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ABSTRACT

We developed a deep learning classifier of rectal cancer re-
sponse (tumor vs. no-tumor) to total neoadjuvant treatment
(TNT) from endoscopic images acquired before, during, and
following TNT. We further evaluated the network’s ability in
a near out-of-distribution (OOD) problem to identify local re-
growth (LR) from follow-up endoscopy images acquired sev-
eral months to years after completing TNT. We addressed en-
doscopic image variability by using optimal mass transport-
based image harmonization. We evaluated multiple training
regularization schemes to study the ResNet-50 network’s in-
distribution and near-OOD generalization ability. Test time
augmentation resulted in the most considerable accuracy im-
provement. Image harmonization resulted in slight accuracy
improvement for the near-OOD cases. Our results suggest
that off-the-shelf deep learning classifiers can detect rectal
cancer from endoscopic images at various stages of therapy
for surveillance.

Index Terms— Rectal cancer, endoscopy images, image
harmonization, optimal mass transport.

1. INTRODUCTION AND RELATED WORKS

Endoscopy images acquired using flexible sigmoidoscopy is
the standard-of-care technique for detecting cancer treatment
response and early local regrowth in patients with locally ad-
vanced rectal cancer (LARC). However, clinical response as-
sessment is highly variable [1] due to large variations in can-
cer appearance and varying degrees of response. Hence, we
developed a deep learning-based approach to detect LARC
response to total neoadjuvant therapy (TNT) at different time
points, including pre-treatment (pre-Tx), during, and post-
TNT. We also evaluated the zero-shot generalization when
applying the network to detect new local regrowth (LR) oc-
curring a few months to years following TNT. LR appears
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different from pre-treatment tumors, constituting near out-of-
distribution (OOD) data for classification.

Endoscopic images depict wide variations [2] due to
scope positioning, occlusions, specular reflections, intensity
saturation, presence of blood and stool, as well as telangiec-
tasia occurring in response to radiation [3], thus presenting
a challenge for achieving reliably accurate classification.
Predominant prior methods focused on detecting and clas-
sifying precancerous lesions such as polyps in the lower
gastrointestinal (GI) [4, 5] and peptic ulcers in the upper GI
tract [6], as well as polyp segmentation [7, 8] through two
broad approaches. The first class of methods employ a sepa-
rate classifier to detect and mask out regions that reduce clas-
sification accuracy. The second approach used data-hungry
transformer networks to extract more information from im-
ages [7–9]. Both approaches used several no-tumor images
from endoscopy videos for analysis for improved robustness
of artifacts.

Endoscopy videos are generally not stored as part of the
standard of care. Videos have a higher proportion of no-tumor
images, further exacerbating the class imbalance between no-
tumor and tumor images, and introducing a different chal-
lenge. Finally, malignant cancers exhibit considerable het-
erogeneity and undergo appearance changes before and after
treatment and at recurrence. Constraints of limited examples
and variability of cancers motivated our approach that com-
bines a non-deep-learning optimal transport (OT)-based har-
monization [10] followed by off-the-shelf pretrained classi-
fiers that are fine-tuned to the specific task. Prior work with
retinal images has also shown that reducing imaging varia-
tions through harmonization [11] can improve accuracy.

Prior works have also addressed the issue of limited
training examples using weakly supervised training [4], as
well as synthesizing examples using generative adversarial
networks [5], while using off-the-shelf deep learning archi-
tectures. An alternative approach to enhance generalization
ability is through training regularization that includes data
augmentation [12] and learning rate scheduling [13], which
have been shown to improve performance with RGB im-
ages. We chose this latter training regularization approach
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Fig. 1. Our endoscopy image analysis pipeline for automated
detection of rectal cancer and response at various stages of
cancer treatment. TNT: Total neoadjuvant therapy, LR: Local
regrowth, OOD: Out-of-distribution.

to enhance the generalization capability of our classifier. In
particular, we studied data augmentation (standard rotation,
translation, scaling), balanced sampling, test time augmenta-
tion, and learning rate scheduling.

Our key contributions are (i) deep learning-based classi-
fication of rectal cancer treatment response during and fol-
lowing TNT as ID and near-OOD generalization assessment
to detect new local regrowth at treatment follow-up from en-
doscopy images of patients with LARC and (ii) rigorous eval-
uation of the impact of training regularization and image in-
tensity harmonization using a non-deep learning-based ap-
proach on ID and near-OOD test data.

2. METHODOLOGY

Fig. 1 depicts an overview of our approach. Endoscopy im-
ages are harmonized using an OT-based approach [10]. Har-
monized images are input to a ResNet-50 [14] to generate the
binary classification (tumor vs. no-tumor).

2.1. Image Harmonization via Optimal Transport

We addressed the challenge of endoscopy image intensity
variations by employing a computationally efficient optimal
transport (OT) based color intensity transfer approach to har-
monize endoscopy images with respect to a selected reference
image. The reference image was selected as the one devoid
of tumor and free of artifacts (scope, light saturation) or other
objects (blood, water bubbles, stool).

Concretely, our approach used an entropic regularization-
based iterative convolution approach to approximate the 2-
Wasserstein distance calculation. The intensity histogram of
images was iteratively aligned with the reference histogram

(b) Near-OOD LR, Tumor(a) ID, Tumor

(d) Near-OOD LR, No-Tumor(c) ID, No-Tumor

Fig. 2. Example images demonstrating OT-based image har-
monization for four categories (original image → converted
image).

distribution (refer to [10] for detailed information on this pro-
cess). For color transfer, we converted the RGB images into
CIELAB color space and used the one-dimensional L (lumi-
nance) and two-dimensional ab (chrominance) as independent
channels for image harmonization.

2.2. Regularization schemes

We explored several regularization techniques to enhance the
performance of our final model:

• Balanced sampling (BSA) was performed during train-
ing to reduce the class imbalance between tumor and no-
tumor samples within the mini-batches. BSA helped miti-
gate the challenge posed by continuously observing a sin-
gle class through multiple mini-batch iterations.

• Gradual warm-up or learning rate scheduling (LRS)
was adopted by setting the learning rate to a small value
and gradually increasing it, as outlined in [13].

• Data augmentations (DA) consisted of random rotations
in 90◦ steps, random horizontal flips, and random ver-
tical flips, all of which were found to be effective for
colonoscopy video analysis [12]. We also used the origi-
nal images with none of the transformations above during
the mini-batch to further augment the instances.

• Test time augmentation (TTA) was applied by generat-
ing three 90◦ rotation copies of each test image, followed
by the generation of differently scaled versions for each
copy (scaling parameters: 0.5, 0.7, 1.0, obtained via grid
search). The final prediction was calculated by averaging
the predictions from the individual images to provide an
ensemble averaging that increased robustness to imaging
differences.



2.3. Architecture details

We used ResNet-50 [14] as our primary network architec-
ture and also evaluated on Wide Residual Network (Wide
ResNet) [15] for ablation purposes. We initialized both net-
works with pretrained weights from ImageNet [16] and then
fine-tuned them to generate binary classification (tumor vs
no-tumor) from the endoscopy images. We replaced the net-
works’ fully connected layer with a linear layer (2048 × 2)
for our classes. We trained multiple configurations using the
earlier mentioned regularizations and with and without OT
image harmonization.

2.4. Implementation Details

We harmonized all images to an expert-selected reference im-
age for our experiments. The images varied in size from 568
× 424 pixels to 1920 × 1080 pixels. For training and evalu-
ation, we resized all images to 224 × 224 pixels, as followed
in ImageNet. We normalized the images using the ImageNet
dataset mean and standard deviation, [0.485, 0.456, 0.406]
and [0.229, 0.224, 0.225], respectively. All networks were
trained for 50 epochs using a minibatch of 8, with a learning
rate of 2e−5, and the Adam optimizer with a linear weight
decay of 1e−4. When using LRS, we increased the learning
rate from 0 to 2e−5 within 10 epochs. We used Pytorch 1.13.1
with NVIDIA GPUs for all our experiments.

2.5. Datasets and metrics

We analyzed standard-of-care white light endoscopy images
acquired from patients diagnosed with LARC who underwent
total neoadjuvant therapy (TNT).
In-distribution (ID) dataset consisted of 2570 images (1329
with tumor and 1241 without visible tumor) acquired before
treatment (Pre-Tx), during, and post-TNT. Fewer no-tumor
examples resulted because we used only image snapshots in
patients with surgeon-assessed complete response post-TNT.
We trained all configurations using 1337 images (with 448
set aside for validation) and an ID test set of 785 images. En-
doscopy videos are not routinely stored in our institution and
are thus unavailable for analysis.
Near-OOD LR test data consisted of patients with LARC
who initially responded to TNT and then placed on a watch
and wait protocol, and followed every three months with
imaging till a maximum of 3 years or when they developed
LR. The dataset comprising 152 images (80 to LR and the
rest to no visible tumor) was made available only after model
training.
Metrics: Binary classifications were assessed by quantita-
tively evaluating key performance metrics, including accu-
racy, precision, and recall.
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Fig. 3. Classifier accuracies comparing ResNet regularization
variants and Wide ResNet, with and without IH.

3. RESULTS

Image harmonization Fig. 2 shows sample results of apply-
ing image harmonization using the OT method for both ID
and LR examples. Despite blood, scars, and reflection from
water bubbles, the OT method generated images with similar
intensity-based appearance. Processing the OT color harmo-
nization took 90 seconds to 120 seconds per image.
Classification performance on ID dataset without image
harmonization As shown in Table. 1 Wide ResNet trained
without image harmonization (IH) was more accurate than
it’s IH-trained counterpart. ResNet50 with IH showed a small
improvement in accuracy compared to the vanilla ResNet50.
Incorporating additional training regularizations led to in-
creased recall with ResNet50, even in the absence of IH.
These findings suggest that the application of IH does not
consistently enhance performance metrics on the ID data.
Impact of TTA TTA increased the accuracy of vanilla ResNet
(ID: 88.96% → 97.54%; LR: 74.56% → 78.95%) and the
ResNet trained with all the regularizations (ID: 91.04% →
96.64%; LR: 76.32% → 89.04%).
Classification performance on near-OOD (LR) dataset
Fig. 3 illustrates the impact of various training regularizations



Table 1. Classification metrics on the ID dataset with IH (Im-
age Harmonization), DA (Data Augmentation), BSA (Bal-
anced Sampler), and LRS (Learning Rate Scheduling). We
present the mean results from 3 runs with randomly initialized
seeds. All reported numbers include test-time augmentation.

Model Accuracy Precision Recall

ResNet-50 97.54 96.64 98.58
ResNet-50 + IH 98.05 98.00 98.16
ResNet-50 + BSA 97.28 95.44 99.41
ResNet-50 + BSA + DA 96.64 94.50 99.25
ResNet-50 + BSA + DA + LRS 94.65 90.80 99.67
ResNet-50 + BSA + DA + LRS + IH 93.12 88.87 99.16

Wide ResNet-50 98.60 99.07 98.15
Wide ResNet-50 + IH 94.27 97.95 90.62

Table 2. Intra/Inter-Cluster distances computed with t-SNE
clustered embeddings for near-OOD and ID data points in
ResNet trained with all the regularizations.

Cluster Distances ID Train ID Test near-OOD LR

Intra Tumor 63.21 ± 11.83 49.77 ± 11.06 46.19 ± 22.10
Intra No-Tumor 24.52 ± 10.54 24.67 ± 14.71 15.56 ± 10.13
Inter 58.14 42.33 37.81

and image harmonization on the near-OOD or LR test set.
Similar to the ID data, IH led to a larger reduction in the accu-
racy for the Wide ResNet. Conversely, the ResNet50 showed
similar accuracy with and without IH. There was a small
improvement in accuracy and recall when combining training
regularizations with IH for the ResNet50, indicating a slight
advantage when using IH. Balanced data sampling alone only
resulted in a minimal accuracy improvement. However, com-
bining balanced sampling with data augmentation resulted in
the best accuracy for the ResNet50 independent of IH.

Analysis of difficulty in classifying near-OOD LR images
Fig.4 and Fig. 5 show the results of t-stochastic network em-
bedding (t-SNE) [17] applied to ID and near-OOD or LR
test datasets. As shown, the tumor and no-tumor samples
are better separated when arising from the ID dataset com-
pared to the near-OOD dataset. Representative image exam-
ples demonstrate the challenge in classification because the
LR cases appear very similar to the no-tumor images. Ta-
ble. 2 shows quantitative results of separability of near-OOD
and ID cases computed as a distance of each sample with re-
spect to it’s cluster centroid for intra- and to other cluster’s
centroid for inter- distances. As shown, near-OOD samples
had a smaller distance compared to ID samples, demonstrat-
ing the challenge in classifying LR (or tumor regrowth) from
no tumor in the near-OOD images.

Test Tumor
Train TumorTrain No-Tumor

Test No-Tumor

t-SNE Embeddings

Fig. 4. t-SNE of ID (Train and Test) points, showing represen-
tative tumor and no-tumor images, with embeddings obtained
from the ResNet trained with all the regularizations.
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Fig. 5. t-SNE of ID Train and near-OOD LR data points,
showing representative tumor and no-tumor images, with em-
beddings obtained from the ResNet trained with all the regu-
larizations.

4. DISCUSSION AND CONCLUSION

We developed a deep learning classifier to distinguish tumor
vs. no-tumor in endoscopy images taken at various stages of
LARC treatment. Our analysis showed that test time augmen-
tation was most effective in improving accuracy for ID and
near-OOD datasets. Image harmonization slightly increased
ResNet accuracy but reduced the Wide ResNet’s accuracy in
near-OOD cases. Our paper is the first attempt to study how
training regularization impacts the generalization capability
of off-the-shelf deep learning classifiers in detecting malig-
nant rectal cancers at different treatment and follow-up stages.
Validation on larger multi-institutional cohorts, methods to
further enhance the quality of endoscopy images, and domain
generalization are future work.

5. COMPLIANCE WITH ETHICAL STANDARDS

This retrospective research study was conducted in line with
the principles of the Declaration of Helsinki. Approval was
granted by the Ethics Committee of Memorial Sloan Ketter-
ing Cancer Center.



6. ACKNOWLEDGEMENTS

This research was supported by Department of Surgery at
Memorial Sloan Kettering. We thank Maria Widmar, Iris H
Wei, Emmanouil P Pappou, Garrett M Nash, Martin R Weiser,
and Philip B Paty, along with Hannah Thompson, Hannah
Williams, Joshua Jesse Smith and Julio Garcia-Aguilar, for
their assistance in collecting endoscopic images.

7. REFERENCES

[1] S. Felder, S. Patil, E. Kennedy, and J. Garcia-Aguilar,
“Endoscopic feature and response reproducibility in tu-
mor assessment after neoadjuvant therapy for rectal ade-
nocarcinoma,” Ann Surg Oncol, vol. 28, no. 9, pp. 5205–
5223, 2021.

[2] S. Ali, M. Dmitrieva, N. Ghatwary, S. Bano, G. Po-
lat, A. Temizel, A. Krenzer, A. Hekalo, Y. B. Guo,
B. Matuszewski, M. Gridach, I. Voiculescu, V. Yo-
ganand, A. Chavan, A. Raj, N. T. Nguyen, D. Q. Tran,
L. D. Huynh, N. Boutry, S. Rezvy, H. Chen, Y. H.
Choi, A. Subramanian, V. Balasubramanian, X. W. Gao,
H. Hu, Y. Liao, D. Stoyanov, C. Daul, S. Realdon,
R. Cannizzaro, D. Lamarque, T. Tran-Nguyen, A. Bai-
ley, B. Braden, J. E. East, and J. Rittscher, “Deep learn-
ing for detection and segmentation of artefact and dis-
ease instances in gastrointestinal endoscopy,” Medical
Image Analysis, vol. 70, p. 102002, 2021.

[3] H. Thompson, J. Kim, R. Jimenez-Rodriguez, J. Garcia-
Aguilar, and H. Veeraraghavan, “Deep learning-based
model for identifying tumors in endoscopic images from
patients with locally advanced rectal cancer treated with
total neoadjuvant therapy,” Dis Colon Rectum, vol. 66,
no. 3, pp. 383–391, 2023.

[4] M. Yamada, Y. Saito, H. Imaoka, M. Saiko, S. Ya-
mada, H. Kondo, H. Takamaru, T. Sakamoto, J. Sese,
A. Kuchiba, T. Shibata, and R. Hamamoto, “Develop-
ment of a real-time endoscopic image diagnosis support
system using deep learning technology in colonoscopy,”
Sci Rep, no. 14465, 2019.

[5] M. Turan and F. Durmus, “UC-NfNet: Deep
learning-enabled assessment of ulcerative colitis from
colonoscopy images,” Med Image Anal, vol. 82, p.
102587, 2022.

[6] Z. Dong, J. Wang, Y. Li, Y. Deng, W. Zhou, X. Zeng,
D. Gong, J. Liu, J. Pan, R. Shang, Y. Xu, M. Xu,
L. Zhang, M. Zhang, X. Tao, Y. Zhu, H. Du, Z. Lu,
L. Yao, L. Wu, and H. Yu, “Explainable artificial intelli-
gence incorporated with domain knowledge diagnosing
early gastric neoplasms under white light endoscopy,”
NPJ Digit Med, vol. 6, no. 1, p. 64, 2023.

[7] D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and
L. Shao, “Pranet: Parallel reverse attention network for
polyp segmentation,” in Medical Image Computing and
Computer Assisted Intervention – MICCAI 2020, 2020,
pp. 263–273.

[8] B. Dong, W. Wang, D.-P. Fan, J. Li, H. Fu, and L. Shao,
“Polyp-pvt: Polyp segmentation with pyramid vision
transformers,” CAAI Artificial Intelligence Research,
vol. 2, p. 9150015, 2023.

[9] N. Duc, N. Oanh, N. Thuy, T. Triet, and V. Dinh,
“Colonformer: An efficient transformer based method
for colon polyp segmentation,” IEEE Access, vol. 10,
pp. 80 575–80 586, 2022.

[10] J. Solomon, F. de Goes, G. Peyré, M. Cuturi,
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