arXiv:2405.03773vl [math.CT] 6 May 2024

LAX COMMA CATEGORIES: CARTESIAN CLOSEDNESS, EXTENSIVITY,
TOPOLOGICITY, AND DESCENT

MARIA MANUEL CLEMENTINO, FERNANDO LUCATELLI NUNES AND RUI PREZADO

ABSTRACT. We investigate the properties of lax comma categories over a base category X,
focusing on topologicity, extensivity, cartesian closedness, and descent. We establish that the
forgetful functor from Cat//X to Cat is topological if and only if X is large-complete. Moreover,
we provide conditions for Cat//X to be complete, cocomplete, extensive and cartesian closed.
We analyze descent in Cat//X and identify necessary conditions for effective descent morphisms.
Our findings contribute to the literature on lax comma categories and provide a foundation for
further research in 2-dimensional Janelidze’s Galois theory.

Introduction

The ubiquitous notion of comma category has a natural 2-dimensional lax notion, called lax
comma 2-category (see, for instance, [15, Ch. L,5]). The first two authors’ motivation for in-
vestigating this notion stems from the fundamental role it plays in our approach to studying
2-dimensional counterparts of Janelidze’s Galois theory [11], particularly regarding its interplay
with lax orthogonal factorization systems [9].

While various remarkable insights exist in the literature (see, for instance, [13, 16, 10, 34]),
we identified a gap in the systematic exploration of foundational properties crucial for advancing
our research in the direction suggested in [11].

The present paper builds upon our prior examination of lax comma ordered sets [10], extending
the scope to encompass lax comma categories Cat//X, where Cat denotes the category of small
categories and X represents a (possibly large) category. Our primary objective is to lay down
the groundwork for our ongoing work in Galois theory and descent theory initiated in [11]. In
pursuit of this aim, we concentrate on four fundamental aspects: cartesian closedness, extensivity,
topologicity, and descent.

In Section 2, we start by giving conditions under which the category Cat//X is cartesian
closed, extensive and (co)complete, showing that the properties of the base category X play a
crucial role in determining the properties of Cat//X. In this direction, we also establish that, if
X is small, the forgetful functor Cat//X — Cat is topological if and only if X is complete (which
is equivalent to say that X is a complete lattice).

The study and characterization of effective descent morphisms have a rich and intricate his-
tory. The work of Reiterman-Tholen [38] in the realm of topological spaces, reformulated by
Clementino-Hofmann [5], exemplifies the depth and complexity of this classification problem.
Several notable contributions have significantly advanced our understanding of effective descent
morphisms in categories of categorical structures. Notably, the study of effective descent mor-
phisms in the categories of internal categories [22], the investigation into categories of enriched
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categories (see, for instance, [7], [23, Theorem 9.11] and [35]), and the study of effective descent
morphisms in categories of generalized multicategories (see, for instance, [6, 36, 37]) have each
imparted pivotal insights. In Section 3, we initiate our investigation into effective descent mor-
phisms in Cat//X. In this direction, we show that the forgetful functor Cat//X — Cat preserves
effective descent morphisms. Despite the seemingly basic nature of Cat//X, we unveil that the
full characterization of effective descent morphisms in this category remains an open challenge.
This work serves as the inception of our exploration into this descent aspect of Cat//X.

Our investigation on basic categorical properties of Cat//X presented herein sheds light on
the general properties of lax comma categories and lays the foundation for our future work in gen-
eralized aspects of lax comma objects in 2-categories, particularly in the context of 2-dimensional
Janelidze-Galois theory. In Section 4, we give some further comments and point to future work.

This paper serves as a formal exposition of our findings, contributing to the basic literature
on lax comma categories and lax comma 2-categories in general.
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1. Preliminaries

We denote by Cat the 2-category of small categories, functors and natural transformations. In
this section, we recall the explicit definition of lax comma categories Cat//X. For additional
general fundamental aspects, we recommend consulting [15, I,5] and [11].

1.1. DEFINITION. Given a (possibly large) category X, we denote by Cat//X the category defined
by the following.

— The objects are pairs (W, a) in which W is a small category and a : W — X is a functor.

— A morphism in Cat//X between objects (W, a) and (Y,b) is a pair
w

L .y
f é
WHY7 a b
X

in which f: W — X is a functor and ~ is a natural transformation.

If (f,v): (W,a) = (Y,b) and (g, x) : (Y,b) — (Z, c) are morphisms of Cat//X, the compo-
sition is defined by (g o f, (x *idy) - 7), that is to say, the composition of the morphisms g
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and f with the pasting
w—*! .y .z
a b c
l
X

of the natural transformations y and ~. Finally, with the definitions above, the identity on
the object (W, a) is the morphism (idy, id,).

Herein, the category Cat//X is called the laz comma category over X.

A morphism (f,~) in Cat//X is called strict if 7 is the identity. It should be noted that the
comma category Cat/X is the subcategory of Cat//X consisting of the same objects but only the
strict morphisms.

While the category Cat//X can be endowed with a natural two-dimensional structure, our
current investigation primarily centers on its foundational one-categorical structure. We briefly
touch upon the two-dimensional aspects in Section 4. For the reader interested in two-dimensional
features, we refer to [11, 33]. Further investigation of two-dimensional aspects is reserved for future
research endeavors.

1.2. LAX COMMA CATEGORIES AS TOTAL SPACES. We recall that lax comma categories are
fibred over Cat. This fibred structure over Cat is pivotal as it enables us to derive several es-
sential properties and insights concerning limits, colimits, extensivity, topologicity, among other
properties. We refer to [14], [20, A1.1.7 and B1.3.1], [31] and [30, Section 6] for basic aspects on
fibrations and Grothendieck constructions.

Given a (possibly large) category X, the forgetful functor defined in (1.2.1) is a fibration.

U:Cat//X — Cat, (W,a)—W,  (f,7)— F. (1.2.1)

Denoting by Cat[—, X] : Cat®® — CAT the functor that takes every small category W to the
category Cat [W, X] of functors and natural transformations, we have that

> Cat[—, X]
zl >Cat
Cat//X v

commutes, where we denote by Z Cat [—, X] the Grothendieck construction of the 2-functor
Cat [—, X], and U is the associated fibration (forgetful functor).

1.3. ADJOINTS. Clearly, if X has an initial object 0, then (1.2.1) has a left adjoint; namely
L : Cat — Cat//X, W 0, (f:W=Y)—= (f1) (1.3.1)

where 0 denotes the functor constantly equal to the initial object, and ¢ : 0 — Qo f is the only
natural transformation. Dually, (1.2.1) has a right adjoint if X has a terminal object.
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2. Basic properties

In this section, we study cartesian closedness, extensivity and topologicity of lax comma cate-
gories. As a foundational step in our study, we also provide an explicit construction of pullbacks,
equalizers and coequalizers in lax comma categories.

A fundamental underpinning for our investigation of limits and colimits in lax comma cate-
gories lies in the pivotal observation that the forgetful functor U : Cat//X — Cat is a fibration.
For a more nuanced understanding of limits and colimits in the context of fibred categories, we
recommend consulting [14], [30, Section 6], and [31].

2.1. CARTESIAN CLOSEDNESS. We start by studying the cartesian structure of the category
Cat//X. We note that, whenever X has products, for each small category W and any functor
g: W =Y, Cat[W, X] has products, and the change-of-base functors Cat [g, X| preserve products.

Since ) Cat[—, X] = Cat//X, by general results on products of fibred categories, the obser-
vation above allows us to conclude Propositions 2.2 and 2.3 (see, for instance, [14, 31] and [30,
Section 6] for further details).

2.2. PROPOSITION. If X has a terminal object, then so does Cat//X.
More precisely, the terminal object of Cat//X is given by (1,1) where 1 is the terminal cate-
gory, and 1 denotes the functor 1:1 — X whose image is the terminal object in X .

2.3. PROPOSITION. If X has binary products then so does Cat//X .

More precisely, if (W,a),(Y,b) are objects of Cat//X, then the object (W x Y,axb), where
axb(w,y) = a(w) x by), is the product (W, a) x (Y,b) in Cat//X.

Furthermore, if X has products, so does Cat//X. More explicitly, if (W;, a;),c, is a family of

objects in Cat//X,
T 0¥ = (sz,a) ,

i€l i€l
where a (;) e = Haz ().
€L

Being a natural generalization of the setting of [10], the study of exponentials fits the setting
of [31]. However, we stick to an explicit presentation of the exponentials. More precisely, to
streamline the computation of exponentials in Cat// X, we employ the concept of ends, as outlined
in [21, 3.10] and recalled below.

Assuming that X is cartesian closed and z,y are objects of X, we denote by

Pe T XYy—x
the projection, and by = = y the exponential; that is to say,
r=—: X=X

is the functor right adjoint to z x — : X — X.
It is worth noting that a complete category inherently possesses all (Set-enriched/ordinary)
ends. Specifically, for any small category W and any functor

T:WPxW = X,
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the end / T = / T(w,w) is given by the equalizer of the following diagram:
w weWw

[ 7w I I Ty

weobj(W) 1 (w,y)€obj(W x W) heW (w,y)

to

where, for the component corresponding to (w,y,h) € obj (W x W) x W(w,y), we have that t,
and ; are respectively induced by T'(w, h) - Prw,w) and T'(h,y) - Prey.y)-

2.4. THEOREM. Let X be a cartesian closed category. We assume that (W, a), (Y,b) are objects in
Cat//X such that (2.4.1) exists in X for any functor h : W — Y. In this setting, the exponential
(W,a) = (Y,b) in Cat//X ezists and is given by (Cat[W,Y],b").

bi(h): = /EW (a(w) = b- h(w)) (2.4.1)

Consequently, if X is a complete cartesian closed category, so is Cat//X.
PROOF. Indeed, we have that:
Cat//X ((W,a) x (Z,c),(Y,b)) = Cat//X (W X Z,axc),(Y,)))

o [T CatW x 2, X](axeb- f)

feCat(WxZ,Y)

11 / oy X ) x 21,05, 2)

fECat(WxZ,Y)

11 / X (=) aw) = b (w.2)

fECat(WXZ,Y)

n /., ( / (ot = s7)0))

feCat(Z,Cat[W,Y])

11 / i (1))

feCat(Z,Cat[W,Y))

[T catlz x] (c(z), b (f (z)))

feCat(Z,Cat[W,Y])
Cat//X ((Z,c), (Cat[W,Y],b%))

1%

I

I

1%

I

I

]
2.5. PULLBACKS. We assume that (2.5.1) is a pullback in Cat.
p : w
h i (2.5.1)
A Y

Since the change-of-base functors of the indexed category Cat[—, X] preserve limits (and, in
particular, pullbacks), we have that:
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2.6. THEOREM. If X is a category with pullbacks, then Cat//X has pullbacks. Explicitly, (2.6.2)
is a pullback in Cat//X provided that (2.5.1) is a pullback in Cat and (2.6.1) is a pullback for any
object t in P.

d(t) i aoj(t) (P,d) —2— (W, a)
(h€) (£7) (2.6.1)  (h0) ) (2.6.2)
coj(t)—=bo(fo)(t) =bo(goh) () (Z,6) ———=(V,})

2.7. COPRODUCTS AND EXTENSIVITY. Let X be a category with an initial object 0. For any
small category W, the fibre Cat [IW, X] has an initial object 0 : W — X given by the functor
constantly equal to 0. Moreover, clearly, the indexed category

Cat[—, X] : Cat®® — CAT (2.7.1)
is (infinitary) extensive in the sense of [30, Section 6.6]; namely, we mean that Cat [—, X] preserves
products of Cat®®, and Cat has coproducts. Therefore, by [30, Corollary 35|, we have:

2.8. PROPOSITION. If X is a category with an initial object 0, then Cat//X has coproducts.
Ezplicitly, the category Cat//X has an initial object defined by (0,0: 0 — X).
Furthermore, if (Wi, a;)ier s a family of objects in Cat//X, then

H Wl,al = <H Wz; a; ZeL)

i€l i€L

where [a;],c; HW — X is the induced functor.

€L

Since Cat is (infinitary) extensive, we can also conclude that:
2.9. THEOREM. If X is a category with an initial object O, then Cat//X is (infinitary) extensive.
PROOF. The result follows from an infinitary version of the argument given in [30, Theorem 41].m

2.10. COEQUALIZERS. To study the coequalizers of Cat//X, we start by observing that (1.2.1)
is a bifibration provided that X is cocomplete. More conveniently put in our context, this means
that:

Cat[f, X] : Cat[Y, X| — Cat[W, X] (2.10.1)

has a left adjoint for any functor f : W — Y. More precisely, assuming that X is cocomplete,
Cat[f, X]| has a left adjoint given by the pointwise left Kan extension

lans : Cat [V, X] — Cat[Y, X]. (2.10.2)

We refer the reader to [12, 21, 23] for pointwise Kan extensions. With this observation in mind,
we get:
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2.11. THEOREM. If X is cocomplete, so is Cat//X.
Ezplicitly, we have that (2.11.4) is a coequalizer in Cat//X provided that:
~ (2.11.3) s the coequalizer in Cat;

— (2.11.1) s the coequalizer of the parallel morphisms (2.11.2) in Cat[C, X], where each un-
labeled arrow in (2.11.2) is induced by the appropriate counit, and ©' is the mate of ¢ w.r.t
the adjunction lan; 4 Cat[j, X].

lan;,a —22" lan,, (b o g) — lan,b
t an;,a an; o al;
lan;sa = lang,a langb f~d  (211.1) 9 19209 77 (2.11.2)
N lan;ra ETTY lan;s(bo f) —=lan;b
J
(fs7)
f T w21
T (W, a) Y,b) — C,d 2.11.4
9,X

g

PRrROOF. The coproducts are given by Proposition 2.8.
As for the coequalizers, the direct verification is straightforward, and the result follows from
general results on the total categories of bifibrations (see [14, 31]). "

2.12. TorpoLOGICITY. In order to examine the topologicity of the functor U : Cat//X — Cat,
we fully rely on the characterization of [17, Theorem 5.9.1]. In other words, U : Cat//X — Cat
is topological if, and only if, U is a bifibration whose fibres are large-complete.

2.13. THEOREM. U : Cat//X — Cat is topological if, and only if, X is large-complete.

PRroOF. If X is large-complete, then so is every fibre Cat(A, X) of U. Reciprocally, if U is
topological, then the fiber Cat(1, X) = X is large-complete. m

2.14. COROLLARY. Let X be a small category. U : Cat//X — Cat is topological if, and only if,
X 1s a complete lattice.

3. Effective descent morphisms

The study of effective descent morphisms, exhibiting a pivotal role in Grothendieck descent theory,
has far-reaching implications across various subjects (see, for instance, [2, 3, 4]). Beyond their
instrumental role, effective descent morphisms stand out as a fascinating subject on their own
right, representing a distinctive subclass of stable regular epimorphisms. By definition, they
are morphisms that show how bundles/morphisms over their codomain can be characterized as
bundles over their domain endowed with an algebraic structure. We refer the reader to [18, 19,
23, 26| for further aspects of effective descent morphisms.

We recall that, explicitly, a morphism ¢ : v — v in a category X with pullbacks along ¢ is of
effective descent if the change-of-base functor

¢ X/v— X/u (3.0.1)
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is monadic. Moreover, we are usually also interested in other cases, even if ¢* is not monadic.
More precisely, if the Eilenberg-Moore comparison functor is fully faithful (respectively, faithful),
q is said to be of descent (respectively, almost descent). In this section, we embark on the study
of effective descent morphisms in the lax comma category Cat//X.

3.1. FUNDAMENTALS. Before delving into our study, we shortly recall the basic technique to
study (effective) descent morphisms in a category. We refer the reader to [23, Section 1] for a
further overview.

If ¢ is a morphism of a category X with pullbacks, one can study if ¢ is effective descent by
investigating the monadicity of ¢* via Beck’s monadicity theorem (see, for instance, [32, Chap-
ter VI], [24, Corollary 1.2], [27], and [26]). This proves to be quite fruitful in some special
cases: for instance, one can conclude that, in locally cartesian closed categories, effective descent
morphisms are the same as the stable regular epimorphisms.

Beyond Beck’s monadicity theorem, most general results we have are about reflection of prop-
erties by functors. More precisely, pullback-preserving fully faithful functors do not generally
reflect all effective descent morphisms, but provide us with the following classical result (see, for
instance, [19, 2.6] and [23, Theorem 1.3]).

3.2. THEOREM. Let V : X — N be a fully faithful pullback-preserving functor between categories
with pullbacks. We assume that V(q : e — b) is an effective descent morphism. The morphism q
is of effective descent in X if and only if it satisfies the following property: whenever (3.2.1) is a
pullback in N, there is an object x in X such that V(x) = n.

V(y) n
| | (3.2.1)
V(e) V(b)

V(q)

The result above is one of the reasons why the main technique to study (effective) descent
morphisms in a category X is about fully embedding X into a category N whose descent behaviour
we know about. We refer the reader to [23, Section 1] for further observations about functors
reflecting descent properties of morphisms.

3.3. PRESERVATION OF EFFECTIVE DESCENT MORPHISMS. Although the main classical results
in the study of effective descent morphisms, such as Theorem 3.2, focus on understanding whether
they are reflected by fully faithful, pullback preserving functors, our main result, Theorem 3.7, is
about preservation of effective descent morphisms.
Throughout this subsection, we assume that X has a strict initial object 0. We start by
considering the left adjoint
L:Cat — Cat//X (3.3.1)

to the forgetful functor U : Cat//X — Cat, defined in 1.3. That is to say:

3.4. LEMMA. L s fully faithful and preserves limits of non-empty diagrams. In particular, it
preserves pullbacks and non-empty products.
L preserves the terminal object if, and only if, X is equivalent to the terminal category.
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PROOF. We have UL(C) = C for any small category C, hence L is fully faithful.

Since the initial object in X is strict by hypothesis, we get that the limit of any non-empty
diagram involving the initial object is isomorphic to the initial object. Therefore, it follows by the
constructions of pullbacks and non-empty products in Cat//X (see Theorem 2.5.1 and Proposition
2.3) that L preserves pullbacks and non-empty products.

Moreover, since L (1) = (1,0), we conclude by Proposition 2.2 that L (1) is the terminal object
if and only if 0 = 1 in X.

Since X has a strict initial object by hypothesis, then having zero object is equivalent to
having X ~ 1. [

3.5. THEOREM. The functor L reflects effective descent morphisms.

PROOF. Given any functor p : E — B in Cat, we have that, if (3.5.1) is a pullback in Cat//X,
then d = 0 since 0 is strict and v : d = 0.

L(2) = (2,0) (W,d)
(£ (3.5.1)
L(E) = (B,0) ———— L(B) = (B,0)

This proves that, by Theorem 3.2, p is of effective descent provided that L(p) is of effective
descent. ]

Our first result on the preservation of effective descent morphisms follows from the well-known
result that effective descent morphisms are stable under pullback, that is, if p is of effective descent,
then so is ¢*(p) in any category X.

3.6. LEMMA. LU(f,~) is of effective descent if (f,7) is of effective descent.

PROOF. Consider (idy, ) : (Y,0) — (Y, b) where ¢, is the unique 2-cell ¢, : 0 = b.
We have that LU(f,~) = (idy, )" (f,v) and, hence, whenever (f,~) is of effective descent so
is the pullback LU(f,~). "

As a consequence, we get:

3.7. THEOREM. The functor U : Cat//X — Cat preserves effective descent morphisms provided
that X has pullbacks and a strict initial object.

PROOF. If (f,) is of effective descent in Cat//X, then so is LU(f,7) by Lemma 3.6. Finally, we
can conclude that U(f,~) = f is an effective descent morphism by Theorem 3.5. ]

4. Further comments

We have pointed out that it is natural to consider Cat//X as a 2-category. We refer the reader
to [11, 33] and future work for more details. We recall the 2-dimensional structure of Cat//X
below.
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4.1. DEFINITION. Given a small category X, we consider Cat//X as a 2-category with the 2-cells
given by the following.

— A 2-cell between morphisms (f,~) and (f’,7) is given by a 2-cell ¢ : f = f’ such that the

equation
fl
/\ W f, Y
w g Ny ,
Af:
f -,
" v g b
X
X
holds.

The 2-category Cat//X is called the laz comma 2-category of Cat over X, while we call the
underlying category the lax comma category Cat//X.

4.2. MONADICITY AND LAX MONADICITY. It is well known that the comma category Cat/X is
isomorphic to the category of coalgebras and (strict) morphisms of the (2-)comonad Tx whose
underlying (2-)endofunctor is given by W +— W x X. In particular, this means that Cat/X is
cocomplete and the forgetful functor Cat/X — Cat is 2-comonadic.

Cat//X fits into this picture as the 2-category of strict T'x-coalgebras and lax T'x-morphisms
(see, for instance, [25] for basic definitions). This observation shows that it would be interesting
to understand better the general interest in studying descent in categories of (strict) algebras and
lax morphisms between them.

4.3. FREE FIBRATIONS. With the definition above, we have that Cat//X can be naturally em-
bedded in CAT [X°P, Cat], as CAT//X is equivalent to the 2-category of free fibrations over X.
This embedding preserves pullbacks and, hence, it can be used to further get results on effective
descent morphisms in Cat//X. However, a strategy to get a characterization would probably rely
on a generalization of the techniques presented in [8].

4.4. PRESERVATION OF EFFECTIVE DESCENT MORPHISMS. For basic definitions involved in the
comment below, we refer the reader to [23, Section 1]. As pointed out in Section 3, on one hand, in
the study of descent, one usually relies on results about the reflection of properties. For instance,
besides Theorem 3.2, we recall that:

— @ reflects almost descent morphisms if it is a pullback-preserving faithful functor;
— @ reflects descent morphisms if it is a pullback-preserving fully faithful functor.

On the other hand, there aren’t many tools in the literature about the preservation of effective
descent morphisms. In this sense, Theorem 3.7 gives rise to the question of whether one can find
a general setting or framework for which the preservation of effective descent morphisms holds.
We leave this investigation to future work.
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4.5. EFFECTIVE DESCENT MORPHISMS W.R.T. OTHER INDEXED CATEGORIES. We left the
problem of fully characterizing effective descent morphisms (w.r.t. the basic fibration) in Cat//X
open.

We present, herein, another natural problem on effective descent morphisms arising from our
considerations; namely, for each 2-category A and object W of A, we have the indexed category

A(—, W) : A% — CAT,

where Ay is the underlying category, and A (X, W) is the category of morphisms X — W in A.
In particular, considering Cat//X as a 2-dimensional category, we have the indexed category

Cat//X (—,(W,a)) : (Cat//X)® — CAT

for each (W, a) in Cat//X. More relevantly, we can extrapolate and consider the indexed category

§=Cat//X (—,(X,idy)) : (Cat//X)** — CAT.

Akin [39, 28], it is natural to consider the problem of characterizing effective §-descent mor-
phisms. Following the insights of [28], we understand that such a study will rely on understanding
lax epimorphisms in Cat//X (see, for instance, [1, 29, 28]). We leave this study with further 2-
dimensional considerations for future work.

References

[1] J. Addamek, R. El Bashir, M. Sobral, and J. Velebil. On functors which are lax epimorphisms.
Theory Appl. Categ., 8:509-521, 2001.

[2] F. Borceux and G. Janelidze. Galois theories, volume 72 of Camb. Stud. Adv. Math. Cam-
bridge: Cambridge University Press, 2001.

[3] R. Brown and G. Janelidze. Van Kampen theorems for categories of covering morphisms in
lextensive categories. J. Pure Appl. Algebra, 119(3):255-263, 1997.

[4] R. Brown and G. Janelidze. Galois theory and a new homotopy double groupoid of a map
of spaces. Appl. Categ. Structures, 12(1):63-80, 2004.

[5] M. M. Clementino and D. Hofmann. Triquotient maps via ultrafilter convergence. Proc.
Amer. Math. Soc., 130(11):3423-3431, 2002.

[6] M. M. Clementino and D. Hofmann. Effective descent morphisms in categories of lax algebras.
Appl. Categ. Structures, 12(5-6):413-425, 2004.

[7] M. M. Clementino and D. Hofmann. The rise and fall of V-functors. Fuzzy Sets and Systems,
321:29-49, 2017.

[8] M. M. Clementino and G. Janelidze. Effective descent morphisms of filtered preorders, 2023.
arXiv:2312.14315.

9] M. M. Clementino and I. Lépez Franco. Lax orthogonal factorisation systems. Adv. Math.,
302:458-528, 2016.



[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[20]

[21]

[22]

23]

[24]
[25]

[20]

12 MARIA MANUEL CLEMENTINO, FERNANDO LUCATELLI NUNES AND RUI PREZADO

M. M. Clementino and F. Lucatelli Nunes. Lax comma categories of ordered sets. Quaest.
Math., 46:145-159, 2023.

M. M. Clementino and F. Lucatelli Nunes. Lax comma 2-categories and admissible 2-functors.
Theory Appl. Categ., 40:No. 6, 180-226, 2024.

E. J. Dubuc. Kan extensions in enriched category theory, volume 145 of Lect. Notes Math.
Springer, Cham, 1970.

F. Foltz. Réalisations dominées. C. R. Math. Acad. Sci. Paris Sér A-B, 271:A221-A224,
1970.

J. W. Gray. Fibred and cofibred categories. Proc. Conf. Categor. Algebra, La Jolla 1965,
21-83 (1966)., 1966.

J. W. Gray. Formal category theory: Adjointness for 2-categories, volume 391 of Lect. Notes
Math. Springer, Cham, 1974.

R. Guitart. Sur le foncteur diagramme. Cah. Topol. Géom. Différ. Catég., 14:181-182, 1973.

D. Hofmann, G. J. Seal, and W. Tholen, editors. Monoidal topology. A categorical approach
to order, metric, and topology, volume 153 of Encycl. Math. Appl. Cambridge: Cambridge
University Press, 2014.

G. Janelidze, M. Sobral, and W. Tholen. Beyond Barr exactness: Effective descent mor-
phisms. In Categorical foundations. Special topics in order, topology, algebra, and sheaf
theory, pages 359-405. Cambridge: Cambridge University Press, 2004.

G. Janelidze and W. Tholen. Facets of descent. I. Appl. Categ. Structures, 2(3):245-281,
1994.

P. T. Johnstone. Sketches of an elephant. A topos theory compendium. I, volume 43 of Oxf.
Logic Guides. Oxford: Clarendon Press, 2002.

G. M. Kelly. Basic concepts of enriched category theory, volume 64 of Lond. Math. Soc. Lect.
Note Ser. Cambridge University Press, Cambridge. London Mathematical Society, London,
1982.

I. Le Creurer. Descent of internal categories. PhD thesis, Université catholique de Louvain,
Louvain-la-Neuve, 1999.

F. Lucatelli Nunes. Pseudo-Kan extensions and descent theory. Theory Appl. Categ., 33:No.
15, 390444, 2018.

F. Lucatelli Nunes. On biadjoint triangles. Theory Appl. Categ., 31:217-256, 2016.

F. Lucatelli Nunes. On lifting of biadjoints and lax algebras. Categ. Gen. Algebr. Struct.
Appl., 9(1):29-58, 2018.

F. Lucatelli Nunes. Descent data and absolute Kan extensions. Theory Appl. Categ., 37:530—
561, 2021.



LAX COMMA CATEGORIES: CARTESIAN CLOSEDNESS, EXTENSIVITY, TOPOLOGICITY,

[27]

[28]

[34]

[35]

[36]

[37]

[38]

[39]

AND DESCENT 13

F. Lucatelli Nunes. Semantic factorization and descent. Appl. Categ. Structures, 30(6):1393—
1433, 2022.

F. Lucatelli Nunes, R. Prezado, and L. Sousa. Cauchy completeness, lax epimorphisms and
effective descent for split fibrations. Bull. Belg. Math. Soc. Simon Stevin, 30(1):130-139,
2023.

F. Lucatelli Nunes and L. Sousa. On lax epimorphisms and the associated factorization. J.
Pure Appl. Algebra, 226(12):27, 2022. 1d/No 107126.

F. Lucatelli Nunes and M. Vakar. CHAD for expressive total languages. Math. Structures
Comput. Sci., 33(4-5):311-426, 2023.

F. Lucatelli Nunes and M. Vakar. X-tractible coproducts and cartesian closure of
Grothendieck constructions. In preparation, 2024.

S. Mac Lane. Categories for the working mathematician, volume 5 of Grad. Texts Math.
Springer, Cham, 1971.

P. Perrone and W. Tholen. Kan extensions are partial colimits. Appl. Categ. Structures,
30(4):685-753, 2022.

G. Peschke and W. Tholen. Diagrams, fibrations and the decompositions of colimits. arXiv:
2006.10890, 2020.

R. Prezado. On effective descent V-functors and familial descent morphisms. J. Pure Appl.
Algebra, 228(5):21, 2024. Id/No 107597.

R. Prezado and F. Lucatelli Nunes. Descent for internal multicategory functors. Appl. Categ.
Structures, 31(1):18, 2023.

R. Prezado and F. Lucatelli Nunes. Generalized multicategories: change-of-base, embedding,
and descent, 2023. arXiv:2309.08084.

J. Reiterman and W. Tholen. Effective descent maps of topological spaces. Topology Appl.,
57(1):53-69, 1994.

M. Sobral. Descent for discrete (co)fibrations. Appl. Categ. Structures, 12(5-6):527-535,
2004.

(1,2,3): University of Coimbra, CMUC, Department of Mathematics, 3000-143 Coimbra, Portugal

(2):

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Email: mmc@mat.uc.pt, f.lucatellinunes@uu.nl, and ruiprezado@gmail.com



	Introduction
	Preliminaries
	Basic properties
	Effective descent morphisms
	Further comments

