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1. Introduction

Random variables in general metric spaces, also called random objects,
have been receiving increasing attention in recent statistical research. The
generality metric space setup does not require any algebraic structure to ex-
ist and is only based on the definition of a distance function. This allows the
methods developed to be applied in domains ranging from classical setups
to more complex use cases on non-standard data. This includes the study of
functional data (Ramsay and Silverman (2005)), data lying on Riemannian
manifolds, correlation matrices and applications thereof to fMRI data (Pe-
tersen and Muller (2019)) or adjacency matrices and social networks (Dubey
and Miiller (2020)) among others.

One example of particular interest due to its wide range of applications is
that of data comprising of probability density functions. Probability distri-
butions are a challenging example of a space that is both functional, and thus
infinite-dimensional, but also non-Euclidean in the constraints characterizing
density functions. This leads to a number of different approaches to studying
these objects: they have been studied as the image of Hilbert spaces under
transformations (Petersen and Miiller (2016)), as specific Hilbert spaces with
specific addition and scalar multiplication operators (van den Boogaart et al.
(2014)), as well as forming metric spaces equipped with different distances
(Panaretos and Zemel (2020); Srivastava and Klassen (2016)). See Petersen
et al. (2022) for a review of such methodologies. Distributions can be found in
many applications; in considering the distribution of socioeconomic factors
within a population such as income (Yoshiyuki (2017)), fertility (Mazzuco
and Scarpa (2015)) or mortality data (Chen et al. (2021)). They are also
useful when considering belief distributions of economic factors (Meeks and
Monti (2023)), allowing economic analyses to consider entire distributions
rather than empirical expectations.

The study of random objects has received recent attention with work in
standard statistical questions (Dubey and Miiller (2019, 2020); McCormack
and Hoff (2023, 2022); Kostenberger and Stark (2023)) as well as various
approaches to regression (Petersen and Muller (2019); Bulté and Sgrensen
(2023); Hanneke et al. (2021)). Since the setup of general metric spaces offers
very little structure, part of the literature assumes additional structure on
the space in order for standard statistical quantities to be well defined. This
is usually done by assuming that the metric space is a Hadamard space, see
for instance Sturm (2003) for a detailed review of results in Hadamard spaces



and Bacak (2014) for computation of Fréchet means in such spaces.

In many of the applications mentioned above, the data might be naturally
observed repeatedly at a regular interval and for a time series. In this case,
the observations might not be independent and the models and analyses
require additional care to take this dependency into account. This work
has mainly been carried out in a non-parametric setting, with classical weak
dependence assumption. This has been done for instance for testing serial
dependence (Jiang et al. (2023)) or for proving the consistency of the Fréchet
mean estimator (Caner (2006)).

While this line of work can be broadly applied, they rely on non-parametric
assumptions rather than proposing a specific model for the data generation.
However, time series models have been developed for specific random objects
by exploiting the structure of the space under study. One popular class of
models is that of autoregressive models, which have been defined using the
linear structure of functional spaces (Bosq (2000); Caponera and Marinucci
(2021)) or exploiting a tangent space structure of the space (Zhu and Miiller
(2022); Xavier and Manton (2006); Ghodrati and Panaretos (2023); Zhu and
Miiller (2021)) to name only a few.

Inspired by existing autoregressive models, we propose an autoregressive
model for random objects. Relying on an interpretation of iteration in the
linear autoregressive model as a noisy weighted sum to the mean, we de-
fine a model parametrized by a mean and concentration parameters. For
this to be possible, we assume additional structure and require the space
to be a Hadamard space, and exploit the geometry of the space to define
the time series iteration through geodesics. We develop the methodology
and associated theory for estimation and hypothesis testing in this model.
This includes estimators for the mean and concentration parameters, and we
propose a test statistic for testing for no autocorrelation, corresponding to
observing an i.i.d. sample.

The paper is organized as follows: Section 2 gives a presentation of useful
concepts and results in Hadamard spaces for the rest of the article. In Sec-
tion 3, we present our autoregressive model and present a theorem providing
a sufficient condition for the existence of a stationary solution of the iterated
system of equations associated with the model, and prove the identifiabil-
ity of the model parameters. We propose in Section 4 estimators for these
parameters and prove convergence results for those estimators. In Section
5, we propose a test for a null hypothesis of independence based on a test
statistic of which we characterize the asymptotic behavior under the null hy-



pothesis and the alternative of a non-zero concentration parameter. Finally,
we illustrate our theoretical results in Section 6 with a numerical study.

2. Preliminaries

Let (€2, d) be a metric space and X a random variable, a Borel measurable
function from some probability space to . We say that X € LP(Q) if
E[d(X,w)P] < oo for some (and hence all) w € €. In the study of random
objects, the concepts of mean and variance are generalized following the ideas
of Fréchet (1948). Given a random variable X € L?(Q), the Fréchet mean
and variance of X are defined as

E[X] = argrginE[d(X,w)Z] Var[X] = irelgE[d(X, w)?]. (1)
w€ w

While the existence of the variance in standard spaces implies the existence of
a mean, this is not necessarily the case in general metric spaces. Furthermore,
on its own, a metric space offers very little to define parametric models.
We now present the additional structure that will be used in this work to
construct models for time series of random objects following the presentation
in Burago et al. (2001) and Sturm (2003).

We call path a map 7 : [0, 1] — Q, continuously mapping the unit interval
to Q. A path v such that d(y(r),y(t)) = d(y(r),v(s)) + d(~(s),~(t)) for
every r < s <t € [0,1] is called a geodesic. Given two elements w,w’ € Q, a
path ~ is said to connect w and ' if 7(0) = w and y(1) = w’. The set of all
such paths is denoted by I'(w,w’). The distance function d induces a length
on the set of paths, defined for each v by

Ly(7) = sup {Zd(v(ti—ﬂ,v(ti)) 0=ty <... <t = 1}~

In general, we have via the triangle inequality that d(v(0),v(1)) < L,(v)
and hence d(w,w’) < inf epw) Lp(y) for every w,w’ € Q. A metric space in
which the previous inequality always holds as an equality is called a length
space. Furthermore, if there exists a geodesic v connecting each pair w,w’ €
), then we see that the infimum is attained by 7, and 2 is called a geodesic
space.

A class of metric spaces of special interest are Hadamard spaces. A metric
space (€2, d) is called Hadamard space if it’s complete and satisfies the NPC
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Figure 1: Hlustration of the NPC inequality: triangles in Hadamard spaces are ”thin”.

inequality (standing for Non-Positive Curvature): for each pair wp,w; € €2,
there exists an wy/p € €2 such that for every z,

1 1
d(27w1/2>2 < d(27w0)2 + §d(Z,w1)2 - _d(w07w1>2' (2>
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Hadamard spaces can also be defined via comparison triangles. This ap-
proach is not described here, see Chapter 4 of Burago et al. (2001) for such
a presentation of Hadamard spaces. The following proposition from Sturm
(2003) shows that Hadamard spaces are geodesic spaces, and that (2) holds
along geodesics.

Proposition 2.1 (Proposition 2.3 in Sturm (2003)). If (€2, d) is a Hadamard
space then it is a geodesic space. Even more, for any pair of points wy, w; € €2
there exists a unique geodesic connecting them, denoted 2. For ¢ € [0, 1]
the intermediate points 7(t) depends continuously on the endpoints wp, w;.
Finally, for any z € Q and t € [0, 1],

d(z,7(t))* < (1 = t)d(z,7(0))* + td(z,7(1))* = t(1 — )d(y(0),7(1))*. (3)

Since (2) is a special case of (3), we will also refer to the latter as the
NPC inequality. Hadamard spaces and the NPC inequality provide a rich
context for the study of random objects. One important result is that for
any X € L'(Q), the function w — E[d(X,w)? — d(X, 2)?] is continuous and
uniformly convex, and hence by completeness of the space, has a unique
minimizer, see Proposition 4.3 in Sturm (2003). Since z only enters as an



additive term which does not depend on w, the minimizer of this function is
independent of z. This yields an alternative definition of the Fréchet mean
for any Hadamard-value random variable in L!(Q),

E[X] = argmin E[d(X,w)* — d(X, 2)*].
weN
We mention some further useful results in Appendix A and refer the reader
to Sturm (2003) for a thorough review of the subject.

We now present a few examples from Sturm (2003) of Hadamard spaces
and ways of building Hadamard spaces out of existing ones. The most well-
known case of Hadamard space are Hilbert spaces. This allows to approach
Functional Data Analysis (see Ramsay and Silverman (2005)) tasks from a
random object perspective.

Example 2.2 (Hilbert spaces). Let H be a Hilbert space, then (H,d) with
d(z,y) = ||z —yll,, is a Hadamard space. In Hilbert spaces, the Fréchet
mean corresponds to the usual expectation, E[X]| = [ xP(dz).

Hilbert spaces are examples of flat spaces in which the NPC inequal-
ity holds to equality. Manifolds of negative sectional curvature also are
Hadamard spaces.

Example 2.3 (Constructed Spaces). Let (€2, d) be a Hadamard space, then

1. Any subset O C Q is a Hadamard space if and only if it is closed and
convex.

2. Let © be an arbitrary set and w : © — ) be a bijection. Then, O is a
Hadamard space equipped with the distance d,,(0,0") = d(w(0),w(#")).
Furthermore, E[X] = w™}(E[w(X)]) holds for any X € L'(O).

One specific example of Hadamard spaces of particular interest is the
space of one-dimensional density functions over R equipped with the 2-
Wasserstein distance.

Example 2.4 (2-Wasserstein Space). Let Wy (I) be the space of probability
measures on I C R with finite second moment. This space, endowed with the
2-Wasserstein distance, is a metric space, see Panaretos and Zemel (2020).
Consider the subset D(I) C Ws(I) of distributions having a density with
respect to the Lebesgues measure. For two distributions P,Q € D(/) with



quantile functions Fj L Fo ! the 2-Wasserstein distance between P and Q is
given by
dw,(P,Q) = || Fz ' — FleLQ[O,u'

The space of quantile functions being a closed and convex subspace of Ly[0, 1],
it is also a Hadamard space. Hence, (D(I), dyy,) falls under the second case
described in Example 2.3 and is also a Hadamard space.

Another useful example of a constructed Hadamard space is that of sym-
metric positive definite (SPD) matrices together with the Log-Cholesky dis-
tance.

Example 2.5 (Log-Cholesky distance). Let S7 be the space of SPD matrices
of dimension p. Given a matrix M &€ 8; , the Cholesky decomposition of M is
well defined, meaning that there exists a lower-triangular matrix with positive
diagonal elements L € L such that M = LL". Let | M] be the p x p matrix
such that |M|;; = M,; if i« < j and 0 otherwise and ID(M) be the p x p
diagonal matrix with diagonal entries D(M); = M;;. While simply using
the Froebenius distance between Cholesky factors of SPD matrices yields
a valid distance, Lin (2019) argues that it leads to an unwanted swelling
effect in geodesics and proposes another distance ds; treating the diagonal
and strictly lower triangular parts of L differently. Let My, M,y € S;r with
Cholesky factors L; and Lo, then the distance dg;r(Mb M) is given by

dgz (M, Mz)* = ||| L] = [Le] 7 + [log D(L1) — log D(Ly) | -

As a case of Example 2.3, this is a Hadamard space, which is also shown in
Lin (2019), together with other properties of this space.

3. The GAR(1) Model
3.1. Model and Stationary Solution

Let us consider a time series {X¢},. in R with constant mean E[X;] = p
for all + € N. Then, {X;},. follows a first-order autoregressive model,
denoted AR(1), with concentration parameter ¢ if it satisfies the following
relation

Xpor — = o(Xy — p) + €41,



Xy

Figure 2: Representation of the iterated equation (5).

where the noise terms {e;},. are i.i.d random variables with mean 0. In
general metric spaces lacking a vector space structure, such a model cannot
be defined. A key insight is that this relation can be rewritten as

Xivi= 1 =)+ pXi + €441-

This allows us to see that each random variable of the time series can be
written as a weighted sum of the overall mean of the time series and the
previous observation, perturbed by a centered random noise. For ¢ € [0, 1],
this weighted sum corresponds to the point along the geodesic from u to X;
at . This interpretation can be used to define an autoregressive process
only using geodesics.

Let now (€2, d) be a Hadamard space. In this context, we consider a broad
class of noise models represented by random maps ¢ : {2 — 2. We say that
a random map ¢ is unbiased if for all w € Q, the random variable ¢(w) is in
L'(Q2) and E[e(w)] = w. Note that the expectation is the Fréchet mean in ,
hence the previous statement can be rewritten as

E[d(s(w),w)* — d(e(w),w')?] <0 for all w # W' € Q. (4)

We say that a sequence of random variables {X;},.y C L'(Q) with com-
mon mean g follows the geodesic autoregressive model of order 1, GAR(1),
with concentration parameter ¢ € [0, 1] if it satisfies the following iterated
system of equations

Xip1 = e (7 (), (5)

where {¢},oy are i.i.d unbiased noise map and fof, we recall, is the (random)
geodesic connecting i to X;.



This relation opens the question of whether the condition of a shared
Fréchet mean E[X;] = p and equation (5) can mutually be fulfilled. Us-
ing that {e;},.y are unbiased and assuming that E[X;] = p, the condition
becomes

E 1% (#)] = ElX)].

Unfortunately, this condition does not hold in every Hadamard space. Thus,
we will assume the following.

Assumption 3.1. For every X € L'(Q) and ¢ € [0,1], E[%é([x](gp)] = E[X].

It is however possible to prove that this condition holds for some of the
examples mentioned in the previous section. For any Hilbert space H, this
condition holds by linearity of the expectation since for any X € L'(H),

E[2x(#)] = E[(1 — 9)E[X] + ¢ X] = (1 — 9)E[X] + ¢E[X] = E[X].

Furthermore, if the condition holds for a Hadamard space (€2, d), then it also
holds for a Hadamard space constructed by taking the image of a bijection
w as described in the second part of Example 2.3.

Lemma 3.2. Let (2, d) be a Hadamard space and (©,d,,) be a constructed
Hadamard space based on the bijection w. If (€2, d) satisfies Assumption 3.1,
then so does (0, d,,).

This lemma shows that Assumption 3.1 holds for a large class of Hadamard
spaces, in particular for the subspace D(I) of W5 (I) of distributions having
a density function, as described in Example 2.4.

To show the existence of a stationary solution, we use the framework of
iterated random function systems presented in Wu and Shao (2004). Let us
first introduce some notation. Given the i.i.d noise maps {e;},.y, define for
all t € N the random functions F} : Q — €,

Fi(x) = a7, (#))-
Then, Equation (5) can be rewritten as an iterated random function system,
Xip1 = Fia(X0).

Further, for any ¢ € N and z € €, the following random variable will be
useful in expressing the condition of existence of a stationary solution,

Xi(z)=F,0F,_j0...0F(x), (6)
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clearly then, we have that X; = X;(Xj), but this construct also allows to
study a coupled version X;(X() of X; for X| b Xo. The following theorem
provides a sufficient condition for the existence of a stationary solution to (6)

based on a geometric-moment contracting condition on the iteration maps
{Fi}ien

Theorem 3.3 (Theorem 2 of Wu and Shao (2004)). Suppose there exists
g € Qa0 > 0,7 € (0,1) and C' > 0 such that

Eld(X,(x), Xi(20))*] < Crid(z, z0)°, (7)
holds for all x € 2,¢t € N. Then, for all z € )

XZ( = lim Ft e} E—l ©0...0 Ft_m+1($)

m—00

exists and does not depend on . Moreover, { X/}, is a stationary solution
of Equation (5).

Note that if we assume that the noise maps {e;},.y are Lipschitz with
Lipschitz constants L, € L*(R.), which, by assumption, are i.i.d copies of
some random variable L, we have by the Geodesic Comparison Inequality
(see Appendix A.2)

Eld(X1 (), X1(70))*] = E[d(e1 (v (), e1(vi° (©)))"]
[L2d (v, (), 7,20 ()

E
E[LY%d(z, x0)*.

[VARVAN

By induction, this implies E[d(X,(z), X;(20))*] < [E[L*]p*]"d(z, 20)*, which
shows that condition (7) holds with r = p*E[L%] < 1.

3.2. Identifability

Under the conditions of Theorem 3.3, Equation (5) has a stationary so-
lution and the model features two quantities of interest: the time-invariant
Fréchet mean of the time series p € 2, and the concentration parameter
¢ € [0,1]. Before considering the estimation of these quantities, we show
that both are identifiable. The identifiability of the Fréchet mean follows di-
rectly from the stationarity of the time series and the definition and existence
of the Fréchet mean in a Hadamard space.
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Theorem 3.4. Let {X;},.y C (2, assume that {X,},  satisfies the condi-
tions of Theorem 3.3. Then, the Fréchet mean p = E[X;] is identifiable.

As for the concentration parameter, we can consider the mean squared
error

L(u) =E [d(xm, X (u))2] . (8)

Then, assuming that the noise maps are unbiased, we can show that this loss
is uniquely minimized by the true concentration parameter .

Theorem 3.5. Let {X,}, .y C Q, assume that {X,},_ are L*(Q2) and satisfies
Equation (5) with true concentration parameter ¢ € [0,1]. Assume further
that the noise maps {e;},.y are unbiased and hence satisfy Equation (4).
Then, ¢ is the unique minimizer of L.

Proof. We prove that ¢ is the unique minimizer of L. This is the case since
Yt () is the Fréchet mean of X,y given X; and &y, is unbiased. Thus, for
all ¢ € [0, 1], with ¢" # ¢, we have

L(¢)=E :d(Xt+1, %)LQ(‘P/))Q] = ]E[d(etﬂ(vft(@% 75%30/))2}
) :E [d(st+1(7§t(so)), Y (@) | Xt”
> B[E[d(z0: (3 (), 754(9)” | X1] | = L(9)

where the inequality follows from the unbiasedness of £;,;. The uniqueness of
 follows from the strong convexity of L inherited from the geodesic convexity
of the squared distance in Hadamard spaces. Indeed, let o1, @9 € [0, 1], wlog
@1 < . Let t € [0,1] and define ¢y = (1 — )1 + t@o. Then, v\ restricted
to [p1, 2] and reparametrized on [0, 1] gives the geodesic connecting v,X (1)
to '}//i(t(QOQ) and hence

L(ge) = E[d(Xea, 71 (1 = 1 + t02))°] = E

Then, using Proposition 2.1 we get

L) SE[(1 = 0)d(Xps1,7, (01)) + td(Xer1, 7, (02))°]
—E[t(1 — t)d(7; (¢1), 75 (02))7]
= (1 - t)L(‘Pl) + tL(SOz) - t(l - t)|901 - S02|2E[d(Xt+17#)2]-
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Since X;,1 is L?(Q), we have that E[d(X;,1, )% < oo, showing that L is
strongly convex. Hence, any minimizer of L is unique, concluding the proof.
O

4. Estimation of model parameters

Now that the identifiability of the Fréchet mean and the concentration
parameter have been established, we show that empirical estimation of the
associated risks produces consistent estimators. Furthermore, we show that
the Fréchet mean can be estimated at a v/T-rate.

4.1. Fréchet mean

For simplicity, we assume that the {X,},. are L*(Q). Then, define the
Fréchet function M(w) = E[d(X,w)?] has a natural empirical version based
on the observations Xi,..., Xr.

1 2
Mr(w) = = ; d(Xy,w)?. (9)
We define the estimator jiz as the minimizer of My. The asymptotic behav-
ior of fip is described by the theory of M-estimation, see for instance van der
Vaart and Wellner (1996), where consistency and rates of convergence are
readily available for i.i.d data. Here, we adapt results on iterated random
function system from Wu and Shao (2004) to verify the general assumptions
for M-estimation presented in van der Vaart and Wellner (1996). One as-
sumption which is standard in the study of random objects, concerns the

covering number of (2, d).

Assumption 4.1. Let B(u,d) be the ball in € of size ¢ centered in p and
N (e, Bs(u)) be the covering number of Bs(u) using balls of size €. Assume

/1 \/1 + log N (€0, Bs(1))de = O(1) as § — 0.

In the following theorem, we show that this assumption, together with
the assumptions required for stationary of the sequence {X;},., are enough
to obtain the v/T consistency of the mean estimator. Note that this result is
of more more general interest since it does not assume that the data follows
our GAR model but only requires control on the dependency of the sequence

{Xi}.
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Theorem 4.2. Let (Q,d) be a Hadamard space and {X;} be an L*(Q) se-
quence of random variables satisfying Equation (7) for some o > 1. Suppose
that Assumption 4.1 holds around the Fréchet mean p = E[X;]. Then, the
minimizer fr of My is a consistent estimator of u and satisfies

ﬁd(u, fir) = Op(1). (10)
The proof of Theorem 4.2 can be found in the Appendix.

4.2. Concentration parameter

Similarly to the Fréchet mean, we construct an estimator of the con-
centration parameter by minimizing an empirical version of L in Equation
(8). We estimate the expectation with the available sample and replace the
Fréchet mean u by the estimator fi7, giving the following risk function

L) = 2 S (X, 3 (w))? (1)

We prove the consistency of the resulting estimator based on results from
Newey (1991) relying on the compactness of the domain [0, 1] and continuity
results about L and Ly. The consistency result is then the following.

Theorem 4.3. Assume that (€2,d) and {X,},.y satisfy the conditions of
Theorem 4.2. Then, the minimizer o7 of Ly is a consistent estimator of (.

Proof. By Proposition Appendix B.3, we have that ||[Ly — L] = o0,(1).
Together with the identifiability result in Theorem 3.5, we have that L has a
unique minimizer. By Corollary 3.2.3 in van der Vaart and Wellner (1996), we
have that any sequence of minimizers @7 of Ly satisfies |pr — ¢| = op(1). O

5. Testing for the absence of serial dependence

One hypothesis test of interest in this model is whether the random
variables {X;},. are independent, which corresponds to testing Hy : ¢ =
Ovs. Hy : ¢ > 0. Since no strong results are available about the asymptotic
distribution of ¢, another test statistic must be considered. To that end,
let us consider the statistic

T-1

Dy = ——> d(X,, X)) (12)

t=1
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We proceed to show that Dr is asymptotically normal with mean and vari-
ance depending on the hypothesis, allowing to build a test that has correct
level, and asymptotic power.

Under Hy, the sequence {X;},. is formed of i.i.d random variables. We
consider the centered summands, Y; = d(X;, Xy41)? — E[d(X1, X2)?]. The
sequence {Y;},.y is then m-dependent with m = 1. By the Central Limit
Theorem for m-dependent sequences, see Theorem 2 in Hoeffding and Rob-
bins (1948), we obtain the following result.

Theorem 5.1. Let X3, X5, X3 be i.i.d copies of (i), then, under Hy and as
T — o0,
VT(Dr — E[d(X1, X2)?]) = N(0,03),

where 02 = Var[d(X;, X5)?| + 2Cov[d(X1, X3)?, d(X1, X3)?].

To study the behavior of this test statistic under H; : ¢ # 0, we base our
analysis on Theorem 3 of Wu and Shao (2004) which provides conditions for
the asymptotic normality of sums of the form of D7. Under the assumptions
required for the existence of a stationary solution, we obtain the result.

Theorem 5.2. Assume that {X;},. satisfies the conditions of Theorem 3.3
with ¢ > 0, then there exists a o, > 0 such that

VT (Dy — E[d(Xy, Xe11)?]) = N(0,02).

In general, it is not clear whether E,_o[Dr| # E,—+[Dr] for an arbitrary
©* # 0, and hence whether the test described above has asymptotic power.
One possible way to avoid this issue is to require the following monotonicity
condition on the noise maps.

Assumption 5.3. For all z,y,z € 2, then the noise maps ¢ satisfy the
following monotonicity condition

d(z,z) <d(y,z) = E[d(g(x), 2)2} < ]E[d(a(y), 2)2}. (13)

Then, for any ¢ > 0, we have that d(v,;(¢), X;) = (1 — )d(p, X)) <
d(u, X;). Using Assumption 5.3, this gives

Ep—p+[Dr] = E[d(5t+1(7§t(éﬁ))a Xt)Q] < E[d(ﬁftﬂ(ﬂ)th)Q} = Ey—o[Dr],

which implies that the asymptotic power of the test is 1.
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To construct a level o hypothesis test for Hy : ¢ = 0vs. H; : ¢ > 0,
one could reject Hy if the absolute deviation of D from its asymptotic
mean exceeds a certain threshold g, based on the result in Theorem 5.1.
However, the asymptotic mean and variance of Dy required for this test
depend on the underlying data distribution and are unknown. Instead, we
use a permutation procedure to compute approximate p-values under Hj.
Specifically, let B € N be the number of permutations used for constructing
the approximate p-value pp and let mq,..., 75 be random permutations of
{1,...,T}. For each permutation 7, we denote by DJ the test statistic
computed based on the permuted sample {Xﬂ(l), e ,XW(T)} and define the
approximated p-value, pp = % Zle 1{Dr < D7*}. The resulting level o
test is then constructed by rejecting Hy if pp < «, see Hemerik and Goeman
(2018).

6. Numerical experiments

In the following, we illustrate our theoretical results with several numer-
ical experiments taking place in different Hadamard spaces. We empirically
verify the convergence rate of fir proved in Theorem 4.2, and show that the
test constructed via the bootstrapping procedure described in Section 5 has
the desired size, and power as T' grows.

We study three scenarios of time series following the GAR(1) model (5).
The first example is that of the real line R equipped with the standard Eu-
clidean distance, with a multiplicative noise model. For the second example,
we consider the space of density distributions over the real line equipped
with the 2-Wasserstein distance, described in Example 2.4, with a geodesic
noise model that we describe later. For the last example, we consider SPD
matrices with the Log-Cholesky metric from Example 2.5 with a noise model
based on the Lie group structure defined in Lin (2019).

In each of these scenarios, we generate time series of different lengths T' €
{40, 80, 160, 320,640} and for different values of the concentration parameter
¢ € {0,0.1,0.2,0.3,0.4,0.5,1}. Naturally, ¢ = 0 and ¢ = 1 are special
cases that we will consider with care in the evaluation of our results. For
each combination of a metric space, a time series length and a concentration
parameter, we generate 1000 datasets. For each dataset, we compute the
estimators jir and @r, and run the permutation-based hypothesis test at
level @ = 0.05. In our results, we report for each combination of a metric
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Figure 3: (a) Depicts a trajectory of 200 time steps from the GAR(1) process described in
Section 6.1. Panel (b) illustrates the v/7' convergence of the mean estimator i for ¢ < 1.
Panels (c) and (d) show the rejection rate of the independence test described in Section
5 for different values of ¢. In (c), we display it for the test with target level 0.05 against

the sample size. For panel (d), we fix 7' = 80 and show the rejection rate as a function of
the test’s target levels.

space, T" and ¢, the average estimator errors d(jir, 1) as well as properties of
the hypothesis test, all calculated over the 1000 runs.

All simulations and analyses are done in Python. The code to reproduce
the experiments and figures is available online!.

6.1. R with multiplicative noise

In the first experimental setup, we investigate the simple case of (2, d)
being the real line line R equipped with the Euclidean distance d(z,y) =
|z — y|. In this space, Assumption 4.1 is verified since N(ed, Bs(u)) = ¢!,
thus the entropy integral is bounded and does not depend on §. Here, the
geodesics are given by straight lines, 7%(t) = (1 — t)x + ty.

https://github.com/matthieubulte/GAR
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Figure 4: (a) Displays 6 consecutive densities sampled from the GAR(1) process described
in Section 6.2. Panels (b), (c) and (d) are generated in the same way as in Figure 3.

We consider multiplicative noise maps ¢;(x) = (1 + n;)z where 7; ~
N(0,0?). Then, g; are unbiased and the condition of Theorem 3.3 is sat-
isfied for ¢ < (14 o%)71/2 since

E[(X(z0) — Xi(2))?] = [* (L + 0)] (0 — 2)*.

In our simulation setup, we work with o2 = 0.25% which gives an upper bound
o< (14027122097

As shown in Figure 3, the theoretical results presented in the previous
sections appear to hold in practice. The /T convergence of the Fréchet
mean estimator holds for ¢ < 1 and the rejection rates for the hypothesis
test for the independence test presented in Section 5 show that the test is
well calibrated and achieves high power for moderate sample sizes.

6.2. Univariate distributions with a density

In this second experiment, we consider a time series in the space D(]0, 1])
of density functions over [0, 1] equipped with the 2-Wasserstein distance, as
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described in Example 2.4. Since the support of the distributions is bounded,
the space D([0, 1]) is bounded as well. There, geodesics are given by linear
interpolation of the corresponding quantile function. Given two distributions
P,Q@ € D with quantile functions Fj ! Fo 1 the density 7]9 on the geodesic
connecting P to Q is given via its quantile function Fv_ﬁ?l(t) (u) = (1—t)Fp M (u)+

tEy (u).

QV\/e generate the time series with the standard normal distribution N (0, 1)
truncated to [0, 1] as the Fréchet mean. Then, the data is generated according
to Equation (5). The noise sampling is based on sampling a random opti-
mal transport 7 and applying it by quantile composition, which corresponds
to computing the pushforward under n. Given a distribution PeD With
quantile function Fj', the noise map ¢ is then given by F 3 cp) = 1O F;'. To
generate the transport maps 7, we follow the procedure described in Panare—
tos and Zemel (2016). First, a random integer frequency is uniformly sampled
from {—4,...,4}\{0}, then, the maps are given by n(x) = x —sin(wkx)/|7k|.
The random maps 7 are smooth, strictly increasing and satisfy n(0) = 0 and
n(l) = 1. By symmetry of the random parameter k, one can see that for
any x € [0,1], we have E[n(x)] = x, property inherited by the noise maps
€. While the noise maps have a Lipschitz constant of 2, meaning that the
condition of Theorem 3.3 is satisfied for ¢ < 0.5, we observe empirically that
the estimators seem to still be consistent even for values of ¢ € [0.5,1).

The results in Figure 4 match those observed in the previous experiment.
The scaled error curves displayed in panel (b) confirm the convergence rate
proved in Theorem 4.2. Similarly, the conditions of Theorem 3.3 are not
satisfied for ¢ = 1, and the estimator iy fails to converge which is omitted
here. We also observe in panels (c¢) and (d) that the test behaves as expected.
The blue curve in both panels, corresponding to the null hypothesis, demon-
strates that the empirical size of the test appears to be correct for all sample
sizes considered.

6.3. SPD Matrices

In this last experiment, we investigate the properties of the GAR(1) model
in the space S, of p-dimensional SPD matrices with the Log-Cholesky dis-
tance d St descrlbed in Example 2.5. In this space, matrices My, M; € S are
unlquely identified by their Cholesky factors Ly, L;. Points on the geodesm
line between these matrices are given by linearly interpolating off-diagonal
entries of the Cholesky factors and geometrically interpolating the diagonal
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Figure 5: (a) Displays 10 consecutive covariance ellipses from the upper 2 X 2 submatrix
of the covariances sampled from the GAR(1) process described in Section 6.2. Panels (b),
(c) and (d) are generated in the same way as in Figure 3.

elements. That is, for ¢ € [0, 1], the Cholesky factor L, of 7]]\\443 (t) is given via
|Li] = (1 —1t)|Lo| +t|L¢] and D(L;) = D(Lo)' 'D(Ly)".

We generate a time series with the identity matrix 1, as the Fréchet mean.
Each noise map in this experiment applies a random congruent transforma-
tion of the input with a random lower-triangular matrix L. € R¥? with
e(X)=LX LET. The lower-triangular entries of L. are i.i.d. following a Nor-
mal distribution | L. |;; ~ N(0,0.5%) and the diagonal entries are i.i.d. following
a log-Normal distribution logID(L.); ~ N(0,0.2%). For a matrix X € Sf
with Cholesky decomposition X = LL", the matrix £(X) is also S, and has
Cholesky decomposition e(X) = L.L, implying E[e(X)] = X.

Here, Figure 5 shows similar results as in the other two experimental
settings. The convergence rate proved in Theorem 4.2 is confirmed in panel
(a). We observe that in this setting, the stability of the error curves seems to
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indicate an early attainment of the asymptotic regime. Similarly, we observe
in panels (c) and (d) that the test exposes the right level and high power,
already at small sample sizes for all tested values of ¢.

7. Application
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Figure 6: Left: Smoothed densities of the monthly 12-months-ahead inflation expectation
with empirical Fréchet mean displayed in red. Right, top: Empirical cumulative distri-
bution function of the residuals for the GAR(1) and mean-only models. Right, bottom:
Residuals of both models over time.

Analyzing consumer inflation expectations brings insights into how every-
day perceptions shape broader economic trends (Dietrich et al., 2022; Meeks
and Monti, 2023). The Survey of Consumer Ezpectations (SCE) is a monthly
survey maintained by the Federal Reserve Bank of New York collecting in-
formation on households’ expectations on a broad variety of economic topics
between June 2013 and November 2022, see Armantier et al. (2017). We focus
our attention on the inflation expectation question, in which each consumer
is asked to provide a distribution representing their belief for the 12-months
ahead inflation. The survey respondents are presented with pre-defined bins
over which they can distribute percentage points, defining a histogram of
their beliefs. Each month, an average of approximately 1300 response his-
tograms are available, which we aggregate by first taking the individual’s
median belief and approximating the median belief density via kernel den-
sity estimator with a Gaussian kernel and using Scott’s rule (Scott, 1992) for
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the choice of the bandwidth, resulting in a time-series of 7' = 114 elements
in D([—12,12]) displayed in the left panel of Figure 6.

We fit the parameters of the GAR(1) model as described in Section 4
and obtain an empirical Fréchet mean fir displayed in red in the left panel
of Figure 6 and a concentration parameter pr = 0.92 indicating a strong
sequential dependence of the curves. The hypothesis test presented in Section
5 rejects the hypothesis of independence at level at a 5% level with a test
statistic Dp = 0.26 and estimated p-value pg ~ 0.001 with B = 1000.

Using the fitted parameters, we generate predictions under the model,
Xt—i—l = 75(;(¢T), and compare the squared residuals d(XtH,XtH)z to the
squared residuals under the null model d(X;.1, fir)?>. We use the metric
space version of the coefficient of determination proposed in Petersen and
Muller (2019) to evaluate the fit of the GAR(1) model, with its empirical
version given by

T-1 .
B2 —1_ ﬁ t=1 d(XtJrlan)éf(‘PT))Q

D = — - .

% ;[:11 al(thuT)2

In this analysis, we find an empirical coefficient of determination of ]—?é =0.82
indicating that the GAR(1) model is able to explain a significant portion of
the variability in the data. The right panel of Figure 6 shows that the
residuals of the GAR(1) fit are smaller than for the mean-only fit, as shown
in the upper graph. Furthermore, as shown in the lower-right panel, the

residuals under the mean-only residuals increase and are high during the
years 2021 and 2022 while the GAR(1) residuals stay stable over time.
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Appendix A. General results in Hadamard spaces

We start by stating results available in Hadamard spaces that will be used
in the rest of the Appendix.
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Proposition Appendix A.1l (Reshetnyak’s Quadruple Comparison; Propo-
sition 2.4 in Sturm (2003)). Let (2, d) be a Hadamard space. For all xy, 29, 3,24 €
Q

d(x1,23)% + d(z9, 14)* < d(29, 23)* + d(24, 11)* + 2d(31, 22)d (23, 74).
Specializing this inequality to geodesics yields the following

Proposition Appendix A.2 (Geodesic comparison inequality; Corollary
2.5 in Sturm (2003)). Let (£2,d) be a Hadamard space, 7,7 : [0,1] — 2 be
geodesics and ¢ € [0, 1]. Then

d(y(t),n(t))* <(1 —)d(v(0), n(0))* + td(y(1),n(1))?
— t(1 —)[d(v(0),~7(1) — d(n(0), n(1))]>.

Appendix B. Proofs

Consistency of the mean estimator

We start by defining the following function which will be useful in the
proofs presented in this section. Let w,wy € €2, we define for all x € €2 the
function

g, (1) = d(z, w)? — d(z,wy)*
In a Hadamard space, g2 has the following Lipschitz property holding both

in z and in the pair (w, wp).

Lemma Appendix B.1. Let (€2, d) be a Hadamard space and w, wy, z, 2’ €
(), then
|9, () — g5, ()| < 2d(w,wo)d(z, 2").

Proof. By Reshetnyak’s Quadruple Comparison (see Proposition Appendix
A1),

d(z',wo)? + d(z,w)? < d(z,wp)? + d(2',w)? + 2d(z, 2")d(w, wp)
= d(z,w)?* — d(2',w)?* — (d(:z:,wo)2 — d(m',w0)2) < 2d(z, 2")d(w,wp)
= oy () — g5, () < 2d(w, wo)d(x, ')

By inverting the role of z and ' we obtain the same upper bound on g% (') —
95, (x) which completes the proof. O
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We can now show that the empirical process Gy = VT (Py — P) applied
to g, indexed by w is sub-Gaussian, which is a crucial step for proving rates
of convergence of jip.

Proposition Appendix B.2. Let wy € €2, define the process {Hfjo TwE Q}
with HS = G, (g%, ). Then, there exists a constant K such that for all A > 0,

Pl 2 4] S 2e{ -t}

Proof. Following Wu and Shao (2004), we show that the scaled process
\/THjjO can be decomposed as

T
VTHE =Y D, + Ry. (B.1)
t=1

Putting the noise maps in random variables ©; = (g4,&;_1,...) we have

o0

h(©) = > (E[gs, (X)) | O] —E[g2,(X)]),

=0
Dy = h(©;) — E[h(0}) | ©;:4],
Ry = E[h(©1) | O] — E[h(O111) | O1] = Oy(1).
Note that D, is a martingale-difference and that Ry = O,(1). To show

that this decomposition is valid, we start by showing that h is absolutely
summable. That is, we now show

> E[gs, (X)) | Xo = 2] — E[g5,(X)]| < oc.

Using Lemma Appendix B.1, then, by independence of {¢;} and finally
assuming (7) holds with & = 1 we have

[E[g5,(Xe) | Xo = o] — E[g, (X)]|
S 2d(w,w0)EXt []Ex[d(Xt,X)] | XO = I]

E |d(X(x), X,(X0))|
Crt.

= 2d(w, wyp)
)

< 2d(w, wo
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Plugin this bound in the infinite sum, this gives
D E[gs, (X)) | Xo = 2] — E[g%,(X)]] < 2d(w,wp)C Y r' = Cd(w, wp).
t=0 t=0

We can thus now use the decomposition (B.1). From the bound above,
limp_yoo VT H¢ exists and is bounded and so are D; and R, with |D;| < Cy

and |Rp| < C,. In particular, we have that Cy < Cd(w, w,) for some C' > 0,
since

Dy = h(©,) — E[1(6:) | ©1-1]

o0

= _(Elgs,(X0) | ©:] —E[gi,(X)]) — E[E[gz, (X&) | ©:] — E[g5,(X)] | ©s-1]

=Y E[g:,(Xu) | ©] —E[E[gs,(Xs) [ O] | ©1-1]

=S E[g4(X) | 0] —E[g4,(Xi) | ©1]  (Tower rule)

= _i;: Elgs (Xx) | O —E[¢5 (Xk) | ©1-1]. (kK <t—1= 0o(Xy) C0(6:1))

We can use the function notation in Equation (6) to get X = Xpyi1(X3)
and rewrite

Elgs,(Xk) | O] —E[g5,(Xx) | ©:-1]
= E[QZO(Xk:tH(Xt)) | @t} - E[gfjo (Xhtr1 (X)) | @t—l]

where Xj.;11 is random in both conditional expectations, but X; is only
random in the second conditional expectation. Taking absolute values and
using Lemma Appendix B.1 together with (2) in Wu and Shao (2004) gives

E[g2 (Xi) | ©] — E[g2, (Xx) | ©:1]| < 2d(w, wo)CrP=E+D),

Using this bound in the sum gives

|Dy| < Z 2d(w, wo)CrF~ Y = 2Cd(w, wy) Zrk = Cd(w,wp).
k=t—1 k=0
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Hence, Cy < Cd(w,wy) and we use this bound instead. Using Chernoff’s
bounding technique, we have for all A\, u > 0

P[Hg, > A] < exp(—uM)E [exp(uHy,)]

= exp(—u\)E |exp (u \/T\/;ISO )

= exp(—u))E exp{% (Z Dy + RT> }

< exp(-uexp{ w7 A

Following the standard proof of Azuma-Hoeffding’s inequality (see Theorem
2.2.1 in Raginsky and Sason (2013)) we can bound the moment generating
function of the martingale-difference sum. Together with the bound |D,| <

Cd(w,w), we get
u Cd(w,wo) i
> 2 T( VT )

O+ )

IP’[H” >)\ <exp (

—exp{ (A~

Then, choosing u = ()\ - \/_%> /(C?d(w, wp)?), we get

T A2
N ' 4 I
2C2d(w, wp)? 2C%d(w, wp)?

where a; ~ b, means a;/b; — 1. By symmetry of the bounds used and
repeating the above argument, we get in non-vanishing form

2
Pl|HS | > A < 2€Xp{—~)\—}
0 2C2d(w, wp)?

which completes the proof. O]
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Using the fact that the empirical process applied to g is sub-gaussian,
we can use standard M-estimation theory to provide a proof of Theorem 4.2.

Proof of Theorem 4.2. Noting that (My—M)(w)—(Mp—M)(p) = T~'/2HY
we have by Proposition Appendix B.2 that

P[VT|(Mr — M) — (Mr = M)(1)| = A] S Qp{—mfm}

So {\/T(MT — M)(w)} 0 is sub-Gaussian. By Corollary 2.2.8 in van der

we

Vaart and Wellner (1996), we have

E

6
sup VT|(My — M)(w) — (My — M)(M)|] S /O Viog(1+ D(e, d))de

d(w,p)<é

= 5/1 Vlog(1 + D(d¢,d))de

Since by assumption the entropy integral is bounded and O(1) for 6 — 0, we
bound (up to a multiplicative constant) the modulus of continuity by 7-'/24.
Additionally, by the variance inequality in Hadamard spaces (see Proposi-
tion 4.4 in Sturm (2003)), we have that the condition M(w) — M (u*) >
d(w, u*)? holds. Thus by Theorem 3.2.5 in van der Vaart and Wellner (1996),
d(jir, ") = Op(T~1/2). O

Appendiz B.1. Uniform convergence of Ly

Proposition Appendix B.3. Under the conditions of Theorem 4.3, we
have that || Ly — L], = op(1).

Proof. We show this result by verifying the conditions of Corollary 2.2 of
Newey (1991). Namely, we need to show that:

1. L is continuous;

2. Ly converges pointwise to L;

3. There exists a sequence C; = O,(1) such that for all ¢,¢" € (0,1),
|Lr(p) — Lr(¢')] < Crle — '],

We proceed to verify these conditions.
1. Continuity of L. By definition w — d(wp,w)? is continous. Since €2
is a Hadamard space, we also have that geodesics are continuous in ¢ € [0, 1],
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hence for all x4, 7,41 € Q and g € [0, 1], d(we11, 7 ¢n) — d(Te11, 7} o) for
any sequence @, — . Furthermore, by geodesic convexity of the squared
distance, we have that d(z¢1,75¢)* < (1 = @)d(41, 1)* + @d(2441, 71)°
which is integrable with respect to (X, X;;1) since X; and X, have second
moments. By dominated convergence, this shows that L(p) — L(pg) as
©n — o for a ny sequence ¢, — ¢g, and hence L is continuous.

2. Pointwise convergence. Let ¢y € (0,1). Using the fact that
X = gtﬂ(”yft(go)), we can decompose the pointwise deviation of Ly from
L as follows,

| L1 (p0) — L{wo)|

= ﬁ i (X1, 75 (90))* —E [d(em(vft(sa)), ’V,i“(soo))2] ‘

1 T-1
= T_1 d(Xm,vﬁ(;(%))z - d(Xt+1>7§t(s00))2|
t=1
= . ) N N ;
|7 2o (X 3 ()~ E[d(een (2 (90,75 (00)) |
t=1

By Lipschitz continuity of the squared distance in a bounded metric space,
together with its geodesic convexity in Hadamard spaces and the fact that
d(u, fir) = Op(T~Y2), we have that the first sum in the upper bound is
Op (T_l/ 2).

(X135 (00))” = A(Xeir, 75 (20)°|
< Crd (7t (20), 1 (90)) [d (X st 7ot (90)) + d(Xegr, 75 (90)) |-

By the geodesic comparison inequality, d(vﬁiﬁ(gpo),yff(gpo)) < @od(p, fir),
and using that x +— d(zy, x) is geodesically convex, we get

d( X417 (90)) < od(Xipa, fir) + (1 = 0)d(Xi41, Xy)
< d( X, fir) + d(Xig1, X)
< 2d(Xeg1, p) + d(Xe, p) + d(p, for).
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Similarly, d(Xt+1a’7,i(t(4P0)) < 2d(Xip1, ) + d(Xy, 1), giving

2 2
’d(Xm, ()" = d(Xegr, 7 (0)) ‘
< Cod(p, oy ) [d(Xpsr, 1) + d( Xy, 1) + d(p, fir)]

Taking the average over t = 1,...,T — 1, we get

71 2 X 00))” = d(Xe, 3 ()’
t=1

T-1 ‘

T-1

Z d(Xt—Ha M) + d(Xt, N)-

t=1

1
T7-1

Ld(p, jir)* + d(u, fir)

We now show that the second term is Op(T~'/?) as well. We do this using
Theorem 3 in Wu and Shao (2004) with Y; = (X, Xi41) and g(Xy, Xyy1) =
d(XtJrl,’}/i(t(ng))Q — E[d(€t+1(7§t(¢))7f)/li(t(@()))z] Let 1% be the prOdUCt
metric on Q x Q, p((z1,72), (y1,92)) = /d(x1,y1)? +d(z2,y2) Let Y, =
(X¢, Xiq1) and Yy = (X4, Xyyq) be pairs in ©Q x Q such that p(Y,,Y;) < 6,
then

9(v) — (%)

~ i 2
_ ‘d(xtﬂ,vft(%))z —d(Xer 4 (0))

. 2

< ’d(XHl,Wft(sDo))Q - d<Xt+1, 7?(@0))
~ 2 ind % 2

+ ‘d<Xt+1,7,i(t(900)> - d<Xt+177§t(900)>

< Cd( X4, Xt—i—l) + Cd(%)ft(%), ’th(@o))
= Cd(Xy41, Xt—l—l) + Cpod(Xy, Xt)

Since p(Y;,Y;) < 4, we have that max{d(XtH,XtH),d(Xt,Xt)} < 4 and

hence [g(¥;) — g(¥)
stochastically Dini continuous. Theorem 3 in Wu and Shao (2004) gives
that the second term in the above equation converges to a Brownian motion
when scaled by v/T and hence is O,(T ~1/2) which completes the proof of
pointwise convergence.

< (4, showing that ¢ is Dini continuous and also
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3. Stochastic Lipschitz Continuity of L. Let ¢, ¢’ € (0,1), then
using that €2 is bounded and thus the squared distance is Lipschitz, we have
that

T-1

1 2 2
[Lr(9) = Lr(¢)| € 75— Z‘d(Xm,vﬁif(sO)) — d(Xer1, 7 (¢))
t=1

T-1

1

<(C— Xi Xe(

<Oy ;d(%@(%@)ﬁw(%@ )
T-1

1 .
=lp— 90/|Cﬁ > d(ir, X0).
t=1

Again using that €2 is bounded, the average is also bounded and we obtain
the desired result. O
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