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ON MODEL THEORY OF SECOND-ORDER OBJECTS

TAPANI HYTTINEN, JONI PULJUJÄRVI, AND DAVIDE EMILIO QUADRELLARO

Abstract. Motivated by team semantics and existential second-order logic,
we develop a model-theoretic framework for studying second-order objects such
as sets and relations. We introduce a notion of abstract elementary team cat-
egories that generalizes the standard notion of abstract elementary class, and
show that it is an example of an accessible category. We apply our framework
to show that the logic FOT introduced by Kontinen and Yang [17] satisfies a
version of Lindström’s Theorem. Finally, we consider the problem of transfer-
ring categoricity between different cardinalities for complete theories in exis-
tential second-order logic (or independence logic) and prove both a downwards
and an upwards categoricity transfer result.
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1. Introduction

Model theory is the study of general properties of mathematical structures. In
traditional model theory, the center of attention—we could say the smallest unit
of interest—are elements, or tuples of elements. One is often interested in whether
certain types of elements or tuples exist, or how many different types there might
be, or how elements get mapped when one moves from one structure to another via
some mapping that preserves certain properties of structures.

On the other hand, often in mathematics one is interested in sets of elements,
or sets of tuples (i.e. relations). While elements are first-order objects, sets and
relations are second-order objects. Not much model theory has been done in a
setting where the basic building block is, instead of an element, a set. The rea-
son may be that second-order logic—the natural counterpart of first-order logic
in this setting—is so strong that it lacks many properties that make elementary
model theory interesting. For example, the second-order theory of many inter-
esting structures—such as the ordered field of real numbers, the field of complex
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numbers, or the semiring of natural numbers—are categorical, i.e. they have a
unique model up to isomorphism. However, it may not be completely hopeless to
study relations using simply first-order logic, or some other logic that lies between
first and second order.

Our interest in the model theory of relations comes from the field of team seman-
tics. Team semantics is an extension of the usual Tarski semantics of first-order
logic that allows formulas to be evaluated over sets of assignments, called teams,
rather than single assignments. Such a framework was originally introduced by
Hodges [11] in order to provide a compositional semantics to Hintikka and Sandu’s
IF-logic. In particular, Väänänen and Hodges [33] and Väänänen [31] used team
semantics to extend first-order logic by means of the so-called dependence atom

=(x1 . . . xn, y),

which we read as saying “the value of x1, . . . , xn completely determines the value
of y”. The resulting logic, namely dependence logic, dramatically increases the
expressive power of first-order logic and turns out to be equivalent both to IF-logic
and to the existential fragment of second-order logic ESO (cp. Lemma 2.5).

Additionally, team semantics proved soon to be a very powerful and flexible
framework, and it was noticed by Väänänen and others that it allows to consider
several atoms characterizing various notions of dependence, e.g. the independence
atom x ⊥ y [10] or the inclusion atom x ⊆ y [9]. Importantly, each of the logics that
one obtains by extending the syntax of first-order logic by these new atomic formulas
correspond to different fragments of existential second order logic ESO (with usual
semantics) via a translation that goes both ways. More recently, however, Kontinen
and Yang [17] have also introduced a logic over team semantics that corresponds
to first-order logic in this way, i.e. it captures exactly the elementary properties of
teams. From the perspective of the present work, the results from [17] represent
a significant breakthrough. In our view, Kontinen and Yang’s work shows that
the the most essential aspect of team semantics lies in this shift of attention from
first-order to second-order objects, rather than the increase in expressive power.

In fact, since teams are essentially relations, it is very natural to adopt team
semantics as a framework to study the model theory of sets and relations. Interest-
ingly enough, there has not been much study of the model theory of logics in team
semantics, with the exception of the seminal work of Väänänen [31] and the study
of team ultraproducts by Lück [21]. In [24], the study of model theory for team
semantics was initated, in particular by proving a full version of the compactness
theorem for independence logic and several of its fragments.

In this article we continue the work from [24] and develop a model-theoretic
framework for team semantics. We further believe this framework provides the
natural environment to study the elementary and higher-order properties of sets
and relations. In particular, we apply the model-theoretic toolkit developed in this
article to study the problem of transferring categoricity for complete theories in
existential second-order logic. This provides an important example of how team
semantics can be used to deliver results on the model theory of existential second
order logic.

We shall now summarize the structure and the major contributions of this work.
In Section 2 we review some basic notions from team semantics and existential
second-order logic. In Section 3 we introduce the notion of team maps between
structures and prove some of their basic properties. In Section 4, we discus prob-
lems arising from trying to fit a class of structures together with elementary team
embeddings into the framework of abstract elementary classes (AECs). We re-
solve these problems by defining a generalization of AECs that makes more sense
in our setting. The objects of these so-called abstract elementary team classes
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(AETCs) are reminiscent of general models (or Henkin models) of second-order
logic. The main result of the section is Theorem 4.18, which states that AETCs,
when treated as categories with team maps as morphisms, are examples of ac-
cessible categories [1], which are known to generalize AECs. In Section 5 we use
the general framework of abstract elementary classes to show that one can build a
suitable version of the monster model for independence logic and ESO.

We then consider two applications of this model-theoretic toolkit. First, in Sec-
tion 6, we use the machinery introduced in the previous sections to show that the
elementary team logic FOT introduced by Kontinen and Yang in [17] satisfies a
version of Lindström’s Theorem. Finally, we conclude the article in Section 7 by
focusing on the problem of classifying models of complete existential second-order
theories. We prove, in particular, two versions of categoricity transfer: one from
uncountable to countable cardinals (Theorem 7.7) and one from countable to un-
countable cardinals (Theorem 7.11). These two results also show how the spectrum
function of an existential second-order theory depends in many cases on the sta-
bility properties of its first-order reduct, and it also displays that the present work
has many potential connections to the standard elementary model theory.

Acknowledgements. We thank Åsa Hirvonen, Jonathan Kirby, Nicolás Nájar,
Tapio Saarinen, Jouko Väänänen, Andrés Villaveces and Fan Yang for useful com-
ments and discussions regarding this manuscript.

2. Preliminaries

2.1. Notational Conventions. We denote sets and relations with uppercase Ro-
man letters such as A, B and C and elements by lowercase Roman letters such as
a, b and c. We usually denote collections of sets A by calligraphic letters such as A.
By Fraktur letters such as A, B and C we denote first-order structures of a given
signature.

If n is a natural number, an n-tuple is technically a function with domain n.

We usually denote tuples by ~a, ~b etc. and often write ~a = (a0, . . . , an−1), where
ai = ~a(i) for i < n. We call n the length of ~a and may denote it by |~a|. The empty
set is the unique 0-tuple. An n-ary relation is a set of n-tuples. If A is an n-ary
relation, we denote by ar(A) the arity of A, i.e. the number n. The empty set is
considered a relation of every arity. {∅} is the unique nonempty 0-ary relation. If
f is a function from An to A for some n < ω, then we say that it has arity n and
denote this number by ar(f).

If ~a = (a0, . . . , an−1) is an n-tuple and ~b = (b0, . . . , bm−1) is an m-tuple, the

concatenation of ~a and ~b is the n+ m-tuple (a0, . . . , an−1, b0, . . . , bm−1), which we

usually denote just by ~a~b. If there is a risk of confusion, we may also denote the

concatenation by ~a⌢~b. Often for our convenience, we also identify a pair (~a,~b) with

the tuple ~a~b. Note that ∅~a = ~a∅ = ~a for any tuple ~a. If A is an n-ary and B an
m-ary relation, then we identify the Cartesian product A ×B with the n+m-ary
relation

{~a~b | ~a ∈ A and ~b ∈ B}.

Note that by this convention, {∅} ×A = A× {∅} = A. Also, ∅ ×A = A× ∅ = ∅.
If A is an n+ k-ary and B a k+m-ary relation, then the natural k-join A ⊲⊳k B

of A and B is the n+ k +m-ary relation

{~a~b~c | |~a| = n, |~b| = k, |~c| = m and ~a~b ∈ A and ~b~c ∈ B}.

Note that A×B = A ⊲⊳0 B. If A and B are n-ary relations, then A∩B = A ⊲⊳n B.
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Let A be an n-ary relation, let i0, . . . , im−1 < n and denote ~ı = (i0, . . . , im−1).
We then denote by Pr~ı(A) the m-ary relation

{(ai0 , . . . , aim−1) | there is (b0, . . . , bn−1) ∈ A with bij = aij for j < m}.

This is a kind of projection, with the possibility of permuting and repeating coor-
dinates. If π is a permutation of n, then

Pr
(π(0),...,π(n−1))

(A) = {(aπ(0), . . . , aπ(n−1)) | (a0, . . . , an−1) ∈ A}

= {(a0, . . . , an−1) | (aπ−1(0), . . . , aπ−1(n−1)) ∈ A}.

If α is a possibly infinite ordinal and a is a function with domain α, we call
a an α-sequence and write a = (ai)i<α, where a(i) = ai, similar to tuples, even
though when α is infinite, we usually do not call a an α-tuple, nor do we call a set
of α-sequences an α-ary relation.

If A is a structure, we do not distinguish between A and the domain of A when
there is no risk of confusion, i.e. we write e.g. a ∈ A when a is an element of the
domain of A and we write |A| for the cardinality of the domain. We also denote
the domain of A by dom(A) when necessary for clarity.

If τ is a signature and A and B are elementarily equivalent τ -structures, i.e.
satisfy the same τ -sentences of first-order logic, then we write A ≡ B. If L is
another logic and A and B satisfy the same τ -sentences of L, we write A ≡L B.

We denote the powerset of a set I by P(I). By P+(I) we mean P(I) \ {∅}. By
R(I) we mean the collection of all relations on I, i.e. the set

⋃

n<ω P(In).

2.2. Existential Second-Order Logic. We assume the reader is familiar with
the syntax and semantics of second-order logic (SO). We refer the reader to the
last chapter of [6] and to [4] and [32] for an overview of basic definitions and results.

If φ ∈ SO does not contain any second-order quantifiers, we say that φ is first-
order, even if it has free second-order variables. If no first-order variable occurs
free in φ and φ is first-order, we say that φ is a first-order sentence; with this
terminology, a first-order sentence (of SO) may contain free second-order variables.
If φ does not contain free (first- or second-order) variables, we say that φ is a
(second-order) sentence.

Fact. Every formula of SO is equivalent to a formula of the form

Q0X0 . . . Qm−1Xm−1φ,

where Qi ∈ {∃, ∀} for i < m, each Xi is either a relation or function variable and φ
is first-order.

We denote by ESO the existential fragment of SO, i.e. the set of formulas of SO
that are equivalent to a formula of the form

∃X0 . . .∃Xm−1φ

for first-order φ.
The following properties of ESO are well known.

Lemma 2.1.

(i) Let X0, . . . , Xn−1 be second-order variables. Then there is a relation vari-
able X such that for any first-order τ -sentence φ(X0, . . . , Xn−1), there is a
first-order τ -sentence φ∗(X) such that

∃X0 . . . ∃Xn−1φ ≡ ∃Xφ∗.

(ii) ESO is closed under conjunction, disjunction and first-order quantifiers.
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It is easy to show that ESO satisfies the compactness theorem and the follow-
ing version of the Löwenheim–Skolem theorem: if T is an existential second-order
theory with infinite models, then for any infinite κ ≥ |τ |, T has a model of car-
dinality κ. To see this, let T be an ESO-theory with infinite models, and let
{∃Xiαi(Xi) | i < |τ |+ℵ0}, for αi first-order, axiomatize T . Fix an infinite cardinal
κ ≥ |τ |, and let A be an infinite model of T . Then there are relations Ri ⊆ Aar(Xi)

such that A |= αi(Ri) for all i < |τ | + ℵ0. Let Â be an expansion of A by fresh

predicate symbols Si with ar(Si) = ar(Ri) such that SÂ
i = Ri. Then ThFO(Â) has,

by the Löwenheim–Skolem theorem of first-order logic, a model B̂ of cardinality

κ. Then, letting B = B̂↾τ , we have B |= ∃Xiαi(Xi) for every i < |τ | + ℵ0, as

witnessed by SB̂
i . We stress that this does not contradict Lindström’s theorem, as

ESO is not closed under negation, which is a requirement imposed on an abstract
logic in the statement of the theorem.

We wish to define the concept of completeness for theories in ESO. Usually, one
would define a complete theory to be one that semantically (or syntactically if there
is a proof system available) entails, for every sentence φ, either φ or ¬φ. Since ESO

is a positive logic, this option is not viable. We can, however, give a definition that
does not use negation and is equivalent for logics that are closed under negation.

Definition 2.2. Let T be an existential second-order theory, i.e. a set of sentences
of ESO. We say that T is complete if all of its models are ESO-equivalent, i.e. for
all A,B |= T and sentences φ of ESO, we have

A |= φ ⇐⇒ B |= φ.

It may well be that the set of ESO-sentences true in a structure A, which we
denote by ThESO(A), is not complete in the above sense. For instance, if A is a {P}-
structure, where P is a unary predicate, such that |PA| = ℵ1 and |A \ PA| = ℵ0,
then ThESO(A) does not contain the sentence expressing that there is a bijection
between PA and its complement, but by the Löwenheim–Skolem theorem ThESO(A)
has a countable model, and such a model will satisfy said sentence. It turns out
that a complete first-order theory has a unique ESO-completion, consisting of every
ESO-sentence that is consistent with the first-order theory. We will discuss this in
Section 7.1. We point out the following corollary on complete ESO-theories, which
immediately follows by the previous Löwenheim–Skolem theorem.

Corollary 2.3. Let T be a complete τ -theory in ESO, with infinite models. Then
T has infinite models in all cardinalities ≥ |τ |.

We conclude this section by making the following observation, akin to the  Los–
Vaught test of first-order logic.

Proposition 2.4. Let T be an existential second-order theory. If T does not have
models of size < |τ | + ℵ0 and is categorical in every cardinality in which it has a
model, then T is complete.

Proof. Let A,B |= T and let A |= φ. Since |A|, |B| ≥ |τ | + ℵ0, by Löwenheim–
Skolem, there is A′ with |A′| = |B| and A′ |= T ∪ {φ}. As T is |B|-categorical,
A′ ∼= B, and hence B |= φ. �

2.3. Team Semantics. Next we recall the concept of a team and the team-semantic
interpretations of first-order connectives and quantifiers. We refer the reader to Gal-
liani [9], Grädel and Väänänen [10], and Väänänen [31] for an introduction to team
semantics and proofs of the main facts recalled here.

Let τ be a vocabulary, A a τ -structure and D ⊆ {vi | i < ω} a set of (first-order)
variables. An assingment of A with domain D is a function D → A. A team of A
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with domain D is a set of assignments of A with domain D, i.e. a subset of AD.
We usually take D to be finite, but sometimes teams with infinite domains may be
of interest. When given a team X , we denote its domain by dom(X), similarly to
domains of functions.

If s is an assignment of A with x0, . . . , xn−1 ∈ dom(s) and t(x0, . . . , xn−1) is a τ -
term, we write s(t) as a shorthand for tA(s(x0), . . . , s(xn−1)). If ~x = (x0, . . . , xn−1)
is a tuple of variables, we write s(~x) for (s(x0), . . . , s(xn−1)). If X is a team and
x0, . . . , xn−1 ∈ dom(X), then we denote by X [~x] the relation

{s(~x) | s ∈ X}.

Conversely, if R is an n-ary relation, we denote by team(R) the team

{{(vi, ai) | i < n} | (a0, . . . , an−1) ∈ R}

with domain {vi | i < n}.
If s is an assignment of A, a ∈ A and x is a variable, we denote by s(a/x) the

assignment s′ with domain dom(s) ∪ {x} such that

s′(y) =

{

a if y = x,

s(y) otherwise.

If X is a team of A, then by X(a/x) we denote the team Y of A with domain
D := dom(X) ∪ {x} such that

Y = {s(a/x) | s ∈ X}.

If F is a function X → P+(A), we denote by X(F/x) the team

{s(a/x) | s ∈ X and a ∈ F (s)}.

We call F a supplement function and X(F/x) the supplementation of X by F . If
F (s) = A for all s ∈ X , then we denote the supplemented team by X(A/x) and
call it the duplication of X . If D ⊆ dom(X), we denote by X↾D the team

{s↾D | s ∈ X}.

Given a vocabulary τ , we consider the syntax of τ -formulas of first-order logic
FO to be given by the grammar

φ ::= t = t′ | ¬t = t′ | R(t0, . . . , tn−1) | ¬R(t0, . . . , tn−1) | φ ∧ φ | φ ∨ φ | ∃xφ | ∀xφ,

where t, t′ and ti are τ -terms and R ∈ τ is an n-ary relation symbol. Note that
we readily assume a negation normal form for our first-order formulas. The team
semantics of the operators above is the following.

Let A be a τ -structure and X a team of A with x0, . . . , xn−1 ∈ dom(X). For a
first-order formula φ(x0, . . . , xn−1), A |=X φ is defined as follows.

(i) A |=X t = t′ if s(t) = s(t′) for all s ∈ X .
(ii) A |=X ¬t = t′ if s(t) 6= s(t′) for all s ∈ X .

(iii) A |=X R(t0, . . . , tn−1) if (s(t0), . . . , s(tn−1) ∈ RA for all s ∈ X .
(iv) A |=X ¬R(t0, . . . , tn−1) if (s(t0), . . . , s(tn−1) /∈ RA for all s ∈ X .
(v) A |=X ψ ∧ χ if A |=X ψ and A |=X χ.

(vi) A |=X ψ ∨ χ if there are Y, Z ⊆ X such that Y ∪ Z = X , A |=Y ψ and
A |=Z χ.

(vii) A |=X ∃xψ if there is a function F : X → P+(A) such that A |=X(F/x) ψ.
(viii) A |=X ∀xψ if A |=X(A/x) ψ.

We stress that the team semantic definition of the classical connectives and
quantifiers do not provide us with anything new when it comes to just first-order
logic, in the sense that formulas of first-order logic are flat.
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Fact (Flatness). For any A, X and φ(x0, . . . , xn−1) ∈ FO,

A |=X φ ⇐⇒ A |= φ(s(x0), . . . , s(xn−1)) for all s ∈ X.

Hence for formulas of FO, team semantics is equivalent to the usual Tarski seman-
tics.

2.4. Dependence Logic. When working with team semantics, we are generally
interested in expanding the syntax of first-order logic by means of new atomic
formulas encoding different relations of (in)dependence between variables. We recall
here the semantics of the dependence atom =(~x; ~y), the independence atom ~x ⊥~z ~y,
the inclusion atom ~x ⊆ ~y and the exclusion atom ~x | ~y.

(ix) A |=X =(~x; ~y) if for all s, s′ ∈ X , if s(~x) = s′(~x) then s(~y) = s′(~y), i.e.
there is a function f : A|~x| → A|~y| such that f(s(~x)) = s(~y) for all s ∈ X .

(x) A |=X ~x ⊆ ~y, where ~x and ~y are tuples of the same length, if for all s ∈ X
there is some s′ ∈ X such that s(~x) = s′(~y), i.e. X [~x] ⊆ X [~y].

(xi) A |=X ~x | ~y, where ~x and ~y are tuples of the same length, if for all s, s′ ∈ X
we have s(~x) 6= s′(~y), i.e. X [~x] ∩X [~y] = ∅.

(xii) A |=X ~x ⊥~z ~y if for all s, s′ ∈ X such that s(~z) = s′(~z), there is s′′ ∈ X such
that s′′(~x~z) = s(~x~z) and s′′(~y) = s′(~y), i.e. X [~x~z~y] = X [~x~z] ⊲⊳|~z| X [~z~y].

As a special case of the dependence atom, we have the constancy atom =(∅; ~x) that
is true in a team X if for all s, s′ ∈ X , s(~x) = s′(~x), i.e. |X [~x]| ≤ 1. We denote the
constancy atom simply by =(~x).

Note that adding any of the aforementioned atoms to the syntax of first-order
logic results in a non-flat logic. If C ⊆ {=(. . . ),⊥c,⊆, |}, we denote by FO(C) the
logic resulting from adding the atoms in C to the syntax of FO. Below we list some
well-known properties of these logics.

Fact. Let A be a τ -structure and X and Y teams of A with the same domain.

(i) Locality: For any formula φ of FO(=(. . . ),⊥c,⊆, |), we have A |=X φ if and
only if A |=X↾Fv(φ) φ.

(ii) The empty team property: For any formula φ of FO(=(. . . ),⊥c,⊆, |) we
have A |=∅ φ.

(iii) Downwards closure: For any formula φ of FO(=(. . . ), |), if A |=X φ and
Y ⊆ X , then A |=Y φ.

(iv) Union-closure: For any formula φ of FO(⊆), if A |=X φ and A |=Y φ, then
A |=X∪Y φ.

By locality, whenever φ is a sentence of FO(=(. . . ),⊥c,⊆, |), we have

A |=X φ ⇐⇒ A |=X↾∅ φ ⇐⇒ A |={∅} φ

for any A and X . We write A |= φ for A |={∅} φ whenever φ is a sentence.
It is well known that in FO(⊥c) one can define all the other aforementioned

atoms, i.e. the logics FO(⊥c) and FO(=(. . . ),⊥c,⊆, |) are equiexpressive. In fact,
any property of teams definable in ESO (modulo the empty team property) can be
defined in FO(⊥c) and, conversely, any formula of FO(⊥c) can be defined in ESO,
in the following sense.

Lemma 2.5 (Galliani, Grädel–Väänänen [9, 10]). Fix a finite setD = {x0, . . . , xn−1}
of variables.

(i) For every τ -formula of φ(x0, . . . , xn−1) of FO(⊥c), there is a τ -formula χ(R)
of ESO with no free first-order variables and only one free n-ary second-
order variable R, such that for every τ -structure A and team X of A with
D ⊆ dom(X),

A |=X φ ⇐⇒ A |= χ(X [x0, . . . , xn−1]).
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We call χ(R) a translation of φ to ESO.
(ii) For every τ -formula χ(R) of ESO with no free first-order variables and only

one free n-ary second-order variable R, there is a τ -formula φ(x0, . . . , xn−1)
of FO(⊥c) such that for every τ -structure A and team X of A with D ⊆
dom(X),

A |=X φ ⇐⇒ A |= χ+(X [x0, . . . , xn−1]),

where χ+(R) = ∃x0 . . .∃xn−1R(x0, . . . , xn−1) → χ(R). We call φ a trans-
lation of χ(R) to FO(⊥c).

Finally, we define what it means for a theory in FO(⊥c) to be complete.

Definition 2.6. Let T be an FO(⊥c)-theory.

(i) We say that T is first-order complete if for all A,B |= T , we have A ≡ B.
(ii) We say that T is complete if its ESO-translation is, i.e. if for all A,B |= T

and sentences φ of FO(⊥c),

A |= φ ⇐⇒ B |= φ.

2.5. The Logic FOT. First-order Team Logic, FOT, was introduced by Kontinen
and Yang [17] to capture exactly the team properties definable in first-order logic
(modulo the empty team property) the same way, i.e. FOT corresponds to FO(⊥c)
exactly the same way in which FO(⊥c) corresponds to ESO. We can view FOT

here as a small extension of first order logic whose expressive power lies between
FO and FO(⊥c). In particular, since FOT captures all elementary team properties,
it is powerful enough to express the most common dependence atoms, for instance
those defined in the previous section.

Given a vocabulary τ , the syntax of τ -formulas of FOT is given by the grammar

φ ::= λ | ~x ⊆ ~y | =(~x) | ∼̇φ | φ ∧ φ | φ

>

φ | ∃1xφ | ∀1xφ,

where λ is a first-order atomic formula and the weak classical negation ∼̇, the weak
disjunction

>

, and the weak quantifiers ∃1 and ∀1 are interpreted as follows:

(xiii) A |=X φ

>

ψ if A |=X φ or A |=X ψ.
(xiv) A |=X ∼̇φ if X = ∅ or A✓✓|=X φ.
(xv) A |=X ∃1xψ if there is an element a ∈ A such that A |=X(a/x) ψ.

(xvi) A |=X ∀1xψ if for every element a ∈ A we have A |=X(a/x) ψ.

In [17], the syntax of FOT excludes the constancy atom =(~x). However, our
definition results in an equiexpressive logic, as the constancy atom can be defined
via the equivalence

=(x0, . . . , xn−1) ≡ ∃1y0 . . . ∃
1yn−1

∧

i<n

xi = yi.

Note that as quantifiers seem to be required here, at the level of quantifier-free
formulas there may be a difference in expressive power between the two versions of
FOT.

We denote by φ _ ψ the formula ∼̇φ

>

ψ and call it the weak classical implica-
tion and by φ ] ψ the formula (φ _ ψ) ∧ (ψ _ φ) and call it the weak classical
equivalence. Clearly, for a nonempty team X , A |=X φ _ ψ if and only if

A |=X φ =⇒ A |=X ψ.

We also denote ⊤ := =(∅) and ⊥ := ∼̇⊤. Note that the empty constancy atom ⊤ is
true in any team, and hence its weak classical negation ⊥ is true only in the empty
team.

The following is the FOT-counterpart of Lemma 2.5.

Lemma 2.7 (Kontinen–Yang [17]). Fix a finite setD = {x0, . . . , xn−1} of variables.
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(i) For every τ -formula φ(x0, . . . , xn−1) of FOT, there is a first-order τ -sentence
χ(R) with a single free n-ary second order variable R such that for every
τ -structure A and team X of A with D ⊆ dom(X),

A |=X φ ⇐⇒ A |= χ(X [x0, . . . , xn−1]).

We call χ(R) a translation of φ to FO.
(ii) For every first-order τ -sentence χ(R) with a single free n-ary second order

variable R, there is a τ -formula φ(x0, . . . , xn−1) of FOT such that for every
τ -structure A and team X of A with D ⊆ dom(X),

A |=X φ ⇐⇒ A |= χ+(X [x0, . . . , xn−1]),

where χ+(R) = ∃x0 . . . ∃xn−1R(x0, . . . , xn−1) → χ(R). We call φ a trans-
lation of χ(R) to FOT.

We can conclude that the relationships of the logics mentioned so far when it
comes to expressive power is the following:

FO � FOT � FO(⊥c).

Next we prove some basic but useful facts about FOT.

Lemma 2.8. Let X be a team of A and Y a team of B, both with domain
{v0, . . . , vn−1}. Then

A |=X φ ⇐⇒ B |=Y φ

for all formulas φ(v0, . . . , vn−1) of FOT if and only if

(A, X [v0, . . . , vn−1]) ≡ (B, Y [v0, . . . , vn−1]).

Proof. Denote ~x = (v0, . . . , vn−1). If X = Y = ∅, then clearly the claim holds. If
X = ∅ and Y 6= ∅ (or vice versa), then we have that A |=X ⊥ but B✓✓|=Y ⊥. On the
other hand, clearly (A, X [~x]) = (A, ∅) 6≡ (B, Y [~x]), proving our claim. So we may
assume that X 6= ∅ 6= Y .

“=⇒”: Suppose (A, X [~x]) 6≡ (B, Y [~x]). Then there is a first-order τ ∪ {R}-
sentence χ such that (A, X [~x]) |= χ and (B, Y [~x]) ✓✓|= χ. Since X 6= ∅ 6= Y , we have
(A, X [~x]) |= χ+ and (B, Y [~x]) ✓✓|= χ+. Considering R a second-order variable and
letting φ(~x) be a translation of χ(R) to FOT, we have A |=X φ but B✓✓|=Y φ.

“⇐=”: If (A, X [~x]) ≡ (B, Y [~x]) and φ(~x) is a formula of FOT, let χ(R) be the
translation of φ to FO. Consider R as a relation symbol so that (A, X [~x]) and
(B, Y [~x]) are τ ∪ {R}-structures. Then as X and Y are nonempty, we have

(A, X [~x]) |= χ ⇐⇒ (B, Y [~x]) |= χ,

whence by Lemma 2.7,

A |=X φ ⇐⇒ B |=Y φ. �

Lemma 2.9. For any n-ary relation symbol R and an n-tuple ~x of variables, there
is an {R}-formula θ(R, ~x) of FOT such that for any {R}-structure A and a nonempty
team X of A,

A |=X θ ⇐⇒ X [~x] = RA.

Proof. Clearly θ = R(~x) ∧ ∀1y0 . . .∀1yn−1(R(~y) _ ~y ⊆ ~x) suffices. �
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2.6. Ultraproducts. Recall that given an index set I, an ultrafilter U on I and
nonempty sets Ai, i ∈ I, the ultraproduct

∏

i∈I Ai/U of the sets Ai is the quotient
set {f/U | f ∈

∏

i∈I Ai} of
∏

i∈I Ai by the equivalence relation

f ≡U g ⇐⇒ {i ∈ I | f(i) = g(i)} ∈ U,

where f/U denotes the equivalence class of f . If even one of the sets Ai is empty,
then the Cartesian product will also be empty and hence so will the ultraproduct.
However, when one defines the ultraproduct

∏

i∈I Ai/U of τ -structures Ai, i ∈ I,
the interpretation of a predicate symbol R ∈ τ will be the set

{(f0/U, . . . , fn−1/U) | {i ∈ I | (f0(i), . . . , fn−1(i)) ∈ RAi} ∈ U}.

This set, which we naturally think as the ultraproduct of the sets RAi , is empty
only when RAi is empty for U-many indices i. Given a context of an ultraproduct
structure A =

∏

i∈I Ai/U, we generalize the notion of an ultraproduct of sets to
correspond to the interpretation of relation symbols, i.e. if Ai ⊆ Ani for all i ∈ I,
then we denote by

∏

i∈I Ai/U the set

{(f0/U, . . . , fn−1/U) ∈ An | {i ∈ I | (f0(i), . . . , fn−1(i)) ∈ Ai} ∈ U}.

This leads to the definition of the ultraproduct of teams.

Definition 2.10 (Lück [21]). Let A be the ultraproduct of the structures Ai, i ∈ I,
and let D be a set of first-order variables.

(i) Given assignments si : D → Ai, i ∈ I, we denote by (si)i∈I the assignment
s : D →

∏

i∈I Ai such that s(x) = (si(x))i∈I for all x ∈ D.
(ii) Given an assignment s : D →

∏

i∈I Ai, we denote by s/U the assignment
t : D → A such that t(x) = s(x)/U for all x ∈ D.

(iii) Given a team Xi of Ai with domain D for each i ∈ I, we define their team
ultraproduct

∏

i∈I Xi/U as the set of all assignments s : D → A such that
there are si : D → Ai, i ∈ I, with s = (si)i∈I/U and {i ∈ I | si ∈ Xi} ∈ U.

Note that with these definitions,
(
∏

i∈I Xi/U
)

[~x] =
∏

i∈I Xi[~x]/U for any vari-
able tuple ~x.

Recall that the classical fundamental theorem of ultraproducts, also known as
 Loś’ theorem, is the following: if f0, . . . , fn−1 ∈

∏

i∈I Ai and φ(x0, . . . , xn−1) is a
first-order formula, then

{i ∈ I | Ai |= φ(f0(i), . . . , fn−1(i))} ∈ U ⇐⇒
∏

i∈I

Ai/U |= φ(f0/U, . . . , fn−1/U).

It was proved by Lück [21] that first-order definable properties of teams are pre-
served in ultraproducts, which together with Lemma 2.7 gives the following theo-
rem.

Theorem 2.11 ( Loś’ Theorem of FOT). If Xi is a team of Ai with domain D for
all i ∈ I and φ is a formula of FOT with Fv(φ) ⊆ D, then

{i ∈ I | Ai |=Xi φ} ∈ U ⇐⇒
∏

i∈I

Ai/U |=∏
i∈I Xi/U

φ.

A version for FO(⊥c) was proved by Puljujärvi and Quadrellaro [24]:

Theorem 2.12 ( Loś’ Theorem of FO(⊥c)). If Xi is a team of Ai with domain D
for all i ∈ I and φ is a formula of FO(⊥c) with Fv(φ) ⊆ D, then

{i ∈ I | Ai |=Xi φ} ∈ U =⇒
∏

i∈I

Ai/U |=∏
i∈I Xi/U

φ.
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Note that in independence logic one does not obtain equivalence between a formula
being satisfied U-often and it being satisfied in the ultraproduct; this reflects the
positive nature of ESO. In fact, a universal second-order sentence that is preserved
under ultraproducts is actually definable in first-order logic [14]. Furthermore,
a logic that satisfies the stronger form of  Loś’ theorem is equiexpressive to first-
order [26]. Fortunately, the missing direction of the equivalence is unnecessary for
proving the compactness theorem, which we obtain as a corollary. We say that a
set Γ of formulas of FO(⊥c) is satisfiable if there is a structure A, and a nonempty
team X of A whose domain contains all the free variables of Γ, such that A |=X Γ.

Corollary 2.13. If Γ is a set of formulas of FO(⊥c) and each finite Γ′ ⊆ Γ is
satisfiable, then Γ is satisfiable.

In the sequel, the following classic result, usually dubbed the Keisler–Shelah
theorem, will be of much use.

Theorem 2.14 (Keisler [14], Shelah [29]). Let A and B be τ -structures. If A ≡ B,
then there is a cardinal κ and an ultrafilter U on κ such that Aκ/U∼= Bκ/U.

We conclude this section by reviewing the notion of a limit ultrapower, which
was introduced by Keisler [15] as a kind of generalization of ultrapowers.

Definition 2.15. Let I be a set, F an ultrafilter on I and G a filter on I2.

(i) For f ∈ AI , we denote by eq(f) the set of all pairs (i, j) ∈ I2 such that
f(i) = f(j).

(ii) Let A be a set and denote B = AI/F. By B|Gwe denote the set

{f/F∈ B | eq(g) ∈ G for some g ≡F f}.

(iii) Let A be a τ -structure and let B = AI/F. Then we denote by B|G the sub-
structure of B generated by the set dom(B)|Gand call it a limit ultrapower
of A.

The limit ultrapower B|G is a substructure of the ultrapower B = AI/F that
consists of equivalence classes of those sequences f ∈ AI that are “almost constant”
according to the filter G. In the definition we do not require G to be proper;
if G = P(I2), we have B|G = B, so in this sense limit ultrapowers generalize
ultrapowers. It is proved in [15] that B|G is always an elementary substructure of
B, and that the ultrapower embedding a 7→ (a)i∈I/F is an elementary embedding
A → B|G.

Limit ultrapowers are connected to complete embeddings, whose definition we
now recall.

Definition 2.16. Let A and B be τ -structures. An embedding f : A → B is

complete if for every τ ′ ⊇ τ and τ ′-expansion Â of A there is a τ ′-expansion B̂ of
B such that f is an elementary embedding Â → B̂.

Clearly the ultrapower embedding A → AI/F is complete. It turns out that this
is a special case of the more general fact that the ultrapower embedding to a limit
ultrapower is complete. In fact, every complete embedding is essentially a limit
ultrapower embedding.

Theorem 2.17 (Keisler [15]). The following are equivalent for f : A → B.

(i) f is a complete embedding.
(ii) There are I, F and G and an isomorphism π : (AI/F)|G → B such that

f = π ◦ ι, where ι is the ultrapower embedding A → (AI/F)|G.
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3. Team Maps

In this section we introduce the notions of partial isomorphism and elementary
map for team semantics and prove some of their basic characterisations. For the
rest of the paper (except Section 6), we identify a relation X with the corresponding
team team(X) with domain {v0, . . . , var(X)−1}. If φ(v0, . . . , vn−1) is a formula of
FOT or FO(⊥c) andX ⊆ An for a structure A, then by A |=X φ we mean A |=team(X)

φ. If X ⊆ An and a ∈ A, then by X(a/n) we denote the n + 1-ary relation
X × {a}. Note that team(X(a/n)) = team(X)(a/vn). Also note that ∅(a/0) = ∅
and {∅}(a/0) = {a}. Given a structure A, we denote by ∆A the diagonal set
{(a, a) | a ∈ A}, i.e. the identity relation (a = b if and only if (a, b) ∈ ∆A).

Definition 3.1. Let A and B be τ -structures.

(i) Given a set X ⊆ R(A), we denote by cl(X;A) the ⊆-least set Y ⊆ R(A)
such that

(C1) ∅ ∈ Y and An ∈ Y for all n < ω,
(C2) if X,Y ∈ Y, then X ∩ Y ∈ Y,
(C3) if X,Y ∈ Y, then X × Y ∈ Y,
(C4) if X ∈ Y is n-ary and ~ı ∈ n<ω, then Pr~ı(X) ∈ Y, and
(C5) ∆A, R

A, FA, {cA} ∈ Y for all relation symbols R ∈ τ , function symbols
F ∈ τ and constant symbols c ∈ τ .

If the structure A is clear from the context (which it almost always is), we
simply write cl(X) for cl(X;A).

(ii) We say that f is a (partial) team map A → B if it is a (partial) function
R(A) → R(B) such that

• f preserves arities, i.e. if X ⊆ An, then f(X) ⊆ Bn, and
• the domain and range of f satisfy the closure properties (C1)–(C5),

i.e. dom(f) = cl(dom(f);A) and ran(f) = cl(ran(f);B).
If f maps all singletons from its domain to singletons and {~a} ∈ dom(f),
we write f(~a) for the unique element inhabiting the singleton f({~a}). We
write f↾n for the function f↾(dom(f) ∩P(An)).

(iii) We say that a partial team map f: A → B is a partial team isomorphism
if the following conditions are satisfied:

(PI1) X = ∅ if and only if f(X) = ∅, and X = An if and only if f(X) = Bn

for all n < ω,
(PI2) for all X ∈ dom(f), X is a singleton if and only if f(X) is,
(PI3) for all X,Y ∈ dom(f), f(X × Y ) = f(X) ×f(Y ),
(PI4) for all n-ary X ∈ dom(f) and ~ı ∈ n<ω, f(Pr~ı(X)) = Pr~ı(f(X)),
(PI5) for all X,Y ∈ dom(f), X ⊆ Y if and only if f(X) ⊆ f(Y ), and
(PI6) f(∆A) = ∆B, f(RA) = RB for any relation or function symbol R ∈ τ

and f(cA) = cB for any constant symbol c ∈ τ .
If f happens to be total, then we call f a team embedding. If f is such that
for any a ∈ A, {a} ∈ dom(f), then we call f element-total, and if for any
b ∈ B, {b} ∈ ran(f), then we call f element-surjective.

(iv) We say that f is a team isomorphism if it is an element-surjective team
embedding. If π : A → B is an ordinary isomorphism, we denote by π̂ the
team isomorphism A → B defined by

π̂(X) = {π(~a) | ~a ∈ X}

for all relations X of A.
(v) We say that a (partial) team map f: A → B is a (partial) elementary team

map if it satisfies (PI3), and for all τ -formulas φ(v0, . . . , vn−1) of FOT and
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n-ary X ∈ dom(f), we have

A |=X φ ⇐⇒ B |=f(X) φ.

If f happens to be total, then we call f an elementary team embedding.
(vi) We say that a (partial) elementary team map f: A → B is a (partial)

independence team map if for all τ -formulas φ(v0, . . . , vn−1) of FO(⊥c) and
X ⊆ An, we have

A |=X φ =⇒ B |=f(X) φ.

If f happens to be total, then we call f an independence team embedding.

Note that f(∅) = ∅ vacuously holds for any team map f: the empty set is the
only relation of every arity, and f preserves arity of relations. If f is a partial team
isomorphism and a0, . . . , an−1 ∈ dom(f), then ~a = (a0, . . . , an−1) ∈ dom(f) and
f(~a) = (f(a0), . . . ,f(an−1).

Example 3.2. Let A be a τ -structure, κ an infinite cardinal and U an ultrafilter on
κ. Let B = Aκ/U. Now ι : A → B defined by ι(X) = Xκ/U is an elementary team
embedding by Theorem 2.11 and furthermore an independence team embedding by
Theorem 2.12.

Lemma 3.3. Let f be a partial team isomorphism. Then

(i) f is injective,
(ii) f(X(a/n)) = f(X)(f(a)/n) for an n-ary X ∈ dom(f) and {a} ∈ dom(f).

(iii) f(X ∩ Y ) = f(X) ∩f(Y ) for all X,Y ∈ dom(f).

Proof. We show the third claim. Let X,Y ∈ dom(f). If they are of different arity,
the intersection is empty and hence mapped to the empty set, so we may assume
ar(X) = ar(Y ). By (PI5), as X ∩ Y ⊆ X,Y , we have f(X ∩ Y ) ⊆ f(X),f(Y ) and
hence f(X∩Y ) ⊆ f(X)∩f(Y ). For the converse, note that as f(X)∩f(Y ) ∈ ran(f),
there is some Z ∈ dom(f) such that f(Z) = f(X)∩f(Y ). Since f(Z) ⊆ f(X)∩f(Y ),
we have f(Z) ⊆ f(X),f(Y ), so by (PI5) we have Z ⊆ X,Y . But then Z ⊆ X ∩ Y .
Thus f(Z) ⊆ f(X ∩ Y ). But as f(Z) = f(X) ∩ f(Y ), we have f(X) ∩ f(Y ) ⊆
f(X ∩ Y ). �

Lemma 3.4.

(i) If f is a partial team isomorphism A → B, then f−1 is a partial team
isomorphism B → A. If f is a partial elementary team map A → B, then
f−1 is a partial elementary team map B → A.

(ii) If f: A → B and g: B → C are partial team isomorphisms with ran(f) =
dom(g), then g ◦f is a partial team isomorphism A → C. If f and g are
elementary, then so is g ◦f. If f and g are independence team maps, then
so is g ◦f.

Proof. Clear. �

Lemma 3.5. Let f: A → B be a partial team map. Then for any n,m < ω
and n-ary and m-ary relations X and Y of A, respectively, the following holds:
X ∈ dom(f) and Y ∈ dom(f) if and only if for all k ≤ n,m, X ⊲⊳k Y ∈ dom(f).
Furthermore, if f is a partial team isomorphism, then f(X ⊲⊳k Y ) = f(X) ⊲⊳k f(Y )
for all k.

Proof. Let C be an arbitrary structure. We first show that for any n < ω, the
2n-ary relation

∆n
C

:= {~a~b | |~a| = |~b| = n,~a = ~b}



14 T. HYTTINEN, J. PULJUJÄRVI, AND D. E. QUADRELLARO

is expressible in terms of products, projections and ∆C. Note that ∆0
C

= {∅} =
Pr∅(∆C) and ∆1

C
= ∆C. Suppose we have shown this for ∆n

C
. Then

∆n+1
C

= {~aa~bb | |~a| = |~b| = n,~a = ~b, a = b}

= Pr
~ı

({~a~bab | |~a| = |~b| = n,~a = ~b, a = b})

= Pr
~ı

(∆n
C × ∆C),

where ~ı = (0, . . . , n− 1, 2n, n, . . . , 2n− 1, 2n+ 1).
Now for any n+ k-ary and k +m-ary relations X and Y of C, we have

X ⊲⊳k Y = {~a~b~c | ~a~b ∈ X,~b~c ∈ Y }

= Pr
~

((X × Y ) ∩ (Cn × ∆k
C × Cm)),

where ~ = (0, . . . , n+ k − 1, n+ 2k, . . . , n+ 2k +m− 1).
Now it is clear that ∆k

A
∈ dom(f). It follows that X ⊲⊳k Y ∈ dom(f) whenever

X,Y ∈ dom(f). On the other hand, if X ⊲⊳0 Y = X × Y ∈ dom(f), then X and Y
are easily obtained as projections. If f is a partial team isomorphism, then clearly
f(∆k

A
) = ∆k

B
, whence also f(X ⊲⊳k Y ) = f(X) ⊲⊳k f(Y ). �

The next proposition highlights a connection between partial elementary team
maps and complete atomic Boolean algebras.

Proposition 3.6. Let f be a partial elementary team map. Then

(i) for all X,Y ∈ dom(f) of the same arity,

f(X ∪ Y ) = f(X) ∪f(Y ),

whenever X ∪ Y ∈ dom(f), and
(ii) for all X ∈ dom(f),

f(Xc) = f(X)c,

whenever Xc ∈ dom(f).

Furthermore, if f is an elementary team embedding A → B, then for any n <
ω, f↾n is an (ordinary) elementary embedding between (P(An),∪,∩, c, ∅,An) and
(P(Bn),∪,∩, c, ∅,Bn) in the language {∨,∧,¬,⊥,⊤} of Boolean algebras.

Proof.

(i) Denote ~x = (v0, . . . , vn−1), ~y = (vn, . . . , v2n−1), ~z = (v2n, . . . , v3n−1) and
~w = (v3n, . . . , v4n−1). Then it is straightforward to verify that for any
structure C and nonempty X,Y, Z ⊆ Cn, Z = X ∪ Y if and only if

C |=X×Y×Z ~x ⊆ ~z ∧ ~y ⊆ ~z ∧ ∀1 ~w(~w ⊆ ~z _ (~w ⊆ ~x

>

~w ⊆ ~y)),

whence the claim follows.
(ii) Since f(∅) = ∅ and f(An) = Bn, the claim holds whenever either of the

sets X and Y is empty, so suppose that is not the case. Denote ~x =
(v0, . . . , vn−1) and ~y = (vn, . . . , v2n−1). Now let φ be the formula

∀1z0 . . .∀
1zn−1(~z ⊆ ~x

>

~z ⊆ ~y) ∧ ~x | ~y.

Then

X = Y c ⇐⇒ A |=X×Y φ ⇐⇒ B |=f(X×Y ) φ

⇐⇒ B |=f(X)×f(Y ) φ ⇐⇒ f(X) = f(Y )c.

For the “furthermore” part, note that the structures in question are infinite atomic
Boolean algebras. The atoms of (P(An),∪,∩, c, ∅,An) are singletons, and f↾n maps
singletons (and nothing else) to singletons, i.e. preserves the atoms of the Boolean
algebra in both directions. Hence it is enough to show that whenever C and D
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are infinite atomic Boolean algebras and g : C → D is an embedding that preserves
atoms both ways, then g is an elementary embedding.

Claim. Suppose that C and D are infinite atomic Boolean algebras. Then g : C → D

is an elementary embedding if and only if it is an embedding that preserves atoms.

Proof of claim. If g is elementary, then it preserves atoms, as being an atom is a first-
order definable property. For the converse, let τ = {∨,∧,¬,⊥,⊤} ∪ {Pn | n < ω},
i.e. the signature of Boolean algebras augmented with infinitely many fresh unary
predicates. Let T be the τ -theory consisting of the first-order theory of infinite
atomic Boolean algebras and the additional sentences stating that Pn(a) holds
exactly when a is above at least n atoms in the Boolean algebra order. By [23,
Theorem 6.20] we have that T admits quantifier elimination and so T is model
complete. Now, if g is an atom-preserving embedding C → D, then it is easy to

show that Ĉ |= Pn(a) if and only if D̂ |= Pn(f(a)) for all a ∈ C, where Ĉ and D̂ are
the unique τ -expansions of C and D, respectively, that satisfy T . This means that

g is a τ -embedding Ĉ → D̂, and as T is model complete, g is elementary. Hence g
is also an elementary embedding between the reducts C and D. �

3.1. Characterizations of Partial Isomorphisms and Elementary Maps.

Although we have defined partial team isomorphisms simply by requiring some
specific commutativity conditions, the next lemma and the following proposition
show that these are exactly those team maps which preserve the quantifier-free
fragment of FOT.

Lemma 3.7. Let f: A → B be a partial team isomorphism. Then f preserves
first-order atomic formulas, i.e. for any X ∈ dom(f) and atomic first-order formula
φ(v0, . . . , vn−1),

A |=X φ ⇐⇒ B |=f(X) φ.

Proof. One would guess this is relatively easy to see but it proves to be surprisingly
tricky due to flatness of first-order logic.

We begin by showing that for any τ -term t(v0, . . . , vn−1), we have Gn(t;A) ∈
dom(f) and f(Gn(t;A)) = Gn(t;B), where

Gn(t;C) = {(c0, . . . , cn) ∈ Cn+1 | tC(c0, . . . , cn−1) = cn}

is the graph of the function ~c 7→ tC(~c). We proceed by induction on t.

(i) If t = vi, then the function ~c 7→ tC(~c) is the ith projection. Let ~ı =
(0, . . . , n− 1, i). Then

Gn(t;C) = {(c0, . . . , cn) ∈ Cn+1 | ci = cn} = Pr
~ı

(Cn+1).

Hence

f(Gn(t;A)) = f(Pr
~ı

(An+1)) = Pr
~ı

(f(An+1)) = Pr
~ı

(Bn+1) = Gn(t;B).

(ii) If t = c for a constant symbol c ∈ τ , then the function ~c 7→ tC(~c) is the
constant map ~c 7→ c. Then

Gn(t;C) = {(c0, . . . , cn) ∈ Cn+1 | cn = cC} = Cn × {cC}.

Hence

f(Gn(t;A)) = f(An × {cA}) = f(An) ×f({cA})

= Bn × {cB} = Gn(t;B).
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(iii) Finally suppose that t = F (t0(v0, . . . , vn−1), . . . , tm−1(v0, . . . , vn−1)) for τ -
terms ti and an m-ary function symbol F ∈ τ . By the induction hypothesis,
f(Gn(ti;A)) = Gn(ti;B) for all i < m. First consider the relation

X0(C) = {(tC0 (c0, . . . , cn−1), c0, . . . , cn−1) | c0, . . . , cn−1 ∈ C}.

Clearly X0(C) = Pr~ı0(Gn(t0;C)) for ~ı0 = (n, 0, . . . , n− 1), and hence

f(X0(A)) = f(Pr
~ı0

(Gn(t0;A))) = Pr
~ı0

(f(Gn(t0;A)))

= Pr
~ı0

(Gn(t0;B)) = X0(B).

Then consider the relation

X1(C) = {(tC0 (~c), tC1 (~c), c0, . . . , cn−1) | ~c = (c0, . . . , cn−1) ∈ Cn}.

Denoting ~ı1 = (0, n+ 1, 1, . . . , n), we have

X1(C) = Pr
~ı1

({(tC0 (~c), c0, . . . , cn−1, t
C

1 (~c)) | ~c = (c0, . . . , cn−1) ∈ Cn})

= Pr
~ı1

(X0(C) ⊲⊳n Gn(t1;C)).

Then

f(X1(A)) = f(Pr
~ı1

(X0(A) ⊲⊳n Gn(t1;A)))

= Pr
~ı1

(f(X0(A)) ⊲⊳n f(Gn(t1;A)))

= Pr
~ı1

(X0(B) ⊲⊳n Gn(t1;B))

= X1(B).

Continuing this way we obtain a description of the relation

Xm−1(C) = {(tC0 (~c), . . . , tCm−1(~c), c0, . . . , cn−1) | ~c = (c0, . . . , cn−1) ∈ Cn}

as an element of the closure of Gn(t0;C), . . . , Gn(tm−1;C) under projec-
tions and join, whence f(Xm−1(A)) = Xm−1(B). Then, denoting ~0 =
(0, . . . , n− 1, n+m) and ~1 = (m, . . . ,m+ n− 1, 0, . . . ,m− 1), we have

Gn(t;C) = Pr
~0

(

{(~c, tC0 (~c), . . . , tCm−1(~c), FC(tC0 (~c), . . . , tCm−1(~c))) | ~c ∈ Cn}
)

= Pr
~0

(

Pr
~1

(

Xm−1(C)
)

⊲⊳m FC

)

,

whence

f(Gn(t;A)) = f

(

Pr
~0

(

Pr
~1

(

Xm−1(A) ⊲⊳m FA
)

))

= Pr
~0

(

Pr
~1

(

f(Xm−1(A)) ⊲⊳m f(FA)
)

)

= Pr
~0

(

Pr
~1

(

Xm−1(B) ⊲⊳m FB
)

)

= Gn(t;B).

Now we show thatfpreserves atomic formulas φ(v0, . . . , vn−1) of first-order logic.
Suppose φ = R(t0, . . . , tm−1) for some m-ary relation symbol R ∈ τ and τ -terms
ti(v0, . . . , vn−1), i < m. Now

φ(C) := {(c0, . . . , cn−1) ∈ Cn | C |= φ(c0, . . . , cn−1)}

= {(c0, . . . , cn−1) | (tC0 (c0, . . . , cn−1), . . . , tCm−1(c0, . . . , cn−1)) ∈ RC}

= Pr
(0,...,n−1)

(Y mn (C) ⊲⊳m RC),
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where

Y mn (C) := {(c0, . . . , cn−1, t
C

0 (~c), . . . , tCm−1(~c)) | ~c = (c0, . . . , cn−1) ∈ Cn}.

If we can show that Y mn (A) ∈ dom(f) and f(Y mn (A)) = Y mn (B), then

f(φ(A)) = f

(

Pr
(0,...,n−1)

(Y mn (A)) ⊲⊳m RA

)

= Pr
(0,...,n−1)

(f(Y mn (A)) ⊲⊳m f(RA))

= Pr
(0,...,n−1)

(Y mn (B) ⊲⊳m RB)

= φ(B).

Then for any n-ary X ∈ dom(f),

A |=X φ ⇐⇒ X ⊆ φ(A) ⇐⇒ f(X) ⊆ f(φ(A))

⇐⇒ f(X) ⊆ φ(B) ⇐⇒ B |=f(X) φ,

as desired. So left is to show that Y mn (C) can be presented in terms of products,
projections, intersections and the sets G(ti;C). We show this by induction on
m > 0. If m = 1, then Y mn (C) = Gn(t0;C), so we have already proved this. If we
have already handled Y mn (C), then

Y m+1
n (C) = Pr

~ı
({(c0, . . . , cn−1, c0, . . . , cn−1, t

C

0 (~c), . . . , tCm(~c) | ~c ∈ Cn})

= Pr
~ı

(Pr
~

(Y mn (C) ×Gn(tm;C)) ∩ ∆n
C × Cm+1),

where~ı = (0, . . . , n−1, 2n, . . . , 2n+m) (skips the second batch of c0, . . . , cn−1) and
~ = (0, . . . , n − 1, n+ m, . . . , 2n+ m − 1, n, . . . , n + m − 1, 2n+ m) (permutes the
second batch of c0, . . . , cn−1 to be after the first).

Then, finally, suppose that φ is the equation t0(v0, . . . , vn−1) = t1(v0, . . . , vn−1).
Now

φ(C) = {(c0, . . . , cn−1) ∈ Cn | tC0 (c0, . . . , cn−1) = tC1 (c0, . . . , cn−1)}

= Pr
(0,...,n−1)

(Gn(t0;C) ∩Gn(t1;C)).

Thus f(φ(A)) = φ(B). Then we obtain

A |=X φ ⇐⇒ B |=f(X) φ,

which concludes the proof. �

Proposition 3.8. Letf: A → B be a team map. Then the following are equivalent.

(i) f is a partial team isomorphism.
(ii) f satisfies (PI3) and for all quantifier-free formulas φ(v0, . . . , vn−1) of FOT

and n-ary X ∈ dom(f),

A |=X φ ⇐⇒ B |=f(X) φ.

In particular, a partial elementary team map is a partial team isomorphism.

Proof. We first show that if f satisfies (PI3) and preserves quantifier-free formulas
of FOT, then it is a partial team isomorphism. We show (PI5), the rest are similar.
Let X,Y ∈ dom(f) be n-ary. If X = ∅, then X ⊆ Y and f(X) = ∅ ⊆ f(Y ).
If X 6= ∅ = Y , then X * Y and ∅ 6= f(X) * f(Y ) = ∅. Otherwise denote
~x = (v0, . . . , vn−1) and ~y = (vn, . . . , v2n−1). Then

X ⊆ Y ⇐⇒ A |=X×Y ~x ⊆ ~y

⇐⇒ B |=f(X×Y ) ~x ⊆ ~y

(PI3)
⇐⇒ B |=f(X)×f(Y ) ~x ⊆ ~y

⇐⇒ f(X) ⊆ f(Y ).
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Next we show that if f is a partial isomorphism, then for all quantifier-free
formulas φ(v0, . . . , vn−1) of FOT and n-ary X ∈ dom(f),

A |=X φ ⇐⇒ B |=f(X) φ.

We proceed by induction on φ. The case for first-order atomic formulas follows from
Lemma 3.7, and the connective cases are immediate consequences of the induction
hypothesis. We show the case for dependence atoms. Suppose that φ = =(~x) for
some ~x ∈ {v0, . . . , vn−1}<ω, and let ~ı be the corresponding index tuple. Then

A |=X φ ⇐⇒ X is empty or Pr
~ı

(X) is a singleton

⇐⇒ f(X) is empty or f(Pr
~ı

(X)) is a singleton

⇐⇒ f(X) is empty or Pr
~ı

(f(X)) is a singleton

⇐⇒ B |=f(X) φ. �

We conclude this section by pointing out some equivalent characterisations of
elementary team maps. The usual Tarski–Vaught test applies immediately also in
this context.

Proposition 3.9 (The Tarski–Vaught Test for FOT). Let f: A → B be a team
map. The following are equivalent.

(i) f is an elementary team embedding.
(ii) f is a team embedding and satisfies the following condition:

For any formula φ(v0, . . . , vn) of FOT and X ⊆ An,
if B |=f(X) ∃

1vnφ, there is a ∈ A such that B |=f(X)(f(a)/n) φ.

Proof. After the observation that f(X(a/n)) = f(X)(f(a)/n) for all a ∈ A, the
proof is identical to its first-order counterpart. �

Proposition 3.10. Let f: A → B be a team map. The following are equivalent.

(i) f is a partial elementary team map.
(ii) For any first-order sentence φ(R0, . . . , Rn−1) with free second-order vari-

ables Ri, and for any nonempty ar(Ri)-ary Xi ∈ dom(f), i < n,

A |= φ(X0, . . . , Xn−1) ⇐⇒ B |= φ(f(X0), . . . ,f(Xn−1)).

(iii) For any n < ω and n-ary X ∈ dom(f), let X be a new n-ary relation
symbol and denote τ ′ = τ ∪{X | X ∈ dom(f)}. Then the (partial) function
f : A → B, f(a) = f(a) for all {a} ∈ dom(f), is a partial elementary map

between the τ ′-structures Â and B̂, where Â↾τ = A, B̂↾τ = B, XÂ = X

and XB̂ = f(X).

Proof. The equivalence of (ii) and (iii) follows immediately by the following obser-

vation. For any first-order φ(x0, . . . , xn−1, ~R) and elements a0, . . . , an−1 such that
{a0}, . . . , {an−1} ∈ dom(f),

A |= φ(a0, . . . , an−1, ~X) ⇐⇒ A |= φ∗({a0}, . . . , {an−1}, ~X),

where φ∗(S0, . . . , Sn−1, ~R) is the formula

∃x0 . . . ∃xn−1

(

φ ∧
∧

i<n

(Si(xi) ∧ ∀y(Si(y) → y = xi))

)

and Si are fresh unary second-order variables. We next show the equivalence of (ii)
and (i).

(ii) =⇒ (i): The fact that f preserves formulas of FOT follows directly from
Lemma 2.7. We show that f satisfies (PI3). Let X,X ′ ∈ dom(f) be an n-ary and
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m-ary nonempty relation, respectively, and let R and R′ be an n-ary and an m-ary
and S an n+m-ary second-order variable. We let φ(S,R,R′) be the sentence

∀x0 . . . ∀xn−1∀y0 . . . ∀ym−1(S(~x~y) ↔ (R(~x) ∧R′(~y)),

expressing that “S is the cartesian product ofR and R′”. Denote Y = X×X ′. Then
A |= φ(Y,X,X ′), whence B |= φ(f(Y ),f(X),f(X ′)). Now f(Y ) = f(X)×f(X ′) as
desired.

(i) =⇒ (ii): Let φ(R0, . . . , Rn−1) be a first-order sentence with free second-order
variables Ri of arity ni. The first observation is that whenever Xi is empty, so is
f(Xi). Let φ∗(R0, . . . , Ri−1, Ri+1, . . . , Rn−1) be the formula obtained by replacing

in φ each occurrence of formulas of the form Xi(~t ) by ⊥. Then, whenever Xi = ∅,

A |= φ(X0, . . . , Xn−1) ⇐⇒ A |= φ∗(X0, . . . , Xi−1, Xi+1, . . . , Xn−1),

and the same holds for B and f(Xj). Hence we only need to consider nonempty
Xi.

Now let ψ(R) be the sentence one obtains by replacing in φ formulas of the form
Ri(t0, . . . , tni−1) by

∃~x∃~yR(~x, t0, . . . , tni−1, ~y),

where ~x and ~y are variable tuples of length
∑

j<i nj and
∑

i<j<n nj , respectively,

and R is a
∑

i<n ni-ary second order variable. Now for any structure C and Xi ⊆
Cni ,

C |= φ(X0, . . . , Xn−1) ⇐⇒ C |= ψ

(

∏

i<n

Xi

)

.

Denote N =
∑

i<n ni. By Lemma 2.7 the is a formula χ(v0, . . . , vN−1) of FOT such

that for any structure C and X ⊆ CN ,

C |= ∃~xR(~x) → ψ(X) ⇐⇒ C |=X χ.

Now, let Xi ∈ dom(f) be nonempty and denote X =
∏

i<nXi. As f is an elemen-
tary team embedding, we have f(X) =

∏

i<nf(Xi). Then

A |= φ(X0, . . . , Xn−1) ⇐⇒ A |= ψ (X) ⇐⇒ A |=X χ

⇐⇒ B |=f(X) χ ⇐⇒ B |= ψ (f(X))

⇐⇒ B |= ψ

(

∏

i<n

f(Xi)

)

⇐⇒ B |= φ(f(X0), . . . ,f(Xn−1)). �

Corollary 3.11. If f: A → B is a partial elementary team map, then A ≡ B.

3.2. Elementary Team Embeddings and Isomorphisms. Earlier we noticed
that the ultrapower embedding ι : A → Aκ/U, ι(X) = Xκ/U, is not just an ele-
mentary team embedding but an independence team embedding as well. This is
actually a general phenomenon: in fact, all elementary team embeddings preserve
FO(⊥c) to the direction of the map, as demonstrated by the next result. The true
difference between elementary and independence team maps shows up at the level
of partial maps.

Proposition 3.12. If f: A → B is an elementary team embedding, then it is an
independence team embedding.

Proof. Let φ(v0, . . . , vn−1) be a formula of FO(⊥c), let X ⊆ An and suppose that
A |=X φ. If X = ∅, then also f(X) = ∅ (and vice versa) and hence trivially
B |=f(X) φ. So we may assume that X 6= ∅ 6= f(X).
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By the translation of FO(⊥c) to ESO and Lemma 2.1, there exists a first-order
τ -sentence α(R,R′) such that for any structure C and Y ⊆ Cn,

C |=Y φ ⇐⇒ C |= ∃R′α(Y,R′),

where R′ is some m-ary relation symbol. Hence A |= ∃R′α(X,R′). Now, there is
X ′ ⊆ Am such that A |= α(X,X ′). Now either X ′ = ∅ or X ′ 6= ∅. We look at the
two cases separately.

(i) Suppose that X ′ = ∅. Let α∗(R) be the formula one obtains from α by
replacing every occurence of R′ by ⊥. Then for any C and Y ⊆ Cn,

C |= α(Y, ∅) ⇐⇒ C |= α∗(Y ).

Now A |= α∗(X). By the translation of FO to FOT, there is a τ -formula ψ
of FOT such that for any structure C and Y ⊆ Cn,

C |= ∃~xY (~x) → α∗(Y ) ⇐⇒ C |=Y ψ.

Since A |= ∃~xX(~x) → α∗(X), we have A |=X ψ. Since f is an elemen-
tary team embedding, we obtain B |=f(X) ψ. Then B |= ∃~xf(X)(~x) →
α∗(f(X)), and as f(X) is nonempty, we have B |= α∗(f(X)). Hence
B |= α(f(X), ∅), and so B |= ∃R′α(f(X), R′). Thus B |=f(X) φ.

(ii) If X ′ 6= ∅, then let X ′′ = X ×X ′. Let α∗ be the formula one obtains from
α by replacing each occurence of R(t0, . . . , tn−1) by

∃x0 . . . ∃xm−1R
′′(t0, . . . , tn−1, x0, . . . , xm−1)

and each R′(t0, . . . , tm−1) by

∃x0 . . . ∃xn−1R
′′(x0, . . . , xn−1, t0, . . . , tm−1),

where xi are fresh variables. By the translation of FO to FOT, there is a
τ -formula ψ of FOT such that for all C and Y ⊆ Cn+m,

C |= ∃~xR′′(~x) → α∗(Y ) ⇐⇒ C |=Y ψ.

Now as A |=X′′ ψ, and as f is an elementary team embedding, we have
B |=f(X′′) ψ. Hence B |= ∃~xR′′(~x) → α∗(f(X ′′)). As X and X ′ are both
nonempty, so is X ′′ and thus so is f(X ′′). Therefore B |= α∗(f(X ′′)).
As f is an elementary team embedding, we have f(X ′′) = f(X) × f(X ′).
As B |= α∗(f(X) × f(X ′)), we have B |= α(f(X),f(X ′)) and thus B |=
∃R′α(f(X), R′). But then B |=f(X) φ.

Thus B |=f(X) φ, which finishes the proof. �

Next, we show that element-total and element-surjective partial team isomor-
phisms and all only those arising from usual isomorphism.

Proposition 3.13. Suppose that f: A → B is an element-total and element-
surjective partial team isomorphism. Then there is an (ordinary) isomorphism
π : A → B such that f⊆ π̂.

Proof. Define π : A → B by setting π(a) = f(a) (i.e. π(a) is the unique element of
f({a})) for all a ∈ A. By Proposition 3.8, π is an embedding, and as π is surjective
by assumption, it is an isomorphism.

Let X ∈ dom(f) be n-ary. Then for any ~b ∈ f(X) we have {~b} ∈ ran(f). By

(PI2), there is ~a ∈ An such that π(~a) = f(~a) = ~b. Hence f(X) ⊆ {π(~a) | ~a ∈ X}.
Then note that given any ~a ∈ An, by (PI5) we have

~a ∈ X =⇒ {~a} ⊆ X =⇒ f({~a}) ⊆ f(X) =⇒ {f(~a)} ⊆ f(X)

=⇒ f(~a) ∈ f(X) =⇒ π(~a) ∈ f(X).

Hence f(X) ⊇ {π(~a) | ~a ∈ X}. Thus f(X) = π̂(X). It follows that f⊆ π̂. �
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Corollary 3.14. Suppose that f: A → B is a team map. Then f is a team
isomorphism if and only if there is an (ordinary) isomorphism π : A → B such that
f= π̂.

Proposition 3.15. Let f: A → C be a team embedding, and let B be a structure
such that dom(B) = {f(a) | a ∈ A}, if R ∈ τ is a relation or function symbol, then
RB = f(RA) ∩Bar(R), and cB = f(cA) for constant symbols c ∈ τ . Then

(i) B is a substructure of C,
(ii) g: A → B, g(X) = f(X) ∩Bn for X ⊆ An, is a team isomorphism, and

(iii) if f is elementary, then also f◦ g−1 is elementary and B is an elementary
substructure of C.

Proof. We show that B is a substructure of C. The other claims are proved in a
similar fashion.

First of all, note that g(a) = f(a) for all elements a ∈ A. Additionally,

f(a0, . . . , an−1) = (f(a0), . . . ,f(an−1)) = (g(a0), . . . ,g(an−1)) = g(a0, . . . , an−1),

whence g(~a) = f(~a) for all ~a ∈ An. If R ∈ τ is an n-ary relation symbol, then
RB = f(RA) ∩Bn = RC ∩Bn. If F ∈ τ is a function symbol, the same holds for

F , i.e. FB = FC ∩Bn. We show that B is closed under FC. Let ~b ∈ Bn. Then
~b = f(~a) for some ~a ∈ An. Let a = FA(~a). Then ~aa ∈ FA, so f(~aa) ∈ f(FA) = FC,

so f(a) = FC(f(~a)) = FC(~b). But by the definition of B, f(a) ∈ B. Hence B

is closed under FC, and thus FB is well defined. Finally, B contains cC for all
constant symbols c ∈ τ , as cC = f(cA). Hence B is a substructure of C. �

3.3. Diagrams. In this section, we give a simple condition to check if there is an
elementary team embedding from a structure A to a structure B. Such condition is
the obvious team-semantic extension of the methods of elementary diagrams used
to test for elementary embeddings in first-order logic. In turn, this provides us
with a connection between elementary team embeddings and complete (first-order)
embeddings.

Definition 3.16. Let A be a τ -structure, A ⊆ A and X⊆ R(A).

(i) By τ(A) we denote the expansion of τ by names for all elements of A, i.e.
the signature τ ∪ {a | a ∈ A}, where each a is a fresh constant symbol.
By τ(X) we mean the expansion of τ by names for all possible nonempty
elements of X, i.e. the signature τ ∪

⋃

n<ω{X | ∅ 6= X ∈ X}, where X is a
fresh ar(X)-ary relation symbol for any X ∈ X.

(ii) By AA we mean the τ(A)-expansion Â of A such that aÂ = a for all a ∈ A.

By AX we mean the τ(X)-expansion Â of A with XÂ = X for all X ∈ X.
(iii) The (elementary) team diagram of (A,X), denoted by Diag(A,X), is the

complete FOT-theory of AX.

Lemma 3.17. Let A be a τ -structure and X⊆ R(A). Then every τ(X)-structure

B with B |= Diag(A,X) has a unique τ(cl(X))-expansion B̂ such that B̂ |=
Diag(A, cl(X)).

Proof. Clearly An, ∆A and sA for all symbols s ∈ τ are each definable by a first-
order τ -sentence. Likewise, given relations X,Y ∈ R(A), the relations X ∩ Y ,
X ×Y and Pr~ı(X) for any ~ı ∈ ar(X)<ω are each definable by a first-order sentence
with only second-order parameters X and Y . Hence the relations An, ∆A, sA for
s ∈ τ , X ∩ Y , X × Y and Pr~ı(X) are each definable by a τ(X)-sentence of first-

order logic. Hence each of them is also definable by a τ(X)-sentence of FOT. The
claim clearly follows. �
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Lemma 3.18. For τ -structures A and B, the following are equivalent.

(i) There is a τ(X)-expansion B̂ of B with B̂ |= Diag(A,X).
(ii) There is a partial elementary team map f: A → B with dom(f) = cl(X).

Proof. Suppose first thatf: A → B is a partial elementary team map with dom(f) =
cl(X). Then by Proposition 3.10, the map a 7→ f(a) is a partial elementary map

Acl(X) → B̂, where B̂ is the τ(cl(X))-expansion of B satisfying XB̂ = f(X). Then

B̂ |= Diag(A, cl(X)). Then B̂↾τ(X) is the desired expansion of B.

For the converse, suppose there is some τ(X)-expansion B̂ of B such that

B̂ |= Diag(A). By Lemma 3.17, there is a unique τ(cl(X))-expansion B̂∗ of B̂

such that B̂∗ |= Diag(A, cl(X)). Let Γ be the set of FO-translations of sentences
of Diag(A, cl(X)). Now Γ is the complete first-order τ(cl(X))-theory of Acl(X) and

B̂∗ |= Γ. Define a team map f: A → B by setting f(X) = XB̂
∗

for all X ∈
cl(X). Let φ(R0, . . . , Rn−1) be a first-order τ -sentence, let X0, . . . , Xn−1 ∈ cl(X)
with ar(Xi) = ar(Ri) and suppose that A |= φ(X0, . . . , Xn−1). Then Acl(X) |=

φ(X0, . . . , Xn−1), whence φ(X0, . . . , Xn−1) ∈ Γ and so B̂∗ |= φ(X0, . . . , Xn−1).

Then, since XB̂
∗

i = f(Xi), we have B |= φ(f(X0), . . . ,f(Xn−1). By Proposi-
tion 3.10 it follows that f is an elementary team embedding. �

As a corollary of Proposition 3.10, we obtain a connection between complete em-
beddings in first-order logic and elementary team embeddings in our setting: every
elementary team embedding is a complete embedding on the level of elements, and
conversely every complete embedding gives rise to an elementary team embedding.

Corollary 3.19.

(i) Let f: A → B be an elementary team embedding. Then the function
a 7→ f(a) is a(n ordinary) complete embedding A → B.

(ii) Let f : A → B be a(n ordinary) complete embedding. Then there is an
elementary team embedding f: A → B such that f(a) = f(a) for all a ∈ A.

Proof.

(i) Follows immediately from Proposition 3.10.

(ii) As f is complete, there is a τ(R(A))-expansion B̂ of B such that f is

elementary between AR(A) and B̂. For all X ∈ R(A), define f(X) = XB̂.
Then by Proposition 3.10, f is an elementary team embedding. Now, for

every a ∈ A, we have a ∈ {a} = {a}AR(A) , whence, as f is elementary, we

obtain f(a) ∈ {a}B̂ = f({a}), yielding f(a) = f(a). �

As every complete embedding is essentially a limit ultrapower embedding, the
same holds for elementary team embeddings.

Proposition 3.20. Suppose that f: A → B is an elementary team embedding.
Then there is a cardinal κ, an ultrafilter F on κ and a filter G on κ2 such that,
denoting C = (Aκ/F)|G, there is an isomorphism π : B → C with

(π̂ ◦f)(X) = g(X) ∩ Cn

for allX ⊆ An, where g: A → Aκ/Fis the ultrapower team embedding X 7→ Xκ/F.

Proof. Straightforwardly follows from Theorem 2.17 and Corollary 3.19. �

4. Abstract Elementary Classes for Team Semantics

Abstract elementary classes (AECs) were introduced by Shelah in [27] and pro-
vide an important tool to adapt several techniques of elementary model theory
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beyond the scope of first-order logic. It is, thus, very natural to consider whether
we can introduce a suitable AEC to study (complete) theories in independence logic,
or, equivalently, existential second-order logic. We start by recalling the definition
of abstract elementary class.

Definition 4.1. Let K be a class of τ -structures and � a partial order on K

extending the substructure relation. We say that (K,�) is an abstract elementary
class if the following hold.

(i) Closure under isomorphism: If A ∈ K and π : A → B is an isomorphism,
then B ∈ K, and if C � A, then π(C) � B.

(ii) Coherence: If A,B � C and A ⊆ B, then A � B.
(iii) Unions of chains : If α is an ordinal and (Ai)i<α is a �-increasing continuous

sequence of elements of K, i.e. Ai � Aj for i < j and Aβ =
⋃

i<β Ai for
β < α a limit, then
(a)

⋃

i<α Ai ∈ K,
(b) for all j < α, Aj �

⋃

i<αAi, and
(c) Smoothness : if B ∈ K is such that Ai � B for all i < α, then

⋃

i<α Ai � B.
(iv) Löwenheim–Skolem property: There is a cardinal κ ≥ |τ | + ℵ0 such that

such that for all A ∈ K and X ⊆ A with |X | ≤ κ, there is B ∈ K such that
X ⊆ B � A and |B| ≤ κ.

We call the least cardinal κ that satisfies the Löwenheim–Skolem property for K

the Löwenheim–Skolem number of K and denote it by LS(K).
The relation � in the above definition is often called “strong embedding”. So

far, we have seen two possible candidates for a notion of strong embedding in the
context of team semantics:

(i) a team embedding, and
(ii) an elementary team embedding (which is the same thing as an independence

team embedding).

In this section we shall study all the properties of abstract elementary classes in
the context of team semantics. In particular, we shall see that one has modify the
definition of an AEC to fit the context of team maps. In fact, in this context it is
more natural to consider just embeddings and strong embeddings, rather than to
bother with substructures and strong substructures.

We shall see that all key properties of abstract elementary classes essentially
hold in our setting, though a major issue is that we have to drop the requirement
that strong maps “extend” the substructure relation. We will consider this issue at
length in the following section. We begin by studying the properties of coherence,
closure under direct limits and Löwenheim–Skolem. Then in Section 4.4 we conclude
our discussion describing a “quasi-AEC” for team semantics, namely an accessible
category of models of elementary team embeddings.

4.1. Coherence. The following example shows why the traditional substructure
relation is not a good basis for our study of structures in ESO and FO(⊥c).

Example 4.2. Let τ = {P}, where P is a unary predicate, and let � be the
relation

A � B if and only if A ⊆ B and there is an elementary team
embedding f: A → B with f(a) = a for all a ∈ A.

We show that coherence fails for this relation. For this, let B be a τ -structure with
|B| = |PB| = ℵ1 and |B \PB| = ℵ0. Now B has a countable elementary substruc-
ture A. As A ≡ B, by the Keisler–Shelah theorem there is κ and an ultrafilter U
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on κ such that Aκ/U ∼= Bκ/U. Let π : Aκ/U → Bκ/U be an isomorphism, let
ιA : A → Aκ/U and ιB : B → Bκ/U be the ultrapower embeddings, and denote
C = Aκ/U. Now f = ιA and g = π ◦ ιB are elementary team embeddings A → C

and B → C, respectively. Let φ be a sentence of FO(⊥c) expressing that P and the
complement of P have the same cardinality. Now, suppose that there is an elemen-
tary team embedding h: A → B (such that h(a) = a for all a ∈ A). Now, as A

is countable, we have |PA| = |A \ PA| = ℵ0, whence A |= φ. By Proposition 3.12,
h is an independence team embedding and hence B |= φ. But this is impossible,
since |PB| > |B \ PB|. Hence no such h can exist.

The fault in the above example seems to lie in the fact that if f: A → B is an
independence team embedding, B may satisfy more sentences of FO(⊥c) than A,
due to the positive nature of ESO. But even in the case that there exist elementary
team embeddings A → C and B → C and a team embedding A → B that do
not move elements, there is no guarantee that these map commute in a nice way.
We take this as an argument in favour of a more category-theoretic approach. In
particular, the following form of coherence works.

Proposition 4.3. If f: A → C and g: B → C are elementary team embeddings
and h: A → B is a team embedding such that f= g ◦ h, then h is elementary.

Proof. Let φ(v0, . . . , vn−1) be a formula of FOT and X ⊆ An. Then

A |=X φ ⇐⇒ C |=f(X) φ ⇐⇒ C |=g(h(X)) φ ⇐⇒ B |=h(X) φ.

Hence h is elementary. �

4.2. Direct Limits. Since we are considering (elementary) team embeddings and
not so interested in substructures, we want to also consider the natural generaliza-
tion of unions of chains, that is, direct limits.

If I is a set and ≤ is a binary relation on I, we say that (I,≤) is a κ-directed set
if ≤ is a preorder (i.e. reflexive and transitive) and every J ⊆ I of power < κ has
a ≤-upperbound. (I,≤) is a directed set if it is an ℵ0-directed set. A set J ⊆ I is
an upset if it is upwards closed, i.e. if i ∈ I, j ∈ J and i ≥ j, then i ∈ J . For an
element i ∈ I, the upward closure ↑ i of i is the upset {j ∈ I | j ≥ i}. For a subset
J ⊆ I, the upward closure ↑ J is the upset

⋃

j∈J ↑ j. A subset J ⊆ I is cofinal if
for every i ∈ I there is j ∈ J with i ≤ j, i.e. it meets all upsets.

Definition 4.4.

(i) Let (I,≤) be a directed set. A directed system of τ -structures and team
maps based on (I,≤) is a sequence (Ai,fi,j)i,j∈I,i≤j such that
(a) each Ai is τ -structure and fi,j : Ai → Aj a team map,
(b) for all i, j ∈ I with j ≥ i, we have dom(fi,j) = dom(fi,i) and fi,i =

id ↾dom(fi,i), and
(c) for all i, j, k ∈ I with i ≤ j ≤ k, we have ran(fi,j) ⊆ dom(fj,k) and

fi,k = fj,k ◦fi,j .
We say that a directed system is κ-directed if (I,≤) is a κ-directed set.

(ii) Let A = (Ai,fi,j)i,j∈I,i≤j be a directed system of τ -structures and partial
team isomorphisms. We define a structure B := limA, called the direct
limit of the system A, as follows. The domain of B is the set of functions
η such that
(a) dom(η) is a nonempty upset of (I,≤),
(b) η(i) ∈ Ai for all i ∈ dom(η),
(c) for all i, j ∈ dom(η), if i ≤ j, then fi,j(η(i)) = η(j), and
(d) if i ∈ I, j ∈ dom(η), i ≤ j and there is a ∈ Ai with fi,j(a) = η(j), then

i ∈ dom(η).
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For all i ∈ I, we define team maps gi : Ai → B as follows: given X ∈
dom(fi,i), we let gi(X) be the set of all (η0, . . . , ηn−1) ∈ Bn such that
there is some j ∈

⋂

k<n dom(ηk) with j ≥ i such that (η0(j), . . . , ηn−1(j)) ∈
fi,j(X). Then the interpretations of relation and function symbols R ∈ L
are defined by setting RB = gi(R

Ai), and for constant symbols c ∈ τ ,
cB = gi(c

Ai), where i ∈ I is arbitrary.
When there is no risk of confusion, we write simply limi∈I Ai instead of

limA. We call the maps gi the direct limit maps of the system A.

We immediately make the following observations. In particular, this shows that
the direct limit is well defined.

Lemma 4.5.

(i) If η, ξ ∈ limiAi and η(i) = ξ(i) for some i ∈ dom(η) ∩ dom(ξ), then η = ξ.
Hence for any i ∈ I and a ∈ Ai, there is a unique η ∈ limiAi with η(i) = a.

(ii) For all i ≤ j, gi = gj ◦fi,j .
(iii) The interpretations of symbols R ∈ τ in limi∈I Ai are well defined.
(iv) Each gi is a well-defined team map.
(v) For any i ∈ I, n-ary X ∈ dom(gi) and ~a ∈ X , there is unique ~η ∈ gi(X)

with ηk(i) = ai for all k < n. Furthermore, ~η = gi(~a).
(vi) If each fi,j is (element-)total, then so is each gi.

(vii) If J ⊆ I is a cofinal subset such that (J,≤) is also directed, then there is
an isomorphism π : limi∈I Aj → limj∈J Ai such that if gJj and gIi are the
direct limit maps in the systems based on J and I, respectively, then for
all j ∈ J , gJj = π̂ ◦ gIj .

Proof. We prove the last claim and leave the rest to the reader.
Define π by setting π(η) = η↾(dom(η)∩J) for all η ∈ limi∈I Ai. We show that this

is an isomorphism. For injectivity, let η, ξ ∈ limi∈I Ai and suppose that π(η) = π(ξ).
Let j ∈ dom(π(η)) = dom(π(ξ)). Now η(j) = π(η)(j) = π(ξ)(j) = ξ(j), whence by
item (i) we have that η = ξ.

For surjectivity, let η ∈ limj∈J Aj. Pick some j ∈ dom(η). Now there is a unique
ξ ∈ limi∈I Ai with ξ(j) = η(j). Let i ∈ dom(η). Letting k ∈ J be an upper bound
of {i, j}, we have ξ(k) = fj,k(ξ(j)) = fj,k(η(j)) = η(k) = fi,k(η(i)), whence i ∈
dom(ξ). Hence dom(η) ⊆ dom(ξ), and by uniqueness of all the values, this means
that η ⊆ ξ. Then let i ∈ dom(ξ) ∩ J . Let again k ∈ J be an upper bound of {i, j}.
Now fi,k(ξ(i)) = ξ(k) = η(k), so we have i ∈ dom(η). Hence dom(η) = dom(ξ) ∩ J
and for all i ∈ dom(η), ξ(i) = η(i). Thus η = ξ↾(dom(ξ) ∩ J) = π(ξ).

Since the interpretations of symbols of τ are defined via gIi and gJj , the iso-

morphism condition of π will follow from gJj = π̂ ◦ gIj . So we show this final

fact. Let X ∈ dom(gIj ) = dom(gJj ), and let ~η ∈ π̂(gIj (X)) = π[gIj (X)]. Then

~η = π(~ξ) for some ~ξ ∈ gIj (X). Let i ∈ ↑ j ∩ J ∩
⋂

k<n dom(ξk) be such that

(ξ0(i), . . . , ξn−1(i)) ∈ fj,i(X). Now ηk(i) = ξk(i) for all k < n, whence ~ξ ∈ gJj (X).

Hence π̂(gIj (X)) ⊆ gJj (X).

Then let ~η ∈ gJj (X) and denote ~ξ = π(~η). Now there is i ∈ ↑ j∩J∩
⋂

k<n dom(ηk)
such that (η0(i), . . . , ηn−1(i)) ∈ fj,i(X). As i ∈ dom(ξk) and ηk(i) = ξk(i) for all

k < n, we have ~ξ ∈ gIj (X) and so ~η ∈ π[gIj (X)] = π̂(gIj (X)). Hence gJj (X) ⊆

π̂(gIj (X)). This finishes the proof. �

Lemma 4.6. Each gi is a partial team isomorphism Ai → limi∈I Ai.

Proof. Denote B = limi Ai. We prove (PI2), the rest are similar although tedious.
Let X ⊆ Ani . We show that X is a singleton if and only if gi(X) is. We

consider the case n = 1, the rest follows from (PI3). Suppose X = {a}. Let
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η, ξ ∈ gi(X). Now there are j ∈ dom(η) and k ∈ dom(ξ) such that j, k ≥ i,
η(j) ∈ fi,j(X) and ξ(k) ∈ fi,k(X). Let l be an upper bound of {j, k}. Now
η(l) = fj,l(η(j)) ∈ fj,l(fi,l(X)) = fi,l(X), and similarly ξ(l) ∈ fi,l(X). As fi,l is a
team embedding, fi,l(X) is a singleton, whence η(l) = ξ(k). But then η = ξ. Hence
gi(X) is a singleton.

On the other hand, if gi(X) = {η}, let j ∈ dom(η) be such that j ≥ i and
η(j) ∈ fi,j(X). Now, if a ∈ fi,j(X) is such that a 6= η(j), then the unique ξ ∈ B

such that ξ(j) = a is different from η, but this is not possible, since then ξ would
be an element of gi(X). Hence fi,j(X) is a singleton, and as fi,j is a partial team
isomorphism, so is X . �

Proposition 4.7. If each fi,j is elementary, then so is each gi.

Proof. Denote B = limi∈I Ai, and let φ be a formula of FOT. We show by induction
on φ that for any i ∈ I and X ∈ dom(gi) of arity |Fv(φ)|,

Ai |=X φ ⇐⇒ B |=gi(X) φ.

If φ is atomic, this follows from the fact that gi is a partial team isomorphism, and
the connective cases follow directly from the induction hypothesis. So suppose that
φ = ∃1vnψ(v0, . . . , vn). If Ai |=X φ, then there is a ∈ Ai with Ai |=X(a/n) ψ, whence
the induction hypothesis gives B |=gi(X(a/n)) ψ. Since gi is a team embedding, we
have gi(X(a/n)) = gi(X)(gi(a)/n), whence B |=gi(X) φ.

Conversely, suppose that B |=gi(X) φ. Then there is some η ∈ B such that
B |=gi(X)(η/n) ψ. Let j ∈ dom(η) be such that j ≥ i. Then as gj is a team embed-
ding, we have gi(X)(η/n) = gj(fi,j(X))(gj(η(j))/n) = gj(fi,j(X)(η(j)/n)). Now
by the induction hypothesis, Aj |=fi,j(X)(η(j)/n) ψ, whence Aj |=fi,j(X) φ. Since fi,j
is elementary, this means that Ai |=X φ.

The case φ = ∀1vnψ is dual to the existential quantifier case. �

The previous results show that direct limits are well defined in the setting of team
semantics. We conclude this section by pointing out how a directed limit comes
naturally equipped with a specific set of relations, which we shall call admissible.

Definition 4.8. Let A= (Ai,fi,j)i,j∈I,i≤j be a directed system of τ -structures and
team embeddings, and let B = limA. We say that a relation R ⊆ Bn is admissible
(in the system A) if there is i ∈ I and S ⊆ Ani such that R = gi(S).

Now, if B = limAi and C is another structure with (elementary) team embed-
dings hi : Ai → C, i ∈ I, such that

hi = hj ◦fi,j ,

then we may define a partial map k: B → C such that for any admissible X ⊆ Bn,
k(X) = hi(X) for any i ∈ I such that X ∈ ran(hi), and this will satisfy

k(gi(X)) = hi(X)

for all admissible X . However, there is no obvious way to extend the map to
non-admissible sets. Hence it is unclear whether it is possible for our direct limits
to satisfy the smoothness property of the unions of chains axiom of AECs (which
corresponds to the universal mapping property of direct limit in category theory).
However, we shall solve this problem in Section 4.4 by transitioning to work with
something reminiscent of general models of second-order logic.



ON MODEL THEORY OF SECOND-ORDER OBJECTS 27

4.3. The Löwenheim–Skolem Property. In the definition of an AEC, the Löwen-
heim–Skolem number LS(K) of an AEC K is the least κ ≥ |τ | + ℵ0 such that for
any A ∈ K, whenever X ⊆ A has power ≤ κ, there is B ∈ K with power ≤ κ
and X ⊆ B � A. This is equivalent to the seemingly stronger claim that for every
A ∈ K, whenever X ⊆ A, then there is B ∈ Kwith X ⊆ B � A and |B| ≤ |X |+κ.
However, this seems to be too much to ask in our context, as even the weaker
property where the set X of objects is required to be strictly smaller than κ has
enormous consistency strength: we observe that the existence of this weaker notion
of a Löwenheim–Skolem number, even in the model class of the empty theory, re-
quires the existence of a supercompact cardinal. We show this using a theorem of
Magidor [22].

Definition 4.9. For a class K of τ -structures, denote by LSw(K) the least infinite
cardinal κ > |τ | such that the following holds and call it the weak Löwenheim–
Skolem number of K. For any A ∈ K and X⊆ R(A) with |X| < κ, there is B ∈ K

and an elementary team embedding ι : B → A such that |B| < κ and X⊆ ran(ι).

We fix some notation. We denote by V the universe of sets. We denote other
models of set theory by boldface letters such as M. If j : V → M is an elementary
embedding in the language of set theory, the critical point of j is the least ordinal
α such that j(α) > α.

Definition 4.10. A cardinal κ is supercompact if for every λ ≥ κ there is a
transitive model M of set theory with Mλ ⊆ M, and an elementary embedding
j : V → M with critical point κ, such that j(κ) > λ.

Theorem 4.11 (Magidor [22]). The first supercompact cardinal is the least κ such
that the following holds: for any finite τ , a τ -structure A with |A| ≥ κ and a τ -
sentence φ of universal second-order logic with A |= φ, there exists B ⊆ A with
|B| < |A| and B |= φ.

Theorem 4.12. Suppose that for any finite signature τ , if Kτ is the class of all
τ -structures, then LSw(Kτ ) exists. Then there exists a supercompact cardinal.

Proof. Denote κ = sup|τ |<ℵ0
LSw(Kτ ). Here note that if τ and τ ′ are finite signa-

tures and f : τ → τ ′ is a bijection such that ar(R) = ar(f(R)) for all relation or
function symbols R ∈ τ , then LSw(Kτ ) = LSw(Kτ ′), so κ is well defined (the class
of finite signatures is set-sized modulo renaming of symbols). By the definition of
the weak LS-number, if τ is finite and A ∈ Kτ has power ≥ κ, then, as A has power
≥ LSw(Kτ ), there exists B ∈ Kτ of power < LSw(Kτ ) ≤ κ and an elementary
team embedding ι : B → A. Let C = ι(B). Now C is a substructure of A that
is isomorphic with B, and by Proposition 3.12, for all formulas φ of FO(⊥c) and
relations X of B,

C |=ι(X)∩Car(X) φ =⇒ B |=X φ =⇒ A |=ι(X) φ.

In particular, for every sentence φ of ESO, we have

C |= φ =⇒ A |= φ.

Taking the contrapositive, this means that for every sentence φ of ESO,

A |= ¬φ =⇒ C |= ¬φ,

i.e. for every sentence φ of universal second-order logic,

A |= φ =⇒ C |= φ.

But then κ is such that for every finite τ , a τ -structure A with |A| ≥ κ and a
universal second-order τ -sentence φ with A |= φ, there exists C ⊆ A with |C| < |A|
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and C |= φ. Hence the class of cardinals with this property is nonempty. By
Theorem 4.11, the first cardinal of this class is supercompact. �

Certainly enough, a supercompact cardinal also suffices as our weak Löwenheim–
Skolem number. The proof for said fact, which uses standard techniques involving
supercompacts, also would suggest that the stronger form of the LS-property with
non-strict inequalities would be too much to ask.

Theorem 4.13. Suppose κ > |τ | is supercompact and K = Mod(T ) for some
first-order complete τ -theory in FO(⊥c). Then LSw(K) ≤ κ.

Proof. Let A be a τ -structure and X⊆
⋃

n<ω P(An), |X| < κ. If |A| ≤ κ, we are
done, so assume that |A| > κ. We augment τ into a signature τ ′ by adding fresh
relation symbols for elements of X. Then denote µ = |A| and let λ = 2µ. Note that
|τ ′| ≤ κ < µ. Let j be an elementary embedding of V into a transitive model M
with critical point κ such that Mλ ⊆ M and j(κ) > λ. Note that as τ ′ has power
< κ, we may assume that τ ′ ∈ Vκ and hence j(τ ′) = τ ′. Let B be the τ ′-structure
with domain j[dom(A)] := {j(a) | a ∈ A} and with the interpretation of symbols of
τ ′ induced by j. We make the following claims.

Claim.

(i) B ∈ M and M |= |B| ≤ λ.
(ii) For any R ⊆ Bn, we have R ∈ M and R = j[S] := {j(~a) | ~a ∈ S} for some

S ⊆ An.
(iii) The map X 7→ j(j−1[R]), R ∈ R(B), is in M.

Proof. (i) First notice that in V we have |B| = µ ≤ λ, so there exists a
surjection f : λ → dom(B). As dom(B) ⊆ M and since M is closed under
λ-sequences, we have that f ∈ M. Thus also dom(B) ∈ M, and a similar
argument works for RB for any R ∈ τ ′. As |τ ′| ≤ λ we obtain, again by
closure under λ-sequences, that B ∈ M. As being a surjection is absolute,
we have M |= “f is a surjection λ→ dom(B)”, so M |= |B| ≤ λ.

(ii) Since Bn = j[An], we have for any R ⊆ Bn that R = j[S] for some S ⊆ An.
Now R ∈ M for the same reason that B ∈ M

(iii) For the third claim, first notice that

|R(B)| =

∣

∣

∣

∣

∣

⋃

n<ω

P(Bn)

∣

∣

∣

∣

∣

= ℵ0 · 2|B| = 2µ ≤ λ.

Hence the map R 7→ j(j−1[R]) also has cardinality ≤ λ, and as it is a set
of elements of M, it is in itself in M. � Claim

Now, suppose for a moment that for any τ -formula φ of FOT and any S ⊆ An

for n < ω, we have managed to prove that

(1) M |= “B |=j[S] φ” ⇐⇒ A |=S φ.

By claim (ii) above, relations of the form j[S] exhaust all relations of B. Now for
any R ⊆ Bn, by elementarity of j, we then obtain

M |= “B |=R φ” ⇐⇒ A |=j−1[R] φ

⇐⇒ V |= “A |=j−1[R] φ”

⇐⇒ M |= “j(A) |=j(j−1 [R]) φ”,

By claim (iii) above, the map R 7→ j(j−1[R]) is an element of M. Hence,

M |= “R 7→ j(j−1[R]) is an elementary team map B → j(A)”.



ON MODEL THEORY OF SECOND-ORDER OBJECTS 29

Now, note that by claim (i) above, in M we have |B| ≤ λ < j(κ). Thus, M

satisfies the statement “there is B and an elementary team embedding B → j(A)
such that |B| < j(κ)”. By elementarity of j, we have (in V) that there exists B

and an elementary team embedding ι : B → A such that |B| < κ. Additionally,
each X ∈ X is in the range of ι, as ι is, in particular, a partial team isomorphism
in the signature τ ′ and X is the interpretation of X ∈ τ ′ in A. This is enough to
prove the theorem.

Therefore, left to show is that (1) holds. We prove it by induction on the com-
plexity of φ ∈ FOT.

(i) Suppose first that φ = R(~t) for R ∈ τ ′ ∪ {=} and ~t a tuple of τ ′-terms. Fix
X ⊆ An with the free variables of φ contained in {vi | i ≤ n}. Then

M |= “B |=j[X] φ” ⇐⇒ M |= “∀s ∈ j[X ], s(~t) ∈ RB”

⇐⇒ ∀s ∈ j[X ], s(~t) ∈ j[RA] (absoluteness)

⇐⇒ ∀s ∈ X, s(~t) ∈ RA (elementarity)

⇐⇒ A |=X φ.

Nothing changes if one considers φ = ¬R(~t) instead.
(ii) Next suppose that φ = ~x ⊆ ~y and again fix X . Now

M |= “B |=j[X] ~x ⊆ ~y ” ⇐⇒ M |= “∀s ∈ j[X ] ∃s′ ∈ j[X ] s(~x) = s′(~y)”

⇐⇒ ∀s ∈ j[X ] ∃s′ ∈ j[X ] s(~x) = s′(~y) (absoluteness)

⇐⇒ ∀s ∈ X ∃s′ ∈ X s(~x) = s′(~y) (elementarity)

⇐⇒ A |=X ~x ⊆ ~y.

(iii) The case of the constancy atom =(~x) follows analogously to the previous
one. The cases φ = ψ ∧ θ, φ = ψ

>

θ and φ = ∼̇ψ follow immediately from
the induction hypothesis.

(iv) Next suppose that φ = ∃1vnψ and fix X ⊆ An. Then

M |= “B |=j[X] φ” ⇐⇒ M |= “B |=j[X](b/n) ψ for some b ∈ B”

⇐⇒ ∃a ∈ A, M |= “B |=j[X](j(a)/n) ψ”

(∗)
⇐⇒ ∃a ∈ A, M |= “B |=j[X(a/n)] ψ”

i.h.
⇐⇒ ∃a ∈ A, A |=X(a/n) ψ

⇐⇒ A |=X φ.

The step (∗) follows by the fact that

j[X(a/n)] = j[X ](j(a)/n).

To see this, let (b0, . . . , bn) ∈ j[X(a/n)]. Then bi = j(ai) for some ai ∈ X ,
i < n, bn = j(a) and (b0, . . . , bn−1) = j(a0, . . . , an−1) ∈ j[X ], so

(b0, . . . , bn) = j(a0, . . . , an−1)⌢j(a) ∈ j[X ](j(a)/x).

Conversely, we have that every (b0, . . . , bn) ∈ j[X ](j(a)/x) is of the form
j(a0, . . . , an−1, a) for (a0, . . . , an−1) ∈ X .

(v) The remaining case φ = ∀1xψ is similar.

This completes the proof of (1) and thus of our theorem. �

Even while having a traditional Löwenheim–Skolem property in general seems
hopeless, in the framework of Section 4.4, the following very weak formulation
of the Löwenheim–Skolem theorem, following essentially from the LS theorem of
first-order logic, seems to suffice.
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Proposition 4.14. Let A be a τ -structure and X ⊆ R(A). Then there is a τ -
structure B of power ≤ |X| + |τ | + ℵ0 and an (element-total) partial elementary
team map ι : B → A such that B |= ThESO(A) and X⊆ ran(ι).

Proof. By the Löwenheim–Skolem theorem of ESO, there is an elementary substruc-
ture B̂ of AX with |B̂| ≤ |τ(X)| +ℵ0 = |X| + |τ |+ℵ0 and B̂ |= ThESO(A). Now let

B = B̂↾τ . Then, by Lemma 3.18, the conditions f(XB̂) = X for all X ∈ X and
f(b) = b for all b ∈ B uniquely determine a partial elementary team map f: B → A

with ran(f) = cl(X∪ {{b} | b ∈ B}). �

4.4. A Category-theoretic Framework. We solve all of our AEC problems in-
troduced in the previous sections by moving to work inside a framework where
structures come with a predetermined set of relations of interest, much resembling
general models, or Henkin models, of second-order logic. General models in the
setting of team semantics were investigated in [8], but our definition will be slightly
different. We define our framework as a category and show that it is an example
of an accessible category [1], which are known to generalize abstract elementary
classes (see e.g. [3]).

Definition 4.15.

(i) Given a signature τ , a general τ-structure is a pair (A,X), where A is a
τ -structure and X⊆ R(A) is a set of relations such that cl(X) = X and for
every a ∈ A, {a} ∈ X.

(ii) If A = ((Ai,Xi),fi,j)i,j∈I,i≤j is a directed system of general models and
partial team isomorphisms fi,j : Ai → Aj such that dom(fi,j) = Xi and
ran(fi,j) ⊆ Xj for all i ≤ j, then the direct limit limA of A is the general
model (A,X), where A = limi∈I Ai and X is the collection of all admis-
sible sets of A, i.e. all relations R ∈ R(A) such that there is i ∈ I with
R ∈ ran(gi), where gi : Ai → A, i ∈ I, are the direct limit maps. Like
before, when the maps fi,j are clear from the context, we simply write
limi∈I(Ai,Xi) for the direct limit.

(iii) An abstract elementary team category (AETC) is a category C

• whose objects are general τ -structures (A,X) for some fixed τ ,
• morphisms (A,X) → (B,Y) are partial team isomorphisms f: A → B

such that dom(f) = X and ran(f) ⊆ Y, and
• composition of morphisms is simply function composition,

satisfying the following conditions.
(a) Closure under isomorphisms : If (A,X) ∈ C and π : A → B is a τ -

isomorphism, then (B,Y) ∈ C for Y = π̂[X] := {π̂(R) | R ∈ X} and
π̂↾X is a morphism f: (A,X) → (B,Y).

(b) Closure under inverses : If f: (A,X) → (B,Y) is a morphism such
that ran(f) = Y, then f−1 is a morphism (B,Y) → (A,X) (and hence
f is an isormorphism in the category C).

(c) Coherence: If f: (A,X) → (C,Y) and g: (B,Y) → (C,Z) are mor-
phisms and h: A → B is a partial team isomorphism with f= g ◦ h,
then h is a morphism (A,X) → (B,Y).

(d) Direct limits of directed systems : C is closed under direct limits, i.e. if
((Ai,Xi),fi,j)i,j∈I,i≤j is a directed system such that each (Ai,Xi) is an
object of C and each fi,j is a morphism of C, then limi∈I(Ai,Xi) ∈ C,
and the direct limit maps gi are morphisms (Ai,Xi) → limj∈I(Aj ,Xj).
Furthermore, this direct limit is a colimit of the category C and hence
satisfies the universal property of colimits (smoothess).

(e) Löwenheim–Skolem property: There is a cardinal κ such that for any
(A,X) ∈ C and X′ ⊆ X, there is (B,Y) ∈ C with |B| ≤ |X′| + κ
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and |Y| ≤ |X′| + ℵ0, and a morphism f: (B,Y) → (A,X) such that
cl(X′) ⊆ ran(f). The least such κ will be denoted by LS(C).

The identity morphism id of an object (A,X) is such that dom(id) = ran(id) = X.
Therefore the requirement that cl(X) = X is necessary.

Observe that in an AETC, an automorphism of an object (A,X) is a partial team
isomorphism f: A → A such that dom(f) = ran(f) = X. We denote by Aut(A,X)
the set of all automorphisms of (A,X). If X′ ⊆ X, we denote by Aut((A,X)/X′)
the set of all f∈ Aut(A,X) such that f(X) = X for all X ∈ X′.

If (A,X) and (B,Y) are general structures, we say that f is a partial team map
(A,X) → (B,Y) if dom(f) ⊆ X and ran(f) ⊆ Y.

Next we recall some preliminary notions from category theory.

Definition 4.16.

(i) Let κ be a regular cardinal. An object X in some category C is κ-
presentable if the functor Hom(X,−) preserves all κ-directed colimits, i.e.
for every κ-directed system (Yi, fi,j)i∈I,i≤j of objects and morphisms of C,
for every object X ∈ Cand morphism h : X → colimi∈IYi there is i ∈ I and
a morphism hi : X → Yi such that h = gi ◦ hi, where gi : Yi → colimi∈IYi
are the colimit morphisms.

(ii) Let κ be a regular cardinal. A category C is κ-accessible if
(a) C has κ-directed colimits, and
(b) there is a set A of κ-presentable objects such that every object in C

is (isomorphic to) a κ-directed colimits of objects from A.
(iii) A category is accessible if it is κ accessible for some regular cardinal κ.

There are many examples of accessible categories which are relevant to model
theory. Among the most natural ones are the following [13, Def. 2.2].

Example 4.17.

(i) Let T be a complete first-order theory. The category Mod(T ) of all models
of T with elementary embeddings is accessible.

(ii) Given a complete first-order theory T , let SubMod(T ) be the category of
pairs (A, X), where X ⊆ A |= T , and morphisms (A, X) → (B, Y ) are
partial elementary maps f : A → B with dom(f) = X and ran(f) ⊆ Y .
Then SubMod(T ) is also an accessible category.

Theorem 4.18. Abstract elementary team categories are accessible.

Proof. Let C be an abstract elementary team category and κ = LS(C)+. We show
that C is κ-accessible. Since C has colimits, in particular it has κ-directed colimits.

Let C<κ be the full subcategory of C whose objects are all (A,X) ∈ C with
|A|, |X| < κ. We claim that objects of C<κ are κ-presentable. Let (A,X) ∈ C<κ
and consider the colimit (B,Y) of a κ-directed system ((Bi,Yi),fi,j)i,j∈I,i≤j , where
we denote by gi : (Bi,Yi) → (B,Y) the colimit morphisms. We claim that we can
factor any morphism h: (A,X) → (B,Y) through some (Bi,Yi). First, notice that
since |X| < κ and κ is regular, the fact that I is κ-directed entails that there is some
i ∈ I such that h(X) ∈ ran(gi) for all X ∈ X. Define a partial team isomorphism
hi : A → Bi by letting

hi(X) = g−1
i (h(X))

for all X ∈ X. Notice that X⊆ dom(hi) and ran(hi) ⊆ dom(gi) = ran(fi,i) ⊆ Yi.
Thus h = gi ◦ hi, so by coherence, hi is a morphism (A,X) → (Bi,Yi). Clearly,
such factorization is unique. Now by e.g. taking in only pairs (A,X), where the
domain of A is a cardinal, we can make C<κ a set.

Left is to show that every object in C can be obtained as a κ-directed colimit
of objects of C<κ. Let (A,X) ∈ C. Let (Xi)i∈I list all Y⊆ X of power < κ such
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that cl(Y) = Y. By letting i ≤ j whenever Xi ⊆ Xj , we make (I,≤) a directed set.
Since κ is regular, (I,≤) is also κ-directed.

Now, by the Löwenheim–Skolem property, for each i ∈ I, we obtain a general
model (Bi,Yi) with |Bi| ≤ |Xi|+LS(C) < κ and a morphism ιi : (Bi,Yi) → (A,X)
such that ran(ιi) = Xi. As both Bi and Yi have power< κ, we have (Bi,Yi) ∈ C<κ.

Now, given i, j ∈ I with i ≤ j, we define a partial team isomorphism fi,j : Bi →
Bj by letting, for every X ∈ Yi,

fi,j(X) = ι−1
j (ιi(X)),

which is well defined since for i ≤ j we have Xi ⊆ Xj . Additionally, we have

Yi = dom(fi,j) and ran(fi,j) ⊆ Yj .

Now clearly ιi(X) = ιj(fi,j(X)) for all X ∈ Yi, so by coherence fi,j is a morphism
(Bi,Yi) → (Bj ,Yj). It follows that ((Bi,Xi),fi,j)i,j∈I,i≤j forms a κ-directed sys-
tem, so we can consider its colimit (B,Y). Let gi : (Bi,Yi) → (B,Y) be the
colimit maps and notice that, by construction, we have

ιj ◦fi,j = ιi

for every i ≤ j. Therefore, by the universal property of colimit, there is a unique
morphism u: (B,Y) → (A,X) such that, for all i ∈ I,

u ◦ gi = ιi.

Now, for every X ∈ X, there is by construction some i ∈ I such that X ∈ Xi. Then
X = ιi(Y ) for some Y ∈ Yi, so u(gi(Y )) = X . This shows that u is surjective
with respect to X and so it is an isomorphism in the category C. Finally, this shows
(A,X) can be obtained as a colimit of κ-presentable objects. �

Definition 4.19. Let T be a first-order complete theory in FO(⊥c). We denote
by GMod(T ) the category whose objects are general models of T and morphisms
(A,X) → (B,Y) are elementary team maps f with dom(f) = X and ran(f) ⊆ Y.

Corollary 4.20. GMod(T ) is an abstract elementary team category.

Proof. Closure under isomorphisms and inverses are clear. Coherence follows from
Proposition 4.3. By Proposition 4.7, GMod(T ) has direct limits and since the limit
object (A,X) of a directed system is such that X contains only admissible sets,
we have the universal property of colimits (note that all singletons are admissible).
Finally, by Proposition 4.14, LS(GMod(T )),LS(GSubMod(T )) ≤ |τ | + ℵ0. �

As we remarked before, the setting of accessible categories is known to general-
ize the notion of abstract elementary class. The above results thus show that our
setting of general models and (elementary) team maps fits this categorical frame-
work to study the model theory of independence logic and existential second-order
logic. Additionally, we remark a further connection with another categorification
of AECs, namely abstract elementary categories (AECat), which were introduced
by Kirby and Kamsma [13, 16]. These are pairs of accessible categories with some
further structure, the protypical example of which are (SubMod(T ),Mod(T )) and
(Mod(T ),Mod(T )).

Definition 4.21 ([13]). An abstract elementary category (AECat) is a pair (C,M)
of accessible categories such that

(i) M is a full subcategory of C,
(ii) all morphisms of C are mono, and

(iii) M has directed colimits, which are preserved by the inclusion functor M→
C.
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Corollary 4.22. The pair (GMod(T ),GMod(T )) is an AECat.

We also remark that one could introduce in a category GSubMod(T ) analogously
to SubMod(T ), but we shall not pursue this in the present paper, as we required
general models of an AETC to contain all singleton relations.

5. Galois Types and the Monster Model

In this section we continue the study of the model-theoretic properties of AETCs
and, in particular, of the model categories of first-order complete theories in FO(⊥c)
(or ESO). For notational convenience, when given a general structure (A,X), we
often omit the set X from the notation and denote it by rel(A), i.e. if we say that
A is a general structure, we mean the structure (A, rel(A)).

Definition 5.1. Let K be an AETC.

(i) We say that K has arbitrarily large models (ALM) if for every cardinal κ
there is A ∈ K with |A| ≥ κ.

(ii) We say that K has the joint embedding property (JEP) if for all A,B ∈ K,
there is C ∈ K and morphisms f: A → C and g: B → C.

(iii) We say that K has the amalgamation property (AP) if for all A,B,C ∈ K

and morphisms f: A → B and g: A → C, there is D ∈ K and morphisms
h0 : B → D and h1 : C → D such that h0 ◦f= h1 ◦ g.

Remark. Notice that if K has AP and contains a prime model A, i.e. for all B ∈ K

there is a morphism A → B, then K also has JEP.

We start by showing some sufficient conditions for an AETC to satisfy the above
versions of ALM, JEP and AP.

Definition 5.2.

(i) Given general structures (Ai,Xi), i ∈ I, and an ultrafilter U on I, the
ultraproduct

∏

i∈I(Ai,Xi)/U of Ai is the general structure (A,X) such
that A =

∏

i∈I Ai/U and X= {
∏

i∈I Xi/U | Xi ∈ Xi for all i ∈ I}.
(ii) We say that an AETC K is closed under ultrapowers if for all A ∈ K, for

all infinite cardinals κ and for all ultrafilters U on κ, Aκ/U ∈ K and the
ultrapower embedding ι : A → Aκ/U is a morphism of K. We say that K

is closed under ultraproducts if for all infinite κ, for all Ai ∈ K, i < κ, and
for all ultrafilters U on κ,

∏

i<κ Ai/U∈ K.
(iii) We say that an AETC K is first-order complete if for all A,B ∈ Kwe have

A ≡ B.

Proposition 5.3. Let K be an AETC.

(i) If K has infinite models and is closed under ultrapowers, then K has ALM.
(ii) If K is first-order complete and closed under ultrapowers, then K has JEP.

(iii) If K is closed under ultrapowers and morphisms of K are elementary team
maps, then K has AP.

Proof.

(i) Let A ∈ K and κ be infinite. By a theorem of Frayne, Morel, and Scott
[7], there is an ultrafilter U on κ such that |Aκ/U| ≥ 2κ > κ. By closure
under ultrapowers, Aκ/U∈ K.

(ii) Let A,B ∈ K. As K is first-order complete, A and B are elementarily
equivalent. By the Keisler–Shelah theorem, there is a cardinal κ and an
ultrafilter U on κ such that Aκ/U ∼= Bκ/U. Let π be an isomorphism
Bκ/U→ Aκ/U, and denote C = Aκ/U. Now π lifts to a team isomorphism
π̂ : Bκ/U → C in the obvious way. Since K is closed under ultrapowers,
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we have Aκ/U,Bκ/U∈ K and the ultrapower embeddings ιA : A → Aκ/U
and ιB : B → Bκ/U are morphisms. Hence π̂ ◦ ιB is also a morphism.
Thus may take f = ιA and g = π̂ ◦ ιB as our desired joint embeddings,
which finishes the proof.

(iii) Let A, B, C, f and g be as in the definition of AP. Let X= rel(A) and let

B̂ and Ĉ be the τ(X)-expansions of B and C, respectively, by interpreting

XB̂ = f(X) and X Ĉ = g(X) for all X ∈ X. We first show that B̂ ≡ Ĉ.
Suppose that this is not the case. Then there is a first-order τ(X)-

sentence φ such that B̂ |= φ and Ĉ |= ¬φ. Let R0, . . . , Rn−1 enumerate
all R ∈ X such that R occurs in φ. Without loss of generality, each Ri is
nonempty (otherwise replace the symbol Ri in φ by ⊥ whenever Ri = ∅).
Then, coding the relation symbols R0, . . . Rn−1 into one

∑

i<n ar(Ri)-ary
relation symbol S as in the proof of Proposition 3.10, we obtain a τ ∪ {S}-

sentence ψ such that (B,
∏

i<n R
B̂
i ) |= ψ and (C,

∏

i<n R
Ĉ
i ) |= ¬ψ. Since X

is closed under Cartesian products, we have
∏

i<nRi ∈ X, and by (PI3) we
additionally obtain

f

(

∏

i<n

Ri

)

=
∏

i<n

f(Ri) and g

(

∏

i<n

Ri

)

=
∏

i<n

g(Ri).

Then, let χ be the FOT-translation of ψ. Now B |=f(
∏
i<n Ri)

χ and

C ✓✓|=g(
∏
i<n Ri)

χ. As f and g are elementary team maps, it follows that

A |=∏
i<n Ri

χ but A✓✓|=
∏
i<n Ri

χ, which is a contradiction.

Next, since B̂ ≡ Ĉ, it follows by Keisler–Shelah that the structures

have isomorphic ultrapowers B̂κ/U and Ĉκ/U. Let π be an isomorphism

B̂κ/U→ Ĉκ/U, denote D̂ = Ĉκ/U and let D = D̂↾τ . As K is closed under
ultrapowers, Bκ/U,Cκ/U ∈ K and the ultrapower embeddings ιB : B →
Bκ/U and ιC : C → D are morphisms. Let h0 = π̂ ◦ ιB and h1 = ιC. Since
h0 and h1 are elementary team maps even in the signature τ(X), we have

h0(f(R)) = h0(RB̂) = RD̂ = h1(RĈ) = h1(g(R))

for all R ∈ X. Hence D with h0 : B → D and h1 : C → D suffices as an
amalgam of B and C over A. �

Note that the amalgamation property holds in a tiny bit stronger form in the
category GMod(T ).

Proposition 5.4. Let K = GMod(T ) for some first-order complete theory T of
FO(⊥c). Then for all A,B,C ∈ K and partial elementary team maps f: A → B

and g: A → C, there is D ∈ K and morphisms h0 : B → D and h1 : C → D such
that h0(f(X)) = h1(g(X)) for all X ∈ dom(f) ∩ dom(g).

Proof. The proof is essentially same as that of Proposition 5.3. �

Amalgamation is a fundamental property in the context of abstract elementary
classes as it grants a good behaviour to so-called Galois types. Here we define
Galois types of relations and show that also in our context they induce a natural
equivalence relation.

Definition 5.5 (Galois Types). Let K be an AETC.

(i) We define a relation ≡K
g on the class of all pairs (A, ~X), where A ∈ K

and ~X = (Xi)i<α ∈ rel(A)α for some ordinal α, as follows. If A,B ∈ K,
~X = (Xi)i<α ∈ rel(A)α and ~Y = (Yi)i<β ∈ rel(B)β , then

(A, ~X) ≡K
g (B, ~Y )
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if α = β, ar(Xi) = ar(Yi) for all i < α and there are C ∈ K and morphisms
h0 : A → C and h1 : B → C such that h0(Xi) = h1(Yi) for all i < α.

(ii) Given (A, ~X), we denote the class of all (B, ~Y ) such that (A, ~X) ≡g (B, ~Y )

by tpg( ~X/∅;A) and call it the Galois type of ~X (over ∅, in A).

The following lemma shows that the notion of Galois type is well defined and,
in the presence of AP, having the same type is an equivalence relation.

Lemma 5.6. Suppose K has AP. Then

(i) ≡K
g is an equivalence relation, and

(ii) for all A,B ∈ K, ~X ∈ rel(A)α and morphism f: A → B, we have

tpg( ~X/∅;A) = tpg(f( ~X)/∅;B).

Proof.

(i) Reflexivity and symmetry are clear, so we verify that transitivity holds.

Let A,B,C ∈ K, ~X = (Xi)i<α ∈ rel(A)α, ~Y = (Yi)i<α ∈ rel(B)α and
~Z = (Zi)i<α ∈ rel(C)α and suppose that

(A, ~X) ≡K
g (B, ~Y ) and (B, ~Y ) ≡K

g (C, ~Z).

Then there are D,E ∈ K and morphisms h0 : A → D, h1 : B → D,
h2 : B → E and h3 : C → E such that h0(Xi) = h1(Yi) and h2(Yi) = h3(Zi)
for all i < α. Apply AP to the morphisms h1 : B → D and h2 : B → E

to obtain F ∈ K and morphisms k0 : D → F and k1 : E → F such that
k0 ◦ h1 = k1 ◦ h2. It follows that for all i < α,

(k0 ◦ h0)(Xi) = k0(h0(Xi)) = k0(h1(Yi)) = (k1 ◦ h2)(Yi)

= k1(h2(Yi)) = k1(h3(Zi)) = (k1 ◦ h3)(Zi),

which shows that (A, ~X) ≡K
g (C, ~Z).

(ii) Trivial. �

We have defined Galois types for arbitrary ordinal-length sequences. The next
proposition shows that, when we restrict to finite tuples, we can show that FOT

actually provides an alternative, syntactic way to define types in GMod(T ).

Definition 5.7 (Syntactic Types). Let A be a general τ -structure, X ⊆ rel(A)
with ∅ /∈ X and n > 0 a natural number.

(i) An FOT-type over X in variables ~x0, . . . , ~xn−1, where each ~xi is a finite tuple
of variables and ~xi and ~xj do not share variables for i 6= j, is a nonempty
set of τ(X)-formulas of FOT with free variables among ~x0, . . . , ~xn−1.

(ii) A type p(~x0, . . . , ~xn−1) over X is consistent if there is a general τ -structure

B and a morphism f: A → B with B̂ |=∏
i<n Yi

φ for all φ ∈ p for some

Y0, . . . , Yn−1 ∈ rel(B) \ {∅}, where B̂ is the τ(X)-extension of B with

XB̂ = f(X) for all X ∈ X. We say that the tuple ~Y = (Y0, . . . , Yn−1)
realizes p.

(iii) A type p is complete if for all τ -formulas φ with the proper free variables,
we have either φ ∈ p or ∼̇φ ∈ p.

(iv) We denote by tpFOT(~Y /X;A) the unique complete type realized by ~Y ∈
(rel(A) \ {∅})n. In particular,

tpFOT((X0, . . . , Xn−1)/∅;A) = {φ ∈ FOT | A |=∏
i<nXi

φ}.

Proposition 5.8. Suppose that K is closed under ultrapowers and morphisms are

elementary. Let A,B ∈ K, ~X = (Xi)i<n ∈ (rel(A) \ {∅})n and ~Y = (Yi)i<n ∈
(rel(B) \ {∅})n. Then the following are equivalent.
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(i) tpg( ~X/∅;A) = tpg(~Y /∅;B).

(ii) tpFOT( ~X/∅;A) = tpFOT(~Y /∅;B).

Proof. First suppose that tpg( ~X/∅;A) = tpg(~Y /∅;B). Then there is C ∈ K and
morphisms f: A → C and g: B → C such that f(Xi) = g(Yi) for all i < n.

Then f(
∏

i<nXi) = g(
∏

i<n Yi), which entails tpFOT( ~X/∅;A) = tpFOT(~Y /∅;B) by
elementarity of the morphisms.

Then suppose that tpFOT( ~X/∅;A) = tpFOT(~Y /∅;B). Then in particular the
structures (A,

∏

i<nXi) and (B,
∏

i<n Yi) are elementary equivalent by Lemma 2.8.
By applying Keisler–Shelah exactly as in Proposition 5.3, we find C ∈ K and
morphisms f: A → C and g: B → C such that f(Xi) = g(Yi) for all i < n. Hence

tpg( ~X/∅;A) = tpg(~Y /∅;B). �

Remark. For the aficionados of topology, we allow ourselves a short excursion in
this otherwise very concise article. In fact, we would like to remark that, in the
case where K = GMod(T ), we can provide a natural Stone space topology to the
the set of types. In fact, since they have a syntactical representation as FOT-
types by Proposition 5.8, we can use formulas to define a clopen basis. Write

G(A) for the set of all Galois types consistent with A, i.e. all tpg( ~X/∅;B), where
~X ∈ (rel(B)\{∅})<ω for some B ∈ K such that there is a morphism f: A → B. We
provide a topology to G(A) by taking as basic opens the sets induced by formulas
of FOT:

JφK := {tpg((Xi)i<n/∅;B) | B |=∏
i<nXi

φ and there is f : A → B}.

We verify that the resulting topological space is a Stone space, namely that it is
totally disconnected, Hausdorff and compact.

(i) G(A) is totally disconnected. In fact if a set Z ⊆ G(A) contains two distinct

types tpg( ~X/∅;B) and tpg(~Y /∅;C), then by Proposition 5.8 there is a for-
mula φ ∈ FOT such that Z ∩ JφK and Z ∩ J∼̇φK split Z into two nonempty
opens.

(ii) G(A) is Hausdorff. If tpg( ~X/∅;B) 6= tpg(~Y /∅;C) then again by Propo-
sition 5.8 we can find a FOT-formula φ such that B |=∏

i<nXi
φ but

C✓✓|=
∏
i<n Yi

φ.

(iii) G(A) is compact. Without loss of generality an open cover is of the form
{JφiK | i ∈ I}, thus

⋂

i∈IJ∼̇φiK = ∅ and in particular {∼̇φi | i ∈ I} |= ⊥.
Since FOT is compact, we obtain that {∼̇φi | i ∈ I0} |= ⊥ for a finite set
I0 ⊆ I. This is equivalent to say that {JφiK | i ∈ I0} is an open cover,
showing that the topology is compact.

Now let S(A) be the subset of G(A) whose types are determined by tuples, i.e. they
are of the form tpg({~a}/∅;B). Then S(A) with the induced subspace topology is
a Stone subspace of G(A) and, additionally, it is exactly (up to homeomorphism)
the standard Stone space of first-order types. Interestingly, the above inclusion
induces via Stone’s duality a homomorphism from the algebra of FOT-formulas to
the algebra of FO-formulas. This homomorphism is given by the quotient map that
sends every FOT-formula to the FO-formulas it is equivalent to when evaluated in
singleton teams. Finally, we also remark that, using amalgamation, it is easy to
verify that the Stone space G(A) does not depend on A but only on its first-order
theory. Thus we can meaningfully speak of the Stone space of Galois types (or
FOT-types) of relations of any theory which is first-order complete

We now work towards building a version of the monster model in our setting.
We notice this follows the general idea of the usual construction of the monster
model in AECs. However, we remark that one can construct monster-like objects
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in any accessible category which is closed under colimits and has the amalgamation
property – we refer the reader to [25, Thm.1] and to [18] for an extensive discussion
of this result.

Definition 5.9. Let K be an AETC and κ an infinite cardinal.

(i) We say that A ∈ K is κ-universal if for every B ∈ K with | rel(B)| < κ,
there is a morphism f: B → A.

(ii) We say that A ∈ K is κ-model-homogeneous if for all B,C ∈ K with
| rel(B)| = | rel(C)| < κ, for all morphisms f: B → A and g: C → A and
all K-isomorphisms h: B → C, there is π ∈ Aut(A) with π ◦f= g◦h, i.e.
the below diagram commutes.

A A

B C
h

f g

π

Then suppose further that K = GMod(T ) for a first-order complete theory T of
FO(⊥c).

(iii) We say that A ∈ K is strongly κ-homogeneous if for any partial elementary
team map f: A → A with | dom(f)| < κ, there is π ∈ Aut(A) with π ⊇ f.

Proposition 5.10. Suppose K has JEP. Then for every cardinal κ there exists a
κ-universal structure A ∈ K.

Proof. Let Bi, i < µ, list all models of K of power < κ up to isomorphism. We
define a chain (Ai,fi,j)i<j≤µ of models Ai ∈ K and morphisms fi,j : Ai → Aj
recursively as follows.

(i) For i = 0, we let Ai = B0 and f0,0 = id.
(ii) If i = j+1, then we let Ai be a structure into which Aj and Bj joint embed.

We let fj,i : Aj → Ai and gj : Bj → Ai be the respective joint embeddings.
For l < j, we let fl,i = fj,i ◦fl,j .

(iii) If i is limit, then we let Ai = limj<i Aj and let fj,i : Aj → Ai, for j < i be
the direct limit morphisms.

Now consider any model B of size ≤ κ. Then B = Bi for some i < µ. By
construction, fi+1,µ ◦ gi : Bi → Aµ is a morphism, which shows that A := Aµ is
κ-universal. �

Lemma 5.11.

(i) Let Kbe an AETC with AP and κ an infinite cardinal. Then for any A ∈ K,
there is B ∈ K and a morphism ι : A → B such that for any C,D ∈ K of
power < κ, morphisms f: C → A and g: D → A, and a K-isomorphism
h: C → D, there is a morphism k: A → B such that ι ◦ g ◦ h = k ◦f, i.e.
the below diagram commutes.

B

A A

C D
h

f g

k
ι
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(ii) Suppose that K = GMod(T ) for first-order complete T . Then for any
A ∈ K, there is B ∈ K and a morphism ι : A → B such that for any
partial elementary team map f: A → A there is a morphism g: A → B

with ι(f(X)) = g(X) for all X ∈ dom(f).

Proof.

(i) Let Ci, i < µ0, list all C ∈ K of power < κ such that there is a morphism
C → A, up to K-isomorphism. For each i < µ0, let fi,j , j < µ1, list
all morphisms Ci → A. Then let µ = µ0 · µ1 and fix a bijection θ : µ →
µ0 × µ1 × µ1. Denote by θi for i ≤ 2 the functions such that θ(α) =
(θ0(α), θ1(α), θ2(α)) for all α < µ.

We define by recursion a directed system (Bi, ii,j)i≤j≤µ of objects and
morphisms of K. We begin by letting B0 = A. At a limit i, we let
Bi = limj<iBj and let ij,i be the direct limit morphisms. When i =
j + 1, we amalgamate the morphisms i0,j ◦ fθ0(j),θ1(j) : Cθ0(j) → Bj and
fθ0(j),θ2(j) : Cθ0(j) → A to obtain D ∈ K and morphisms k0 : Bj → D and
k1 : A → D with

k0 ◦ i0,j ◦fθ0(j),θ1(j) = k1 ◦fθ0(j),θ2(j).

We let Bi = D and ij,i = k0 and define the other ik,i in the obvious way
via composition.

Finally, we let B = Bµ and ι = i0,µ. Now, let C,D ∈ K have power
< κ, h: C → D be a K-isomorphism, and f: C → A and g: D → A be
morphisms. Then there is i < µ0 and an isomorphism π : C → Ci. Since
g ◦ h ◦ π and f◦ π are morphisms Ci → A, there are j, k < µ1 such that
fi,j = g ◦ h ◦ π and fi,k = f◦ π. Let α < µ be such that θ(α) = (i, j, k).
By construction, there is k: A → Bα+1 such that

iα,α+1 ◦ i0,α ◦fθ0(α),θ1(α) = k ◦fθ0(α),θ2(α).

Then

ι ◦ g ◦ h = i0,µ ◦fi,j ◦ π
−1 = iα+1,µ ◦ i0,α+1 ◦fi,j ◦ π

−1

= iα+1,µ ◦ (i0,α ◦ iα,α+1 ◦fθ0(α),θ1(α)) ◦ π
−1

= k ◦fθ0(α),θ2(α) = k ◦fi,k ◦ π
−1

= k ◦f,

as desired.
(ii) Similar. �

Theorem 5.12.

(i) Let K be an AETC with JEP and AP. Then for every cardinal κ > LS(K)
there is a κ-universal, κ-model-homogeneous M ∈ K.

(ii) Suppose that K = GMod(T ) for first-order complete T . Then there is a
κ-universal, strongly κ-homogeneous M ∈ K.

Proof. We prove the theorem in the case that K is an AETC with JEP and AP.
The other case is similar. We define a directed system (Mi, ii,j)i≤j≤κ+ as follows.

(i) M0 is a κ-universal structure whose existence is guaranteed by Proposi-
tion 5.10.

(ii) We let Mi+1 and ii,i+1 be the structure B and the morphism ι given
by Lemma 5.11 for A = Mi. All the other maps ik,i+1 are defined via
composition.

(iii) For i limit, we let Mi = limj<iMj and ij,i be the direct limit embeddings.
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We show that M = Mκ+ is as wanted.
For κ-universality, let A ∈ K have cardinality < κ. As M0 is κ-universal, we

can find a morphism h: A → M0. Now, i0,κ+ is a morphism M0 → M. Hence
ι := i0,κ+ ◦ h is a morphism A → M.

For κ-model-homogeneity, let A,B ∈ K be such that |A|, |B| < κ and | rel(A)| =
| rel(B)| < κ, let f: A → M and g: B → M be morphisms, and let h: A →
B be a K-isomorphism. Now by the definition of the direct limit, rel(M) =
⋃

i<κ+ ran(ii,κ+). Since | rel(A)| = | rel(B)| < κ and κ+ is regular, there is α < κ+

such that f[rel(A)] ∪ g[rel(B)] ⊆ ran(iα,κ+). For all i ≥ α, let fi = i−1
i,κ+ ◦ f and

gi = i−1
i,κ+ ◦ g. By coherence, fi is a morphism A → Mi and gi a morphism

B → Mi. Note that fκ+ = f and gκ+ = g. We now define, by recursion on
i ≥ α, partial team isomorphisms hi : Mi → Mi such that whenever j ≤ i, we have
ran(fi) ⊆ dom(hi) and hi ◦fi = gi ◦ h.

(i) Suppose i = α. We let hi = gi ◦ h ◦f−1
i . Then

hi ◦fi = (gi ◦ h ◦f−1
i ) ◦fi = gi ◦ h,

as desired.
(ii) Suppose i = j+1 and i is odd. By the induction hypothesis, hj◦fj = gj◦h,

whence g−1
j ◦hj ◦fj is a K-isomorphism A → B. By the choice of Mi and

ij,i, there is a morphism k: Mj → Mi such that

ij,i ◦ gj ◦ (g−1
j ◦ hj ◦fj) = k ◦fj ,

i.e. ij,i ◦ hj ◦fj = k ◦fj . We let hi = k ◦ i−1
j,i . Now notice that

ran(fi) = ran(i−1
i,κ+ ◦f) = ran(ij,i ◦ i−1

j,κ+ ◦f)

⊆ ran(ij,i) = dom(i−1
j,i ) = dom(k ◦ i−1

j,i )

= dom(hi).

Then

hi ◦fi = (k ◦ i−1
j,i ) ◦ (i−1

i,κ+ ◦f) = k ◦ (i−1
j,κ+ ◦f) = k ◦fj

= ij,i ◦ hj ◦fj = ij,i ◦ gj ◦ h

= ij,i ◦ (i−1
j,κ+ ◦ g) ◦ h = (i−1

i,κ+ ◦ g) ◦ h

= gi ◦ h,

as desired.
(iii) If i = j + 1 is even, then similarly to above, we find a morphism k: Mj →

Mi such that k ◦ gj = ij,i ◦ h
−1
j ◦ gj and let hi = ij,i ◦ k−1.

(iv) If i is a limit, we let hi be the partial team isomorphism Mi → Mi with
dom(hi) =

⋃

α≤j<i{X ∈ rel(Mi) | i
−1
j,i (X) ∈ dom(hj)} such that

hi(X) = ij,i(hj(i
−1
j,i (X)))

for the least j such that i−1
j,i (X) ∈ dom(hj). It is straightforward to check

that hi is a partial isomorphism. Now let X ∈ ran(fi). Then X = fi(Y ) =
iα,i(fα(Y )) for some Y ∈ rel(A). By the induction hypothesis ran(fα) ⊆
dom(hα), so i−1

α,i(X) = fα(Y ) ∈ dom(hα). By the definition of dom(hi),

we have X ∈ dom(hi).
Let X ∈ rel(A). By the above, α is the least j < i such that i−1

j,i (fj(X)) ∈
dom(hj). Hence,

hi(fi(X)) = iα,i(hα(i−1
α,i(fi(X)))) = iα,i(hα(fα(X)))

= iα,i(gα(h(X))) = gi(h(X)).
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Thus hi ◦fi = gi ◦ h.

Finally, we let π = hκ+ . We show that dom(π) = ran(π) = rel(M). By defini-
tion,

dom(π) =
⋃

α≤i<κ+

{X ∈ rel(M) | i−1
i,κ+(X) ∈ dom(hi)}.

Let X ∈ rel(M). Let γ be the least even i ∈ [α, κ+) such that X ∈ ran(ii,κ+). Let
k be the morphism Mγ → Mγ+1 from the construction of hγ+1. As dom(k) =

rel(Mγ), we have i−1
γ,κ+(X) ∈ dom(k). Then

k(i−1
γ,κ+(X)) = k(i−1

γ,γ+1(i
−1
γ+1,κ+(X))) = hγ+1(i

−1
γ+1,κ+(X)),

whence i−1
γ+1,κ+(X) ∈ dom(hγ+1). But this means that X ∈ dom(π). Using a

symmetric argument, and odd γ, one can show that π is surjective. Moreover, by
construction,

π ◦f= hκ+ ◦fκ+ = gκ+ ◦ h = g ◦ h.

Finally, since M is a general model and contains all singleton relations, we have
that π is element-total and element-surjective. Therefore, by Proposition 3.13 there
is a τ -automorphism π′ of M such that π̂′ ⊇ π. Hence π (= π̂′↾ rel(M)) is an
automorphism of the category K by closure under isomorphisms. �

The above κ-monster model M is κ-saturated in the following sense.

Proposition 5.13. Let K be an AETC with JEP and AP, and let M be a κ-
universal and κ-homogeneous model of K. Suppose that g: M → B is a morphism.

Then for any α, β < κ, ~Y ∈ rel(B)α and ~D ∈ rel(M)β , there is ~X ∈ rel(M)α such
that

tpg( ~X ~D/∅;M) = tpg(~Y g( ~D)/∅;B).

Proof. Let µ = |α|+ |β| < κ, and denote ~B = g( ~D). By the Löwenheim–Skolem
property, there is A ∈ K with |A| ≤ µ+ LS(K) < κ and | rel(A)| ≤ µ+ ℵ0 < κ and

a morphism f: A → M such that ~D ∈ ran(f)β . Now, let ~A = f−1( ~D).
Again, by the Löwenheim–Skolem property, there is C ∈ K with |C| ≤ µ +

LS(K) < κ and | rel(C)| ≤ µ+ ℵ0 < κ, and a morphism h: C → B, such that

cl(ran(g ◦f) ∪ {Yi | i < α}) ⊆ ran(h).

Let ~Z = h−1(~Y ) and ~C = h−1( ~B), and denote k = h−1 ◦g◦f. Now g◦f= h◦k,
so by coherence k is a morphism A → C. By κ-universality of M, there is a
morphism i: C → M. By κ-model-homogeneity, there is π ∈ Aut(M) such that

π ◦f= (i ◦ k) ◦ idA = i ◦ k. Now, let ~X = π−1(i(~Z)). Notice that k( ~A) = ~C, so

~D = π−1(π(f( ~A))) = π−1(i(k( ~A))) = π−1(i(~C)).

Now, as π−1 ◦ i is a morphism C → M and (π−1 ◦ i)(~Z ~C) = ~X ~D, it follows that

tpg( ~X ~D/∅;M) = tpg(~Z ~C/∅;C). On the other hand, as h is a morphism C → B and

h(~Z ~C) = ~Y ~B, we have tpg(~Z ~C/∅;C) = tpg(~Y ~B/∅;B). By transitivity of Galois

types, we then have tpg( ~X ~D/∅;M) = tpg(~Y ~B/∅;B), as desired. �

Like classically, the monster model makes it easier to deal with Galois types:
instead of amalgamating into a third model, having the same type can be now
witnessed by an automorphism of the monster.

Proposition 5.14. Let α < κ and ~X, ~Y ∈ rel(M)α. Then tpg( ~X/∅;M) =

tpg(~Y /∅;M) if and only if there is π ∈ Aut(M) such that π( ~X) = ~Y .
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Proof. If ~X and ~Y are conjugates by π ∈ Aut(M), then the morphisms idM and π

witness that ~X and ~Y have the same type.

Suppose that ~X and ~Y have the same type. Then there is A ∈ Kand morphisms

f0 : M → A and f1 : M → A such that f0( ~X) = f1(~Y ). By the Löwenheim–Skolem
property, there is B ∈ K with |B|, | rel(B)| < κ and a morphism g: B → M such

that ~X, ~Y ∈ ran(g)α. There is also C ∈ K with |C|, | rel(C)| < κ and a morphism
h: C → A such that

cl(ran(f0 ◦ g) ∪ ran(f1 ◦ g)) ⊆ ran(h).

Now by coherence, the maps ki := h−1 ◦fi ◦ g, i < 2, are morphisms B → C. By
κ-universality of M, there is a morphism i: C → M. Now i ◦ k0, g and i ◦ k1 are
morphisms B → M, so by κ-model-homogeneity, there are π0, π1 ∈ Aut(M) such
that π0 ◦g = (i◦k0)◦ idB = i◦k0 and π1 ◦ (i◦k1) = g◦ idB = g. Let π = π1 ◦π0.
Then π ∈ Aut(M) and

π( ~X) = π1(π0( ~X)) = π1(π0(g(g−1( ~X)))) = π1(i(k0(g−1( ~X))))

= π1(i(h−1(f0(g(g−1( ~X)))))) = π1(i(h−1(f0( ~X))))

= π1(i(h−1(f1(~Y )))) = π1(i(h−1(f1(g(g−1(~Y ))))))

= π1(i(k1(g−1(~Y )))) = g(g−1(~Y ))

= ~Y . �

In particular, the previous lemma allows one to extend the notion of Galois type
and take parameters into account. For a small set Z ⊆ rel(M) and given two

sequences ~X, ~Y ∈ rel(M)α, we can define

tpg( ~X/Z;M) = tpg(~Y /Z;M)

if there is π ∈ Aut(M/Z) such that π( ~X) = ~Y . One can then verify that

tpg( ~X/Z;M) = tpg(~Y /Z;M) if and only if tpg( ~X ~Z/∅;M) = tpg(~Y ~Z/∅;M), where
~Z enumerates Z.

Remark. To recap, in this section we introduced a notion of Galois type of a tuple
of relations in an abstract elementary team category and built a monster model
which is sufficiently saturated with respect to these types. However, we shall now
see why this notion of type is not, in fact, a good basis for the definition of stability.
Instead, it would seem that in the concrete example GMod(T ) for a complete ESO-
theory T (cf. Section 7.2), the stability properties of the first-order reduct of T are
a more useful measure of complexity.

More precisely, to see that Galois types in team semantics are ill-behaved from
the stability-theoretic point of view, we consider the formula φ := x ⊆ y in the
context of an arbitrary ESO-theory T with infinite models. We show that this
formula has both a version of the indipendence property (IP) and the strict order
property (SOP) in our context (see [30, p.134] for the standard definition of IP and
SOP in first-order logic).

First, consider any model A of T and let A = {ai | i < ω} be an enumeration of
some countable subset thereof. Then for every I ⊆ ω consider the set of formulas

ΓI := {yi ⊆ x | i ∈ I} ∪ {∼̇(yi ⊆ x) | i /∈ I}.

Then consider a team XI with domain dom(XI) = {x}∪{yi | i < ω} and such that
XI [x] = {ai | i ∈ I} and XI [yi] = {ai} for all i < ω. Then we obtain A |=XI ΓI ,
showing that any theory T with infinite models satisfies this version of IP.

Similarly, we can also show that any theory T with infinite model has the strict
order property. Let again A be an arbitrary infinite model and A = {ai | i < ω}
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a countable subset of it. For every i < ω, we let Ai = {aj | i ≤ j}. Consider the
formula φ := x ⊆ y and let Xi be the team with domain {xi} such that Xi[xi] = Ai.
Then it is easy to verify that, for all i < j < ω

A |=Xi×Xj ∀y (y ⊆ xi _ y ⊆ xj) ⇐⇒ i ≤ j.

Which shows that any theory T with infinite models has this version of SOP for
team semantics.

The two observations above hint at the fact that a robust classification theory
for (complete) theories in ESO (or FO(⊥c)) cannot rely exclusively on the notion of
Galois types introduced in this section. In particular, we obtain as a consequence
that for any set of size κ of parameters the number of resulting Galois types is
2κ, showing that the cardinality of the space of types does not allow to track any
information about the underlying theory.

For these reasons, we take later in Section 7.2 a different approach. In particular,
given a complete ESO-theory T , we shall consider the (standard) stability properties
of its first-order reduct T ∗. We shall apply this approach especially to the problem
of transferring categoricity among different cardinals, and prove two results in this
direction. We take these preliminary findings as a hint that the standard notions of
stability and independence also have a key role in the present higher-order context,
and may be the correct ones to study the model theory of complete theories in ESO

or FO(⊥c).

6. Application I – Lindström’s Theorem for FOT

A celebrated result by Lindström [20] characterises first-order logic as the maxi-
mal abstract logic satisfying both the compactness and the downwards Löwenheim-
Skolem theorems. Moreover, he also proved in [19] that first-order logic is maximal
among the abstract logics which are both compact and have the so-called Tarski
union property. A similar result by Sgro [26] shows that first-order logic is also the
maximal abstract logic to satisfy the  Loś’ theorem.

Motivated by these results, we provide a first application of the abstract ma-
chinery of the previous sections and prove two maximality results for FOT in terms
of its model-theoretic properties. We believe our results could also be obtained
from the classical Lindström’s theorem via Lemma 2.7 with a clever translation,
but here we merely demonstrate the use of our newly acquired tools. We start by
defining a suitable notion of abstract logic in the setting of team semantics, which
we call abstract team logic. Given a signature τ , we denote by Str(τ) the class of
all τ -structures.

In this section, we make a distinction between teams and their underlying rela-
tions, to allow teams with infinite domains. However, results about team maps are
only applied in the case where the argument of the map is a finitary relation.

Definition 6.1. An abstract team logic is a pair L = (FmlL, SatL), where

• FmlL is a class of pairs φ = (i,Fv(φ)) such that i is an identifier and Fv(φ)
a set of variables, and

• SatL is a class of triples (A, X, φ), where φ ∈ FmlL, A is a structure (of
some signature) and X is a team of A with dom(X) ⊇ Fv(φ),

satisfying the following.

(i) L is closed under isomorphisms, i.e. if π : A → B is an isomorphism between
τ -structures A and B, then for all φ ∈ FmlL, D ⊇ Fv(φ) and X ⊆ AD,

(A, X, φ) ∈ SatL ⇐⇒ (B, π∗(X), φ) ∈ SatL,

where π∗(X) = {π ◦ s | s ∈ X}.
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(ii) L satisfies the occurence condition, i.e. for any φ ∈ FmlL there is a signature
σ such that for any τ and A ∈ Str(τ), A |=X φ implies τ ⊇ σ, and for any
τ ⊇ σ, D ⊇ Fv(φ), A ∈ Str(τ) and X ⊆ AD,

(A, X, φ) ∈ SatL ⇐⇒ (A↾σ,X, φ) ∈ SatL.

(iii) L is closed under renaming, i.e. if τ and τ ′ are signatures and π : τ → τ ′

is a bijection that preserves the type and the arity of symbols, then for
any φ ∈ FmlL there is ψ ∈ FmlL with Fv(ψ) = Fv(φ) such that for all D,
A ∈ Str(τ) and X ⊆ AD, we have

(A, X, φ) ∈ SatL ⇐⇒ (π(A), X, ψ) ∈ SatL,

where π(A) is the τ ′-structure with dom(π(A)) = dom(A) and π(R)π(A) =
RA for any symbol R ∈ τ .

If φ ∈ FmlL, we simply write φ ∈ L. We say that φ is a σ-formula if σ is as
in the occurrence condition. If (A, X, φ) ∈ SatL, we write A |=X φ. If Σ ⊆ FmlL,
we write A |=X Σ if A |=X φ for all φ ∈ Σ. We write ModL(φ) for the class of
all (A, X) such that A |=X φ and X 6= ∅. If A is a τ -structure, we also denote by
ThL(A, X) the set of all τ -formulas φ ∈ L such that A |=X φ. We write ThL(A)
for ThL(A, {∅}). Note that if φ ∈ ThL(A, X), then Fv(φ) ⊆ dom(X). We write
(A, X) ≡L (B, Y ) if ThL(A, X) = ThL(B, Y ). We say that a set Σ ⊆ FmlL is
consistent if

⋂

φ∈Σ ModL(φ) 6= ∅. We say that φ is consistent if {φ} is, and φ is

consistent with Σ if Σ ∪ {φ} is consistent. We define the following properties of
abstract team logics.

Definition 6.2. We say that an abstract team logic L is regular if the following
hold.

(i) L is closed under conjunction, i.e. for all φ, ψ ∈ L there is χ ∈ L such that
for all D ⊇ Fv(φ),Fv(ψ),Fv(χ), and for all A and X ⊆ AD,

A |=X χ ⇐⇒ A |=X φ and A |=X ψ.

Furthermore, if φ and ψ are σ-formulas, also χ can be chosen to be a σ-
formula. We denote this χ by φ ∧ ψ.

(ii) L is closed under (weak classical) negation, i.e. for all φ ∈ L there is ψ ∈ L
such that for all D, A and nonempty X ⊆ AD,

A |=X ψ ⇐⇒ A✓✓|=X φ.

Furthermore, if φ is a σ-formula, also ψ can be chosen to be a σ-formula.
We denote this ψ by ∼̇φ.

We say that L is positive if it is closed under conjunction but not necessarily
under weak classical negation.

We say that L is team-finitary if

(iii) for any φ ∈ L there is a finite set D ⊇ Fv(φ) such that if there are A and
nonempty X with A |=X φ, then there is a team Y such that dom(Y ) = D,
and for all teams Z such that Z↾D = Y , we have A |=Z φ. In particular,
Fv(φ) is finite.

Definition 6.3. Let L be an abstract team logic.

(i) We say that L is compact if for any Σ ⊆ FmlL, Σ is consistent if and only
if every finite subset of Σ is.

(ii) We say that a team embedding f: A → B preserves φ ∈ L if for all D ⊇
Fv(φ) and X ⊆ AD,

A |=X φ ⇐⇒ B |=f(X) φ.
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We say that L has direct limits if the following holds. Let (Ai,fi,j)i,j∈I,i≤j
be a directed system of τ -structures, let B = limi∈I Ai and denote for all
i ∈ I by gi the direct limit embedding Ai → B. Then for all φ ∈ L, if fi,j
preserves φ for all i, j ∈ I, i ≤ j, then gi preserves φ for all i ∈ I. This is
the team logic counterpart of the Tarski union property.

(iii) We say that L has a  Loś’ theorem if for any set I, τ -structures Ai, teams
Xi ⊆ ADi and ultrafilter U on I, for any formula φ ∈ L:

{i ∈ I | Ai |=Xi φ} ∈ U =⇒
∏

i∈I

Ai/U |=∏
i∈I Xi/U

φ.

We say that L has a strong  Loś’ theorem if the above holds in both direc-
tions:

{i ∈ I | Ai |=Xi φ} ∈ U ⇐⇒
∏

i∈I

Ai/U |=∏
i∈I Xi/U

φ.

We define a partial order among abstract team logics as follows.

Definition 6.4. Let L,L′ be two abstract team logics. We write L ≤ L′ if for any
τ -formula φ ∈ L there is a τ -formula φ′ ∈ L′ such that φ ≡ φ′, i.e. for all A ∈ Str(τ)
and all teams X of A,

A |=X φ ⇐⇒ A |=X φ′.

We write L ≡ L′ if L ≤ L′ and L′ ≤ L.

If φ, ψ ∈ L and ModL(φ) ⊆ ModL(ψ), then we write φ |= ψ. We write φ |= ψ
even if φ ∈ L, ψ ∈ L′ and ModL(φ) ⊆ ModL′(ψ). We write φ ≡ ψ if φ |= ψ and
ψ |= φ. Note that if φ and ψ are consistent and φ ≡ ψ, we must have Sig(φ) =
Sig(ψ). If Σ ⊆ FmlL and φ ∈ L′, we write Σ |= φ if

⋂

ψ∈Σ ModL(ψ) ⊆ ModL′(φ).

Lemma 6.5. Let L be a regular abstract team logic.

(i) Let A be a τ -structure and X ⊆ AD nonempty. Then ThL(A, X) is com-
plete with respect to τ -formulas of L whose free variables are contained in
D, i.e. if φ ∈ L is a τ -formula and Fv(φ) ⊆ D, then either φ ∈ ThL(A, X)
or ∼̇φ ∈ ThL(A, X).

(ii) For any φ ∈ L, φ ≡ ∼̇∼̇φ.
(iii) Let Σ ∪ {φ} ⊆ L. Then Σ ∪ {φ} is inconsistent if and only if Σ |= ∼̇φ.

Proof.

(i) Since X is nonempty, for any φ ∈ L we have

A |=X ∼̇φ ⇐⇒ A✓✓|=X φ.

Clearly exactly one of the options A |=X φ and A |=X ∼̇φ is true.
(ii) Trivial.

(iii) Suppose that Σ |= ∼̇φ. Then for any A and X such that A |=X Σ, we have
A |=X ∼̇φ. This means that for such A and X , whenever X is nonempty,
A ✓✓|=X φ, which means that there are no A and nonempty X such that
A |=X Σ ∪ {φ}. Hence Σ ∪ {φ} is inconsistent.

On the other hand, if Σ ∪ {φ} is inconsistent, then
⋂

ψ∈Σ ModL(ψ) ∩
ModL(φ) =

⋂

ψ∈Σ∪{φ} ModL(ψ) = ∅. Hence for any A and nonempty X ,

if A |=X Σ, we have A ✓✓|=X φ. But this means that A |=X ∼̇φ. Hence
Σ |= ∼̇φ. �

We can now prove two characterisations of FOT in abstract terms. We notice
that the fist one characterises FOT in the context of abstract team logics and adapts
[19] in our context. The second result applies to all positive abstract team logic
and adapts [26].



ON MODEL THEORY OF SECOND-ORDER OBJECTS 45

Theorem 6.6.

(i) The logic FOT is maximal among all regular abstract team logics that are
team-finitary, compact and closed under direct limits.

(ii) The logic FOT is maximal among all positive abstract team logics that are
team-finitary and have a strong  Loś’ theorem.

Proof.

(i) Suppose this is not the case. Then there is a regular abstract team logic
L such that FOT ≤ L � FOT and L is team-finitary, compact and closed
under direct limits. Let φ ∈ L be such that φ 6≡ ψ for all ψ ∈ FOT. By
the occurrence condition, there is τ such that φ is a τ -formula, and by
team-finitarity there is a finite D ⊇ Fv(φ) such that whenever φ is satisfied
in a team, it is satisfied in a team with domain D. Let Σ be the set of
all τ -formulas ψ ∈ FOT such that φ |= ψ and Fv(ψ) ⊆ D. We show that
Σ ∪ {∼̇φ} is consistent. Let Σ′ ⊆ Σ be finite. Now if Σ′ ∪ {∼̇φ} were
inconsistent, then we would have Σ′ |= ∼̇∼̇φ, whence

∧

Σ′ |= φ. As Σ is
clearly closed under conjunction, we would also have

∧

Σ′ ∈ Σ, whence
φ |=

∧

Σ′. But then φ ≡
∧

Σ′, contradicting the choice of φ. Hence we
conclude that Σ′∪{∼̇φ} is consistent. Thus by compactness of L, Σ∪{∼̇φ}
is consistent. Thus there is a τ -structure A and nonempty X ⊆ AD with
A |=X Σ ∪ {∼̇φ}.

Let X = {{a} | a ∈ A} ∪ {X [~x]}, where ~x lists D. Now we consider the
set Diag(A,X)∪{φ, θ(X [~x], ~x)}, where θ is as in Lemma 2.9, and show that

it is consistent. Let Σ′ ⊆ Diag(A,X) be finite. Let a0, . . . , an−1 enumerate
such a ∈ A that {a} occurs in a formula of Σ′. Now there is a first-order

τ -formula ψ(y0, . . . , yn−1, R), where R is a second-order variable with arity
|D|, such that for any τ -structure B and its τ ∪ {{a0}, . . . , {an−1}, X}-

expansion B̂, we have

B̂ |=
∧

Σ′ ⇐⇒ B |= ψ(b0, . . . , bn−1, X [~x]B̂),

where bi is the unique element inhabiting {ai}
B̂. Let ψ∗(~x) be an FOT-

translation of ∃y0 . . .∃yn−1ψ(y0, . . . , yn−1, R), i.e. such a τ -formula of FOT
that for any τ -structure B and Y ∈ BD,

B |= ∃y0 . . . ∃yn−1ψ(y0, . . . , yn−1, Y [~x]) ⇐⇒ B |=Y ψ∗.

Now suppose for a contradiction that Σ′ ∪ {φ, θ(X [~x], ~x)} is inconsistent.

Then so is {ψ∗, φ}. This means that φ |= ∼̇ψ∗, whence ∼̇ψ∗ ∈ Σ. As
A |=X Σ, we have A |=X ∼̇ψ∗. Since X 6= ∅, we obtain A ✓✓|=X ψ∗. Thus

A✓✓|= ∃y0 . . .∃yn−1ψ(y0, . . . , yn−1, X [~x]), which is a contradiction since A |=
ψ(a0, . . . , an−1, X [~x]). Therefore Σ′ ∪ {φ, θ(X [~x], ~x)} is consistent and, by

compactness of L, so is Diag(A,X)∪ {φ, θ(X [~x], ~x)}. Thus there is a τ(X)-

structure B̂ such that B̂ |= Diag(A,X) ∪ {φ, θ(X [~x], ~x)}.

Let B = B̂↾τ . Then by Lemma 3.18, there is partial elementary team
map f: A → B with dom(f) = cl(X). Now notice that A, B, X and f are
such that

A |=X ∼̇φ and B |=f(X) φ.

Now we define, by recursion on n < ω, τ -structures An and Bn, sets
Xn ⊆ R(An) and Yn ⊆ R(Bn), teams Xn ∈ Xn and Yn ∈ Yn, and partial
elementary team maps in : An → An+1, jn : Bn → Bn+1, fn : An → Bn

and gn : Bn → An+1, satisfying the following.
(a) Xn = {Xn} ∪ {{a} | a ∈ An} and Yn = {Yn} ∪ {{b} | b ∈ Bn}.
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(b) An |=Xn ∼̇φ and Bn |=Yn φ.
(c) dom(in) = dom(fn) = cl(Xn) and dom(jn) = dom(gn) = cl(Yn).
(d) ran(in) ∪ ran(gn) ⊆ cl(Xn+1) and ran(jn) ∪ ran(fn) ⊆ cl(Yn+1).
(e) Yn = fn(Xn), Yn+1 = jn(Yn) and Xn+1 = in(Xn) = gn(Yn).
(f) The resulting diagram commutes.

A0 A1 A2 A3

B0 B1 B2

i0 i1 i2

j0 j1

f0 f1 f2
g0 g1 g2

We start by letting A0 := A, X0 := X , B0 := B and Y0 := f(X). Then we
let X0 = X = {X0} ∪ {{a} | a ∈ A0}, Y0 = {Y0} ∪ {{b} | b ∈ B0}), and
f0 = f. These are all clearly as desired.

Suppose we have constructed Ai, Bi, Xi, Yi, Xi, Yi and fi for i ≤ n and
ii, ji and gi for i < n. We now construct An+1, Bn+1, fn+1, in, jn and
gn. Let Γ be the set

{∼̇φ, θ(Xn, ~x)} ∪ Diag(An,Xn) ∪ Diag(Bn,Yn) ∪ {“fn(R) = R” | R ∈ Xn},

where “S = S′” is a shorthand for ∀1 ~w(S(~w) ] S′(~w)). We use com-
pactness of L to show that Γ is consistent. By the induction hypothesis,
An |=Xn ∼̇φ, and clearly An |=Xn {θ(Xn, ~x)}∪Diag(An,Xn). Now, look at
a finite Γ′ ⊆ Diag(Bn,Yn). Then

∧

Γ′ is equivalent to a first-order τ(Yn)-
sentence of the form ψ(fn({a0}), . . . ,fn({ak−1}), {b0}, . . . , {bm−1}, Yn) for

some a0, . . . , ak−1 ∈ An and b0, . . . , bm−1 ∈ Bn such that {bi} /∈ ran(fn)
for all i < m. Now

Bn |= ∃y0 . . . ∃yk−1ψ(fn(a0), . . . ,fn(ak−1), y0, . . . , ym−1,fn(Xn)),

so as fn is elementary, we have

An |= ∃y0 . . . ∃yk−1ψ(a0, . . . , ak−1, y0, . . . , ym−1, Xn),

so we can find ak, . . . , am+k−1 ∈ An such that
∧

Γ′ is satisfied in an
expansion of An that interprets {bi} as {ak+i}, f({ai}) as {ai} and Yn
as Xn. Such an expansion clearly also satisfies the sentences “fn(R) =

R”. Then by compactness, Γ has a model, so we let Ân+1 be one such.

As Ân+1 |= Diag(An,Xn), we can find a partial elementary team map

in : An → Ân+1 with dom(in) = cl(Xn) and RÂn+1 = in(R) for all R ∈ Xn.

As Ân+1 |= Diag(Bn,Yn), we can find a partial elementary team map

gn : Bn → Ân+1 with dom(gn) = cl(Yn) and RÂn+1 = gn(R) for all

R ∈ Yn. As Ân+1 |= “fn(R) = R” for all R ∈ Xn, we have

gn(fn(R)) = fn(R)
Ân+1 = RÂn+1 = in(R)

for all R ∈ Xn, and hence in = gn ◦fn. Then we can let An+1 = Ân+1↾τ
and Xn+1 = {Xn} ∪ {{a} | a ∈ An+1} as desired.

The model Bn+1, the set Yn+1 and the maps jn andfn+1 are constructed
in a similar manner, using Bn, Yn, An+1, Xn+1 and gn.

In the end, we let Aω = limi<ω Ai, Xω = iω(X0), where iω is the
direct limit map A0 → Aω of the system (Ai)i<ω , and Bω = limi<ωBi

and Yω = jω(Y0), where jω is the direct limit map B0 → Bω of the
system (Bi)i<ω. Now, since L has direct limits, we have Aω |=Xω ∼̇φ and
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Bω |=Yω φ. But as both (Ai)i<ω and (Bi)i<ω are cofinal in the directed
system, we must have Aω ∼= Bω and furthermore, the isomorphism maps
Xω to Yω, which is impossible.

(ii) Suppose this is not the case. Then there is an abstract positive team-
finitary team logic L which has a strong  Loś’ theorem with the following
property: there exists a formula φ ∈ L such that for all ψ ∈ FOT either
(a) there is a model Aψ and a teamXψ such that Aψ✓✓|=Xψ

φ and Aψ |=Xψ ψ,
or

(b) there is a model Bψ and a team Yψ such that Bψ |=Yψ φ and Bψ✓✓|=Yψ
ψ.

We also remark that since L has a strong  Loś’ theorem then it is also
compact, as the usual ultraproduct proof works in this setting (see [24,
Theorem 3.14]).

Let D be a set of variables satisfying the team-finitarity condition for φ
and τ a signature satisfying the occurrence condition for φ. Consider the
set Γ of all τ -formulas ψ ∈ FOT such that φ |= ψ and Fv(ψ) ⊆ D. Also,
we let S be the family of finite subsets of Γ. Since φ |= Γ, it follows by
the choice of φ that for every Σ ∈ S there are a model AΣ and a team XΣ

on AΣ such that dom(XΣ) = D, AΣ |=XΣ Σ and AΣ ✓✓|=XΣ
φ. For every

ψ ∈ Γ, we let [ψ] = {Σ ∈ S | ψ ∈ Σ} and F = {[ψ] | ψ ∈ Γ}. Then, given
ψ0, . . . , ψn−1 ∈ Γ we have that {ψi | i < n} ∈

⋂

i<n[ψi], showing that F
has the finite intersection property. It follows that we can extend F to an
ultrafilter U on S.

Consider now the ultraproduct
∏

Σ∈SAΣ/U. For every formula ψ ∈ Γ
we have that [ψ] ∈ U and for every Σ′ ⊇ {ψ} we have that AΣ′ |=XΣ′

ψ.
It follows by the Los’ Theorem of FOT that

∏

Σ∈SAΣ/U |=∏
Σ∈SXΣ/U ψ,

and so that
∏

Σ∈SAΣ/U |=∏
Σ∈SXΣ/U Γ. Moreover, for any Σ ∈ S we

have that AΣ ✓✓|=XΣ
φ, thus by the strong  Loś’ theorem of L we obtain that

∏

Σ∈SAΣ/U✓✓|=
∏

Σ∈SXΣ/U
φ.

Now consider the theory T = ThFOT(
∏

Σ∈SAΣ/U,
∏

Σ∈SXΣ/U), we
claim this is consistent with φ. If not, there is a finite sets of formulas
∆ ⊆ ThFOT(

∏

Σ∈SAΣ/U,
∏

Σ∈SXΣ/U) such that ∆ ∪ {φ} is not consis-
tent, whence φ |=

∨

{∼̇δ | δ ∈ ∆}. It follows that
∨

{∼̇δ | δ ∈ ∆} ∈ Γ and
so

∏

Σ∈S

AΣ/U |=∏
Σ∈SXΣ/U

∨

{∼̇δ | δ ∈ ∆}

which contradicts ∆ ⊆ T .
We conclude that there are a τ -structure B ≡FOT

∏

Σ∈SAΣ/U and a
team Y on B such that ThFOT(

∏

Σ∈SAΣ/U,
∏

Σ∈SXΣ/U) = ThFOT(B, Y )
and B |=Y φ. Notice that, by the choice of D and the fact that D =
dom(

∏

Σ∈SXΣ/U), we have that both these teams are finitary. Then, by
the translation from FOT to FO it follows that

(B, Y ) ≡FO (
∏

Σ∈S

AΣ/U,
∏

Σ∈S

XΣ/U)

and so, by Keisler–Shelah, there are two elementary maps π0 : B → C

and π1 :
∏

Σ∈SAΣ/U→ C into some common ultrapower C (up to isomor-
phism). By assumption, L has a strong  Loś’ theorem, and so does FOT.
Thus it follows that C |=π0(Y ) φ and C✓✓|=π1(

∏
Σ∈SXΣ/U) φ, which contradicts

π0(Y ) = π1(
∏

Σ∈SXΣ/U). �
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7. Application II – Complete Theories in ESO

In this last section, we apply the techniques and the methodology developed so
far to the context of complete theories in existential second-order logic (or equiv-
alently of FO(⊥c)). In Section 7.1, we study some basic properties of complete
ESO-theories and relate them to so-called resplendent models. In Section 7.2, we
use stability theory to prove some versions of categoricity transfer for complete
theories in ESO.

7.1. Complete Theories & Resplendent Models. In this section, we study
complete theories in ESO and their models. As we are always dealing with sentences,
in all results one may replace first-order logic by FOT and ESO by FO(⊥c).

Recall that a theory T of ESO is complete if for all A,B |= T and sentences φ of
ESO,

A |= φ ⇐⇒ B |= φ.

Proposition 7.1. Let T be a complete first-order τ -theory. Then there is a unique
ESO-theory T̄ such that

(i) T̄ ⊇ T ,
(ii) T̄ is closed under logical consequence and

(iii) T̄ is complete.

Proof. Let κ = |τ | + ℵ0, and let φi, i < κ, enumerate all τ -sentences of ESO. We
define T̄ by recursion. Let T0 = T and Ti =

⋃

j<i Tj for i limit. For i = j + 1,

we let Ti = Tj ∪ {φj} if it is consistent and Ti = Tj otherwise. Then we let
T̄ =

⋃

i<κ Ti. By compactness of ESO, T̄ is consistent, and as such it is clearly
a maximal consistent extension of T and hence closed under logical consequence.
Now, let A and B be models of T̄ and φ a sentence of ESO. Now if φ ∈ T̄ , we have
A |= φ and B |= φ, as both are models of T̄ . On the other hand, if φ /∈ T̄ , then
T̄ ∪ {φ} is inconsistent, whence A✓✓|= φ and B✓✓|= φ. Hence T̄ is complete.

For uniqueness, let T ′ be another complete theory in ESO extending T . If T ′∪ T̄
is consistent, then T ′ ⊆ T̄ , as T̄ is a maximal consistent theory, whence the closure
of T ′ under logical consequence is exactly T̄ . Thus it suffices to show that T ′ ∪ T̄
is consistent. Let A |= T ′ and B |= T̄ . As T is first-order complete, it has
the joint embedding property. Hence there is C and elementary team embeddings
f: A → C and g: B → C. Since elementary team embeddings are independence
team embeddings, A |= φ implies C |= φ and B |= φ implies C |= φ for all φ ∈ ESO.
Hence C |= T ′ ∪ T̄ . �

Definition 7.2. We say that a τ -structure A is complete if for any other τ -structure
B such that there is an elementary team embedding A → B, satisfies

A |= φ ⇐⇒ B |= φ

for all sentences φ ∈ ESO.

Proposition 7.3. For a first-order complete theory T of ESO and a structure A,
the following are equivalent.

(i) A |= T̄ .
(ii) A is a complete model of T .

Proof. Suppose first that A |= T̄ . Let f: A → B be an elementary team embedding.
Then, in particular, for all sentences φ ∈ ESO we have that A |= φ entails B |= φ.
It follows that B |= T̄ . But then, as T̄ is complete, we have

A |= φ ⇐⇒ B |= φ

for all sentences φ ∈ ESO. Hence A is complete.
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Then, suppose that A is a complete model of T . Let B |= ThESO(A). By joint
embedding, there is C and elementary team embeddings f: A → C and g: B → C.
Let φ be a sentence of ESO. Now, if A |= φ, then φ ∈ ThESO(A), whence B |= φ. On
the other hand, if A✓✓|=φ, since f is an elementary team embedding, by completeness
of A we have C ✓✓|= φ. If it were the case that B |= φ, since g is an independence
team embedding, we would have C |= φ, a contradiction. Hence B✓✓|= φ. Therefore
ThESO(A) is complete, whence T̄ = ThESO(A). �

We conclude this section by highlighting a connection between complete struc-
tures and so-called resplendent models. The following can be found in e.g. [23,
Ch. 9.3].

Definition 7.4. A τ -structure A is resplendent if for any elementary extension B

of A and a τ -formula φ(x0, . . . , xn−1) of ESO, we have

B |= φ(a0, . . . , an−1) ⇐⇒ A |= φ(a0, . . . , an−1)

for all a0, . . . , an−1 ∈ A.

For the proof of the following fact, we refer the reader again to [23, Ch. 9.3].

Fact. Let T be a first-order theory. Then every model of T with cardinality ≥ |T |
has a resplendent elementary extension of the same cardinality.

Proposition 7.5. The following are equivalent for a structure A.

(i) AA is complete.
(ii) A is resplendent.

Proof. Suppose first that A is resplendent. To show that AA is complete, let B be
a τ(A)-structure and f: AA → B an elementary team embedding, and let φ be a
τ(A)-sentence of ESO such that B |= φ. By Proposition 3.15, we may assume that
B is an elementary extension of AA and f is the identity on singletons. Now φ =
ψ(a0, . . . , an−1) for some τ -formula ψ(x0, . . . , xn−1) ∈ ESO and a0, . . . , an−1 ∈ A,
so as B |= φ, we have B↾τ |= ψ(a0, . . . , an−1). Now B↾τ is an elementary extension
of A, so by the resplendence of A, we obtain A |= ψ(a0, . . . , an−1), whence AA |= φ.
Hence AA is complete.

Conversely, suppose that AA is complete. Let B be an elementary extension
of A and let φ(x0, . . . , xn−1) ∈ ESO be such that B |= φ(a0, . . . , an−1) for some
a0, . . . , an−1 ∈ A. Since B is an elementary extension of A, we have AA ≡ BA, so
by the joint embedding property there is a τ(A)-structure C and elementary team
embeddings f: AA → C and g: BA → C. Now BA |= φ(a0, . . . , an−1), so as g is an
independence team embedding, we have C |= φ(a0, . . . , an−1). As AA is complete
and f is an elementary team embedding, we have AA |= φ(a0, . . . , an−1). But then
A |= φ(a0, . . . , an−1). Thus A is resplendent. �

7.2. Categoricity Transfer. In this section we prove two results concerning the
transfer of categoricity between countable and uncountable cardinals for complete
ESO-theories. We assume the reader is familiar with the standard notions from
classification theory and refer to [2, 28, 30] for the basic definitions.

We also remark that the following results provide a first study of the spectrum
function for existential second order theories. In connection to this topic, we remark
the following fact.

Fact. Let T be a complete theory in ESO and T ∗ its first-order reduct. If T ∗ is
unstable, then T has 2κ models in any cardinal κ > |T |.

If T is a complete ESO-theory, the class of its models is clearly pseudoelementary,
as it is the class of models of the theory T 1 obtained by adding to the signature
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witnesses for every existential second-order statement in T . It follows that the fact
above is an immediate corollary of Shelah’s general result on the number of models
of pseudoelementary classes [28, Ch. VIII, Thm.2.1].

7.2.1. Downwards Categoricity. We show in this section that if the first-order reduct
of an ESO theory T in a finite signature is uncountably categorical, then the theory
T is also ℵ0-categorical. It follows that T is quasi-categorical, i.e. it has a unique
model in all cardinals for which it has a model to begin with.

The proof of this fact is essentially a corollary of Baldwin and Lachlan’s study
of uncountably categorical theories (see e.g. [30, Section 6.3]). In particular, recall
that if T is an uncountably categorical first-order theory, then

(i) T is totally transcendental and thus has a (countable) prime model A0,

(ii) there are a formula φ(x, ~y) and ~a ∈ A0 such that φ(x,~b) is strongly minimal

for every ~b |= tpFO(~a/∅), and
(iii) since A0 is atomic, the type tpFO(~a/∅) is isolated by some ψ(~y).

Then φ(x,~a) determines a pregeometry whose dimension does not depend on the
choice of ~a as long as it realizes ψ. For A |= T , we shall write dimφ,ψ(A) for the
dimension of the pregeometry (φ(A, a), acl). We denote the dimension of A0 by m0.
The following well-known theorem due to Baldwin and Lachlan [30, Theorem 6.3.7]
classifies all countable models of uncountably categorical theories.

Theorem 7.6 (Baldwin–Lachlan). Let T be an uncountably categorical first-order
theory in a countable signature. Then for each cardinal κ ≥ m0 there is a unique
model Aκ with dimφ,ψ(Aκ) = κ.

In particular, since m0 ≤ ℵ0, this means that either T is countably categorical,
or it has ℵ0-many countable models up to isomorphism. We shall see now how its
ESO-completions is satisfied only by the countable model of dimension ℵ0.

Theorem 7.7. If T is a complete theory in ESO in a finite signature and its
first-order reduct T ∗ is uncountably categorical, then T is categorical in all infinite
cardinalities.

Proof. First, notice that since the signature τ of T is finite, ESO can talk about au-
tomorphisms of a τ -structure. In particular, for any second-order function variable
f , there is a τ -formula aut(f) such that

A |= aut(π) ⇐⇒ π is a τ -automorphism of A.

Also, ESO can express when a set is infinite, namely there is a formula inf(X) in
ESO such that:

A |= inf(A) ⇐⇒ |A| ≥ ℵ0.

Let A0 be a prime model of T ∗, and let φ(x, a∗), a∗ ∈ A0, be strongly minimal.
Let θ(v) isolate tpFO(a∗/∅). Now, for all n < ω, let Φn be the following sentence of
SO:

∀v
(

θ(v) → ∀x0 . . . ∀xn−1∃X
(

inf(X) ∧ ∀y(X(y) → φ(y, v)) ∧ ψ
))

,

where ψ(v, x0, . . . , xn−1, X) is the formula

∀y∀z

(

(

X(y) ∧X(z)
)

→ ∃f

(

aut(f) ∧ f(y) = z ∧ f(v) = v ∧
∧

i<n

f(xi) = xi

))

.

In other words, Φn expresses that whenever a is such that ϕ(x, a) is strongly min-
imal, then for any a0, . . . , an−1 there are infinitely many elements of the strongly
minimal set such that any two of them are conjugates over a, a0, . . . , an−1. One can
easily check that Φn ∈ ESO.
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First of all, we show that T |= Φn for all n < ω. Let B be an uncountable
elementary extension of A0. As T has a model in every infinite cardinality but T ∗

is uncountably categorical, we must have B |= T . Now it is enough to show that
B |= Φn for all n. For this, fix n, let b∗ ∈ B be such that B |= θ(b∗) and let
b0, . . . , bn−1 ∈ B be arbitrary. Now ϕ(x, b∗) is strongly minimal, so it has a unique
non-forking extension p ∈ S({b∗, b0, . . . , bn−1}). In particular, p is not algebraic.
Hence, as B is ℵ0-saturated, p is realized in B, and as p is not algebraic, there
are actually infinitely many b ∈ B with b |= p. Let B be the set of them. Now
B ⊆ φ(B, b∗) and any two elements of B are conjugates over {b∗, b0, . . . , bn−1}.
Hence B |= Φn.

In order to show that T is ℵ0-categorical, it is enough to show that any countable
model A of T has dimension ℵ0. Let A be a countable model of T . We now
construct by recursion an independent sequence ai, i < ω, in the pregeometry
(φ(A, a∗), acl). Suppose that we have already found independent a0, . . . , an−1. As
T |= Φn, we have A |= Φn. Hence there is an infinite set A ⊆ φ(A, a∗) such that
any two elements of A are conjugates over {a∗, a0, . . . , an−1}. Now all elements of
A have the same type over {a∗, a0, . . . , an−1}, and since A is infinite, it must be
that A ⊆ φ(A, a∗) \ acl({a∗, a0, . . . , an−1}). Now any element of A is algebraically
independent of a∗, a0, . . . , an−1 and hence suffices as an. �

Example 7.8. The motivating example for the result above is given by the theories
in algebraically closed fields. In particular, let TACF0

be the theory of algebraically
closed fields of characteristic 0 and let T 1

ACF0
be its (unique) ESO-completion. Then

the previous theorem shows that T 1
ACF0

is ℵ0-categorical and its only countable
model is the algebraic closure of the field Q(t0, t1, . . . ) of polynomial fractions over
the rational numbers.

7.2.2. Upwards Categoricity. We prove in this section an upwards categoricity re-
sult for complete theories in existential second-order logic. In particular, we show
that under the assumptions of ω-stability and 1-basedness, ℵ0-categoricity entails
uncountable categoricity.

We follow in this section the standard notation and terminology from classifica-
tion theory. In particular, we use the symbol |⌣ to refer to forking independence
and we identify the strong type stp(~a/C) of a tuple ~a over parameters C with the
set of all equivalence classes E(~x,~a), where E is any finite equivalence relation de-
finable over C. The set of finite equivalence relations over C we denote by FE(C).
We refer the reader to [2] for these and the related notions from classification theory.

As the notion of 1-based theory is less standard, we recall its definition and one
of its key properties. We stress this is a folklore result and refer the reader to [5,
Fact 3.1] for a proof. The converse of the lemma is also true, but we shall not need
it.

In this subsection, M denotes the ordinary elementary monster model which is
suitably universal, homogeneous and saturated.

Definition 7.9. A first-order theory T is 1-based if for all A,B ⊆ Meq, we have
A |⌣acleq(A)∩acleq(B)B.

Lemma 7.10. Suppose T is 1-based and C is finite. If (ai)i∈I is C-indiscernible,
then for all 0 < i < j we have ai |⌣Ca0

(aj)i6=j∈I .

Many steps in the proof of the following theorem are well-known results among
stability theorists but we include them for completeness.

Theorem 7.11. Let T be a complete ESO-theory and let T ∗ be its first-order
reduct. If T ∗ is ω-stable, ℵ0-categorical and 1-based, then T is uncountably cate-
gorical.
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Proof. Let λ be an uncountable cardinal. We show that all models of T of cardinal-
ity λ are saturated, from which λ-categoricity follows. Let A be such a model, and
let p be a type over some parameter set of cardinality < λ. The general strategy of
the proof is to show that p is realised in A. Without loss of generality, p ∈ S1(B)
for some elementary submodel B � A of power < λ. We denote κ = |B|.

Let M � A be the (first-order) monster model of T ∗. Since T ∗ is ω-stable, we
may have M be saturated. Note that a saturated structure is resplendent: as it has
a resplendent elementary extension of the same cardinality and is itself saturated,
it must be isomorphic to the extension. It thus follows from Proposition 7.3 and
Proposition 7.5 that M |= T .

Let a ∈ M realize p, by superstability of T ∗, there is a finite B ⊆ B such that
a |⌣B

B. Since T ∗ is ℵ0-categorical, by Ryll-Nardzewski, there are only finitely
many non-equivalent formulas with free variables x, y and parameters from B. In

particular, there is a finite list of formulas δi(x, y, ~di), i < n, defining all finite
equivalence relations overB. We let Ei ∈ FE(B) be the relation defined by δi. Now,
for each i < n, pick ci ∈ M such that (a, ci) ∈ Ei. The type tpFO(a/B∪{ci | i < n})
has a finite number of parameters, so by ℵ0-categoricity it is isolated by some
formula and thus realised in B by some element b. Then we clearly have, for all
i < n,

(a, ci) ∈ Ei ⇐⇒ δi(x, ci, ~di) ∈ tpFO(a/B ∪ {ci | i < n})

⇐⇒ δi(x, ci, ~di) ∈ tpFO(b/B ∪ {ci | i < n})

⇐⇒ (b, ci) ∈ Ei,

and so we obtain that stp(a/B) = stp(b/B).
Let C = B ∪ {b}. We claim that tpFO(a/C) (= p↾C) is stationary, i.e. has a

unique non-forking extension to B. To this end, suppose that c, d |= tpFO(a/C),
c |⌣C

B and d |⌣C
B. Since a |⌣B

B, by monotonicity a |⌣B
C. As tpFO(c/C) =

tpFO(a/C), we then obtain c |⌣B
C. But then from c |⌣B

C and c |⌣C
B, transi-

tivity gives c |⌣B
B. Similarly d |⌣B

B. Now, for every E ∈ FE(B), if δ(x, y, ~d)

is the defining formula of E, then since (a, b) ∈ E, we have δ(x, b, ~d) ∈ tpFO(a/C)

and so δ(x, b, ~d) ∈ tpFO(c/C), tpFO(d/C). Hence (c, b), (d, b) ∈ E. It follows that
(c, d) ∈ E. Hence stp(c/C) = stp(d/C). Thus, as c and d have the same strong type
over C and both of them are independent of B over C, by stationarity of strong
types this means that tpFO(c/B) = tpFO(d/B). Hence tpFO(a/C) is stationary. In
particular, we have so far found an element a and a finite C ⊆ B such that a |⌣C

B,

tpFO(a/C) is stationary and a |= p.
Now, since M is saturated, we can find a sequence (bi)i<|M| such that bi |= p↾C

for all i < |M| and bi |⌣C
bj for all i, j < |M|. We claim that the existence of such

sequence can be expressed via a sentence of ESO. First we define the the following
formulas:

(i) We write max(X) for the formula saying that there is a bijection between
the background structure and X . This is clearly expressible in ESO.

(ii) We let ψ(x, ~y) be a formula isolating tpFO(aC/∅) and χ(~y) be a formula
isolating tpFO(C/∅). The existence of such formulas follows from ℵ0-cate-
goricity.

(iii) We let θ(x, y, ~z) be a first-order formula such that M |= θ(d0, d1, ~e) if and
only if d0 |⌣~e

d1. The reason why such a formula exists is the following.

First of all, if d0 |⌣~e
d1 and π ∈ Aut(M), then π(d0) |⌣π(~e)

π(d1). Hence

the property of d0 being independent of d1 over ~e only depends on the type
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tpFO(d0d1~e/∅). By Ryll-Nardzewski, there are only finitely many |~e| + 2-
types over ∅, so in particular there are only finitely many q such that if
d0d1~e |= q, then d0 |⌣~e

d1, so let qi, i < m, list all of them. For each i < m,

let θi(x, y, ~z) isolate qi. Now clearly

d0 |⌣
~e

d1 ⇐⇒ M |=
∨

i<m

θi(d0, d1, ~e).

So we may choose θ =
∨

i<m θi.

We then let φ be the sentence

∀~z
(

χ(~z) → ∃X
(

max(X) ∧ ∀x(X(x) → ψ(x, ~z)) ∧

∀x∀y((X(x) ∧X(y) ∧ ¬x = y) → θ(x, y, ~z))
))

.

The sequence (bi)i<|M| witnesses that M |= φ, whence T |= φ, and so A |= φ. Then
in A, we can find a sequence of length |A| of elements that are independent of each
other over C and realize the type tpFO(aC/∅). Hence they also realize the type
tpFO(a/C). It follows that, in A, there is a sequence of distinct elements (ai)i<κ+

such that ai |= p↾C for all i < κ+ and ai |⌣C
aj for all i, j < κ+.

We use some combinatorics to turn the former into a C-indiscernible sequence.
By the locality property of non-forking and superstability of T ∗, for any limit
ordinal i < κ+, there is αi < i such that ai |⌣C∪{aj |j<αi}

{aj | j < i}. Since the set

of all limit ordinals below κ+ is stationary in κ+, we may apply Fodor’s Lemma
(see e.g. [12, Thm. 8.7]) to find α < κ+ and a stationary X ⊆ κ+ such that
ai |⌣C∪{aj |j∈α∩X}

{aj | j ∈ i ∩X} for all i ∈ X . Now, by locality, for every i ∈ X

there is a finite set Ci ⊆ C∪{aj | j ∈ α∩X} such that ai |⌣Ci
{aj | j ∈ i∩X}. Since

|(α∩X)<ω| ≤ κ, there are at most κ-many such finite sets Ci, so by the pidgenhole
principle there is Y ⊆ X of power κ+ and a finite set D ⊆ C ∪ {aj | j < α} such
that C ⊆ D and for all i ∈ Y we have ai |⌣D

{aj | j ∈ i ∩ Y }. Furthermore, we

can choose Y so that stp(ai/D) = stp(aj/D) for all i ∈ Y because the number of
strong types over a finite set of parameters is countable. Then, by the stationarity
of strong types, we obtain in particular that (ai)i∈Y is indiscernible over C.

By reindexing, we may assume that Y = κ+, so (ai)i<κ+ is C-indiscernible.
Since T ∗ is 1-based, it follows from Lemma 7.10 that a1 |⌣Ca0

(ai)1<i<κ+ . Since

we also have that a1 |⌣C
Ca0, it follows by the transitivity of non-forking that

a1 |⌣C
(ai)1<i<κ+ .

By locality of non-forking, for all finite tuples~b ∈ B<ω, there is an ordinal γ~b such

that ~b |⌣C∪{aj|0<j<γ~b}
(aj)0<j<κ+ . Let γ = sup{γ~b |

~b ∈ B<ω}. Now, as κ+ is regu-

lar and |B<ω | = κ < κ+, it follows that γ < κ+. Then ~b |⌣C∪{aj |0<j<γ}
(aj)0<j<κ+

for all ~b ∈ B<ω, which means by definition that B |⌣C∪{aj |0<j<γ}
(aj)0<j<κ+ .

By symmetry and monotonicity of non-forking, this yields aγ |⌣C∪{aj|0<j<γ}
B.

Moreover, by the fact that (ai)0<i<κ+ is independent over C, we also have that
aγ |⌣C

C ∪ {ai | 0 < i < γ}. It follows by the transitivity of non-forking that

aγ |⌣C
B. Finally, since we showed that p↾C = tpFO(a/C) is stationary, we obtain

that aγ |= p. As aγ ∈ A, this means that p is realized in A, which concludes the
proof. �

Example 7.12. Let TE be the first-order theory of a single equivalence relation
E(x, y) that partitions the domain into infinitely many infinite equivalence classes.
Let T 1

E be its unique ESO-completion. Obviously TE is ℵ0-categorical and it is
straightforward to verify that it is also ω-stable and 1-based. Then the previous
theorem shows that T 1

E is also uncountably categorical.
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