1) is similar to a comb filter. A frequency response of a geometrically
ideal drill string is obtained using transfer matrix method [2].
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Fig. 1 A frequency response and impulse response obtained using transfer matrix method
for a drill string composed of 10 pipes and 9 joints (Table 3).

Suppose, a drill string consists of N tube elements, dn and an are the length
and the crossectional area of the n-th element, respectively, for n = 1 . . . N .
The mass density of the drill string is ρ, and the velocity of longitudinal waves
is c. The longitudinal waves are projected on the right surface of the N -th
element and arrive on the left surface of the first element.

The potential function of the n-th element is expressed as

Φ(n)(x) = Φ
(n)
I ejkx +Φ

(n)
R e−jkx,
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where Φ
(n)
I and Φ

(n)
R are the amplitudes of potential functional of incident and

reflected waves, respectively, and k is the longitudinal wave number. Let the
reflection coefficient R and transmission coefficient T be defined as

T = Φ
(1)
I /Φ

(N)
I , R = Φ

(N)
R /Φ

(N)
I .

For the whole drill string there is a matrix equation

AAAN (0)

[
1 +R
1−R

]
=MMMAAA1(0)

[
T
T

]
,

where AAAn is a 2× 2 matrix function defined as

AAAn(x) =

[
−k sin(kx) j k cos(kx)

ρ an c
2k2 cos(kx) jρ an c

2k2 sin(kx)

]
,

and MMM is a 2× 2 matrix given by

MMM = AAAN (dN )AAA−1
N (0)AAAN−1(dN−1)AAA

−1
N−1(0) . . .AAA1(d1)AAA

−1
1 (0).

This equation can be solved about R and T numerically for certain drill string.
The transmission coefficient T can be seen as a function of the wave number

k. The wave number is obtained as

k =
2πf

c
,

where f is the longitudinal wave frequency. Thus, there is a relationship
between T and f , which is the frequency response H(f) of a drill string chan-
nel. The impulse response h(t) of the channel is obtained by using inverse
Fourier transform.

2.2 Drill Noise

The channel model includes two kinds of noise: drill bit noise nd(t) and surface
noise ns(t). The both can be understood as overall drill noise

n(t) = nd(t) ∗ h(t) + ns(t).

The overall noise is Gaussian and fairly stationary, but its spectrum is not flat.
Since true spectral shape depends on the surface equipment and, therefore, is
usually unknown, it is common to use white Gaussian noise assumption.

3 Autoencoder Communication System

The AE communication system consists of three parts: the encoder, the
decoder, and the channel (Fig. 2). Suppose, the sequence of m bits bbb ∈ {0, 1}m
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bbb Encoder
xxx = fθe(bbb)

xxx Channel
yyy ∼ P (yyy |xxx)

yyy Decoder
b̃bb = gθd(yyy)

b̃bb

Fig. 2 Architecture of the autoencoder communication system.

is transmitted. The encoder constructs the signal of n complex samples xxx ∈ Cn,
an AE symbol, by mapping fθe : {0, 1}m → Cn, where θe are the encoder train-
able parameters. Hence, the communication rate of the system is r = m/n (bits
per channel use). At the receiver side the noisy and distorted signal yyy ∈ Cn is
observed. The channel may be described by conditional distribution P (yyy | xxx).
The decoder provides the estimation of original bit sequence b̃bb ∈ Rm by map-
ping gθd : Cn → Rm, where θd are the decoder trainable parameters. This
estimation can be viewed as b̃i = P (bi = 1 | yyy), and 1 − b̃i = P (bi = 0 | yyy),
respectively.

The average power constraint 1
n

∑n
i=1 x i2 = 1 is imposed on the transmit-

ted signal to make the implementation of such a system feasible.

3.1 Encoder and Decoder

The encoder and decoder are implemented as feedforward fully connected
(dense) NNs (Table 1). The both consist of three layers. A rectified linear unit
(ReLU) activation function is used to build an inner data representation, a
linear activation allows to construct a signal of arbitrary form, a sigmoid maps
logits to output probabilities. The proposed structure was optimized for the
specific bit sequence length m and symbol length n (see Sec. 4). For larger
values the structure should be increased to keep the performance.

Autoencoder is trained to minimize the loss function

L(θe, θd) =
1

|S|
∑
bbb∈|S|

(
ℓBCE(bbb, b̃bb) + α ℓPAPR(xxx)

)
,

where S is the training set and | S | is the cardinality of S. The term ℓBCE is
the binary cross-entropy loss defined as

ℓBCE(bbb, b̃bb) = − 1

m

m∑
i=0

bi log(b̃i) + (1− bi) log(1− b̃i).

It measures the accuracy of bit sequence estimation. The term ℓPAPR is the
signal PAPR defined as

ℓPAPR(xxx) =
maxi=1,...,n|xi|2

1
n

∑n
i=1|xi|2

= max
i=1,...,n

|xi|2 .
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Table 1 The structure of proposed autoencoder system.

Layer Activation Output Size

E
n
co

d
er

Input m
Dense ReLU 512

Batch Normalization 512
Dense ReLU 1024

Batch Normalization 1024
Dense Linear n× 2

To Complex n
Power Normalization n

C
h
a
n
n
el Input p× n

Modulation pun
Convoltion and AWGN pun

Demodulation p× n

D
ec
o
d
er

Input n
From Complex n× 2

Dense ReLU 1024
Batch Normalization 1024

Dense ReLU 512
Batch Normalization 512

Dense Sigmoid m

Including PAPR into the loss function is the common approach of PAPR
reduction for AE systems. In order to estimate true PAPR of continuous signal,
in the above equation xxx is upsampled by a factor of 4. The parameter α
regulates the tradeoff between PAPR and transmission reliability.

3.2 Channel

A signal xxx constructed by the encoder is baseband. First, xxx is upsampled by a
factor u and modulated by a carrier frequency fc. Then a sequence of p con-
structed independently signal frames are concatenated into a packet x̄xx ∈ Cpun.
The whole packet is fed into the channel in order to simulate ISI distortions.
At the receiver side a distorted packet ȳyy ∈ Cpun is split into separate signal
frames. Then each frame is converted into baseband signal yyy which is processed
by the decoder.

The packet transmission through the channel is modeled as

ȳyy = x̄xx ∗ hhh+nnn,

where hhh ∈ Cl is a vector of l discrete samples of the channel complex impulse
response, and nnn ∈ Cpun is complex AWGN, i.e., ni ∼ CN (0, σ2) for i =
1, . . . , pun. Since the convolution result is a vector of length pun+l−1, the last
l − 1 elements are discarded. The variance of noise σ2 = (rEb/N0)

−1, where
the communication rate r and energy per bit Eb are defined by transmitter
design, and the noise spectral density N0 is a property of the channel. N0 is
accounted as a hyperparameter and remains constant during training.
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4 Simulation

In order to estimate the performance of the AE for drill string communications,
its BER, PAPR and power spectral density (PSD) were evaluated under a drill
string channel. For comparison, an non-contiguous OFDM (NC-OFDM) was
taken as a baseline.

4.1 Setup

The simulation was carried out with complex signals at a sample rate fs =
2048 Hz (Table 2). The AE and baseline NC-OFDM operate in a frequency
band which starts at fc = 848 Hz and has a width of fs/u = 512 Hz. Both
were configured to have equal communication rate r = m/n = 1.125, which
leads to the total throughput of 576 bits/s, given the specified bandwidth.
But the latency of the AE system is 9 times lower, since its symbol length is
64/(512+64) = 1/9 of the NC-OFDM symbol length. In both cases p is chosen
so as to give equal packet length of pun = 36 · 4 · 64 = 4 · 4 · (512 + 64) = 9216
samples. The channel impulse response was modeled using transfer matrix
method (Sec. 2) for a drill string composed of 10 pipes and 9 joints (Table 3).

Table 2 Parameters of simulation.

m n p u l fc (Hz) fs (Hz)

AE 72 64 36
4 2048 848 2048

NC-OFDM 648 512 + 64 4

Table 3 Properties of pipes (p) and joints (j).

dp (mm) dj (mm) ap (cm2) aj (cm2) c (m/s) ρ (kg/m3)

8760 240 52.276 248.186 5.13 · 103 7.87 · 103

The baseline NC-OFDM system is a simplified version of a system proposed
in [6]. The PAPR reduction and pilot based channel estimation were omitted.
Channel state information was assumed to be known at the receiver side. For
the baseline NC-OFDM system n denotes the length of OFDM symbol with
CP, while m is the number of bits carried by OFDM symbol. It uses QPSK
bit mapping over 324 of 512 subcarries, which were non-contiguously selected
within the two channel passbands ([878, 1049] Hz and [1169, 1320] Hz). The
length of CP is 64 complex samples or 0.125 s after upsampling. The shorter
CP leads to noticeable BER performance degradation.

The AE was trained for 256 epochs using Adam optimizer with initial learn-
ing rate 0.001. The training and test datasets contain 192 and 64 minibatches,
respectively. Each minibatch consists of 128 packets, i.e., 128pm = 331776 bits.
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For performance evaluation a distinct dataset of 256 minibatches was used for
both the AE and the baseline NC-OFDM. All the data were sampled randomly
from uniform distribution.

4.2 Results

The performance of the AE depends on the N0 and α taken for training. For
BER evaluation α was set to 0. In this case the AE ignores PAPR and tries to
reconstruct input bit sequence as accurate as possible. PAPR reduction was
investigated for α = 0.001 and 0.005. For each α the AE was trained at 1/N0

= 3 dB, 5 dB and 7 dB.

4.2.1 Power Spectral Density

While the PSD of the NC-OFDM signal is roughly constant within selected
subbands, the PSD of the AE signal varies in accordance to the channel fre-
quency response (Fig. 3). It illustrates how the AE adapts to the channel.

800 900 1000 1100 1200 1300 1400

Frequency (Hz)

PS
D

(a
.u

.)

Channel response NC-OFDM AE

Fig. 3 PSD of signal for the NC-OFDM and the AE trained at 1/N0 = 3 dB and α = 0.

4.2.2 BER Performance

The AE is able to outperform the baseline in terms of BER for wide Eb/N0

range (Fig. 4). AE trained at 1/N0 = 3 dB or 5 dB perform better for mid-
range Eb/N0, but yet suffers from ISI at higher Eb/N0, so there is a BER floor.
At high N0 AWGN causes the majority of errors, therefore AE learns a signal
that robust to AWGN and pays less attention to ISI. Conversely, AE trained
1/N0 = 7 dB is more robust to ISI at high Eb/N0, but performs worse at
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Fig. 4 BER performance of the baseline NC-OFDM and the AE trained at different N0

and α = 0.

lower Eb/N0. For low N0 ISI causes the majority of errors, and the situation
is symmetrically similar.

4.2.3 PAPR Performance

PAPR minimization during training results in a PAPR reduction (Fig. 5),
but leads to a little degradation of BER performance (Fig. 6). For α = 0.005
the system is more robust at low Eb/N0. In this case PAPR loss acts as a
regularization, it helps AE to learn to perform better in a wider Eb/N0 range.
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Fig. 5 PAPR CCDF for the baseline NC-OFDM and the AE trained at 1/N0 = 3 dB and
different α.



10 End-to-End Autoencoder for Drill String Acoustic Communications

−3 −1 1 3 5 7 9 11 13

Eb/N0 (dB)

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

B
E

R
NC-OFDM
AE, α = 0.000
AE, α = 0.001
AE, α = 0.005

Fig. 6 BER performance of the baseline NC-OFDM and the AE trained at 1/N0 = 3 dB
with different α.

5 Conclusion

Simulation shows that AE is a perspective approach for acoustic drill string
communications. In comparison with the baseline NC-OFDM the AE is able
to provide better BER and PAPR, operating at the same throughput and 9
times lower latency. The AE adapts to the drill string channel during training
and, thus, outperforms the baseline NC-OFDM, which is adapted manually by
selecting non-contiguous carriers.

However, AE has poor scalability in contrast to NC-OFDM. Increasing of
transmission bandwidth or symbol duration, i.e., larger m and n, may require
a larger AE structure. As a result the curse of dimensionality is arisen. How-
ever, it is still possible but less efficient to use a batch of small AE systems
multiplexed in frequency.
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