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Abstract

In this paper, we propose a mathematical framework that governs the evolution of epidemic dynam-
ics, encompassing both intra-population dynamics and inter-population mobility within a metapopulation
network. By linearizing this dynamical system, we can identify the spatial starting point(s), namely the
source(s) (A) and the initiation time (B) of any epidemic, which we refer to as the ”Big Bang” of the epi-
demic. Furthermore, we introduce a novel concept of effective distance to track disease spread within the
network. Our analysis reveals that the contagion geometry can be represented as a line with a universal
slope, independent of disease type (R0) or mobility network configuration. The mathematical derivations
presented in this framework are corroborated by empirical data, including observations from the COVID-19
pandemic in Iran and the US, as well as the H1N1 outbreak worldwide. Within this framework, in order
to detect the Big Bang of an epidemic we require two types of data: A) A snapshot of the active infected
cases in each subpopulation during the linear phase. B) A coarse-grained representation of inter-population
mobility. Also even with access to only type A data, we can still demonstrate the universal contagion
geometric pattern. Additionally, we can estimate errors and assess the precision of the estimations. This
comprehensive approach enhances our understanding of when and where epidemics began and how they
spread, and equips us with valuable insights for developing effective public health policies and mitigating
the impact of infectious diseases on populations worldwide.

1 Introduction

Throughout history, infectious disease outbreaks have significantly impacted human life all over the world
[61, 48], causing many deaths [68]. For instance, the COVID-19 pandemic, originating from China [87], affected
people of all countries [67, 84], mentally [71, 35, 80], financially [15], and beyond. Human mobility is a key factor
in this regard [32, 22, 25, 17, 21, 5], accounting for the spatial spread of diseases, facilitating their propagation
through the densely connected networks of global, national, local displacement [6, 82, 40]. The complex network
of travel routes [20] provides numerous direct and indirect pathways for disease transmission at various scales,
with air travel playing a crucial role in the rapid spread of viruses including SARS-CoV-2 [1, 27, 54, 4, 63] at the
macroscopic level, given their potential to connect distant locations [11]. This underscores the importance of
taking immediate non-pharmacological interventions [58], such as air travel restrictions [1, 8], to control disease
spread. Understanding the underlying mechanisms of disease transmission at a coarse-grained level, where the
mobility network can be considered as a meta-population network [10, 23], is essential for developing effective
strategies to control pandemics and save lives. More specifically, answering questions like “Where is (are) the
source (sources) of an epidemic?”, “When did it begin?”, which we refer to as the Big Bang of the epidemic,
and “How does the outbreak spread through other sub-populations?” after the Big Bang, is of paramount
importance.

In recent studies, a variety of mathematical models [70], ranging from stochastic models [65, 29], spatio-
temporal spreading models [74, 66], reaction-diffusion [73], to agent-based [41, 64, 18, 33, 34] and network [11]
models and meta-population models [18, 16, 83, 19, 28, 29, 13, 14, 12, 24, 38, 39, 42, 53, 55, 62, 9] have been
developed to investigate various aspects of disease-spread phenomena. More specifically, Effective Distance
(ED) can effectively address the issues stated above [36, 25, 54, 49, 88, 88, 2]. The effective distance between
two sub-populations is defined based on the probability of travel through direct or indirect displacement paths
between them. Considering the most probable path between two sub-populations, in 2007 Gautreau et al [36]
and later in 2013 Brockamnn and Helbing [25] proposed ansatz for calculating effective distance, and showed a
relatively high correlation between ED and the first arrival time of a disease in simulations using the worldwide
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air transportation network. The methodology was later improved by adding the effects of all possible paths
[37], resulting in a substantial increase in the correlation between the first arrival time and ED. Also this
approach has been validated with empirical data of the 2003 SARS and the 2009 H1N1 pandemics[25]. Other
successful modifications on ED have also been reported [54, 49, 88]. For instance, Zhang et al introduced
Country Distancing [88], which is similar to the equivalent resistance defined for parallel resistors in electrical
circuits. The idea of ED was also successfully tested for the Covid-19 pandemic on the world air traffic data
[2]. Furthermore, the ED method suggests a technique to identify the source of an epidemics by pinpointing
the source that exhibits the highest correlation between arrival time and Effective Distance [25].

There are also many other methods developed to identify the source of an outbreak in a variety of networks
such as a meta-population network or a network of individuals, and in different contexts like disease spreading
[81, 56, 7, 85, 59, 72, 26], information spreading [60, 57, 3], food contamination [44, 43, 75], rumors [50, 78, 50,
76, 86, 51, 77], diffusion processes on networks [45, 46, 47, 79, 69, 30], etc. Typically, the aim of these studies is
to identify the source of spread from a “snapshot”, for example number of infected ones, which is the state of
the system after the start of the spread.

Despite the success of ED methods, there are some limitations. Some examples follow. First, their definitions
often rely on intuition rather than being grounded in comprehensive mathematical models, which may hinder
their clarity and interpretability, as well as impede a deep understanding of the contagious dynamics they aim
to describe. Second, it is usually assumed that the disease originates from a specific location in the network (the
source) and contaminates other nodes over time. However, this assumption is not necessarily true. For instance,
on a country scale, the disease can reach different nodes (states or provinces) from outside the network during
its spread, effectively acting as multi-sources within the country. Finally, the methods lack any correction of
time to detect the beginning of the epidemic in data or any error analysis to check the validity of the spatial
and temporal source estimations.

In this paper, we address these gaps by first developing a mathematical framework based on intra-population
SIR model dynamics and inter-population mobility within a metapopulation network. We then derive expres-
sions to identify the source or sources of any given epidemic, as well as its starting time, given the number
of infected individuals and coarse-grained mobility data at a specific time. Additionally, we propose a novel
definition for ED, which universally relates the overtaking time of nodes to their ED from the source of the
epidemic. We validate our method using empirical data from the COVID-19 pandemic in Iran and the United
States, as well as H1N1 worldwide.

2 Our Mathematical Framework

Here we aim to find the Big Bang of a given epidemic dynamics, and in particular, we want to understand
how an outbreak spread after the Big Bang. In doing so, the first step is to propose our general mathematical
framework which the spreading dynamics adhere to.

When studying the spread of infectious diseases at a given coarse-grained scale, the disease can be considered
to spread through a meta population network. In this network, the number of infected and infectious individuals
at time t and for subpopulation (node) i, Ii(t), can be put into components of a vector we call I⃗(t):

I⃗(t) = (I1(t), I2(t), ..., In(t)). (1)

In general, during epidemic dynamics, there is no specific pattern in the number of infected people across
all nodes. However, typically, the number initially increases to reach a peak, followed by a subsequent decline,
see Fig. 1(A). In our following framework, our primary objective is to demonstrate the evolution of I⃗(t) and
subsequently discern a straightforward geometric pattern that illustrates the progression of the outbreak within
nodes of the metapopulation network. Therefore we show that vector I⃗(t) evolves in time as follows, see Fig. 1(B)
and the Supplementary Material (S.M.), Section 6 for more details:

I⃗(t) = eB̂ptI⃗(0). (2)

The above equation is the solution of the following equation, assuming Si ≈ Ni for the early stages of the
dynamic, see S.M. 6.4 for more details:

dIi
dt

= [βiSiIi − γiIi] + [p
∑
j

PjiIj − pIi]. (3)

While this equation represents the dynamic of vector I⃗(t) and has two parts:

1. spreading within the population, namely intra population (First Bracket).

2. spreading between nodes, namely inter population (Second Bracket).
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Figure 1: (A) The number of infected people in different nodes (I⃗(t),1) in a network versus time. The third
dimension represents the geographical distance from the source in this specific network and it does not show
any pattern. (B) The same number of infected people in different nodes in a network versus time; but this
time they are plotted based on their effective distances from the source. This time a linear relation between the
overtaking times and Effective Distances can be seen. The evolution of the number of infected people is given

by the operator, eB̂pt, see Eq. 2. (C) Center: The matrix B̂ is defined based on the transition probability (see
S.M. 6.2) and the slope of the linear part of the SIR dynamics (see S.M. 6.4). left: log Ii vs time is illustrated.
qi is the slope of the linear part. The behavior of log(Ii) in the early stage of the dynamic is linear and the slope
of this line is qi. Right: the transition probability is made from the flow between node i and j. (D) When
eBpt is expanded several terms are generated, each containing a power of matrix P. Different terms generate
the probability of intermediary transitions. For example, the κth term of the expansion corresponds to a path
containing κ− 1 intermediary node.

For the first part of the equation, we use a simple Susceptible-Infected-Recovered model (SIR) with a ho-
mogeneous mean field approximation (HMFA). Moreover, in the second bracket, we connect all nodes, i.e. each
population via a meta-population network. A detailed explanation of how the intra-population term in Equation
3 is derived can be found in S.M., Sections 6.2 and 6.3.

In Eq.2, matrix B̂ keeps all of the information regarding the properties of the dynamics (Fig. 1(C), center).
The diagonal components (qi) represent the properties of internal growth of the disease (Intra Population
Dynamics). The population of infected people in each node shows exponential behavior at early stages. So, in
the plot of log(I) vs time, there is a linear pattern for each node at the beginning of the outbreak called ”linear
phase”. In this study, we specifically focus on this part of the dynamics. As it can be seen in Fig.1(C), left, the
slope of this line for node i is qi, which sits into the ith diagonal component of matrix B̂ (Fig. 1(C), center),
see more details in S.M. 6.5.

Other components of matrix B̂ are called Pij , which represent the probability of traveling from node i to
j. For calculating the value of Pij we use the flow matrix, Fij , which keeps the number of people who travel
from node i to j in a specific period. (Fig. 1(C), Right). Further details about probability and flow matrices
are available in the S.M. 6.2.

Now we can expand the solution (Eq. 2) and write it down as:

I⃗(t) = (1̂ + B̂pt +
(B̂pt)2

2
+ ...)I⃗(0) (4)

This expansion contains different powers of matrix B̂. Since B̂ has Pij on its non-diagonal components,

different powers of B̂ generate different powers of matrix P . As matrix P describes the probability of transition
directly from node i to j, higher powers of P describe the probability of indirect transition from node i to
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j through a specific number of intermediary nodes in between. This is a new finding we call Intermediate
Probability. As can be seen in Fig.1(D), the kth component of the expansion holds the intermediate proba-
bility of using κ− 1 intermediary nodes (S.M. 6.6).

The expanded solution can get simpler even further by focusing on the early stage of the dynamic, i.e. the
linear phase, and because it takes more time to transit by indirect paths via intermediate nodes. This means
that in the early stages of the dynamics, as we go further into the expansion, terms become smaller. Therefore,
we can simplify the dynamic by cutting the expansion up to a certain term, keeping only the first terms. This
defines the time scales for our model framework. We need to be in a time range in which the assumption of
linear evolution for SIR and expansion’s cut work together, or τ = min{ 1

β−γ ,
1
p}, which constrains the time

scale.
As explained, we aim to focus on the very beginning of the spread process, when everything just started and

almost no one was infected, and study the expansion of the number of infected individuals in a specific order
from the start, like the idea of the Big Bang in cosmology. In the following section, we will introduce several
algorithms to solve the challenges and find the starting time and place as well as the hidden spread mechanism
of the disease.
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3 Algorithms and Results

In this section, using our mathematical framework, we introduce algorithms that reveal where and when the
outbreak began and how it spread further using the snapshots of the disease and the flow matrix. In the first
algorithm, we detect the potential sources of the disease. In the second one, we estimate the starting time of the
spread, then we introduce an algorithm to illustrate a geometric pattern for the spread of the disease. There
are different sources of error in the estimations such as approximating the outbreak with SIR model, inaccurate
measurement of the number of infected people, and the flow matrix, which is challenging to take into account.
Therefore, we only report the theoretical error caused by the cut-off in the expansion of exp B̂pt operator, see
details in S.M. Sections 7.3 and 7.5. And the role of estimating epidemiological parameters in error analysis
is discussed in the supplementary text (S.M., Section 10). Given that these algorithms rely on empirical data
as input, to distinguish empirical data from theoretical variables, we denote empirical data using the subscript
or superscript e. For instance, I⃗(t) is a vector containing the number of infected people in our mathematical

framework, and I⃗e(t) is the same vector but contains the empirical data of infected people coming from official
reports and announcements, see S.M. Sec. 9.

3.1 Where did it start?

Here, we aim to find the potential sources, where the dynamic began, having I⃗e(t) as empirical data and (Eq.2)
as theoretical formalism. We first develop the theoretical basis of the algorithm and then discuss how to apply
it to COVID-19 data of Iran and the USA.

In a network with n nodes, there is a n-dimensional vector space whose i-th basis represents the node i. We
define the basis i⃗ as

i⃗ = (0, 0, ..., 1, ..0), (5)

in which its i-th component is 1 and others are zeros. Now we can expand vector I⃗(t) in this space using these
bases. The value of the component of this vector on each basis indicates the contribution of that basis to the
spread of the disease. As can be seen in Eq. 2, the vector I⃗(t) evolves in time and we have to evolve the bases
in time as well, to rewind the dynamic to the origin of the time (see S.M. 7.1). Therefore, we redefine the bases
as follows:

i⃗′ = eB̂pt⃗i. (6)

Now, we define the ”weight of a node” as:

Wi =
i⃗′.I⃗(t)∑
i⃗′ i⃗

′.I⃗(t)
, (7)

in which Wi is a number between 0 and 1 that shows the impact and contribution of the node i on the spreading
and evolution of the disease at any time within the linear range of the dynamic. If t is measured exactly from
the origin of time of the disease, then Wi represents the spatial source of the disease, which can be a
single or multiple source. For example, for a given network if Wi = 1, it means that node i was the only source
of the network. For empirical data we use the vector I⃗e(te) in Eq. 7, instead of vector I⃗(t). te is time, measured
from the officially reported temporal origin of the disease. Therefore

W e
i =

i⃗′.I⃗e(te)∑
i⃗′ i⃗

′.I⃗e(te)
. (8)

It is important to note that W e
i calculation is independent of the structure of the network as there is no

constraint (such as topology of the network) on the flow matrix used in the calculation.
In figure 2, we implement this method for the empirical COVID-19 data of Iran and the US (Panel A and A’)

and illustrate the results. Also the mobility probability matrix are plotted respectively in panels B and B’. In the
case of Iran (Panel C and D), we observe that the values of weights differ by implementing different snapshots.
In the first scenario, Qom has the highest weight value, but when considering data from later days, Tehran (the
capital province of Iran) surpasses it. Since the largest international airport in Iran (Imam Khomeini) is located
between Qom and Tehran provinces, and other important nodes like Gilan and Mazandaran (which also have
high values of W ) are geographically close to this airport, we can conclude that it is more probable that the
very first seed of the disease came from this airport to the country and Tehran and Qom are the most probable
sources of the disease, which is consistent with official reports. For the case of the US, (C’ and D’) Washington
state has the highest value of weight in the first plot, but over time, based on the values of W, and error bars,
other states like Michigan, California, and New York could also be considered important nodes. So, based on
this figure, our model predicts that the states of Washington, Michigan, and New York were the most probable
sources of the pandemic in The US.
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Figure 2: Where did it start? For better visibility of details, please zoom in. A&A’) In these color maps,

the number of COVID-19 infected individuals (I⃗e(te)) is depicted across various provinces/states of Iran/the
United States, captured at different snapshots (te = 5, 10, 20 days). The time origin of these snapshots is
the official start day of the pandemic in these two countries. B&B’) The color map demonstration of the
mobility probability matrix, used to calculate the values of W e

i for Iran/United States. Please refer to the S.
M. Section 9 for more details regarding the data. C & C’) W e

i (Eq.8), is illustrated for provinces/states of
Iran/United States. The black/red points represent the estimated value of W e

i for each node, and the black/red
bars illustrate the value of errors, δW e

i . We used the first three terms of the Taylor expansion to calculate
weights and errors. Please refer to S.M. 7.1 for more details. D&D’) The W e

i shown in panels C and C’ are
visualized on geographical maps. E&E’) These plots illustrate the reliability of different κ values for the cut-off

error. The magnitude of | ⃗δW e| is depicted in the top color map for the empirical data and in the bottom color
map for the simulation results for the networks of Iran and the United States. The vertical axis represents
κ, while the horizontal axis represents time. Here attention should be given to the values of κ = 3 and time
(5, 10, 20) used in panels C and C’, as they are indicated in both color maps. We considered R0 = 3 (Basic
Reproduction Number) and 1

γ = 14(days) for all nodes. Please refer to S.M. 10 for sensitivity analysis.
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The reasons for these fluctuations can be the uncertainty in empirical data (error in testing, organization
error, and other sources of errors), deviation from the assumption of our model (see discussion section), and
errors in calibration (qi and p).

To calculate the error of the Eq. 7 and Eq. 8 we consider the value of cut-off error since only the first
terms of the Taylor expansion of eBpt is used in the calculations. If W e

i is calculated using the first κ terms of
the eBpt expansion, the error of W e

i can be calculated using κ+1 term as

δW e
i =

( tκ+1B̂κ+1

κ! i⃗′).I⃗e(te)∑
i⃗′ i⃗

′ · I⃗e(te)
. (9)

The value of error depends both on κ and the value of te. By increasing κ or decreasing te, we expect to get
a smaller value of error. To get a better idea from the value of cut-off error in a whole network, we define the
error of cut-off vector as:

| ⃗δW e| =

√∑
i (δW e

i )2

n
, (10)

which is shown versus κ and te for Iran (panel E) and the US (panel E’).

3.2 When did it start?

In this section, our goal is to estimate the temporal origin of the outbreak. As we already mentioned, the real
origin of time may differ from the one that is officially reported. To find the temporal origin we compare the
estimated (I⃗(t)) and reported (I⃗e(te)) number of infected people at the time t and te, respectively. We find the

temporal origin so that it minimizes the mean squared error (MSE) between I⃗(t) and I⃗e(te),

∆i(t) =

∑n
j=1(Ij(t) − Iej (te)

2

n
. (11)

To estimate the number of infected people, I⃗(t), we assume the source is the node i found by the Where
algorithm, Sec. 3.1. Eq. 11 has a unique minimum at time t∗i (see S.M. 7.2 and (Fig. 3)) :

t∗i =
1

i0

−η(i0 − Iei (te)) + p
∑

j(PijI
e
j (te))

η2 + p2
∑

j P
2
ij

, (12)

in which η = (βiNi − γi − p), and i0 is the initial number of the infected people in the source and at t∗i (the
estimate of the model for the temporal origin of the outbreak). For the error, we consider the cut-off error by
adding the third term of the Taylor expansion as the error-making term to our calculation which shows how
the predictions degrade (S.M. 7.3).

Fig. 3 demonstrates the result of our algorithm applied to the empirical data of Iran and the US. In panel
A and C, ∆(Eq.11) is shown versus time for Iran and the US, respectively. A minimum exists in both cases, as
we showed in Eq.12. By adding the third term of the Taylor expansion (Eq.4) to the calculation, the corrected
MSE (specified with different colors) shifts to a new curve and the minimum moves a bit (around two days for
Iran and less than a day for the US). To understand the accuracy of the algorithm, we illustrate t∗i versus te for
Iran (panel B) and the US (panel D) using snapshots from various days. A linear behavior can be observed up
to a certain point in both cases, which indicates the linear range of the dynamics. It is worth noting again that
t∗i describes the starting time of the disease from the epidemiological point of view, while te refers to the starting
time the official reports claim. So, a difference between these two origins of time is expected. By utilizing these
specific snapshots, the onset of the COVID-19 pandemic is estimated to be 8 February 2020 for Iran and 12
February 2020 for the US, marking the commencement of the widespread outbreak in Iran and the US.

3.3 How does it spread? The universal pattern of any outbreaks

In previous sections, we estimated the origin of the disease, trying to answer when and where it began. In this
section, we aim to illustrate the simple geometric patterns behind the dynamics.

For the first step, let us define the overtaking time in our mathematical formalism. This is the time
when enough number of infected passengers arrive in a susceptible node so that we can consider this node as
infected. We assume that it happens when the intra-population spreading in this node (the first bracket in Eq.
3) becomes greater than the inter-population spreading (the second bracket in Eq. 3), which means

(Njβj − γj)Ij = p(
∑

PkjIk − Ij). (13)
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Figure 3: When did it start? A) The value of MSE (Eq.11) is illustrated versus time (the black curve)
for Qom province using a snapshot for the 12th day of the COVID-19 pandemic in Iran. As shown, it has a
minimum at (t∗i ) (Eq.12). When the third term of the expansion is added to the calculation, ∆i transforms
to the gray curve (∆c

i ), with the minimum shifted approximately two days. B) The estimated origin of time
(t∗i ) versus the date of the snapshot (te) for Iran, considering Qom as the origin node. The points highlighted
in green show the used snapshot in panel A. C) The value of MSE (Eq.11) is illustrated versus time (the red
curve) for the Washington state using a snapshot for the 15th day of the COVID-19 pandemic in the United
States. It has a minimum at (t∗i ) (Eq.12). When the third term of the expansion is added to the calculation,
∆i transforms to the pink curve (∆c

i ), which approximately lies on the red curve. D) The estimated origin of
time (t∗i ) versus the date of the snapshot (te) for the US, considering Washington as the origin node. The points
highlighted in green show the used snapshot in panel C. Please refer to the S. M. Section 9 for more details
regarding the data.

Using the above condition and the dynamic of our model given by Eq. 4 , one can show that the overtaking
time is (see S.M. Sections 7.4 and 7.5 for more details)

tjO =
1

p

1

(2 + qi − qj) −
P 1

ij

Pij

, (14)

in which the overtaking time, tjO, has been calculated for the node j, given the single source, node i, in the
network.

To detect a simple geometric pattern of the spread dynamic, as shown in Fig. 1.b, we define an Effective
Distance between a non-origin node j and the single origin node i so that there is a linear relation between
overtaking time (Eq. 14). Therefore, our effective distance is defined as

Dij =
1

(2 + qi − qj) −
P 1

ij

Pij

, (15)

where
Dij = ptjO. (16)

Our innovative approach to defining effective distance distinguishes itself from previous methods [36, 37, 25].
While maintaining a similar geometric pattern of spread, our method uniquely utilizes overtaking time rather
than arrival time. Remarkably, we reveal a universal behavior, characterized by a consistent slope of one when
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plotting Dij against ptjO, regardless of network or disease characteristics. In the above equation, p represents
the inter-population speed of the disease spread among the nodes in a network.

Our proposed effective distance becomes simpler for some special cases. For example, if all nodes have the
same value of q, the effective distance simplifies as

Dij =
1

2 − P 1
ij

Pij

, (17)

which is independent of the disease properties and only depends on the the travel flow. The defined effective

distance only includes those nodes that satisfy
P 1

ij

Pij
< 2 as effective distance and the overtaking times should be

positive for the non-origin nodes.
Fig. 4 shows the result of the effective distance analysis in two panels. In both panels, the spreading of

the disease has been simulated with the SIR model for meta-population networks using the empirical mobility
data of Iran (panel A) and the empirical mobility network of the United States (panel B). In each panel, the
simulation has been repeated twice (Green and Gray in the left panel, Blue and Red in the right panel), each
time with a different source node. The Where algorithm is used in the specific choice of the source nodes. As
shown, there is a linear relation between the defined effective distance and pt, with the universal slope of one.
Changing the source node does not change the linear relation and the value of the slope.

Figure 4: Effective distance vs overtaking time (simulation result): The effective distances are illustrated
versus ptjO (Eq.15) for the empirical mobility data of Iran (Panel A) and the United States (Panel B). Each
panel represents two scenarios: we put the initial seed of the disease on a different node in each scenario. These
two nodes are selected from the nodes with the higher chance of being the original COVID-19 source in Iran
and the US based on the Where algorithm results. In each scenario, we simulated the spread of the disease
in the network assuming R0 = 3 (Basic Reproduction Number) and 1

γ = 14 days for all nodes. In panel A,

Gray/Green nodes represent the results of the simulation for Tehran/Qom, respectively as the source nodes.
Also, the gray and Green lines are the best-fitted lines to the data, with their slope and regression shown in
the legend. In Panel B, Red/Blue nodes represent the simulation results for Washington/Michigan as source
nodes, with the Red and Blue lines showing the best-fitted lines to the data. Please refer to the S. M. Section
9 for more details regarding the mobility data.

Implementing effective distance analysis with empirical data can pose several challenges. Some of these are
outlined below. First, what is reported as the arrival time in official data is not necessarily the same as what
we defined as overtaking time in Eq. 14, even though they are close. Second, measuring the exact value of the
mobility probability matrix is difficult, especially due to the intervention policy in each region at the beginning.
Finally, the initial number of infected people (i0) is not necessarily known.

It is possible to overcome the challenges stated above by estimating the effective distance of the node j from
the source using the number of infected people in that node (Iej (te)). Using the mathematical framework, one
can show that Iej (te) can be estimated by a parabola (see S.M. Eq. 86) in the short enough period of time after
the arrival of the disease to the node. Assuming the overtaking time occurs no longer after the arrival time, we
estimate the effective distance of the node j from the source only by the found parameters from the fit (S.M.
7.6)

Fig. 5 shows the estimated effective distance and overtaking time for the empirical data of the COVID-19
pandemic in Iran (panel A), the US (panel B), and the H1N1 pandemic in 2009 in the meta-population of the
world. As shown, there is a linear relation between effective distance and overtaking time in all instances, with
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the universal slope close to 1. This result demonstrates that the linear relation with a slope of one remains
independent of both the disease type and the size and structure of the meta-population network in which the
disease spreads.

Figure 5: Estimated effective distance vs overtaking time (empirical data result): The estimated
effective distance (S.M. 7.6) versus the scaled overtaking time (pt) is illustrated for A) the Covid-19 pandemic
in Iran, B) the Covid-19 pandemic in the United States, and C) H1N1 pandemic in the world (2009), based on

the empirical data (I⃗e(te)) of the pandemics. Please refer to the S. M. Section 9 for more details regarding the
data.

4 Concluding Remarks

In summary, we introduced a mathematical framework based on the SIR model for meta-population networks,
incorporating inter-population mobility. We derived a compact equation (Eq. 2) that represents the time

evolution of the number of infected individuals using the mathematical operator eB̂pt. We showed how different
terms in the Taylor expansion of the operator represent possible transmission paths with different number of
intermediary nodes. Based on this general mathematical framework and the provided data, we were able to
determine where and when the outbreak began, as well as how it spread within the meta-network.

Firstly, we derived a measure indicating the contribution of each node to disease spread, whether in single-
source or multi-source pandemics. Our analysis of COVID-19 revealed that Qom, Tehran, Gilan, and Mazan-
daran carry the greatest weight in Iran, indicating these provinces as probable sources of the pandemic. This
observation aligns with the proximity of these provinces to Imam Khomeini International Airport and the rel-
atively high volume of travel to these areas. Likewise, Washington, Michigan, New York, and California were
identified as likely sources of the pandemic in the US.

Secondly, we derived an expression to find the temporal origin of a pandemic. Thus, we estimated the
beginning date of the COVID-19 pandemic in Iran and the US is Feb. 8, 2020, and Feb. 12, 2020, respectively.
These dates precede the officially announced start dates in both countries, suggesting that the pandemic may
have begun earlier than previously thought.

Thirdly, we introduced a novel definition for Effective Distance and demonstrated that the effective distance
of a node from the source exhibits a linear relationship with the scaled overtaking time (pt), characterized by a
universal slope of one. Importantly, this relationship remains independent of the epidemiological parameters of
the disease and characteristics of the meta-population network, such as the number of passengers and network
structure. This assertion is supported by our simulation results for Iran and the US. Finally, we showed how
the effective distance can be estimated only with the data of the number of infected ones in the network. We
applied this method to the data from the COVID-19 pandemic in Iran and the US, as well as the 2009 H1N1
pandemic. Our analysis confirmed the existence of a linear relationship with the universal slope of one.

Combining all reported observations, our analysis underscores the following practical implications: Given
that the speed of disease propagation in the network is directly proportional to travel probability, p, this em-
phasizes the crucial role of implementing travel restrictions during the early stages of a pandemic. Additionally,
our findings highlight the importance of predicting more accurately when and how diseases reach the next node.
This insight provides policymakers with a better understanding of the optimal strategies for implementing
lockdowns or travel restrictions, thereby effectively mitigating the spread of infectious diseases.

Our work presents several theoretical implications and prospects for the research community. Firstly, un-
like similar studies [36, 37, 25], our definition of effective distance in this paper is directly derived from the
mathematical model that describes the phenomenon, rather than relying solely on intuition or data analysis.
Additionally, our analysis reveals that effective distance exhibits a universal geometric pattern, contributing to a
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deeper understanding of epidemic dynamics across different contexts. Secondly, our study addresses fundamen-
tal questions such as where and when pandemics begin within a coherent mathematical framework, shedding
light on essential aspects of disease spread. However, our method has limitations stemming from the simplifying
assumptions we made. Firstly, we utilized the SIR model for meta-population networks, which can be extended
by incorporating more complex epidemiological models, see S.M. Section 8 as an example. Secondly, we treated
certain parameters as fixed, which may not always hold true. For instance, we assumed that the number of
susceptible individuals remains constant and equal to the node’s population at the early stage of the dynamic.
Additionally, we supposed that γ is constant across nodes and that the flow matrix remains fixed over time.
While these assumptions are reasonable in many cases, they may not accurately reflect reality in all scenarios.
Furthermore, as demonstrated, systematic errors can arise from ignoring higher-order terms of the Taylor expan-
sion (Eq. 4). Therefore, our algorithms and results can be enhanced by avoiding mathematical simplifications
and improving data quality. Each of these aspects warrants further investigation in future studies.
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[13] Julien Arino and Stéphanie Portet. Epidemiological implications of mobility between a large urban centre
and smaller satellite cities. Journal of mathematical biology, 71(5):1243–1265, 2015.

[14] Julien Arino and P Van den Driessche. A multi-city epidemic model. Mathematical Population Studies,
10(3):175–193, 2003.

[15] Badar Nadeem Ashraf. Economic impact of government interventions during the covid-19 pandemic: In-
ternational evidence from financial markets. Journal of behavioral and experimental finance, 27:100371,
2020.

[16] Paolo Bajardi, Chiara Poletto, Jose J Ramasco, Michele Tizzoni, Vittoria Colizza, and Alessandro Vespig-
nani. Human mobility networks, travel restrictions, and the global spread of 2009 h1n1 pandemic. PloS
one, 6(1):e16591, 2011.
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6 General Mathematical Framework

6.1 Notation of variables and parameters

Parameter Name Unit Definition
β Transmission rate 1

day Transmission rate in the SIR dynamics

γ Recovery rate 1
day Recovery rate in the SIR dynamics

R0 Basic reproduction
rate

- The transition rate over the recovery rate

qi - - the slope of the linear part of the dynamics for node i, see
sections 6.4 and 6.5.

Si Susceptible in the
sub-population i

- Number of susceptible individuals in node i

Ii Infected people in
node i

- Number of infected/infectious individuals in node i

Iei Reported infected
individuals in node
i

- Number of infected/infectious individuals in node i re-
ported by (empirical data)

∆i MSE - Mean squared error between Ii and Iei
i0 Total initial pa-

tients
- The total number of patients at the beginning of the dy-

namic (sum over I⃗(0)).
Ri Recovered people in

a sub-population i
- Number of recovered individuals in node i

N Total population - The total population studied within the meta-population
Ni Population of the

sub-population i
- -

n Number of sub-
populations

- -

Np Total passengers
population

- Number of daily travelers

Fij Flow per unit time 1
day Number of daily travelers from the node i to the node j

Pij Passenger probabil-
ity per unit time

- Probability that a traveler travels from the node i to the
node j

p
Np

N
1

day Travel probability of an individual between sub-populations

B̂ Time evolving op-
erator

- See the main text

Dij Effective distance
between node i and
j

- see Eq. 16

tjo Overtaking time of
node j

- When the intra-population dynamics surpass the inter-
population dynamics at node j, see Eq. 14

Table 1: All used parameters in our mathematical framework are brought here.
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6.2 Definition of flow matrix and mobility probability Matrix

Pij , is defined as the probability that a person travels from node i to node j. Also, p is defined as the average
travel probability in the network. The Flow Matrix is a matrix representing the movements within the network.
Fij is the number of travellers from node i to j per time. So,

∑
j Fij is the total number of passengers exiting

from the node i. Based on this definition, we make the probability matrix and the parameter p as the following:

Pij =
Fij∑
j Fij

(18)

p =

∑
j

∑
i Fij

N
, (19)

where N is the total population of the network.

6.3 Deriving the intra population term in Eq. 3

To derive the number of infected people in node i, we have to calculate the flow of infected people in and out
of this node. To calculate the number of infected people per time, who leave this node and go to other nodes,
first, we can use the concept of flow and calculate the number of infected people that go to node j :

Fij
Ii
Ni

(20)

Then, we can sum over the index j to calculate the total number of people who leave the node i:∑
j

Fij
Ii
Ni

. (21)

If we consider the travel probability in node i to be

pi =

∑
j Fij

Ni
, (22)

then we can rewrite the above equation and derive the following differential equation for the outgoing population
in node i:

dIi
dt

= −piIi (23)

Now to calculate the number of infected people that enter node i, we calculate the number of infected people
who travel from node j to i per time :

Fji
Ij
Nj

(24)

Then, if we multiply both the numerator and denominator by∑
i

Fji (25)

the resulting equation is
Fji∑
i Fji

∑
i Fji

Nj
Ij . (26)

The first term on the left side is the definition of a probability matrix, Pji. So the number of infected people
who travel from node j to i is

pjPjiIj . (27)

By summing up the above equation over index j, we have∑
j

pjPjiIj . (28)

Now, the full evolution of infected people in node i is

dIi
dt

= −piIi +
∑
j

pjPjiIj . (29)
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To derive the final formula, we assume the travel probability is the same among the nodes of the network
and is equal to the average value of being a traveler in the whole network. Therefore

pi ≈ p =

∑
j

∑
i Fij

N
, (30)

which means
dIi
dt

= −pIi + p
∑
j

PjiIj . (31)

6.4 Deriving exponential behavior of I⃗(t)n the early stage of the dynamic (Eq. 2)

Assuming the spread of the disease is at its early stages, we can estimate Si with Ni and rewrite the evolution
equation as

Si ≈ Ni (32)

dIi
dt

= (βiNi − γi − p)Ii +
∑
j

pPjiIj , (33)

in which PT
ij and qi as,

PT
ij = Pji (34)

qi =
βiNi − γi

p
. (35)

The equation can be rewritten as
dIi
dt

= p
∑
j

(PT
ij + δij(qj − 1))Ij , (36)

where δij is the Kronecker delta and is equal to 1 when i = j and zero when i! = j. Considering Bij =
PT
ij + δij(q − 1), the above equation can be simplified as

dI⃗

dt
= pB̂I⃗, (37)

in which matrix B̂ is

B̂ =

q1 − 1 P21 P31 . . .
P12 q2 − 1 P32 . . .
. . . . . . . . . . . .

 (38)

The solution to the above differential vector equation is

I⃗(t) = eB̂ptI⃗(0), (39)

where, I⃗(0) represents the initial vector of patients.

6.5 Deriving qin the early stage of dynamics

Assuming the spread of the disease is at early stages in the SIR model, we can estimate Si with Ni and rewrite
the evolution equation as

Si ≈ Ni (40)

dIi
dt

= βiNiIi − γiIi, (41)

with the solution of

Ii(t) = Ii(0)e
βiNi−γi

p (pt). (42)

The above equation can be rewritten in the simpler form of

Ii(t) = Ii(0)eqi(pt). (43)

As a result, we can expect a linear behavior if we plot log Ii(t) vs pt

log Ii(t) = log Ii(0) + qi(pt). (44)

The slope of this line is qi.
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6.6 eB̂ptxpansion and intermediary nodes

Eq. 39 can be expanded as

I⃗(t) = (1̂ + B̂pt +
(B̂pt)2

2!
+ ...)I⃗(0), (45)

where 1̂ is the identity matrix. If we label the source node with i , and the non-source nodes with j, for node j
the above equation leads to :

Piji0pt +

[
i0p

2t2

2
((Pij)(qi + qj − 2) + Pi1P1j + Pi2P2j + . . . + PinPnj) + . . .

]
(46)

In the above equation, the term :

Pi1P1j + Pi2P2j + ....PinPnj =
∑

k PikPkj

is the probability that one travels from node i to j via one of the intermediary nodes between them. We name
it P 1

ij , therefore:

Ij(t) = Piji0pt +
i0p

2t2

2

(
Pij(qi + qj − 2) + P 1

ij

)
+ . . . (47)

For the source node, the evolution equation is

Ii(t) = i0(1 + pt(qi − 1)) + ... (48)

7 Algorithms and Results

7.1 Details of Where algorithm

Assume one has a snapshot of the disease state reported exactly t days after the beginning of the pandemic:

(Ie1 , I
e
2 , ..., I

e
n). (49)

The goal is to find the sources given the starting time and a snapshot of the disease.
We know that the dynamic of I⃗(t) is:

I⃗(t) = eB̂ptI⃗(0) (50)

If there are some nodes responsible for the spread of the disease in the network with the initial number of patient
of i0i , i0j , i0k , . . . , then I⃗(0) can be decomposed into a summation of different initial vectors, each representing
a specific node. Therefore we have

I⃗(t) = eB̂pt(I⃗i(0) + I⃗j(0) + I⃗k(0) + ...) (51)

I⃗(t) = I⃗i(t) + I⃗j(t) + ..., (52)

where
I⃗i(t) = eB̂ptI⃗i(0). (53)

Now if we define the basis vector i⃗ to be a vector with 1 in component i and 0 in all other components, we
can write:

I⃗i(0) = i0i⃗i (54)

I⃗(t) = (eB̂pti0i⃗i + eB̂pti0j j⃗ + ...). (55)

So if we change our basis from i⃗ into i⃗′ :

i⃗′ = eB̂pt⃗i, (56)

it can be easily shown that in the linear range, these new bases are complete and orthogonal. Now, we define
the ”weight of a node” as

Wi =
i⃗′.I⃗(t)∑
i⃗′ i⃗

′.I⃗(t)
. (57)

Wi is a number between 0 and 1 and shows the contribution of the node i at the beginning of the spread. If
Wi is 1 it means that node i was responsible alone. So by calculating the defined weight for different nodes, we
can understand the role and impact of each node on the spread.
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7.2 Details of When algorithm

Assuming to have a snapshot of the state of the disease at a specific time written down as a vector:

I⃗e = (Ie1 , I
e
2 , ..., I

e
n) (58)

where Iei represents the number of infected people in its corresponding node. n is the number of nodes in the
network. We aim to determine the starting time of the disease using both the model and the snapshot. We
define MSE (Mean Squared Error) as a closeness parameter for two vectors:

∆i(t) =

∑n
j=1(Ij − Iej )2

n
(59)

in which i is the index of the source and Ij is the number of patients in the node j predicted by the model.
Now, we calculate the closeness parameter of the snapshot vector and the disease vector that comes out of

the theory (using the first and the second term) in a determined time t:

∆κ=1
i (t) =

1

n
((i0(1 + (βNi − γ − p)t) − Iei )2 +

n∑
i=j,j!=i

(Pijpti0 − Iej )2) (60)

To find the minimum of the closeness parameter, we calculate the derivative of the above equation with

respect to the t (d∆m(t)
dt = 0)

t∗i =
1

i0

−η(i0 − Iei ) + p
∑

(PijI
e
j )

η2 + p2
∑

P 2
ij

(61)

in which η = (βNm − γ − p).

It means that the theory predicts the snapshot belongs to t days after the start of the disease. So the
overtaking time would be t days before the date of the snapshot.

7.3 Error in When algorithm

In this subsection we want to explain the way we estimated the error in When algorithm. It is crucial to note
that the source of error in this algorithm is coming from the additional term in the Taylor expansion. In this
case, for the source node, the dynamic is:

Ii(t) = C + Ait + Bit
2 (62)

And for non-source nodes, the dynamic is :

Ij(t) = Ajt + Bjt
2 (63)

The A,B,C coefficients are constants that are calculated via Eq.47 and Eq.48. Now we define MSE parameter:

∆ = (C + Ait + Bit
2 − Iei )2 +

∑
j

(Ajt + Bjt
2 − Iej )2 (64)

which leads to the following equation:

∆ = ∆0 + 2t2((C − Iei )Bi −
∑
j

(IejBj)t
2) (65)

By rewriting the right term in the above equation:

η = 2(C − Iei )Bi −
∑
j

(IejBj) (66)

We are able to rewrite the MSE parameter :

∆ = ∆0 + ηt2 (67)

Now, by applying the derivative condition to the new equation :

d∆

dt
=

d∆0

dt
+ 2ηt = 0 (68)
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The condition of having zero value derivative happens in:

d∆0

dt
= −2ηt (69)

To find the specific point that the above condition is met, we use the Taylor expansion of ∆0 function in the
minimum point of the function(t∗).

∆0(t) = ∆0(t∗) +
1

2

d2∆0(t)

dt2
(δt)2 + ... (70)

In the above equation, the first derivative term is equal to zero since the ∆0 function is in its minimum in t∗.
Then by substituting the Taylor expansion, we have :

δt

t
=

η
d2∆0

dt2

(71)

7.4 Details of Effective Distance algorithm

In this part, we define the overtaking time of a disease in a specific node as the time when intra-population
dynamics surpass the inter-population dynamic. The critical mathematical condition for this state for node j
is :

(Njβj − γj)Ij = p(
∑
k

PkjIk − Ij) (72)

If we rewrite this equation, we have:

p(
∑
k

PkjIk) − (βj − γj + p)Ij = 0 (73)

So if we define vector A⃗i for the j-th node:

A⃗j = (P1j , P2j , ...,−(qj + 1), ..., Pnj) (74)

In which −(qj + 1) is in the jth component.
Now, we can write the critical condition for node j in a simpler way:

A⃗j .I⃗ = 0 (75)

If we want to calculate the overtaking time for node j, we can use the evolution equation of I⃗ :

⃗I(t) = ⃗I(0) + ptB̂I⃗0 (76)

If we dot product the vector A⃗j in both sides of the above equation and set the left side of the equation to be
zero :

0 = A⃗j .I⃗0 + ptAA⃗j .B̂I⃗0 (77)

So the overtaking time would be:

tjO = − 1
p

A⃗j .I⃗0

A⃗j .B̂I⃗0

If we assume the ith Node to be the source, the I⃗0 would be :

I⃗0 = i0(0, 0, ...1, ...0)

In which the 1 is in the ith component. Therefore, the numerator of the overtaking time equation would be:
PijI0
For calculating the denominator, first we have to calculate B̂I⃗0 that would be :

B̂I⃗0 = i0(Pi1, Pi2, .., qi − 1, ..., Pin) (78)

In which the qi − 1 term is in the ith component. Now we have to calculate the A⃗j .B̂I⃗0 that would be:

i0(P 1
ij − (2 + qj − qi)Pij ) (79)

In which P 1
ij =

∑
k PikPkj

So by substituting these terms in the overtaking time equation, we have :

tjO =
1

p

1

(2 + qj − qi) −
P 1

ij

Pij

(80)
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7.5 Error in Effective Distance algorithm

In this subsection, we aim to explain the way we estimated error in Effective Distance algorithm. The source
of error here, is the additional term in the Taylor expansion. So if we keep the second term of the expansion,
we have :

⃗I(t) = ⃗I0(t) + ptB̂I⃗0 +
1

2
(pt)2B̂2I⃗0 (81)

Now by applying the condition of overtaking in node j:

0 = A⃗j .I⃗0 + ptj(A⃗jB̂I⃗0) +
1

2
(ptj)

2(A⃗j .B̂
2I⃗0) (82)

By rewriting time we have:
tj = t∗j + δtj (83)

In which, t∗j is the overtaking time when we only consider the first term of the expansion. hence the equation
will be in this form:

0 = A⃗j .I⃗0 + pt∗j A⃗jB̂I⃗0 + pδtjA⃗jB̂I⃗0 +
1

2
(p(t∗j + δt)2A⃗B̂2I⃗0 (84)

The first two terms in the right-hand side of the equation will cancel each other out. By simplification of the
above equation the final equation for the error will be :

δtj
t∗j

=
−pt∗j A⃗j .B̂2I⃗0

2(pt∗j A⃗j .B̂2I⃗0 + A⃗j .B̂I⃗0)
(85)

7.6 How to estimate Effective Distance without mobility data

In the previous subsection we introduced a new definition of effective distance and showed its linear relation
with the overtaking time. There are two challenges when it comes to the approval of the relations with empirical
data. First, The exact value of overtaking time is not known. Second, the exact value of the probability matrix is
not accessible, especially after the quarantine policy in each country. In this section, we aim to bring up a novel
data analysis method to overcome these challenges and confirm our theoretical achievements with empirical
data. We have shown in previous sections that the temporal evolution of infected numbers is known for each
node based on the general theory. Also, we know that the most accurate and accessible empirical data is the
number of infected people in each node. So If we could rewrite our definition of effective distance in a way that
only the number of infected people would be needed, we can achieve a new way to check our claims. Also, using
official daily number of patients in different cases, we’ve estimated each node’s overtaking time. We will show
that there is a high correlation between effective distance and the estimated overtaking times.

Consider the number of infectious people versus time. Since the initial value is zero for non-source nodes,
one can rewrite the equation for non-source nodes by rescaling time from t into T = pt :

Ij = AjT + BjT
2 (86)

where Ij is the number of patients in the non-source node j, Aj = Piji0, and Bj = 1
2 (Pij1 +Pij(qi +qj−2)).

With a simple algebra on Eq. 80 the effective distance can be rewritten according to Aj and Bj as :

Dij =
1

qj − Bj

Aj

(87)

It is worth noting that Eq. 87 is independent of i0, the initial number of patients, which is challenging to find
at the beginning of a pandemic.

Now, we can calculate Aj and Bj by fitting a parabola to each non-source node patient data. However, there
is a likely gap between official and empirical data owing to the fact that it takes several days for governments
to identify patients at the beginning. Therefore, to fit, we’ve used

Ij = Qj + AjT + BjT
2 (88)

in which Qj is the gap.
Moreover, to find qj , it is enough to fit a line to the semi-log plot of patients- time, where it represents an

acceptable exponential behavior, resulting from the SIR dynamics. The slop is equal to qj .
The predicted overtaking time is the time when the number of patients is zero. After the coefficients were

found, it can be calculated by solving the

0 = Qj + AjT + BjT
2 (89)
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which leads to

T =
−Aj +

√
A2

j − 4QjBj

2Aj
. (90)

The differences in the regression of lines and number of points in this algorithm come from the accuracy of

the raw data and also the mathematical condition (
P 1

ij

Pij
< 2) that constrain the presence of some nodes in our

calculation in different scenarios
It is worth noting that in our formalism the linear relation between Effective distance and overtaking time

has y-intercept of zero and the source node has to be in (0,0) naturally. But in Figure.5 we observe that
y-intercept has a non-zero value, which could be interpreted as a shift in the values of empirical overtaking
times.

8 Using SEIR instead of SIR

If we consider the SEIR dynamic and its equations:

dE

dt
= βIS − σE (91)

dI

dt
= σE − γI (92)

By substituting E from the first equation and putting it into the second, we will have :

dI

dt
= βIS − γI − dE

dt
(93)

In the first stages of the dynamic we can use two assumptions:
First, we can consider the S to be the total population which is N:

S = N (94)

Also, we assume that the βI is small in comparison to the σE so the first equation would be in the form of :

dE

dt
= −σE (95)

By using this equation we will have:

dI

dt
= βIN − γI + σE(0) (96)

Compared to the SIR model, now the solution of our model (by combining the effect of mobility) would be :

⃗I(t) = eB̂pt ⃗I(0) + σ ⃗E(0)t (97)

If we expand this equation, we will have:

⃗I(t) = (Î + B̂pt + ...) ⃗I(0) + σ ⃗E(0)t (98)

We can summarize the above equation in this form :

⃗I(t) = ⃗I(0) + (B̂pt ⃗I(0) + σ ⃗E(0))t (99)

Now by applying the Overtaking condition for node j :

⃗I(t).A⃗j = 0 (100)

we will have :
0 = ⃗I(0).A⃗j + (B̂p ⃗I(0).A⃗j + σ ⃗E(0).A⃗j)t (101)

So the overtaking time will be:

− ⃗I(0).A⃗j

(B̂ ⃗I(0).A⃗j + σ
p

⃗E(0).A⃗j)
= pto (102)

By using Taylor expansion :

− ⃗I(0).A⃗j

(B̂ ⃗I(0).A⃗j + σ
p

⃗E(0).A⃗j)
= pto (103)
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9 Data

In this study, we primarily utilized two different types of data: A) Snapshots of active infected cases in each
subpopulation during the linear phase, some of which are visualized in Fig. 2, panels A and A′, and B) Coarse-
grained representations of inter-population mobility, illustrated in Fig. 2, panels B and B′. Both data types
were used for Figs. 2 and 3, while only mobility data were used for Fig. 4, and only infected cases were used
for Fig. 5, see section 7.6 for more details.

We obtained the number of infected people during the COVID-19 pandemic for different provinces of Iran
from official reports by the Ministry of Health and Medical Education of Iran, which are available in Persian
at request, and from The COVID Tracking Project at The Atlantic [31] for different states of the US. Data
regarding the H1N1 pandemic was downloaded from ”www.who.int”. Abbreviations for Iranian provinces and
American states are listed in Sec. 9.1.

The daily mobility data, which encompasses all forms of transportation for Iran (provided by the Basir
company) and the USA [52], is averaged from March 1st to 3rd, 2020, for Iran, and from January to April 2020
for the USA.

9.1 Abbreviation

State Abv. State Abv. State Abv. State Abv.
Alabama AL Alaska AK Arizona AZ Arkansas AR
California CA Colorado CO Connecticut CT Delaware DE
Columbia DC Florida FL Georgia GA Idaho ID
Kentucky KY Louisiana LA Maine ME Maryland MD
Illinois IL Indiana IN Iowa IA Kansas KS
Kentucky KY Louisiana LA Maine ME Maryland MD
Massachusetts MA Michigan MI Minnesota MN Mississippi MS
Missouri MO Montana MT Nebraska NE Nevada NV
NewHampshire NH New Jersey NJ New Mexico NM New York NY
North Carolina NC North Dakota ND Ohio OH Oklahoma OK
Oregon OR Pennsylvania PA Rhode Island RI South Carolina SC
South Dakota SD Tennessee TN Texas TX Utah UT
Vermont VT Virginia VA Washington WA West Virginia WV
Wisconsin WI Wyoming WY – – – –

Table 2: Abbreviation of the US states.
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Province Abv. Province Abv.
Ardabil AR Sistan-Baluchestan SB
Ilam IL Golestan GL
Khorasan-North KS Gilan GI
Kurdistan-South KJ Yazd YZ
Kermanshah KM Zanjan ZN
Kordestan KD Kohgiluyeh-Boyer-Ahmad KB
Bushehr BU ChaharMahaal-Bakhtiari CB
Khorasan-Razavi KR Mazandaran MZ
Khuzestan KZ Hormozgan HR
Kerman KN Hamadan HM
Lorestan LR Azerbaijan-West AG
Qom QM Azerbaijan-East AS
Semnan SM Fars FR
Isfahan ES Qazvin QZ
Markazi MK Alborz AL
Tehran TH

Table 3: Abbreviation of provinces of Iran.

10 Sensitivity Analysis

These plots represent the sensitivity analysis in which γ has been changed from 1
13 to 1

20 and R0 which is the
basic reproductive number has been changed from 2.5 to 4.5. By using the day 5 from the official start of the
pandemic we can say the 5 maximum provinces in the node power list is Qom, Tehran, Gilan, Markazi and
Alborz. These provinces stay sorted in this format for all the values of R0 and γ. As the R0 increases the value
of error increases too. As γ decreases the value of error decreases. But by looking at 10 days we can see that
the place of Tehran and Qom has been swaped. Alborz came to the third place and got the previous position of
Gilan. But pay attention that all these names remain reserved in the 10 days. But in 20 days Semnan appears
in the list.
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Figure 6: Calculated Wm for different provinces of Iran, and for different values of R0 and γ, using the number
of infected people in the fifth day of the COVID-19 pandemic in Iran.
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Figure 7: Calculated Wm for different provinces of Iran, and for different values of R0 and γ, using the number
of infected people in the tenth day of the COVID-19 pandemic in Iran.
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Figure 8: Calculated Wm for different provinces of Iran, and for different values of R0 and γ, using the number
of infected people in the fifteenth day of the COVID-19 pandemic in Iran.
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Figure 9: Calculated Wm for different states of the US, and for different values of R0 and γ, using the number
of infected individuals in day 45 of the COVID-19 pandemic in the US.
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Figure 10: Calculated Wm for different states of the US, and for different values of R0 and γ, using the number
of infected individuals in day 50 of the COVID-19 pandemic in the US.
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Figure 11: Calculated Wm for different states of the US, and for different values of R0 and γ, using the number
of infected individuals in day 55 of the COVID-19 pandemic in the US.
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