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ABSTRACT
We present TRACE, a time-reversible hybrid integrator for the planetary N-body problem. Like hybrid symplectic integrators,
TRACE can resolve close encounters between particles while retaining many of the accuracy and speed advantages of a fixed
timestep symplectic method such the Wisdom–Holman map. TRACE switches methods time-reversibly during close encounters
following the prescription of Hernandez & Dehnen (2023). In this paper we describe the derivation and implementation of TRACE
and study its performance for a variety of astrophysical systems. In all our test cases TRACE is at least as accurate and fast as the
hybrid symplectic integrator MERCURIUS. In many cases TRACE’s performance is vastly superior to that of MERCURIUS. In test
cases with planet-planet close encounters, TRACE is as accurate as MECURIUS with a 13x speedup. If close encounters with the
central star are considered, TRACE achieves good error performance while MERCURIUS fails to give qualitatively correct results.
In ensemble tests of violent scattering systems, TRACE matches the high-accuracy IAS15 while providing a 20x speed-up. In
large N systems simulating lunar accretion, TRACE qualitatively gives the same results as IAS15 but at a 47x speedup. We also
discuss some cases such as von Zeipel-Lidov-Kozai cycles where hybrid integrators perform poorly and provide some guidance
on which integrator to use for which system. TRACE is freely available within the REBOUND package.
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1 INTRODUCTION

The N-body problem is one of the most fundamental problems in
astronomy. Conceptually, it is a seemingly simple problem: given
the initial positions and velocities of N particles, can we predict their
state at some arbitrary time in the past or future? In most astronomical
contexts, the inter-particle forces are given by Newton’s laws of
gravitation (Newton 1687). Advancements in our understanding of
the N-body problem have shed light on topics as varied as the long-
term secular behavior of the solar system (Laplace 1775; Lagrange
1778), the large-scale structure of the universe (Lemson & Virgo
Consortium 2006), and the dynamics of globular clusters (Heggie &
Hut 2003), to name but a few.

Despite its conceptual simplicity, solving the N-body problem
is extremely difficult. The two-body problem is exactly solved
(Bernoulli 1775). However, it is well known that for 𝑁 ≥ 3 the
N-body problem admits no practical general analytic solution1, with
solutions either only valid in the limit of certain simplifying as-
sumptions (Poincaré 1890) or slow to the point of being completely
infeasible in practice (Sundman 1913; Qiu-Dong 1990). With these
constraints of both accuracy and computation time, to study the N-
body problem we must turn to numerical methods of approximation.

Of particular interest to astronomers is the planetary N-body prob-
lem, which is characterized by a dominant central "star" orbited by

★ E-mail: tiger.lu@yale.edu
1 Newton implies that the N-body problem is in general unsolvable in his
original manuscript.

many smaller "planets". Wisdom & Holman (1991)2 developed an
efficient, accurate and widely used integrator for the planetary N-
body problem by treating the effects of other planets in the system
as perturbations to the dominant Keplerian motion. Improvements
on this "Wisdom–Holman" method over the years are described in
Saha & Tremaine (1992, 1994); Wisdom et al. (1996); Laskar &
Robutel (2001); Hernandez & Bertschinger (2015); Rein & Tamayo
(2015); Hernandez (2016); Wisdom (2018); Rein et al. (2019b); Ja-
haveri et al. (2023). The Wisdom–Holman method is an example of
a symplectic method, from which many of its desirable characteris-
tics can be attributed to. Symplectic integrators solve Hamiltonian
systems, and are hugely advantageous because they exactly conserve
phase space volumes and Poincaré invariants (Yoshida 1993; Hairer
et al. 2006). Due to these constraints, they boast impressive energy
error performance over millions of dynamical timescales of a system,
whereas conventional integrators may exhibit significant failures af-
ter only a few. Given that the dynamics of most astrophysical systems
are governed by Hamiltonians (as far as gravity is concerned), sym-
plectic integrators are ideal for their study. The Wisdom–Holman
scheme allowed for feasible computation of the evolution of plan-
etary systems on Gyr timescales, and its speed and efficiency have
made insights into computationally demanding topics such as the
stability of planetary systems (Holman & Wisdom 1993; Holman &
Wiegert 1999) and the precise orbital and obliquity evolution of solar
system planets (Touma & Wisdom 1993; Laskar et al. 2004, 2011)
possible.

2 Kinoshita et al. (1991) developed a similar integrator independently.
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2 Lu, Hernandez & Rein

Wisdom–Holman integrators have become mainstays in celestial
dynamics, but this is not to say they are without their drawbacks. One
such shortcoming is inflexibility: usually symplectic methods use a
constant timestep which cannot be adapted if relevant timescales in
the problem change. Focusing on the Wisdom–Holman method in
particular, it fails when the underlying assumption of a dominant
Keplerian orbit is challenged. This occurs primarily when there is a
close encounter between two pairs of bodies and inter-particle forces
dominate instead. In practice, this means Wisdom–Holman integra-
tors are only effective for problems where all planets maintain stable
Keplerian orbits for the duration of the simulation. There are a few
ways to circumvent this issue. We will focus on the method of hy-
brid symplectic integrators. Schemes such as MERCURY/MERCURIUS
(Chambers 1999; Rein et al. 2019a) and modified SYMBA (Duncan
et al. 1998; Levison & Duncan 2000) are able to achieve accept-
able levels of accuracy while retaining many of the long-term error
and speed benefits of the Wisdom–Holman map in uses cases when
the traditional map fails. This is achieved by using maps utilizing
more flexible conventional (but non-symplectic) integrators such as
Bulirsch-Stoer (Press et al. 2002) or IAS15 (Rein & Spiegel 2015)
upon close encounters, switching between integration methods based
on some predetermined switching function. Hybrid symplectic in-
tegrators have allowed for study of topics such as planetary/lunar
accretion (Canup 2004; Raymond et al. 2006), the dynamical his-
tory of our solar system (Morbidelli et al. 2005; Tsiganis et al. 2005;
Gomes et al. 2005), and the imprint of instabilities on the demograph-
ics of exoplanetary systems (Chatterjee et al. 2008; Ford & Rasio
2008; Lissauer et al. 2011), all topics involving regimes where the
Wisdom–Holman method breaks down but are simultaneously too
computationally demanding for conventional integrators. The hybrid
integrators listed are symplectic, which come with advantages and
disadvantages. Maintaining symplecticity ensures good long-term
error performance, but also carries with it much of the inflexibility
described before. This primarily manifests in the choice of switching
function, which in practice can often be restrictive or cumbersome.

In this work, we take an alternative approach to constructing a
hybrid integrator. Our integrator is not symplectic, but instead is
time-reversible. While the breadth of study and literature on time-
reversible integration methods is small in comparison to that of sym-
plectic methods (Hut et al. 1995; Hairer et al. 2006, 2009; Dehnen
2017; Hernandez & Bertschinger 2018; Boekholt et al. 2023), in
principle an exactly time-reversible scheme shares many of the long-
term beneficial error properties as a symplectic integrator. While
many time-reversible schemes have proven computationally infeasi-
ble for practical purposes, in the recent work of Hernandez & Dehnen
(2023) a simple time-reversible algorithm was developed with com-
parable error and computational performance to symplectic methods.

Based on the ideas of Hernandez & Dehnen (2023) we present
TRACE, a time-reversible hybrid integrator for the planetary N-body
problem. The TRACE algorithm and switching scheme is conceptually
simple, flexible and easy to modify. To our knowledge, it is the first
hybrid integrator capable of accurately integrating close encounters
between any pair of bodies in the planetary N-body problem, includ-
ing the central star. We have tested TRACE on a variety of realistic
astrophysical systems. We have further developed switching func-
tions beyond those discussed in Hernandez & Dehnen (2023), per-
formed statistical tests on ensembles of chaotic scattering systems,
and tested the performance limits of our code on large 𝑁 systems. In
all cases, TRACEmatches or exceeds the accuracy of previous hybrid
integrators such as MERCURIUS, and admits speedups of up to 13x.
TRACE is publicly available in the REBOUND N-body package (Rein
& Liu 2012). The structure for this paper is as follows. In Section

2 we provide background on the construction of integrators for the
planetary N-body problem. In Section 3 we discuss the current hy-
brid integration techniques currently available and derive the TRACE
equations of motion. In Section 4 we discuss the TRACE switching
scheme. In Section 5 evaluate TRACE’s performance on realistic as-
trophysical systems one might encounter including highly eccentric
orbits, planet-planet scattering and planetesimal accretion. In Sec-
tion 6 we discuss potential improvements to the TRACE algorithm. In
Section 7 we draw our conclusions, and provide specific guidelines
for when TRACE should be used over other integrators.

2 EQUATIONS OF MOTION OF THE PLANETARY
N-BODY PROBLEM

In this section we introduce the equations of motion used for the
planetary N-body problem, and review the construction and benefits
of the Wisdom–Holman map.

2.1 Constructing Hamiltonian Maps

We will first provide a brief overview of constructing maps for con-
servative Hamiltonian systems in general. Consider some system
governed by the Hamiltonian H . Denote the state of the system in
canonical coordinates by the vector 𝒛. Hamilton’s equations dictate
the time-evolution of 𝒛,

d𝒛
d𝑡

= {𝒛,H}, (1)

Where 𝑡 is time. The Lie operator Ĥ is defined Ĥ 𝒛 ≡ {𝒛,H}. We
can thus rewrite Equation (1),

d𝒛
d𝑡

= Ĥ 𝒛, (2)

This differential equation admits the solution,

𝒛(𝑡 + ℎ) = 𝑒ℎĤ 𝒛(𝑡), (3)

Here ℎ is referred to as the time step and 𝑒ℎĤ is defined as the
propogator or map3. While this is indeed an exact solution for the
problem, in many cases this is difficult to solve and impractical.
One useful path forward is operator splitting: in many Hamiltonian
systems, we may decompose H into the sum of sub-Hamiltonians,
each corresponding to some component of the motion. A simple
scheme is to split the potential and kinetic components,

H = 𝑇 ( 𝒑) +𝑉 (𝒒). (4)

In practice, these sub-Hamiltonians are often significantly simpler
to solve, and in many cases admit analytic solutions where the full
Hamiltonian does not. The idea behind operator splitting is that
the true equation of motion may be approximated by first evolving
the system under 𝑇 , and then 𝑉 . Maps may be constructed through
different splittings and applications of the individual propagators
over various timesteps. Splitting schemes are not exact solutions, but
are often the only viable way to study such systems. The error in a
splitting scheme can be analyzed via the Baker-Campbell-Hausdorff
(BCH) formula (Campbell 1897; Baker 1905; Hausdorff 1906; Hairer

3 Explicitly, the propagator is defined by the Taylor series 𝑒Ĥ ≡ ∑∞
𝑛=0

Ĥ𝑛

𝑛!
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et al. 2006). For propagators �̂�, �̂�, and �̂� satisfying �̂� = �̂� + �̂�, the
local error in the canonical coordinates over one step of the splitting
scheme can be expressed as,

Error =
(
𝑒ℎ�̂� − 𝑒ℎ�̂�𝑒ℎ�̂�

)
𝒛

=
ℎ2

2
[ �̂�, �̂�]𝒛 +𝑂 (ℎ3),

(5)

where [ �̂�, �̂�] ≡ �̂��̂�− �̂� �̂� is the commutator. Higher order terms in ℎ
depend on a series of nested commutators, so the error in a splitting
scheme arises from pairs of propagators not commuting. For instance,
the well-known leapfrog method is given 𝑒ℎĤ ≈ 𝑒

ℎ
2 �̂� 𝑒ℎ�̂� 𝑒

ℎ
2 �̂� . By

using the convenient symmetric form of the BCH formula, we can
calculate the error in one timestep of leapfrog,

Leapfrog Error =
(
𝑒𝑡 Ĥ − 𝑒

ℎ
2 �̂� 𝑒ℎ�̂� 𝑒

ℎ
2 �̂�

)
𝒛

=
ℎ3

24
(
[�̂� , [�̂� , 𝑇]] − 2[𝑇, [𝑇, �̂�]]

)
𝒛 +𝑂 (ℎ5).

(6)

Note that symmetry ensures no even powers of ℎ survive in this
expansion. Errors that depend higher power of ℎ are preferable as the
timestep is generally small.

2.2 The Wisdom–Holman Map

The planetary N-body problem considers a system of 𝑁 planets with
a dominant central mass. The central mass is denoted with subscript
0, and the other planets 1, 2, ..., 𝑁 . The well-known Hamiltonian of
the system may be written,

H =
∑︁
0≤𝑖

𝑝2
𝑖

2𝑚𝑖
− 𝐺

∑︁
0≤𝑖< 𝑗

𝑚𝑖𝑚 𝑗

|𝒒𝑖 − 𝒒 𝑗 |
, (7)

with 𝒒, 𝒑 the canonical coordinates/momenta and m the masses. We
make an important note at this point: this is the only Hamiltonian
considered in this work. We will rewrite this Hamiltonian many times
for convenience, but all will be exactly equal to Equation (7).

Of course, the full N-body Hamiltonian is very difficult to numeri-
cally solve. The brilliance of the Wisdom–Holman map is in its clever
splitting of the Hamiltonian into a dominant and a much smaller part
which may be considered a perturbation. Specifically, the gravity of
the Sun is considered the dominant part and the influence of the other
planets in the system are considered perturbations. In this sense, the
Wisdom–Holman map approximates the planetary N-body problem
into N individual Kepler problems, one for each planet. It is clear why
this is effective upon inspection of the BCH formula. If the Hamilto-
nian is split into two parts H = H1 + H2 such that H2 = 𝜖H1 with
𝜖 ≪ 1, then the local error over one timestep will scale as𝑂 (𝜖ℎ3), in
comparison with𝑂 (ℎ3) as in standard leapfrog (Wisdom & Holman
1991; Tremaine 2023). This allows Wisdom–Holman integrators to
take comparatively large timesteps while maintaining small errors.
The resulting speed and accuracy has allowed for long-term integra-
tions of planetary systems on timescales comparable to the age of
the solar system.

We will make use of democratic heliocentric coordinates (DHC)
𝑸𝑖 and momenta 𝑷𝑖 . For more in-depth discussion of this coordinate
system see Duncan et al. (1998); Hernandez & Dehnen (2017); Rein
& Tamayo (2019), as well as Appendix A. Note that the Wisdom–
Holman map was originally derived in Jacobi coordinates instead of

DHC - we use the DHC coordinate systemm because it can effectively
deal with orbit crossings. Our state vector is thus defined:

𝒛𝑖 ≡ {𝑸𝑖 , 𝑷𝑖}. (8)

The advantage of DHC is that it allows us to rewrite eq. (7) as a sum
of four terms, each with a clear physical interpretation,

H =
𝑃2

0
2𝑚tot︸︷︷︸
H0

+ 1
2𝑚0

(∑︁
𝑖≠0

𝑃𝑖

)2

︸             ︷︷             ︸
HJ

−
∑︁

0<𝑖< 𝑗

𝐺𝑚𝑖𝑚 𝑗

𝑄𝑖 𝑗︸             ︷︷             ︸
HI

+
∑︁
𝑖>0

(
𝑃2
𝑖

2𝑚𝑖
− 𝐺𝑚0𝑚𝑖

𝑄𝑖

)
︸                      ︷︷                      ︸

HK

.

(9)

We use underbraces to mark the sub-Hamiltonians for clarity. Here
H0 describes the motion of the center of mass, HJ is called the
jump term and describes the barycentric omtion of the star, HI de-
scribes planet-planet interactions, HK the pure Keplerian motion
of the planets around the central body. 𝑚tot =

∑𝑁
𝑖=0 𝑚𝑖 is the total

mass of the system), and 𝑸𝑖 𝑗 ≡ 𝑸𝑖 − 𝑸 𝑗 . In DHC, the splitting of
the Wisdom–Holman map 𝑀WH we will consider is given as the
following composition,

𝑀WH ≡ 𝑒
ℎ
2 ĤI𝑒

ℎ
2 ĤJ𝑒ℎĤ0𝑒ℎĤK𝑒

ℎ
2 ĤJ𝑒

ℎ
2 ĤI . (10)

Each of the sub-Hamiltonians H0,HJ, HI and HK may individually
be solved analytically. The equations of motion governed by H0,HJ
and HI are trivially solved, while HK corresponds to Kepler’s equa-
tions which can be solved with a Kepler solver (Danby 1992).

3 HYBRID INTEGRATORS

There are a variety of relevant and interesting situations in many as-
trophysical systems where this assumptions underlying the Wisdom–
Holman integrator break down. As mentioned previously, more con-
ventional integrators are better equipped to handle these failure cases,
but lose the long-term error benefits of Wisdom–Holman.

Ideally, we would like to use the Wisdom–Holman scheme when
possible to leverage its considerable speed advantages, and use a
more conventional, flexible integrator when the assumptions inherent
to the Wisdom–Holman map break down in the interest of accuracy.
This is the idea behind hybrid integrators. In this section, we will
enumerate various situations where the Wisdom–Holman map fails,
and discuss the existing solutions. At the end, we will introduce our
map TRACE, which is capable of effectively handling all such pitfalls.

3.1 Planet-Planet close encounters

If two planets undergo a close encounter, HI will dominate over HK.
The Wisdom–Holman scheme breaks down here. A solution was
proposed by Chambers (1999) in their code MERCURY by smoothly
moving terms from the interaction term to the Kepler term. This
ensures that HK is always the dominant term in the Hamiltonian.
A modified version of this scheme is implemented in REBOUND in
the form of the hybrid symplectic integrator MERCURIUS (Rein et al.
2019a). While HK no longer exactly corresponds to Kepler’s equa-
tion and cannot be analytically solved, it is possible to approximate

MNRAS 000, 1–15 (2023)
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accurately and efficiently with a more conventional integration tech-
niques. MERCURY uses a Bulirsch-Stoer scheme while MERCURIUS
uses IAS15, an adaptive-timestep 15th-order non symplectic inte-
grator that serves as the default integrator in REBOUND. Explicitly,
the MERCURIUS map is obtained by splitting eq. (7), for use in map
(10), in the following way,

H =
𝑃2

0
2𝑚tot︸︷︷︸
H0

+ 1
2𝑚0

(∑︁
𝑖≠0

𝑃𝑖

)2

︸             ︷︷             ︸
HJ

−
∑︁

0<𝑖< 𝑗

𝐺𝑚𝑖𝑚 𝑗

𝑄𝑖 𝑗

[
1 − 𝐾 (𝑸𝑖 𝑗 )

]
︸                                 ︷︷                                 ︸

HI

+
∑︁
𝑖>0

(
𝑃2
𝑖

2𝑚𝑖
− 𝐺𝑚0𝑚𝑖

𝑄𝑖

)
−

∑︁
0<𝑖< 𝑗

𝐺𝑚𝑖𝑚 𝑗

𝑄𝑖 𝑗
𝐾 (𝑸𝑖 𝑗 )︸                                                         ︷︷                                                         ︸

HK

.

(11)

Note that this is exactly equal to Equation (9) as the terms with
𝐾 (𝑸𝑖 𝑗 ) cancel, but we have redefined the sub-Hamiltonians that
affect the splitting scheme Equation (10). Here, the center of mass
and jump terms remain the same as those of the Wisdom–Holman
map. Meanwhile, the Kepler and interaction terms are now modulated
by the switching function 𝐾 (𝑸𝑖 𝑗 ), a mathematically smooth scalar
function that is purely a function of the pairwise distance between the
two bodies in question and takes values ∈ [0, 1]. MERCURIUS offers
several built-in switching functions, but all smoothly switch from
𝐾 = 1 at close encounters to 𝐾 = 0 very far from an encounter. Note
that for 𝐾 = 0, the standard Wisdom–Holman map is recovered.

3.2 Pericenter Approach

The Wisdom–Holman map in DHC encounters issues for massive
particles on orbits with very close pericentric distances4. This is
because HK does not exactly represent a Keplerian orbit, since it
incorporates a nonphysical central gravitating mass — HJ must be
incorporated as well to correct. Hence, when HJ becomes very large
during close pericenter approaches the Wisdom–Holman method
fails as well (Duncan et al. 1998; Rauch & Holman 1999). In princi-
ple, it is possible to avoid this issue by resolving the pericenter with
a small enough timestep (Wisdom 2015). However, since Wisdom–
Holman uses a fixed timestep this worst-case timestep must be applied
to the entire problem which comes at a significant computational
cost. Neither MERCURY nor MERCURIUS allow for close pericenter
approaches.

There are two approaches that one can take to resolve this is-
sue. Levison & Duncan (2000) propose a solution in which entails
smoothly moving terms from the jump term to the Kepler term upon
a close encounter with the central body. Explicitly, their map is ob-
tained by splitting (7), for use in map (10), in the following way,

4 In Jacobi coordinates, Wisdom–Holman can integrate arbitrarily eccentric
orbits as long as the interaction term is 0. For more discussion see (Duncan
et al. 1998)

H =
𝑃2

0
2𝑚tot︸︷︷︸
H0

−
∑︁

0<𝑖< 𝑗

𝐺𝑚𝑖𝑚 𝑗

𝑄𝑖 𝑗︸             ︷︷             ︸
HI

+ 1
2𝑚0

(∑︁
𝑖≠0

𝑃𝑖

)2

(1 − 𝐹 (𝑸))︸                             ︷︷                             ︸
HJ

+
∑︁
𝑖>0

(
𝑃2
𝑖

2𝑚𝑖
− 𝐺𝑚0𝑚𝑖

𝑄𝑖

)
+ 1

2𝑚0

(∑︁
𝑖≠0

𝑃𝑖

)2

𝐹 (𝑸)︸                                                       ︷︷                                                       ︸
HK

.

(12)

Compared to the classic Wisdom–Holman map the center of mass
and interaction terms do not change. The jump and Kepler terms
are modulated by 𝐹, again a mathematically smooth function taking
values ∈ [0, 1] of all particles’ heliocentric distances, with 𝐹 = 1
very close to the central body and 𝐹 = 0 very far from it. Hernandez
& Dehnen (2023) expand on this method by using a discrete binary
switching function for 𝐹. Again, note that the Wisdom–Holman map
is recovered in the case of 𝐹 = 0. Note also that 𝐹 (𝑸) is a func-
tion of all particles’ pericenter distance, in contrast to 𝐾 (𝑸𝑖 𝑗 ) in
MERCURY/MERCURIUS. This is because when any particle undergoes
a pericenter passage, the jump term must be shifted to the Kepler
term. As the jump term is a function of all 𝑷𝑖 in the system, this
means the Kepler term of the particle is now coupled to every other
particle in the system — see Equation (22) — and cannot be inde-
pendently integrated. Since we only need to integrate HK with the
conventional integrator and stay within the DHC coordinate system,
we denote this as the PARTIAL PERI approach.

We have found in our testing (see Section 5) that this solution,
although not failing, achieves less than desirable results for some
cases such as massive bodies on very eccentric orbits due to numeri-
cal instabilities. Therefore, we present and find good success with an
alternative approach. In this approach, when a close approach with
the central star is detected we abandon DHC coordinates entirely and
perform our integration in the inertial frame. Explicitly, if 𝐹 (𝑸) = 0
we integrate the standard Wisdom–Holman map in DHC coordinates,
Equation (9). If 𝐹 (𝑸) = 1, we convert our system back to the inertial
frame and integrate Equation (1) with a conventional integrator. This
approach completely sidesteps all issues with the DHC splitting for
close pericenter approaches. We will show below that this approach
is slightly slower than the Levison & Duncan (2000) and Hernandez
& Dehnen (2023) method, since we are now including all interaction
terms in the more complex H , but well worth the trade off in ac-
curacy. Since we are completely switching integration schemes, we
denote this as the FULL PERI approach.

3.3 The TRACE Maps

We combine the above concepts from Chambers (1999), Levison &
Duncan (2000), Hernandez & Dehnen (2023) as well as our new
FULL PERI switching criteria to derive the TRACE map. TRACE can
work in two regimes depending on the state of the system: in DHC
coordinates, and in inertial Cartesian coordinates (hereafter, simply
referred to as "inertial"). The evolution in each of these regimes is
described by the following splittings of (7), for use in map (10),
respectively:

MNRAS 000, 1–15 (2023)
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H =

𝑃2
0

2𝑚tot︸︷︷︸
H0

+ 1
2𝑚0

(∑︁
𝑖≠0

𝑃𝑖

)2

[1 − 𝐶]︸                        ︷︷                        ︸
HJ

−
∑︁

0<𝑖< 𝑗

𝐺𝑚𝑖𝑚 𝑗

𝑄𝑖 𝑗

[
1 − K𝑖 𝑗

]
︸                           ︷︷                           ︸

HI

+
∑︁
𝑖>0

(
𝑃2
𝑖

2𝑚𝑖
− 𝐺𝑚0𝑚𝑖

𝑄𝑖

)
−

∑︁
0<𝑖< 𝑗

𝐺𝑚𝑖𝑚 𝑗

𝑄𝑖 𝑗
K𝑖 𝑗 +

1
2𝑚0

(∑︁
𝑖≠0

𝑃𝑖

)2

𝐶︸                                                                               ︷︷                                                                               ︸
HK

,

(13)

and,

H =
∑︁
𝑖

𝑝2
𝑖

2𝑚𝑖
− 𝐺

∑︁
0≤𝑖< 𝑗

𝑚𝑖𝑚 𝑗

|𝒒𝑖 − 𝒒 𝑗 |︸                                ︷︷                                ︸
HK

, (14)

where H0 = HJ = HI = 0. Here K and 𝐶 are the splitting functions
for planet-planet and planet-star encounters, respectively. Hernan-
dez & Dehnen (2023) demonstrated that velocity-dependent switch-
ing functions are viable for such time-reversible, but not symplectic
codes, and in this work we show that these switching functions can
actually depend on higher derivatives of position. Hence, we will add
a dependence on𝑄 (𝑥 ) to show that arbitrary derivatives of𝑄 may be
accounted for in both switching functions. In this section, for brevity
we will use the shorthands K

(
𝑄

(𝑥 )
𝑖 𝑗

)
≡ K𝑖 𝑗 and 𝐶

(
𝑄 (𝑥 )

)
≡ 𝐶.

K𝑖 𝑗 = 1 if there is a planet-planet close encounter between planets 𝑖
and 𝑗 , and K𝑖 𝑗 = 0 otherwise. Similarly, 𝐶 = 1 if there is any close
encounter with the central body, and 𝐶 = 0 otherwise.

We work in DHC coordinates whenever there is no close encounter
with the central body 𝐶 = 0, or if the PARTIAL PERI prescription
is used. We only work in the inertial frame if there is both a close
pericenter approach (𝐶 = 1) and we are using the FULL PERI pre-
scription.

Note that our splitting functions are discrete rather than smooth.
Discrete switching functions were analyzed in Hernandez (2019),
and found to generally perform inaccurately in the long term when
compared to continuous, smooth switching functions (as seen in
MERCURIUS and SyMBA). However, we will see that with the re-
versible switching scheme of Hernandez & Dehnen (2023) that we
have implemented, the discrete switching function has comparable
error performance to the continuous case, in contrast to the results
of Hernandez (2019). This allows us to leverage the conceptually
simpler discrete switching function. We describe our switching al-
gorithm in depth in the following section.

We may use Hamilton’s equations to derive the equations of motion
associated with the components H0,HJ,HI,HK that make up H .
For the CoM step,

¤𝑸0 =
𝑷0
𝑚tot

, (15)

¤𝑽0 = 0. (16)

For the jump step,

¤𝑸𝑖 =
𝜕HJ
𝜕𝑷𝑖

=
1
𝑚0

(∑︁
𝑘>0

𝑷𝑘

)
[1 − 𝐶] , (17)

¤𝑽𝑖 = − 1
𝑚𝑖

𝜕HJ
𝜕𝑸𝑖

= 0. (18)

For the interaction step,

𝑸𝑖 = 0, (19)

¤𝑽𝑖 = −𝐺
∑︁

𝑗≠𝑖, 𝑗≠0

𝑚 𝑗

𝑄3
𝑖 𝑗

𝑸𝑖 𝑗

[
1 − K𝑖 𝑗

]
. (20)

And finally for the Kepler step HK,

¤𝑸𝑖 =
1
𝑚0

(∑︁
𝑘>0

𝑷𝑘

)
𝐶 + 𝑽𝑖 , (21)

¤𝑽𝑖 = −𝐺𝑚0
𝑄3
𝑖

𝑸𝑖 −
∑︁

𝑗≠𝑖, 𝑗≠0

(
𝐺𝑚 𝑗

𝑄3
𝑖 𝑗

𝑸𝑖 𝑗

)
K𝑖 𝑗 . (22)

Here 𝑽𝑖 ≡ 𝑷𝑖/𝑚𝑖 are the heliocentric velocities. For 𝐶 =

∀(𝑖, 𝑗)K𝑖 𝑗 = 0, all components of H admit analytic solutions. HK
is the only nontrivial equation of motion, and is solved with the fast
Kepler solver used by WHFAST. In the case of 𝐶 = 1 or K = 1, HK
becomes non-integrable and is solved with the BS implementation
in REBOUND, which was first implemented in Lu et al. (2023). In the
0 < 𝐶 < 1 and 0 < K < 1 regimes HJ and HI also become non-
integrable, respectively. The discrete switching function completely
avoids this regime — in this scheme only HK will be non-integrable
and computationally expensive to solve. The equations of motion
associated with HInertial are significantly more complex, and are al-
ways expensive to solve. We always require the use of a conventional
integrator such as BS or IAS15 to solve the equations in the inertial
frame.

4 THE TRACE ALGORITHM

4.1 Switching Scheme

As previously mentioned, the computational benefits of the discrete
switching function typically come with the trade-off of poor error
performance. The time-reversible algorithm presented by Hernan-
dez & Dehnen (2023) sidesteps this issue by changing integrators
reversibly upon a close encounter, and achieves better error perfor-
mance with reduced computational cost and conceptual simplicity.
In this section we provide a brief summary of the algorithm, and
describe our specific switching functions.

Figure 1 schematically walks through the switching algorithm. Let
us define each of these terms for the TRACE map specifically:

• 𝑀1 is the map used when there is no pericenter approach. In
other words, 𝐶 = 0, but we may have some pairs of K𝑖 𝑗 = 1.
Explicitly, this map is obtained by splitting (7), for use in map (10),
in the following way:
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Inertial to DHC

Pre-Timestep Check

Close pericenter
approach occurs

𝑀1 𝑀2 DHC to Inertial

Post-Timestep Check 𝑀3

Reject

DHC to Inertial Accept

Output to user

𝐶 = 1

𝐶 = 0

No New Close Encounter

Next timestepFirst timestep

FULL PERI

PARTIAL PERI

Any New Close Encounter

Reset Simulation

Figure 1. Flowchart of the TRACE algorithm. Grey trapezoids correspond to shifting reference frames. Yellow hexagons correspond to checking the planet-planet
and pericenter close encounter conditions. The red diamond corresponds to step rejections that result in resetting the simulation to the pre-timestep conditions.
The green diamond represents a step acceptance. Blue rectangles correspond to advancements of the simulation with the various maps 𝑀1, 𝑀2, 𝑀3. A New
Close Encounter is defined as either any K𝑖 𝑗 or 𝐶𝑖 which was previously evaluated as 0 now evaluated as 1.

H =
𝑃2

0
2𝑚tot︸︷︷︸
H0

+ 1
2𝑚0

(∑︁
𝑖≠0

𝑃𝑖

)2

︸             ︷︷             ︸
HJ

−
∑︁

0<𝑖< 𝑗

𝐺𝑚𝑖𝑚 𝑗

𝑄𝑖 𝑗

[
1 − K𝑖 𝑗

]
︸                           ︷︷                           ︸

HI

+
∑︁
𝑖>0

(
𝑃2
𝑖

2𝑚𝑖
− 𝐺𝑚0𝑚𝑖

𝑄𝑖

)
−

∑︁
0<𝑖< 𝑗

𝐺𝑚𝑖𝑚 𝑗

𝑄𝑖 𝑗
K𝑖 𝑗︸                                                    ︷︷                                                    ︸

HK

.

(23)

The jump step is applied to all particles, while the interaction step is
applied to particle pairs for which K𝑖 𝑗 = 0. For particles 𝑖 that are
not undergoing any planet-planet close encounters (𝐾𝑖 𝑗 = 0 for all 𝑗)
the Kepler step is solved with the WHFAST Kepler solver. Otherwise,
BS is used.

• 𝑀2 is the map used when there is a close pericenter approach
(𝐶 = 1), and we are using the PARTIAL PERI prescription. Explic-
itly, this map is obtained by splitting (7), for use in map (10), in the
following way,

H =
𝑃2

0
2𝑚tot︸︷︷︸
H0

−
∑︁

0<𝑖< 𝑗

𝐺𝑚𝑖𝑚 𝑗

𝑄𝑖 𝑗

[
1 − K𝑖 𝑗

]
︸                           ︷︷                           ︸

HI

+
∑︁
𝑖>0

(
𝑃2
𝑖

2𝑚𝑖
− 𝐺𝑚0𝑚𝑖

𝑄𝑖

)
−

∑︁
0<𝑖< 𝑗

𝐺𝑚𝑖𝑚 𝑗

𝑄𝑖 𝑗
K𝑖 𝑗 +

1
2𝑚0

(∑︁
𝑖≠0

𝑃𝑖

)2

︸                                                                            ︷︷                                                                            ︸
HK

.

(24)

H𝐽 = 0, while the interaction step is applied to particle pairs for
which K𝑖 𝑗 = 0 as previously. The Kepler step for all particles is
integrated using BS.

• 𝑀3 is the map used when there is a close pericenter approach
(𝐶 = 1), and we are using the FULL PERI prescription. Explicitly:

H =
∑︁
𝑖

𝑝2
𝑖

2𝑚𝑖
− 𝐺

∑︁
0≤𝑖< 𝑗

𝑚𝑖𝑚 𝑗

|𝒒𝑖 − 𝒒 𝑗 |︸                                ︷︷                                ︸
HK

. (25)

The DHC coordinates are abandoned here, and we simply integrate
as in eq. (14). TRACE offers two options for this map: BS and IAS15.
To differentiate these two options we denote them FULL BS and FULL
IAS15.

We will now describe the switching algorithm in detail. By default,
TRACE uses the FULL BS pericenter prescription.

(i) The system is first converted from inertial coordinates to DHC.
Note that all the coordinate conversions occur "under the hood" - the
user inputs coordinates in the inertial frame, and will always receive
output in the inertial frame as well.

(ii) At the beginning of each timestep, we evaluate K𝑖 𝑗 and𝐶𝑖 for
all particles.

(a) If all 𝐶𝑖 = 0, this means no particles are currently undergo-
ing pericenter passage. We use 𝑀1.

(b) If any 𝐶𝑖 = 1, there is a particle undergoing a pericenter
passage.

(1) If PARTIAL PERI is being used, use map 𝑀2.

(2) If FULL PERI is being used, first convert back to iner-
tial coordinates, then use map 𝑀3. We are not performing any
splitting here, so there is no need to do a post-timestep check.
We always accept the step.

(iii) After executing 𝑀1 or 𝑀2, the conditions 𝐾𝑖 𝑗 and 𝐶𝑖 are
re-evaluated for each particle.

(a) If no particle pair that initially has K𝑖 𝑗 = 0 becomes K𝑖 𝑗 =
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1, and no particle that initially has 𝐶𝑖 = 0 becomes 𝐶𝑖 = 1, this
means no close encounters of any sort have been introduced in
the new step. We accept this step. Note that we do not concern
ourselves with a particle pair with K𝑖 𝑗 = 1 initially going to
K𝑖 𝑗 = 0 or particles with 𝐶𝑖 = 1 becoming 𝐶𝑖 = 0, as this
corresponds to a particle leaving the close encounter regime.

(b) Otherwise, a particle has entered a close encounter of some
sort in the previous step. We reject the step, reset the simulation
and perform a new step where the pre-encounter step now takes
into account the updatedK𝑖 𝑗 ’s and𝐶𝑖’s. The logic for the operators
in this new step follow the first bullet point, accounting for the new
values of K𝑖 𝑗 and 𝐶𝑖 in this new step.

(iv) If needed (in the case of 𝑀1 or 𝑀2 being accepted), we
convert from DHC to Inertial coordinates.

Note that for a step with the efficient map 𝑀1 to be accepted, it must
satisfy K𝑖 𝑗 = 0 and 𝐶𝑖 = 0 both before and after the step. This
ensures the time-reversibility of our algorithm - integrating in either
time direction will result in the same switching between maps. In
practice, very few steps will need to be rejected, typically of order a
few percent or less. But as we will see in the following section, the
rejection of these few spurious steps results in very good long-term
error performance, and the fact that so few steps need to be redone
is a worthwhile trade-off.

We note that this algorithm is only almost perfectly time reversible.
This is due to inconsistent or ambiguous cases that our algorithm
cannot detect. For more discussion on this topic, see Hernandez &
Dehnen (2023). We also note that even if the algorithm itself were
to be perfectly time-reversible, floating-point precision and secular
drift from Bulirsch-Stoer also render the algorithm not exactly time-
reversible.

4.2 Switching Functions

In this section we describe the switching functions K
(
𝑄

(𝑥 )
𝑖 𝑗

)
and

𝐶

(
𝑄 (𝑥 )

)
. In principle any user-defined switching function that does

not depend on the sign of time (for instance, a dependence on 𝑽𝑛

with odd 𝑛) may be used - we will focus on the two switching
functions used in our tests that are responsible for our algorithm’s
computational efficiency and are included in TRACE by default.

4.2.1 Planet-Planet Close Encounter Condition

The default switching function for planet-planet close encounters
K𝑖 𝑗

(
𝑄

(𝑥 )
𝑖 𝑗

)
is given,

K
(
𝑄

(𝑥 )
𝑖 𝑗

)
=

{
1 for 𝑄𝑖 𝑗 < 𝑎H𝑅crit
0 otherwise.

(26)

Where 𝑎H is a constant that may be set by the user (𝑎H = 3 by default)
and 𝑅crit is the maximum of a modified Hill radius criteria between
the two bodies,

𝑅crit,𝑖 = 𝑄𝑖
3
√︁
𝑚𝑖/3𝑚0, (27)

which is the Hill radius where heliocentric distance replaces the
traditional semimajor axis. The logic behind using the modified Hill
radius condition is due to unbound particles: the Hill radius only
has meaning for Keplerian orbits, and thus will not appropriately
flag a close encounter between a pair of unbound planets. While less

physically meaningful than the Hill radius, our criterion achieves
good results and achieves better results for systems where particles
become unbound.

This is a similar switching function to the one used in MERCURIUS.
There are three key differences: first, our switching function is dis-
crete, while the MERCURIUS switching function is smooth. Secondly,
MERCURIUS uses the standard Hill radius definition while ours is
modified. Finally, MERCURIUS calculates the switching radius at the
beginning of the integration for each pair of particles, which them
remains fixed for the duration of the simulation. This is necessary
to maintain the symplectic nature of MERCURIUS, but has the unfor-
tunate side result of the switching radius becoming less physically
meaningful if the planet’s semimajor axis changes over the course
of the integration. However, changing the switching function does
not impact reversibility, so this is not an issue for TRACE. To our
knowledge, this is the first switching function for a hybrid integrator
which can depend on the current state of the system, a novel result
which greatly improves the flexibility of TRACE.

4.2.2 Pericenter Condition

The recent work of Pham et al. (2024) introduced a new adaptive
timestep criterion for the IAS15 integrator. We use their result to
inform our default choice of the pericenter switching. We first define,

𝜏PRS,𝑖 ≡

√√√√ 2𝑄 (2)
𝑖
𝑄

(2)
𝑖

𝑄
(3)
𝑖
𝑄

(3)
𝑖

+𝑄 (2)
𝑖
𝑄

(4)
𝑖

, (28)

where 𝑄 ( 𝑗 )
𝑖

is the magnitude of the 𝑗 th derivative of heliocentric
position of the 𝑖th particle. Then, our switching condition is given,

𝐶

(
𝑄 (𝑥 )

)
=

{
1 for ℎ > 𝜂 · min

𝑖>1

(
𝜏PRS,i

)
0 otherwise.

(29)

Where we have found that 𝜂 = 1 gives good results in our testing, and
is hence set as the default value. Note that this condition is a minimum
over all non-central bodies in the system. Thus if any body is flagged
for pericenter approach, the entire simulation will be integrated with
BS or IAS15.

A note about our switching criteria follows. TRACE is a second
order method. Defining the exact trajectory as 𝒛(𝑡), the TRACE tra-
jectory as �̃�𝑡 (𝑡), and the initial conditions 𝒛(0), TRACE’s local error
is,

�̃�𝑡 (ℎ) = 𝒛(ℎ) + O(ℎ3). (30)

The switching functions in this section can only be considered ap-
proximately physical due to this fact. By contrast, the orbit for a
higher order method (like IAS15) is,

�̃�ℎ (ℎ) = 𝒛(ℎ) + O(ℎ𝑛+1), (31)

with 𝑛 a larger integer like 15. For such higher order methods, the
switching functions are more physical, representing time and length
scales mimicking the orbits more closely. Regardless, our switching
criteria work well in all tested problems.

4.3 Collisions

Collisions and mergers constitute irreversible steps. Thus TRACE can-
not possibly be time reversible when collisions occur. TRACE handles
collisions by enforcing a step acceptance: if a collision is detected
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mid-timestep, the step is automatically accepted regardless of either
switching condition. TRACE is compatible with the standard REBOUND
collision modules.

5 PERFORMANCE TESTS

In this section, we apply TRACE to a number of realistic astrophys-
ical systems and compare its performance against other integrators
available in REBOUND5. All the tests are performed using their C im-
plementations. In all of our comparisons with IAS15, we use the new
adaptive timestep criterion described by Pham et al. (2024). Unless
otherwise specified, TRACE uses the FULL BS pericenter approach
prescription for all our tests in this section.

5.1 Chaotic Exchange Orbit

We first investigate the case of a chaotic exchange orbit in the re-
stricted coplanar three-body problem. The particular problem we
have chosen includes a Sun-like star, a Jupiter-like planet on a cir-
cular orbit at its present-day semimajor axis, and a zero mass test
particle. It has been studied in depth by a number of works including
Wisdom (2017), Dehnen & Hernandez (2017), Hernandez (2019)
and Hernandez & Dehnen (2023). In the circular restricted three-
body problem, the only conserved quantity is the Jacobi constant 𝐶J
(Murray & Dermott 2000; Tremaine 2023). For the initial value of
𝐶J we have selected in our tests, the test particle’s orbit is exchanged
between the primary and the secondary, undergoing multiple close
encounters with the secondary. It can also never escape the system,
making this problem an excellent test of body-body close encounters.
Figure 2 shows the results of our test. We integrate the system for
5000 orbits of the secondary, using a timestep of ℎ = 8 days. We
use a hill radius switching criteria of 𝑎H = 4.846. Once every 10
years, the Jacobi constant error is calculated. We compare TRACE to
MERCURIUS and WHFast. As expected, WHFAST fails to resolve the
close encounters with the secondary at all, and the error is immedi-
ately catastrophic. MERCURIUS and TRACE are both able to resolve
the close encounters, and both display very good error performance
over the entire integration with no secular drift. The performance
of both integrators are comparable, staying well below 1 percent for
the duration of the simulation. Comparing the runtimes of the two
hybrid integrators: TRACE took 3.03 seconds while MERCURIUS took
39.7 seconds, a 13x speedup.

5.2 Highly Eccentric Orbits

To evaluate TRACE’s capabilities in resolving close encounters with
the central body, we consider a two-planet system consisting of the
Sun, Jupiter and Saturn. However, here Saturn’s eccentricity is set to
a various extremely high values, while its inclination is set to 𝜋/2
with respect to the orbit of Jupiter. With this setup, Saturn never has
a close encounter with Jupiter, but does approach very close to the
Sun.

This problem was first introduced in Levison & Duncan (2000)
and revisited by Wisdom (2017); Hernandez & Dehnen (2023). We
present the results of a number of tests we have performed on this
system. First, we set 𝑒 = 0.99 for Saturn and integrated the system

5 https://github.com/hannorein/rebound
6 This value is selected for a direct comparison with MERCURIUS, which
includes a hidden factor of 1.21 in the source code.
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Figure 2. A comparison between TRACE, MERCURIUS and WHFAST for the
chaotic exchange problem. With a timestep of ℎ = 8 days, the system is
integrated for 5000 orbits of the primary with Jacobi constant error recorded
every 100 years. WHFAST immediately fails, while TRACE and MERCURIUS
both show comparable good error performance with no secular drift. TRACE
represents a 9.4𝑥 speedup over MERCURIUS for this problem. The mean error
for TRACE and MERCURIUS are 2.51 × 10−6 and 1.21 × 10−6, respectively.

for 300 Saturn orbits, using a timestep of ℎ = 0.15 years. This is ap-
proximately 1/80th the period of Jupiter, the shortest orbital period
of the system, so naively one might expect this to be an appropriate
timestep for the Wisdom–Holman map. However, of course in reality
this is not the case, as pericenter is not resolved. In the first panel
of Figure 3, we compare the performance of WHFAST, MERCURIUS,
BS and TRACE. The absolute value of the relative energy error, de-
fined as (𝐸 − 𝐸init)/𝐸init, is output at the end of every timestep.
We see that once again WHFAST immediately fails catastrophically,
while MERCURIUS also fails to resolve the close encounters with the
host star and the energy error rapidly exceeds 10−1. TRACE keeps
the energy error well under 10−4 for the entire duration of the sim-
ulation, with no appreciable secular drift. BS does better than any
of the splitting schemes, but secular drift is visible, which is ex-
pected of non–symplectic or non–reversible schemes. We also test
WHFAST with a smaller timesteps which resolves the pericenter, to
show that in principle it is possible to achieve similar results with the
pure Wisdom–Holman map. The timestep necessary to resolve the
pericenter for an eccentric orbit is related to the "effective period at
pericenter" (Wisdom 2015; Hernandez et al. 2022),

𝜏 𝑓 = 2𝜋

√︄
(1 − 𝑒)3

1 + 𝑒
𝑎3

𝐺𝑚0
, (32)

where 𝑎, 𝑒 are the eccentricity and semimajor axis of the orbit. We test
WHFAST with a timestep of 𝜏 𝑓 /50. This timestep is chosen to achieve
a close match with TRACE’s performance. We refer to this tests as
WHFAST Resolved. We see that it is possible to reach similar levels
of energy error with TRACE with pure Wisdom–Holman. However,
we can see from the bottom panel of Figure 3 that there are vast
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computational costs to picking such a small timestep, and that TRACE
achieves similar error performance much faster.

In the second panel of Figure 3, we perform similar simulations,
but we now set the initial eccentricity of Saturn to various values up
to 0.9999. These values were selected for comparison with Figure 1
of Levison & Duncan (2000) and Figure 8 of Hernandez & Dehnen
(2023). For each simulation, we plot the maximum energy error
reached over the entire runtime. WHFAST and MERCURIUS perform
similarly, with at least 10−1 energy error in all cases and reaching
errors significantly greater than unity for the highly eccentric systems.
TRACE again keeps the error around 10−3, and in fact shows consistent
performance across all eccentricities. We see that even with much
smaller timesteps WHFAST Resolved still performs badly at high
eccentricities, while also having significantly slower compute time.
The power of the pericenter switching condition allows TRACE to
resolve extremely eccentric orbits with far more reasonable timesteps.

5.3 Violent Systems

We envision violent systems to be one of the most relevant and pow-
erful applications of TRACE. A violent system is one which under-
goes significant dynamical instability, triggered by close encounters
between planets. This can result in planets being ejected from the
system, or being scattered onto orbits with high eccentricity and/or
inclination. Planet-planet scattering almost certainly plays a role in
sculpting the demographics of exoplanetary systems (Nagasawa &
Ida 2011). Such systems are obvious applications for hybrid inte-
grators, as for the vast majority of the simulation the planets are
well separated and Wisdom–Holman is sufficient to accurately inte-
grate the system. While close encounters in these systems represent
a relatively small fraction of the total runtime, it is crucial to han-
dle them with a conventional integrator to avoid catastrophic error.
MERCURIUS is ineffective for many violent systems. While it can han-
dle planet-planet close encounters well in most cases planets will be
scattered onto highly eccentric orbits which leads to the pericenter
approach not being resolved. In this section we will show that TRACE
can handle these systems both quickly and accurately.

Let us consider a system of three Jupiter-mass planets orbiting a
Sun-like star. Chambers et al. (1996) showed that such a system will
essentially always exhibit dynamical instability if their initial sepa-
rations are less than 10 mutual Hill radii. To induce rapid dynamical
instability in our system, we place the first planet at 𝑎1 = 5 au and
space the other two 3 mutual Hill radii out from the planet immedi-
ately interior. The eccentricity of each planet is set to 0.05, and the in-
clinations are set to 1◦, 2◦, 3◦ from the inner to outer planet. All other
orbital angles are set to 0. We remove any particles which pass beyond
104 au of the central star, using the exit_max_distance condition
in REBOUND. Each time a particle is removed from the simulation, we
reset to the center of mass frame of the system to avoid CoM and par-
ticle drift (which, left unchecked, would trigger the exit condition for
all particles). We account for the lost energy associated with removing
a particle from the system and the transformation back to the the new
center of mass by using REBOUND’s built in track_energy_offset
feature. We consider collisions as well, using the built-in REBOUND
collision modules REB_COLLISION_DIRECT for collision detection
and reb_collision_resolve_merge for collision resolution. Col-
lisions are flagged when any pair of particles overlap radii, and are
resolved by merging the two colliding particles into one (conserving
mass, momentum, and volume, but not energy).

This is a highly chaotic system, so comparing the performance of
integrators for a single system is essentially meaningless - the slight
numerical differences ensure that we are very quickly working with
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Figure 3. A comparison of TRACE, MERCURIUS, BS and WHFAST for a Sun-
Jupiter-Saturn system where Saturn has been given a high eccentricity. The
first subplot shows the absolute value in the energy error over 300 orbits of
Saturn, for a case where 𝑒 = 0.99. MERCURIUS and WHFAST are both unable
to resolve the close encounter with the Sun and the error quickly reaches or
exceeds unity. TRACE keeps the error less than 10−3 with no secular drift.
WHFAST Resolved, which are simply WHFAST with much smaller timesteps,
is also plotted in dotted lines. It achieves similar error performance to TRACE,
but requires significantly more time. The middle subplot compares the max-
imum error of six such systems with varying eccentricity for Saturn, plotted
as a function of initial perihelion distance (the orbit slightly evolves over the
course of the simulations). All MERCURIUS and WHFAST simulations perform
worse as the eccentricity increases, while TRACE is consistently better. The
bottom plot shows the same data points as the middle subplot, but now plot-
ted on an efficiency cost vs. maximum energy error plot. We see that while
WHFAST Resolved can in principle keep up with TRACE in error performance
for relatively low eccentricities, this comes at a vast computation cost. TRACE
performs comparably to BS from a computation cost standpoint.
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entirely different systems. Instead, we take a statistical approach by
considering an ensemble of such systems. The setup of our analy-
sis is as follows. We have run 500 instances of the system as de-
scribed above, but have displaced the 𝑥-coordinate of the outermost
planet by a random amount between −10−12 and 10−12 au. We run
each of these 500 instances with the following integrators: TRACE,
MERCURIUS, BS, and IAS15. Each system is integrated forward in
time for 107 years (which is roughly 9×105 initial orbits of the inner-
most planet). For TRACE and MERCURIUS we set the initial timestep
equal to 0.221 years. We arrive at this value from a conservation
of energy argument. The smallest possible dynamical timescale at
the end of this problem is the scenario where one planet is left on a
close-in orbit and the other two are completely ejected. We calculate
the orbital period of this close-in orbit and set our timestep to 1/15th
of this value. IAS15 and BS are adaptive-timestep integrators - their
initial timesteps are taken to be 2𝜋 × 10−3 years.

Figure 4 shows the statistical results from our ensemble. The upper
subplot displays the number planets in the system that survive over
the course of the 107 year integration. The distributions of TRACE, BS
and IAS15match each other very well, with the vast majority of sys-
tems ejecting one planet and retaining two. MERCURIUS, on the other
hand, differs significantly in these statistics, with a more even split be-
tween one- and two- planet systems. The middle subplot displays the
distribution of energy error at the end of the simulations of TRACE, BS
and MERCURIUS. As expected IAS15 performs very well, with a dis-
tribution centered around 10−11, and as such is omitted from the plot
for clarity. MERCURIUS, also as expected, performs very poorly, with
a median error very close to unity. Pure BS in general performs better
than either hybrid integrator, with a median error of approximately
10−4. TRACE represents a significant improvement over MERCURIUS,
with a median error of 10−1.55 compared to 10−0.14. The largest
TRACE error is 10−0.46, and the largest MERCURIUS error is 100.44.
In the bottom subplot, we show histograms of the total runtime of
simulations. For clarity, we only show the lower end of the IAS15
results - this distribution is centered on 26 minutes. The TRACE has a
significant speed advantage over both BS and IAS15. This advantage
grows the more particles are added to the system, as can be seen in
the next section.

Of particular interest to those seeking to use TRACE on large en-
sembles of chaotic systems is the question of how well TRACE is able
to reproduce the demographics of orbital elements on a statistical
level. We investigate this in Figure 5. For this phase we consider only
our simulations where two planets survive, as the other three cases do
not have sufficient representation to perform robust statistical analy-
sis on. We have plotted the cumulative distributions of eccentricity
and inclination for the inner (P1) and outer (P2) planets for all sim-
ulations in which two planets survive, for each integrator. By eye,
TRACE, BS and IAS15 appear quite similar, with the exception being
𝑖2 which is affected by a single large outlier at over 100◦ inclination.

In summary, TRACE reproduces the results of IAS15 quite well
on a statistical level, with an over 20x speedup. This is in stark
contrast to MERCURIUS, which qualitatively fails to reproduce the
IAS15 statistics.

5.4 Accretion of the Moon

As a test of TRACE’s ability to integrate systems with a very large
number of particles, we study the accretion of the moon from an im-
pact disk generated by a giant impact via direct N-body simulations.
This problem has been studied by Ida et al. (1997); Duncan et al.
(1998); Kokubo et al. (2000) among others.

We present results from a simulation in the spirit of these studies.
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Figure 4. Statistics on an ensemble of 500 three-body scattering simulations,
comparing the performance of TRACE, MERCURIUS, IAS15 and BS. The top
subplot shows the final number of planets surviving at the end of the 107

year integration. MERCURIUS is the obvious outlier, while TRACE replicates
the statistics of IAS15 best. Poisson error bars are shown. The middle subplot
shows histograms of the final energy errors, as well as the median values.
IAS15 is not shown for clarity, but its distribution is centered around 10−11.
TRACE represents a significant improvement over MERCURIUS, with the largest
TRACE error being 10−0.46. The bottom subplot shows histograms of the
runtimes. MERCURIUS is very fast due to the number of systems that eject too
many planets. TRACE and BS both significantly improve on the IAS15 runtime,
with TRACE having a small advantage over BS. The median runtimes of TRACE
and BS are plotted in dotted lines. TRACE has a 2.14x speed advantage over
BS and a 20.15x speed advantage over IAS15.

While our exact initial conditions do not match these studies, the
final results are not sensitive to the precise initial conditions. Our
simulation includes 103 disk particles around an Earth-mass planet.
The units of this simulation are the same as the study of Duncan
et al. (1998): mass in Earth masses, Roche radius, and 𝐺 = 1 (so a
particle exactly at Earth’s Roche radius has an orbital period of 2𝜋).
The initial masses are randomly drawn from a power law distribution
∝ 𝑚−1 between 𝑚 = 3.2 × 10−7 and 𝑚 = 3.2 × 10−4. The total
initial mass of the disk in our simulation is approximately four lunar
masses. As in Kokubo et al. (2000), the density of the disk particles
is 𝜌𝑝 = 3.3 g cm−3, while the density of the Earth is taken as
𝜌𝐸 = 5.5 g cm−3. Therefore, the radius of each disk particle is
given by 𝑟 = (𝑚/𝑀𝐸 )1/3 (𝜌𝑝/𝜌𝐸 )−1/3𝑅𝐸 . In these units, 𝑅𝐸 =

1/2.9. The semimajor axes of the disk particles are drawn from
a power law distribution ∝ 𝑎−1 between 𝑎 = 𝑅𝐸 and 𝑎 = 1.5.
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Figure 5. Cumulative distribution functions for the two-planet systems with
all four integrators. The top row are the distributions for the inner planet, and
the bottom row the distributions for the outer planet. We plot eccentricities
in the left column and inclinations in the right. TRACE, BS, and IAS15 show
very similar distributions, while it is clear that MERCURIUS underpredicts
two-planet systems.

The eccentricities, inclinations, and other orbital angles (Ω, 𝜔, 𝑓 )
are drawn from uniform distributions between {0, 0.95}, {0◦, 50◦}
and {0◦, 360◦}, respectively. Unlike Duncan et al. (1998), we do
not remove initially Earth-crossing orbits as our method can handle
highly eccentric orbits well.

We first do not consider collisions, and simply integrate the system
with TRACE, MERCURIUS, IAS15, and BS for 6𝜋 time units. In this
particular system while disk particles do get very eccentric, they have
such low mass that error associated with a large jump term may not
be significant. We thus also investigate the performance of TRACE us-
ing three prescriptions: the default FULL BS pericenter prescription,
PARTIAL PERI, as well as completely turning off pericenter switch-
ing. The results are plotted in Figure 6 on an efficiency diagram. We
see that TRACE, BS and IAS15 all have very good error performance
and high compute times. The poor computational performance of
TRACE makes sense in this context: with so many particles we ap-
proach the limit of there being a pericenter close encounter every
timestep - so TRACE essentially becomes BS with more overhead in
this case. MERCURIUS is just as slow as the other three integrators,
but performs worse due to failing to resolve pericenter approaches.
Note, however, that despite failing to resolve pericenter approaches
the error is still relatively good (around 10−3), as stated earlier. TRACE
Partial and TRACEwith no pericenter switching achieve similar ac-
curacy to MERCURIUS, but significantly faster. TRACE Partial has
a 5.7x speed advantage over MERCURIUS, and a TRACE with no peri-
center switching at all has a 62.4x advantage. We conclude that for
large 𝑁 systems where the particles are relatively small, TRACE with
full pericenter switching offers no advantage over BS or IAS15. But if
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Figure 6. Efficiency plot of various integrators for the large-N accretion
problem without considering collisions. TRACE, BS and IAS15 all perform
very well from an error standpoint, but are quite slow. MERCURIUS is just
as slow, but is far less accurate. TRACE Partial and TRACE no Peri offer
much fast alternatives while maintaining roughly the accuracy of MERCURIUS.

we relax pericenter switching requirements, TRACE offers compara-
ble (relatively good) error performance to MERCURIUS with a vastly
improved runtime.

We now perform the same simulation, but integrate 103 time units
and turn collisions on with the same prescription as Section 5.3. Fig-
ure 7 shows the results of our simulation using TRACE Partial. The
left hand subplot shows the number of particles in the simulation as a
function of time. While a direct comparison should not be made with
the results of Ida et al. (1997) and Duncan et al. (1998) due to the
slightly different initial conditions, qualitatively all four integrators
match their results (and each other) well –see Figure 9 in Duncan et al.
(1998). The right hand plots show snapshots of our TRACE simulation
(blue) and IAS15 simulation (green) at the simulation’s start (shared
between the two simulations, plotted in black), 60 time units and at
the end. The location of the particles is plotted in cylindrical coordi-
nates (𝑟, 𝑧) centered on Earth in units of Roche radius. These may be
compared to Figures 2 – 4 in Ida et al. (1997), and again are qualita-
tively similar. Both final results for TRACE and IAS15 in the bottom
right panel shows one large body just within the Roche radii. This is
in good agreement with the results of Ida et al. (1997) and Kokubo
et al. (2000). The differences in our simulations can be attributed
to differences in the initial conditions and integration methodology.
The runtimes for the simulations are 10.82, 46.87, 90.13, and 65.98
seconds for TRACE, MERCURIUS, BS and IAS15, respectively. TRACE
improves on the runtime of MERCURIUS, BS and IAS15 by 4.33x,
8.39𝑥 and 6.10x, respectively.

We conclude that once again TRACE offers enormous computa-
tional benefits while maintaining acceptable levels of accuracy for
large N systems with collisions, qualitatively reproducing the results
of IAS15.

5.5 ZLK Cycles

The von Zeipel-Lidov-Kozai (ZLK) effect has been a well-studied
phenomenon of great interest and wide application since its discov-
ery (von Zeipel 1910; Lidov 1962; Kozai 1962; Naoz 2016). In a
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Figure 7. Results from a lunar accretion problem involving 1000 particles, accounting for collisions. We compare results from TRACE, MERCURIUS, IAS15 and
BS. The left subplot shows the total number of bodies in the simulation as a function of time. All three integrators show good agreement. The right subplots show
snapshots of the simulation at 𝑡 = 0, 60 time units and the end of the simulation, for both TRACE (blue) and IAS15 (green). The positions of the planetesimals
are plotted in cylindrical coordinates, and the size of each point in the graph corresponds to the planetesimal’s mass. We see that a roughly lunar-mass object
(∼0.9 lunar masses in both simulations) forms at just within the Earth’s Roche limit.

hierarchical three-body system, a highly inclined outer perturber can
induce significant coupled eccentricity and inclination oscillations in
the orbit of the inner body. Similarly to Section 5.2 Wisdom–Holman
methods are in principle capable of accurately integrating the system.
However, a worst-case timestep that accurately resolves the pericen-
ter passage during high-eccentricity epochs must be applied over the
length of the simulation, meaning that in practice it is actually faster
to use adaptive-timestep higher order integrators such as IAS15. This
would initially seem to be a good use case for TRACE, but we will
show in this section that other integrators perform better.

We first consider a prototypical system in which ZLK oscillations
are expected to occur. The initial values of our fiducial system are
slightly modified from Figure 16 of Naoz (2016). In our test, we
consider a Neptune-mass planet initially orbiting a 0.32 M⊙ star
with 𝑎1 = 2 au and 𝑒1 = 0.01. The perturber is a 10 M𝐽 brown dwarf
orbiting the primary with 𝑎2 = 50 au, 𝑒2 = 0.52 and 𝑖2 = 80◦. We
integrate this system with IAS15, WHFAST and TRACE. For TRACE, we
use a timestep equal to 1/20 the initial orbital period of the planet.
Figure 8 plots the eccentricity evolution of the inner planet and the
energy error over two ZLK cycles.

The runtimes for TRACE, WHFAST and IAS15 are 19.63, 7.47, and
284.98 seconds, respectively. We see that while TRACE maintains an
acceptable level of error in this problem, WHFAST actually outper-
forms it in both speed and computation time. The reason for this
has to do with the choice of splitting scheme and coordinates. By
default, WHFAST is implemented in Jacobi coordinates. This differs
from DHC used by TRACE in that HK does exactly represent a Kep-
lerian orbit. Hence, in Jacobi coordinates Wisdom–Holman methods
are able to accurately integrate arbitrarily eccentric orbits without
the need to choose an extremely small timestep to resolve pericenter
approach. We demonstrate this by also plotting an implementation
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Figure 8. A comparison of IAS15 (green), TRACE (blue), and WHFAST in both
Jacobi (gold) and DH (gold dashed) coordinates for ZLK oscillations. The
upper subplot shows eccentricity evolution, and the bottom subplot depicts
energy error over time. The eccentricity evolution of IAS15 and WHFAST in
Jacobi coordinates are identical at this scale. WHFAST in Jacobi coordinates
outperforms TRACE in both error and computation performance. TRACE gives
qualitatively different results than IAS15 and WHFAST.
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of WHFAST in DHC in dotted lines, with the same timestep. We see
that this scheme fails at relatively low eccentricity, and the planet is
quickly ejected from the system.

We emphasize that this is not exactly a failure case for TRACE, as
it is working as intended. Rather, this should be seen as a strength
of the Wisdom–Holman method for the specific case of a highly
eccentric innermost planet. We conclude that for such systems,TRACE
is unsuitable: if one desires extremely high accuracy IAS15 should
be used, and if moderate accuracy with high speed is required then
WHFAST outperforms TRACE and should be used instead.

6 POTENTIAL IMPROVEMENTS

In this section, we list two potential improvements to TRACE that are
not currently implemented.

6.1 Pairwise Reversibility

Currently, upon rejection of a timestep, TRACE will reset the entire
simulation to the initial state and re-integrate all particles. This is
unavoidable for close encounters with the central body, since the
TRACEmap entails moving the entire HJ to HK, which would couple
the equations of motions of all the particles and necessitates solving
them all with BS. However, this in principle can be avoided for planet-
planet close encounters, since moving HI to HK is only a function
of the positions and velocities of the two bodies undergoing a close
encounter. Hence we should only need to redo the interaction steps
for the non-close encounter particles, without needing to recalculate
the relatively expensive Kepler step.

In practice this is only a time save for step rejections, which for
the majority of simulations are a comparatively small fraction of
the total steps taken in the simulation, so the actual computational
benefit is insignificant. We have hence elected to not include pairwise
reversibility in this iteration of TRACE.

6.2 Adaptive Timestepping

Hernandez & Dehnen (2023) showed that reversibly switching be-
tween timesteps using the same switching scheme is feasible. No-
tably, Hernandez & Dehnen (2024) were able to reversibly adapt
the timestep of a SYMBA-like algorithm to great effect. Their imple-
mentation used different timesteps for different "shells" of increasing
distance from the host star. The difficulty of a more flexible scheme
valid for a wider array of astrophysical systems precluded its inclu-
sion into TRACE. In principle, the global timestep of TRACE should
be able to be adapted reversibly, which would result in performance
gains.

7 CONCLUSION

We present TRACE, a time-reversible hybrid integrator capable
of efficiently and accurately resolving any type of close en-
counter in the planetary N-body problem. TRACE matches or im-
proves upon the error performance of current hybrid integra-
tors such as MERCURIUS with a conceptually simpler switching
scheme and a significant speedup (up to 14x for certain prob-
lems). TRACE is freely available as part of the REBOUND package

at https://github.com/hannorein/rebound7. It is available
in both C and Python. From our testing, TRACE is superior to
MERCURIUS in all cases. We anticipate TRACE having a myriad of
useful applications including violent scattering systems, large N sys-
tems, and systems with highly eccentric orbits.

While TRACE shows excellent performance, there are clear avenues
of improvement such as pairwise-reversibility and adapting the global
timestep, both of which could lead to significant speedups. The fact
that TRACE is almost completely reversible lends itself to significantly
more flexibility than symplectic integrators such as MERCURIUS, in
particular with our choices of switching functions. We did not deeply
explore potential switching functions - rather, we aimed to select safe
defaults for the user. In principle, these switching functions could be
any arbitrary function of particle positions and velocities and further
exploration may lead to better results.

It is instructive to directly compare and discuss the advantages
TRACE has over MERCURIUS, the current hybrid integrator im-
plemented in REBOUND. First, TRACE is significantly faster than
MERCURIUS in many cases. There is some minor benefit from the sim-
pler switching function. However, the vast majority of the speedup
comes from the use of BS for close encounters in the case of TRACE,
instead of IAS15 forMERCURIUS. WhileIAS15 indeed is significantly
more accurate than BS, for hybrid integrators the error is dominated
by error associated with operator splitting (see Section 2.1). This
greatly overshadows the difference in error between IAS15 and BS,
so our choice of BS over IAS15 provides significant speed benefits
with negligible accuracy tradeoff. Secondly, TRACE is able to resolve
close encounters with the central body, unlike MERCURIUS which
can only handle close encounters between pairs of planets. This al-
lows TRACE to effectively integrate highly eccentric orbits which
MERCURIUS fails at. Finally, ignoring finite floating point precision,
TRACE is exactly time-reversible whileMERCURIUS is symplectic. The
almost time-reversible nature of TRACE means that it has good long-
term error conservation properties as we have shown in this work.
The fact that TRACE is not symplectic affords it several flexibility
advantages over MERCURIUS, which is demonstrated most promi-
nently in the switching function. To maintain the symplectic nature
of MERCURIUS, the switching distance is set at the beginning of the
simulation and cannot change. If the system significantly changes
this criteria may become unphysical - for instance, if a planet moves
outward over the course of the simulation close encounters will be
underpredicted. TRACE does not face this issue, and can adjust the
switching criteria as a function of the state of the simulation such
that it always remains a physically meaningful quantity. This has
the further advantage that we can implement TRACE such that each
timestep only depends on the inertial particle coordinates, but not
pre-calculated per-particle parameters such as switching radii. This
makes adding/removing/colliding/merging particles during a simu-
lation much easier. Given that TRACE performs strictly better than
MERCURIUS, the MERCURIUS integrator will be depreciated in the
near future.

Finally, we discuss specific use cases for TRACE. We must empha-
size that by virtue of being a hybrid integrator TRACE has limited use
cases. In the vast majority of cases, REBOUND users are encouraged
to use WHFAST for the planetary N-body problem when there are no
close encounters, or IAS15 for a wider variety of problems where
high accuracy is paramount. Philosophically, we recommend TRACE
for cases of the planetary N-body problem where close encounters

7 Extensive documentation and example notebooks are available at
https://rebound.readthedocs.io
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do occur, be it with the central star or between pairs of planets, and
where only moderate accuracy is required but fast computation is
desired. For instance, in large ensembles of chaotic systems exact
accuracy in each individual system is not required to recover macro-
scopic quantities on a statistical or population level - and very large
ensembles benefit greatly from the speedups afforded by TRACE.
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APPENDIX A: DEMOCRATIC HELIOCENTRIC
COORDINATES

TRACE uses the Democratic Heliocentric Coordinates introduced by
Duncan et al. (1998). These coordinates are also used by MERCURIUS,
and are given by,

𝑸𝑖 =

{
𝒒𝑖 − 𝒒0 for 𝑖 ≠ 0

1
𝑚tot

∑𝑁−1
𝑗=0 𝑚 𝑗𝒒 𝑗 for 𝑖 = 0.

(A1)

The corresponding conjegate momenta are given:
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𝑷𝑖 =

{
𝒑𝑖 −

𝑚𝑖

𝑚tot

∑𝑁−1
𝑗=0 𝒑 𝑗 for 𝑖 ≠ 0∑𝑁−1

𝑗=0 𝒑 𝑗 for 𝑖 = 0.
(A2)

APPENDIX B: OTHER PERICENTER SWITCHING
FUNCTIONS

In this Appendix we describe some alternative prescriptions for our
pericenter switching condition that are also included with TRACE.

B0.1 Effective Period at Pericenter

Wisdom (2015) demonstrated that the Wisdom–Holman method is
able to integrate arbitrarily eccentric orbits, so long as the timestep
chosen does not exceed 1/16th of the effective period at pericenter,
or 2𝜋/ ¤𝑓 |pericenter where 𝑓 is the true anomaly. We use this result to
informs another possible choice of pericenter switching condition:

𝑃𝑖 =
2𝜋
¤𝑓𝑖
− 𝑎pℎ, (B1)

where

¤𝑓𝑖 =
|𝑸𝑖 × 𝒗𝑖 |
𝑄2
𝑖

. (B2)

𝑎p is a constant that may be set by the user. Wisdom (2015) recom-
mends 𝑎p = 17. The full switching condition condition is given by

𝐶

(
𝑄 (𝑥 )

)
=

{
1 for min

𝑖>0
𝑃𝑖 < 0

0 otherwise.
(B3)

While powerful, this condition is incomplete - it is only meaningful
for bound Keplerian orbits. For unbound orbits, this condition does
not trigger.

B0.2 Heliocentric Distance

The most simple prescription one can use is simple heliocentric
distance from the star, and can be written,

𝐶

(
𝑄 (𝑥 )

)
=

{
1 for min

𝑖>0
[𝑄𝑖 < 𝑎P] < 0

0 otherwise.
(B4)

The choice of 𝑎𝑃 is not intuitive, depends on the scale of the system,
and may require some experimentation. However, if a suitable value
is found for a particular system, this condition offers the most easily
understood pericenter switching condition.

B0.3 None

It is also possible to turn off pericenter switching as a whole, which
may be desirable for some problems. In this case, TRACE essentially
becomes a faster version of MERCURIUS.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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