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Chiral superconductors are one of the predominant quantum electronic states of matter where
topology, symmetry, and Fermiology intertwine. This is pushed to a new limit by further invoking
the coupling between spin and charge degrees of freedom, which fundamentally affects the prin-
cipal nature of the Cooper pair wave function. We investigate the onset of superconductivity in
the Rashba-Hubbard model on the triangular lattice, which is symmetry-classified by the associ-
ated irreducible representations (irrep) of the hexagonal point group. From an instability analysis
by means of the truncated-unity functional renormalization group (TU-FRG) we find the E2 irrep
to dominate a large fraction of phase space and to lead up to an energetically preferred gapped,
chiral superconducting state. The topological phase space classification associated with the anoma-
lous propagators obtained from TU-FRG reveals a fragmentation of the E2 domain into different
topological sectors with vastly differing Chern numbers. It hints at a potentially applicable high sen-
sitivity and tunability of chiral superconductors with respect to topological edge modes and phase
transitions.

Introduction.—Topological superconductors (TSCs)
are amongst the most desired states of topological mat-
ter, as their ability to host Majorana zero modes is be-
lieved to be key for future implementation of topological
quantum computing platforms. This immense techno-
logical potential is hindered by the lack of cfundamental
understanding of TSCs: (i) Theoreticians are still unable
to provide recipes or guidance for crystal synthesis or to
predict materials hosting TSC phases. (ii) Experimen-
tal discoveries of TSC candidate materials often come as
a surprise; and often enough after some initial excite-
ment, subsequent studies suggest that trivial supercon-
ducting states might be a more likely explanation. To
remedy the former, it is essential that the many-body
techniques which predict unconventional superconduct-
ing ground states are also capable of shedding light on
the topological features of these many-body instabilities.

We are particularly interested in topological supercon-
ductivity in the two-dimensional triangular lattice as the
simplest case with hexagonal symmetry. Here we can also
draw on extensive and noteworthy literature on uncon-
ventional superconductivity in the triangular lattice Hub-
bard model, motivated by the doped Mott insulator κ-
(BEDT-TTF)2Cu2(CN)3

1 as well as water-intercalated
sodium cobaltates NaxCoO2·yH2O

2–5. Another impor-
tant class of materials are the

√
3 ×

√
3 reconstructed

adatom lattices on semiconductor substrates such as
Sn/Si(111), Pb/Si(111) and Sn/SiC(0001). These are
believed to be good realizations of one-orbital Hubbard
models, and their observed ground states range from spin
and charge density waves to chiral superconductivity 6–16.
Most recently, the advent of twisted two-dimensional ma-
terials led to a renewed interest in unconventional super-
conductivity on the triangular lattice 17–20.

Inversion-symmetry breaking is ubiquitous in materi-
als, e.g. due to crystalline absence of an inversion cen-

ter, as in so-called non-centrosymmetric materials, or
heavy atom superlattices, heterostructures and surface
systems. Nevertheless, the effect of inversion symme-
try breaking, usually manifested as Rashba spin-orbit
coupling (RSOC), on the correlated and superconduct-
ing phase diagrams of such materials and corresponding
models remains relatively unexplored.

There have been a few studies on the paradigmatic
square lattice case 13,21,22. As we will see later in the
group-theoretical discussion, the possible mixed states in
the triangular lattice case are significantly more inter-
esting. Notable exceptions where spin-orbit effects were
considered in interacting triangular lattice systems are
works on

√
3 ×

√
3-Pb/Si(111) 7,11,14,23, on

√
3 ×

√
3-

Sn/SiC(0001) 6 as well as on twisted bilayer systems
WSe2

24 and PtSe2
25.

In this Letter, we close this gap in the literature by
presenting a paradigmatic case study for the triangular-
lattice Rashba–Hubbard model (TLRHM). Despite be-
ing most basic model, it turns out to feature a sur-
prisingly rich phase diagram. We employ the truncated
united extension of the functional renormalization group
(TUFRG). TUFRG allows the investigation of competing
many-body instabilities in a way that is unbiased to any
one particular instability, treating particle-particle and
particle-hole instabilities on equal footing. (For more de-
tails, see SM.) This method is particularly suited to study
the effect of RSOC on the interacting phase diagram, as
the truncated unity approach retains the details of the in-
volved lattice harmonics of the superconducting pairing.
That allows us to easily extract the degree of singlet-
triplet mixing of superconducting states (expected when
inversion symmetry is broken). By feeding the TUFRG
output into a Bogoliubov–de Gennes formalism, we de-
rive the topological properties of the unconventional su-
perconducting phases.
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Model.—In the following, we investigate the TLRHM
defined as

H = −
∑

⟨ij⟩,ss′

[
tδss′ + α

(
σ × ρij

)z
ss′

]
c†iscjs′+U

∑

i

ni↑ni↓.

(1)
The sum ⟨ij⟩ runs over nearest neighbor sites, s, s′ are
spin indices, t is the hopping amplitude and α quantifies
RSOC. The bond vector is given by ρij = ri − rj , σ

is the vector of Pauli matrices, and nis = c†iscis is the
number operator.

The band structure of (1) is readily derived from the
Bloch matrix

hss′
0 (k) =


 ε0(k) α

[
∂ε0
∂ky

+ i ∂ε0∂kx

]

α
[
∂ε0
∂ky

− i ∂ε0∂kx

]
ε0(k)




ss′

with ε0(k) = −2t[cos(a1k)+cos(a2k)+cos((a2−a1)k)];
a1 and a2 are the primitive lattice vectors.

We analyse the leading many-body instabilities of the
Hubbard model through the use of TUFRG26,27. FRG
interpolates between the bare Hubbard interaction and
a low-energy effective two-particle interaction vertex, by
means of iteratively integrating a flow equation. In the
TU formalism, the interaction vertices are expressed in
terms of the lattice harmonics 28–30, which gives the ad-
vantage of explicit formulations of leading instabilites.
We can then track changes in these tight-binding param-
eters with changes in normal state parameters across our
phase diagrams.

Superconducting instabilities on the triangular lattice
can generically be written as 31:

∆̂(k) = [Ψ(k)1̂ + d(k) · σ̂]iσ̂y , (2)

where the Pauli matrices (1̂, σ̂i) act on the spin subspace.
In the absence of RSOC, spin rotational symmetry ad-

mits spin-singlet Ψ and triplet d states, and all possible
superconducting instabilities are then characterized ac-
cording to the irreps of the point group D6h.

For finite RSOC, the point group symmetry is reduced
to C6v from broken inversion symmetry. The spins are
also “frozen” to the lattice and must rotate with it, i.e.,
the system is now spin-orbit coupled. Thus the super-
conducting states can no longer characterized by the
spatial irreps but only by total irreps, i.e., space and
spin combined. A complete discussion of group theory
is presented in the SM; here we wish to emphasize that
amongst the total irreps there are three different possibil-
ities for the two-dimensional irrep E2, which are permit-
ted to mix among possible tight-binding superconducting
instabilities. These three states are: the standard d-wave
spin-singlet {Γdx2−y2 ,Γdxy

}; and two spin-triplet states

{(Γf , 0, 0), (0,Γf , 0)} and {(Γpx
,−Γpy

, 0), (Γpy
,Γpx

, 0)},
where the 3-vector corresponds to d = (dx, dy, dz) .

Results I: competing many-body phases.—In the fol-
lowing, we present our TUFRG results for U = 8t and

FIG. 1. (a) Phase diagram with RSOC (α) vs. filling (ν).
Colored areas correspond to superconductivity, grey to mag-
netic order, and white to metal/Fermi liquid. Color corre-
sponds to singlet-triplet weight of the divergent supercon-
ducting instability (see main text). The dashed line indi-
cates van-Hove filling. (b, c) Two degenerate superconduct-
ing states corresponding to the parameters as indicated by
the circle in (a) ν = 0.5, α = 0.4, realizing a superposition of
the three possible E2 superconducting states for Cooper-pairs
across the nearest-neighbor bonds. The imaginary component
of the two superconducting states is zero.

first focus on different types of instabilities. Phase dia-
gram Fig. 1 (a) reveals for zero RSOC (α = 0) and fill-
ing ν ≥ 0.34 an extended superconducting phase with
E2g irrep (spin-singlet), adjacent to a magnetically or-
dered phase at lower fillings. For even lower filling around
ν = 0.2, we find another narrow superconducting phase
in the B1u irrep (spin-triplet). The extended E2g phase
is not unexpected, as this is the preferred type of uncon-
ventional superconductivity on hexagonal lattices with a
spherical Fermi surface.

The two-dimensional E2g irrep allows for arbitrary
complex superpositions of the two degenerate supercon-
ducting states that constitute the diverging instability.
Free energy calculations reveal that the equal weight
complex superposition “d + id ” has the lowest energy
(see SM for explicit calculations), due to the largest con-
densation energy (as previously found in Refs. 31–33 or
often assumed without explicit calculation). We stress
that the d+ id SC is a topological state with chiral edge
states and finite Chern number, as explicitly confirmed
below. We note that our α = 0 results are compatible
with previous work 2,17,24.Outside of the shown fillings ν,
TUFRG does not diverge, signaling stability of the Fermi
liquid phase.

Increasing the RSOC α does not change much on the
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interplay of superconducting and magnetic phases in the
considered range 0 ≤ α < 0.5 (see Fig. 1 a). We do find
commensurate and incommensurate spin-density waves,
but leave the detailed analysis of the magnetically or-
dered phase for future work.

Results II: singlet-triplet mixing.— In line with pre-
vious work in Rashba systems 22,34,35, we find the frac-
tion of singlet/triplet mixing to increase with increasing
RSOC, so long as the SC phase is spin singlet at α = 0.
One of the major advantages of TUFRG is to quantita-
tively determine this singlet-triplet mixing (see SM for
details). In particular, for 0.34 ≤ ν ≤ 0.44 we observe
significant triplet contributions in the otherwise singlet-
dominated phase. For larger values of RSOC, such as
α = 0.5, singlet and triplet contributions are of simi-
lar weight. In contrast, the low-filling superconducting
phase remains fully spin-triplet regardless of α. It is a
mixture of the two possible triplet E2 superconducting
states. We attribute this to the particular band struc-
ture (see SM for details): the Fermi energy is in the
vicinity of the Kramer’s-degeneracy protected M -point,
where the dispersion is essentially flat and the effect of
Rashba band splitting is suppressed. This allows the per-
sistence of the triplet-dominated superconductivity for fi-
nite RSOC, yielding the extended triplet phase. RSOC
does, however, change the nature of the triplet state. At
α = 0 we find B1u irrep (gapless), and for any finite α the
E2 irrep containing f -wave and p-wave pairings. Roughly
speaking, the p-wave contribution, responsible for the fi-
nite gap, increases with α. At α ∼ 0.4 this E2 phase
is dominated by p-wave pairing. We stress that there
is hardly any method which can resolve spin-triplet or
triplet-triplet mixing as easily as TUFRG can. To deter-
mine whether the mixed-in spin-triplet components trig-
ger any additional topological features we need to push
the analysis further.

Results III: BdG analysis, Chern numbers and rib-
bon spectra.—TUFRG provides us with details about the
pairing symmetry and relative strength for shells with dif-
ferent distance (e.g. on-site pairing vs. nearest-neighbor
pairing), thanks to its truncated unity extension. In
the following, we directly make use of this information
and feed it into a Bogoliubov–de Gennes (BdG) Hamil-
tonian (see SM) where all other bandstructure parame-
ters are kept identical to the TUFRG input. Since the
superconducting states are all E2 and doubly degener-
ate, we calculate the free energy to determine the sta-
ble ground state configuration 17,25,27. Knowledge of the
BdG Hamiltonian and its eigenvectors allows us to com-
pute Chern numbers of the corresponding gapped super-
conducting phases and compute ribbon (and real space)
spectra to reveal topological edge states. For instance,
by choosing α = 0 and ν = 0.5 we recover the earlier
result 36 that the chiral d+ id superconductor (E2 irrep)
possesses a Chern number C = 4. The corresponding
ribbon spectra is shown in Fig. 2 (a), which at α = 0
manifests as only two distinguishable edge states due to
spin degeneracy20,37.

FIG. 2. Ribbon spectra from TUFRG and BdG methods. (a)
α = 0, ν = 0.5 resulting in C = 4, as evidenced by two doubly
degenerate chiral edge modes per edge. (b) α = 0, ν = 0.4
resulting in C = −8, as evidenced by four doubly degenerate
chiral edge modes per edge. (c) α = 0.35, ν = 0.4 resulting
in C = −6, as evidenced by six chiral edge modes per edge.
All spectra calculated for a SC amplitude of |∆| = 0.05, on a
ribbon of 900 atoms, and a k-momentum resolution of 3000
points.

FIG. 3. Topological transition in filling at α = 0. (a)
Critical TUFRG scale Λc as a function of filling ν. (b) BdG
energy E as a function of filling ν, Chern numbers color-coded
relative to Fig. 4. (c) Relative weights in the TUFRG super-
conducting instability for the n-th nearest neighbor pairing
lengths as a function of filling. In all plots, the topological
transition at filling ν = 0.445 is shown by the dashed grey
line.

Topological phase transitions.—By virtue of combining
the TUFRG and BdG methods, we analyze the entire
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superconducting phase space. First, we focus on con-
stant RSOC α and vary the filling ν. At νc = 0.445
(irrespective of α), we observe a dip in critical scale Λc

(see Fig. 3 (a)). We note that this feature should also be
observable within other functional renormalization group
approaches. We observe this non-analytical behavior also
in other quantities such as the gap energy of the BdG
Hamiltonian (Fig. 3 (b)), as well as a shift in the spectral
weight of the Cooper pairing from second- and third-
nearest neighbor bonding to primarily nearest-neighbor.
We visualize this by calculating the spectral weight on
each interaction shell wn in Fig. 3 (c) (for details see SM).
We find that for fillings larger than νc the BdG Hamilto-
nian possess a Chern number C = 4, however, for fillings
smaller than νc we obtain C = −8; see the correspond-
ing ribbon spectra in Fig. 2 (a, b), revealing a topological
phase transition.

We can understand this topological phase transition by
focusing on the purely singlet chiral d + id-wave super-
conducting phases at α = 0. In this limit, the gap in the
BdG spectrum closes when the Fermi surface intersects
vortices in the superconducting pairing Γdx2−y2 + iΓdxy

.

The location and number of these vortices depends on the
precise mix of the three interaction shell pairings. With
a longer pairing, higher harmonics are introduced into
the superconducting pairing function, which means more
vortices are introduced for longer range pairing. These
vortices can then be shifted in reciprocal space by chang-
ing the admixture of the superconducting pairings, with
the total number changing when vortices recombine and
are moved in and out the Brillouin zone. That is, the
number of vortices can change and thus the topological
invariant can change too. The bottomline is: even in
the absence of RSOC, topological phase transitions are
to be expected, as demonstrated above, although we find
E2 irreps on both sides of the phase transition. We note
that a similar phase transition was observed at α = 0 in
extended Hubbard and tJ models 4,20,38. Our work es-
tablishes the plain-vanilla onsite Hubbard model as the
minimal model to find such a phase transition, as well as
its stability towards RSOC.

We also encounter topological phase transitions when
varying α. For instance, for fixed ν = 0.4, we previously
found C = −8 at α = 0 (see a corresponding ribbon
spectra in Fig. 2 (b)) and for larger α = 0.35 we find C =
−6, as corroborated by Fig. 2 (c). The entire analysis
of Chern number and edge states from ribbon spectra
culminates in the topological phase diagram Fig. 4.

Clear critical signatures as those shown in Fig. 3 (a)
are absent, however, the BdG energy gap clearly reveals
the topological phase transition when changing α. This
difference can be traced to the nature of the BdG gap
closing. Unlike the purely singlet case, the characteristic
polynomial of the BdG matrix has some constant terms,
which mean that the BdG energies can have zeros and the
BdG gap can close where the superconducting amplitude
|∆| is not zero; Fig. 4 (b) plots the relationship between
α and |∆|. If we assume that |∆|/t < 0.1 (which is rea-

FIG. 4. (a) Topological phase diagram: superconducting
phases from Fig. 1 a with their Chern numbers. White re-
gions correspond to the Fermi liquid, grey is magnetic order-
ing, and black states are gapless. (b) Varying Chern number
with increasing RSOC α and superconducting order parame-
ter amplitude |∆|, for fixed filling ν = 0.4.

sonable as we follow the educated guess |∆| ∝ Λc) then
this fixes αc = 0.17 to two significant figures regardless
how small |∆| will be. This also justifies omitting an
additional self-consistent treatment of the magnitude of
|∆|. We then compute topological invariants and derive
ribbon spectra resulting in Fig. 4.
Outlook.—There are many examples of studying un-

conventional superconductivity as the groundstate of cor-
related electron systems in the literature. In partic-
ular, for hexagonal lattices with a circular Fermi sur-
face, the E2 irrep is the most likely candidate. While
it is well-known that such a state usually corresponds
to the chiral d + id superconductor, here we show that
the phenomenology is much richer, in particular, in the
presence of spin-orbit coupling. We find Chern num-
bers C = 4,−2,−6,−8 within an otherwise homogeneous
E2 irrep phase. Only the employed TUFRG formalism
allows to reveal these topological features and the as-
sociated topological phase transition within that phase.
In the light of ongoing experimental activities with the
prospect of unconventional superconductivity in trian-
gular lattice materials such as B-doped Sn/Si(111) and
related compounds, we hope that our work will spark
further activity for these systems since different topolog-
ical states and possibly even topological phase transitions
might be observable.
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S1. TUFRG METHOD

The functional renormalization group is a powerful
tool for calculating the leading instabilities of interacting
Fermi liquid systems without bias between the competing
interaction channels. In our numerical calculations, this
is practically achieved by solving a flow equation for an
effective four-particle interaction vertex V Λ, regularized
by the scale or flow parameter Λ. The scale Λ is arti-
ficially inserted into the flow equation via the Green’s

function GΛ = ΘΛG, where the “Ω-cutoff” ΘΛ = Λ2

Λ2+Ω2

is our regularization function. A diagrammatic represen-
tation of the flow equation is contained in Fig. S1; see also
these comprehensive review papers 1,2. We use a static
formulation of FRG, neglecting self-energy and higher-
order interaction vertex corrections.

We solve the flow equation from high scale Λ → ∞, cor-
responding to our bare interaction vertex, i.e., the onsite
Hubbard interaction in Eq. (1), iteratively down towards
Λ = 0. However, often during the flow, one of the phys-
ical modes of the vertex diverges at a critical scale Λc,
signifying the onset of a phase transition into a sponta-
neously symmetry-broken (SSB) state. This SSB insta-
bility can be extracted from the effective vertex at critical
scale V Λc by diagonalizing in the correct physical chan-
nel. For example, a divergence in the particle-particle ef-
fective vertex V Λc

P with transfer momentum q = 0 would
yield a superconducting instability (with eigenvalue λ):

∆s1s2(k) =
1

λ

∑

k′s3s4

V Λc

P,s1s2s3s4
(q = 0,k,k′)∆s3s4(k

′) ,

(S1)
where ∆ss′(k) are the components of the superconduct-

ing order parameter ∆̂(k).
We employ the truncated unity extension of the func-

tional renormalization group 3–5. The core idea is that
we series-expand the relative momenta dependence of
our vertex into form factors, which are most conveniently
chosen in terms of Bravais lattice vectors f ,

Vff ′(q) =
∑

k,k′

e−if ·keif
′·k′

V (q,k,k′) , (S2)

where we have neglected the spin dependence of the ver-
tex. If we consider the entire lattice, this is a unitary
transformation, however we truncate the full series ex-
pansion to only short-range form factors, which we argue

FIG. S1. Diagrammatic representation of the FRG
flow equation. We show the non-SU(2) flow equation up to
the two-particle effective interaction, up to U2. The nodes in
the diagrams represent the effective interaction at scale V Λ,
while the connecting lines are loop derivatives w.r.t. the scale
L̇Λ = [GΛ d

dΛ
GΛ − d

dΛ
GΛGΛ] with the permutation of indices

implied.

captures all relevant physical results, i.e.,

V (q,k,k′) ≈
∑

|f |,|f ′|<F

eif ·ke−if ′·k′
Vff ′(q) , (S3)

for some length cutoff F . We establish convergence by
confirming that the results of the FRG calculation do
not change with an increase in the truncation range. This
truncation of the unitary expansion of the vertex reduces
computational complexity significantly, while retaining
the momentum conservation of the vertex required to ac-
curately capture spin-momentum locking. The TUFRG
code used for the simulations in this manuscript was
benchmarked against other codes as code #2 in Ref. 6.
This reference also provides information about the struc-
ture of the code base.
The TU formulation also adds the advantage of han-

dling the vertex and superconducting instabilities in
terms of the lattice harmonics, allowing us to directly
access the functional forms of the superconducting in-
stabilities, which we do in Sec. S3. The form-factor and
momentum space representations of the superconducting
instability are related,

∆̂f =
∑

k

e−if ·k∆̂(k) , (S4)

and similarly to the momentum space representations,
the form-factor SC instability can be decomposed into
spin-singlet Ψf and spin-triplet df components

∆̂f = [Ψf 1̂ + df · σ̂]iσ̂y . (S5)

Singlet weight of TU SC instability, as plotted in Fig. 1,
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can then be calculated as

wsing. =
1

|∆|2
∑

f

|Ψf |2 , (S6)

where we have normalized by the amplitude of the su-
perconducting instability squared:

|∆| =
√∑

f

1

2
Tr[∆̂†

f ∆̂f ] . (S7)

The form-factor representation also allows us to calculate
the spectral weight of the TU SC instability on the nth
interaction shell, as shown in Fig. (3) (c):

wn =
1

2|∆|2
∑

f∈Sn

Tr[∆̂†
f ∆̂f ] , (S8)

where Sn = {f : |f | = n}.

S2. GROUP THEORETICAL
CONSIDERATIONS

A. Symmetry group of the Hamiltonian

Without Rashba spin-orbit coupling, the symmetry of
the superconducting Hamiltonian is given by:

D6h ⊗ SU(2)⊗ U(1)⊗ Z2 (S9)

which are the space group D6h, the SU(2) rotations of
the spins, U(1) gauge symmetry and a Z2 time reversal
symmetry.

The space group D6h consists of the point group –
which is our main concern – together with translations.
The point group has 24 symmetries, and is generated by
the rotations C6, C

′
2 and inversion I. The Hamiltonian

(1) with no RSOC is also equivalent under any SU(2)
rotation of the spins

cks → Uss′(θ, n̂) cks′ , (S10)

where

Uss′(θ, n̂) =

(
exp

[
− iθ(σ · n̂)

2

])

ss′
, (S11)

which is the Euler rotation by angle θ around principal
axis n̂.

Introducing the Rashba term affects the symmetry of
the Hamiltonian in two ways. First, the Rashba term
breaks inversion symmetry, reducing the space group
from D6h to C6v. Conventionally, C6v is generated by
the rotation C6 and a mirror plane σ1, and realizes all
the symmetries of a hexagon embedded in two spatial di-
mensions. Equivalently however, C6v is the group formed
from the rotational symmetries of a hexagon embedded
in three spatial dimensions, generated by C6 and C ′

2 (a

rotation by π about an in-plane axis). We consider the
latter of these cases.
The second way that the Rashba term affects the sym-

metry is by coupling the spin rotations to those of the
lattice. The freedom to rotate each component indepen-
dently is lost, as the cross product σ×ρij in the Rashba
term only remains invariant when the spins and lattice
are rotated simultaneously. This term is only invariant
under those rotations in the group with the lower sym-
metry, i.e., the rotations C6v.
The complete symmetry of the Hamiltonian with

RSOC is then:

C6v ⊗ U(1)⊗ Z2 (S12)

where C6v is the point group–transforming both the cou-
pled spins and lattice – together with lattice translations,
as well as gauge and time reversal symmetries.

B. Basis functions of irreps

Since we know that the symmetry group of the super-
conducting RSOC Hamiltonian is C6v, we aim to use this
to classify our possible superconducting instabilities. The
superconducting gap is the solution to Eq. (S1), which
is in the form of an eigenvalue problem. The eigenvec-
tor space decomposes into a basis of the irreps of the
underlying symmetry group of the matrix, therefore the
possible superconducting instabilities are the irrep basis
functions7.
The particle-particle vertex diverged at q = 0, as it

appears in Eq. (S1), acts on the space of Cooper pairs

c†ksc
†
−ks′ , which is a Hilbert space indexed by the con-

tinuous momenta k and two spins s, s′. In the TUFRG
formalism, we replace the continuous momenta k with
the discrete form factors f , so the Hilbert space is in-
dexed by (f, s, s′).
The irrep basis functions of C6v acting on the Hilbert

space (f, s, s′) can be found by constructing a matrix
representation R(C6v), then constructing projection op-
erators for each irrep ρ by use of the formula:

P (ρ) =
∑

g

dρ
|G|χ

∗(g)R(g) , (S13)

where χ(g) is the character of group element g, |G| is the
order of the group (12 for C6v), and dρ is the dimension of
the irrep ρ. The eigenvectors of the projection operator
P (ρ) with eigenvalue 1 then form a basis for the irrep ρ.
The symmetries act on the superconducting state

∆fss′ as:

∆fss′ →
∑

f ′rr′

Rff ′UsrUs′r′∆f ′rr′ , (S14)

with spatial transformations Rff ′ , which rotate the form
factor indices identically to rotating the corresponding
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ρ Γ-Basis σ-Basis

A1 Γs

11

1

1 1

1 Ψ = 1

A2 — d = (0, 0, 1)

B1 Γf

−11

−1

1 −1

1 —

E1


 Γpx

1−1

−2

−1 1

2 Γpy

11

0

−1 −1

0




[
d = (1, 0, 0)
d = (0, 1, 0)

]

E2




Γd
x2−y2

−1−1

2

−1 −1

2 Γdxy

1−1

0

1 −1

0


 —

TABLE S1. Basis functions of irreducible represen-
tations. The first column lists the irreducible representation
(irrep) ρ. The second column is the basis function in real
space, for example, as the bond pairing on nearest neighbor
bonds. The third column is the two-spin basis function, in
terms of the typical superconducting pseudo-vector formula-
tion (Ψ,d).

real space bonds, and the Euler rotations of the spins
Usr, shown in Eqn. (S11).

In order to extract the basis functions in a useful form,
it is helpful to first find the irrep basis functions for the
spatial and spin parts separately, then find the total rep-
resentations from the tensor product of the irreps of each
part.

In the case where the spins maintain a distinct full
SU(2) rotational symmetry, superconducting states can
be classified by the the irrep basis functions from the rep-
resentation the spatial pairing Rff ′ . The basis functions
Γℓ are calculated for each interaction shell. The basis
functions for interaction shells with six elements (such
as nearest as well as next-nearest neighbor pairings) are
listed in the second column of Tab. S1.

C. Irrep basis functions in the spin representation

To obtain the irrep of a spin pair, we begin with the
symmetry group representation of a single spin (S(C6v)),
which are the Euler rotations in Eqn. (S11). Explicitly,
the two generators are a C6 rotation

S(C6) = Û

(
2π

6
, ẑ

)
=

(√
3− i 0

0
√
3 + i

)
, (S15)

ρΓ

ρσ A1 A2 E1

A1 A1: Γs — —

E2 E2 :

[
Γdxy

Γd
x2−y2

]
— —

B1 — B2 : (0, 0,Γf ) E2 :

[
(Γf , 0, 0)
(0,Γf , 0)

]

E1 — E1 :

[
(0, 0,Γpx)
(0, 0,Γpy )

]

A1 ⊕ B2 ⊕ E2 :

(Γpx ,Γpy , 0)

⊕
(Γpy ,−Γpx , 0)

⊕[
(Γpx ,−Γpy , 0)
(Γpy ,Γpx , 0)

]

TABLE S2. Basis functions of total irreducible rep-
resentations. Allowed combinations of the spatial and spin
irreps (total irreps).

when the lattice lies in the xy-plane, and an in-plane
rotation C ′

2:

S(C ′
2) = Û(π, x̂) =

(
0 i
i 0

)
, (S16)

where we have specified that a bond has been aligned
along the x-axis. From these two representations, we can
see that the five rotations around the principal z axis do
not flip spins, whereas the six in-plane rotations do flip
spins.
From the representations acting on a single spin S(C6v)

we obtain the representation for two spins as the tensor
product S(C6v) ⊗ S(C6v). The basis functions for the
spin pairs are shown in Table S1, column three.
We can construct the basis functions for the total ir-

rep from tensor products of the spin-pairing and spatial
pairing irreps. We retain only the products that yield
physical states, i.e., those which are antisymmetric un-
der exchange of all quantum indices (e.g. E2 ⊗ E1 would
yield spatially even spin-triplet pairing and is discarded).
Except for the case E1 ⊗ E1, either the spatial or the
spin-pair space is one-dimensional. Since multiplication
of the irreps’ characters yields the total state’s characters,
in these one-dimensional cases this is sufficient for deter-
mining the total irrep. The E1⊗E1 case requires a further
decomposition, and results in E1 ⊗ E1 = A1 ⊕A2 ⊕ E2.
We summarize all allowed combinations in Table S2,

as these correspond to the superconducting groundstates
which are allowed by symmetry for the TLRHM. We
stress that there are three different E2 total irreps, which
mix in different proportions the superconducting insta-
bilities, resulting in different topological superconducting
states.
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S3. HARMONIC REPRESENTATION OF
SUPERCONDUCTING STATES

If the superconducting instability lies in the E2 irrep,
the order parameter can take the form:

∆ =

3∑

n=1

(
ad,n

[
Γn
dx2−y2

Γn
dxy

]
+ af,n

[
(Γn

f , 0, 0)
(0,Γn

f , 0)

]

+ ap,n

[
(Γn

px
,−Γn

py
, 0)

(Γn
py
,Γn

px
, 0)

])
(S17)

where we sum over the interaction shells n = 1, 2, 3 corre-
sponding to nearest-neighbor, next nearest-neighbor and
next-next nearest-neighbor Coooper pairing respectively.
There are 9 independent coefficients ai,n. In principle,
nothing in the TUFRG flow or the basic group theo-
retical arguments prevents these coefficients from being
complex, however we find that while the superconduct-
ing order parameter is only defined up to a an overall
gauge, the relative phases between the coefficients are
real numbers. The realness of these coefficients for a sim-
ilar example for singlet-triplet mixed states under RSOC
on the square lattice has been shown using Ginzburg-
Landau theory free energy minimization arguments 8.

Harmonics can be explicitly figured out from the form
of the irrep transformation on each shell of form fac-
tors. In form factor space, the functions are listed in
the central column of Tab. S1, calculated on the nearest
neighbors, but applicable for form factor distances with
6 lattice sites. We can express these functions in terms
of trigonometric functions of the reciprocal momentum,
noting that in order for these functions to be real, the
coefficients in Table S1 are multiplied by i to get real
sine functions. These functions are also normalized. All
these functions are explicitly listed in Table S3.

Note also a subtlety of the analysis is that the second
form factor shell (next nearest-neighbors) is π/3 rotated
to the other two shells. All the same functions that are
representable on the other shells can be represented on
this shell too, with the exception of the Γf , which is
fx(x2−3y2) on the other shells. Instead, we can represent
fy(y2−3x2), which is also an f -wave pairing (and techni-
cally in B2u, a different irrep of D6h than the nearest-
and next-next-nearest-neighbor pairings which are B1u,
with a fixed orientation). This difference means that we
must swap the order of the E2 irrep f -wave pairing for
this second shell when comparing to other states, i.e., for
n = 2,

∆n=2 = ad,2

[
Γ2
dx2−y2

Γ2
dxy

]
+ af,2

[
(0,Γ2

f , 0)
(Γ2

f , 0, 0)

]

+ ap,2

[
(Γ2

px
,−Γ2

py
, 0)

(Γ2
py
,Γ2

px
, 0)

]
(S18)

n = 1

Γ1
s

√
6

3

(
cos(x) + cos

(
−x+

√
3y

2

)
+ cos

(
−x−

√
3y

2

))

Γ1
f

√
6

3

(
sin(x) + sin

(
−x+

√
3y

2

)
+ sin

(
−x−

√
3y

2

))

Γ1
px

√
3

3

(
2 sin(x)− sin

(
−x+

√
3y

2

)
− sin

(
−x−

√
3y

2

))

Γ1
py

(
sin

(
−x+

√
3y

2

)
− sin

(
−x−

√
3y

2

))

Γ1
d
x2−y2

√
3
3

(
2 cos(x)− cos

(
x+

√
3y

2

)
− cos

(
x−

√
3y

2

))

Γ1
dxy

(
cos

(
−x+

√
3y

2

)
− cos

(
−x−

√
3y

2

))

n = 2

Γ2
s

√
6

3

(
cos(y) + cos

(
3x−

√
3y

2

)
+ cos

(
−3x−

√
3y

2

))

Γ2
f

√
6

3

(
sin(y) + sin

(
3x−

√
3y

2

)
+ sin

(
−3x−

√
3y

2

))

Γ2
py

√
3

3

(
2 sin(y)− sin

(
3x−

√
3y

2

)
− sin

(
−3x−

√
3y

2

))

Γ2
px

(
sin

(
3x−

√
3y

2

)
− sin

(
−3x−

√
3y

2

))

Γ2
d
x2−y2

√
3
3

(
− 2 cos(y) + cos

(
3x−

√
3y

2

)
+ cos

(
−3x−

√
3y

2

))

Γ2
dxy

(
cos

(
3x−

√
3y

2

)
− cos

(
−3x−

√
3y

2

))

n = 3

Γ3
s

√
6

3

(
cos(2x) + cos(−x+

√
3y) + cos(−x−

√
3y)

)

Γ3
f

√
6
3

(
sin(2x) + sin(−x+

√
3y) + sin(−x−

√
3y)

)

Γ3
px

√
3

3

(
2 sin(2x)− sin(−x+

√
3y)− sin(−x−

√
3y)

)

Γ3
py

(
sin(−x+

√
3y)− sin(−x−

√
3y)

)

Γ3
d
x2−y2

√
3

3

(
2 cos(2x)− cos(−x+

√
3y)− cos(−x−

√
3y)

)

Γ3
dxy

(
sin(−x+

√
3y)− sin(−x−

√
3y)

)

TABLE S3. Explicit functional forms of the harmon-
ics in reciprocal space. Together with the coefficients in
Fig. S2, these functions can be used to completely define the
superconducting instabilties via Eqn. S17.

S4. BOGOLIUBOV–DE GENNES ANALYSIS

A. BdG Formalism

If the TUFRG flow results in a divergence in the P -
channel at q = 0, the low-energy effective interacting
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FIG. S2. Coefficients of the different basis functions for the E2 superconducting instability. For each point in the
phase diagram, the nine coefficients ai,n completely define the superconducting instability via Eqn. (S17) for the three types of
E2 superconducting pairings i ∈ {d, f, p} on the first three interaction shells n ∈ {1, 2, 3}. The forms of the harmonics can be
read directly from Tab. S3. This information can be extracted directly from the TU formulation of our FRG method.

Hamiltonian is

H =
∑

k,ss′

hss′(k)c
†
kscks′

+
1

2

∑

kk′,ss′rr′

Vss′rr′(k,k
′)c†krc

†
−kr′c−k′s′ck′s , (S19)

where ĥ is the (kinetic) Bloch Hamiltonian and
Vss′rr′(k,k

′) = V P
ss′rr′(q = 0,k,k′) is the effective su-

perconducting vertex.
By introducing a mean-field approximation

c−kscks′ = ⟨c−kscks′⟩+ (c−kscks′ − ⟨c−kscks′⟩) , (S20)

and assuming fluctuations are small, so the product of
two fluctuation terms is negligible, the quartic interation
can be reduced to a quadratic form

H =
∑

k,ss′

hss′(k)c
†
kscks′ +K

+
1

2

∑

k,ss′

∆ss′(k)c
†
ksc

†
−ks′ + h.c. , (S21)

where we define

∆ss′(k) =
1

2

∑

k′,rr′

Vrr′ss′(k,k
′) ⟨c−k′r′ck′r⟩ , (S22)

K = −1

2

∑

kk′,ss′rr′

Vss′rr′(k,k
′)⟨c†krc

†
−kr′⟩⟨c−k′s′ck′s⟩.

(S23)

We now perform the canonical BdG transformation, and
can write this in the form:

H =
1

2

∑

k

C†
kĤBdG(k)Ck +

1

2

∑

k

Tr(ĥ(k)) +K (S24)

with spinor

Ck =
(
ck↓ ck↑ c†−k↓ c†−k↓

)T

, (S25)

and the BdG matrix

ĤBdG =

(
ĥ(k) ∆̂(k)

∆̂†(k) −ĥT (−k)

)
. (S26)

We can then diagonalize the BdG matrix, forming Bo-
goliubov quasiparticles αkr, with energy Ekr, which are
free particles that follow Fermi statistics.

H =
1

2

∑

k

A†
kÊ(k)Ak +

1

2

∑

k

Tr(ĥ(k)) +K (S27)
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FIG. S3. Full ribbon spectra from TUFRG and BdG methods, for the gaps shown in Fig. 2. (a) α = 0, ν = 0.5, (b)
α = 0, ν = 0.4, (c) α = 0.35, ν = 0.4 All spectra calculated for a SC amplitude of |∆| = 0.05, on a ribbon of 300 atoms, and a
k-momentum resolution of 150.

with spinor

Ak =
(
αk↓ αk↑ α†

−k↓ α†
−k↓

)T

(S28)

and

Ê(k) = diag
(
E0(k) E1(k) −E0(−k) −E1(−k)

)
.

(S29)
The two bases are related by a unitary (Bogoliubov)
transformation:

ĤBdG = Û ÊÛ† (S30)

Û =

(
ûk v̂∗−k

v̂k û∗
−k

)
(S31)

Ck = ÛAk (S32)

which corresponds to the more familiar expressions

{
cks = ukss′αks′ + v∗−kss′α

†
−ks′

c†ks = u∗
kss′α

†
ks′ + v−kss′α−ks′ .

(S33)

The top line above tells us that the columns of Û are the
eigenvectors of ĤBdG.

B. Doubly degenerate SC order parameter and
free energy minimization

In general, we can form an arbitrary complex superpo-
sition of the two degenerate superconducting instabilities,

∆ = cos(θ)∆1 + eiφ sin(θ)∆2 . (S34)

The stable superposition of SC order parameter can be
determined by minimizing the free energy of the BdG
Hamiltonian at critical scale Λ 2,9, which is given as

F = ⟨H⟩ − ΛS . (S35)

Here the internal energy is

⟨H⟩ =
∑

k,n

En(k)

(
f

(
En(k)

Λ

)
− 1

2

)
+

1

2

∑

k,s

hss(k)

+
1

2

∑

k,ss′n

∆ss′(k)u
∗
ksnvks′n tanh

(
En(k)

2Λ

)
(S36)

and the entropy

S =
∑

k,n

[
f

(
En(k)

Λ

)
log

(
f

(
En(k)

Λ

))

+ f

(
− En(k)

Λ

)
log

(
f

(
− En(k)

Λ

))]
(S37)
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FIG. S4. Free energy variation with complex super-
positions of superconudcting pairings. Eq. (S35), calcu-
lated for the superconducting instability at ν = 0.4, α = 0.3.
The stable superpositon of the superconductor is the minima
of the free energy (in arbitrary units), which are the chiral
superpositions ∆ = (∆1 ± i∆2)/

√
2.

where f(x) = (ex + 1)−1 is the Fermi function. We sum
over spin indices s and BdG band indices n, for the two
positive BdG bands.

Our free energy calculations reveal that the complex
equal-weight, i.e., chiral, superposition is always energet-
ically favored. What is expected in the absence of RSOC
α persists to finite spin-orbit coupling. The low-filling
phase at α = 0 is an exception as the spatial irrep is
one-dimensional (B1). A representative example of the
free energy showing chiral superconductivity for α = 0.3
at filling ν = 0.3 is presented in Fig. S4.

C. Topological Analysis

1. Chern number

Superconducting phases can be characterized by a
topological invariant, i.e., the Chern number in the BdG
gap, which is the sum of the Chern numbers of the lower
two bands:

C =
1

2πi

2∑

n=1

∫∫

BZ

d2k

(
∂A

(n)
y

∂kx
− ∂A

(n)
x

∂ky

)
(S38)

where A(n)(k) = ⟨n(k)|∇k|n(k)⟩ is the Berry connection
on the nth BdG band, and |n(k)⟩ the nth eigenstate of
the BdG Hamiltonian. This integral can be efficiently
computed using numerical methods 10, as long as the su-
perconducting phase is gapped. We note that other works
consider the Chern number due to only one of the doubly
degenerate bands when classifying gapped superconduct-
ing phases, however when RSOC is introduced, the spin

degeneracy of the BdG bands is lifted, so to remain con-
sistent over the entire phase diagram, we calculate the
Chern number as the sum over the two lower BdG bands.

2. Ribbon spectra

Due to the bulk-boundary correspondence, the Chern
number of the superconducting phase can be determined
by the number of edge states which traverse the bulk
in a ribbon strip geometry11. The ribbon geometry is a
strip of N lattice sites with open boundary conditions in
the a1, and we Fourier transform along the periodic a2

direction.
To map the superconducting instability expressed in

terms of form factors to the ribbon geometry, we map
the form factors onto the grid of lattice vectors f =
na1 + ma2. Then, the SC order parameter for the
pairing between one lattice site and another −F ≤ n ≤
F, F = max(|f |) along the strip is given by

∆̂n(k) =
∑

m

e−imk∆̂(n,m) , (S39)

where ∆̂(n,m) = ∆̂f is the SC order parameter in form
factor space, with the hat signifying that the order pa-
rameter is a matrix in spin space. The full SC order
parameter is given by

∆̂i,j = ∆̂j−i , (S40)

with 1 ≤ i, j ≤ N . The full SC order parameter is then
a matrix with dimensions 2N × 2N . This is then used
in the BdG Hamiltonian, which is diagonalized to get
the BdG ribbon spectrum. Edge states, such as those in
Fig. 2, are identified by BdG eigenvectors where greater
than 85% of the spectral weight lies on one side of the
strip, with ‘left’ states (i.e., states where > 85% of the
spectral weight lies on sites 1 ≤ i ≤ N/2) colored blue,
‘right’ states (N/2 < i ≤ N) colored red, and bulk states
in black. Since the SC amplitude |∆| is of the order of
10−3t, compared to a bandwidth of 10t, large ribbon
strip sizes are needed to resolve the superconducting gap
and any edge states. In Fig. S3, the full ribbon spectra
corresponding to the gaps plotted in Fig. (2) are shown.

D. Topological phase transition with no Rashba
SOC

In the case of no RSOC (α = 0), and unitary SC pair-

ing, i.e., ∆̂ = ∆̂†, we know the analytic form of the BdG
energies E0 = E1 = E:

E =
√
(ε0(k))2 + |∆(k)|2 , (S41)

where ε0(k) is the (normal state) dispersion relation, as
defined in the main text, and |∆(k)| is the magnitude of
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FIG. S5. Nodal points in the superconducting pair-
ing. Black solid line is the Brillouin Zone boundary, dashed
line is the Fermi surface, and the red dots are the nodes in the
superconducting pairing. (Left) Filling n = 0.42, Chern num-
ber C = −8 (Right) Filling n = 0.46, Chern number C = 4

the order parameter,

|∆(k)| =
√

1

2
Tr[∆̂†(k)∆̂(k)] . (S42)

From Eqn. (S41), we can see that gap closings in the BdG
spectrum – and therefore topological phase transitions
– can only occur when the Fermi surface intersects the
zeros of the superconducting pairing. When there is a
chiral superposition of the doubly degenerate d-wave spin
singlet SC pairing, i.e., , when

∆̂(k) = (Γdx2−y2 + iΓdxy
)(iσ̂y) , (S43)

the zeros of this SC pairing are points - or vortices - in
the Brillouin Zone, as opposed to lines. The location
of the vortices is determined by distribution of the SC
order parameter weight across the different interaction
shell lengths, Fig. S5 shows the location of these vortices
for two points on either side of the phase transition at
νc = 0.445.

We can ascribe a topological charge to each of these
vortices, which is the winding number of the complex
phase of ∆↑↓(k) in the neighborhood of the vortices. The
Chern number of the band is then the winding number of
∆↑↓(k) on the Fermi surface, which is the sum of vortices
contained within the FS. The vortex at the Γ point has
a winding number of +2 (which is expected of a d-wave
pairing), and each of the vortices within the FS not at
the Γ point has a charge of −1. Therefore, the Chern

number for one band is C = +2 when the only vortex
within the FS is at the Γ point, as in Fig. S5 (b) and
ν > νc, and C = −4 when there are 6 other symmetry-
related vortices bound by the FS, as in Fig. S5 (a) and
ν < νc. The Chern number of the gapped SC phases
are then C = 4,−8 respectively, as we sum over the two
degenerate bands.

S5. LOW-FILLING SPIN-TRIPLET
SUPERCONDUCTING PHASE

At low filling, we observe, that the initially triplet su-
perconductor obtains only negligible singlet-like contri-

Γ K M Γ

εk

α = 0.1

K M

FIG. S6. Low filling band structure Band structure at
ν = 0.2, α = 0.1 with inset around the Fermi energy ϵF. The
majority of DOS around ϵF arises from the points of van Hove
singularity around the M point, with only slight contributions
from the dispersive bands. We show here that the SOC has
negligible impact on the energy splitting near the M point,
allowing the pure triplet state to persist.

butions up to α = 0.4 (where a phase transition to mag-
netic order occurs).
To explain the vanishing singlet weight at finite RSOC

we consider the band structure in the low filling regime
in Fig. S6. The Fermi energy is in the vicinity of the
Kramer’s-degeneracy protected M -point, a region of low
dispersion. As shown, the RSOC has almost negligi-
ble impact on the DOS-dominant van Hove singulari-
ties. This allows the persistence of the triplet-dominated
superconductor for finite RSOC, yielding the extended
triplet phase.
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