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Evaluating Large Language
Models for Material Selection
Material selection is a crucial step in conceptual design due to its significant impact
on the functionality, aesthetics, manufacturability, and sustainability impact of the final
product. This study investigates the use of Large Language Models (LLMs) for material
selection in the product design process and compares the performance of LLMs against
expert choices for various design scenarios. By collecting a dataset of expert material
preferences, the study provides a basis for evaluating how well LLMs can align with
expert recommendations through prompt engineering and hyperparameter tuning. The
divergence between LLM and expert recommendations is measured across different model
configurations, prompt strategies, and temperature settings. This approach allows for a
detailed analysis of factors influencing the LLMs’ effectiveness in recommending materials.
The results from this study highlight two failure modes, and identify parallel prompting as
a useful prompt-engineering method when using LLMs for material selection. The findings
further suggest that, while LLMs can provide valuable assistance, their recommendations
often vary significantly from those of human experts. This discrepancy underscores the
need for further research into how LLMs can be better tailored to replicate expert decision-
making in material selection. This work contributes to the growing body of knowledge on
how LLMs can be integrated into the design process, offering insights into their current
limitations and potential for future improvements.
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1 Introduction
Material selection plays an important role in the conceptual de-

sign phase of engineering projects. The choice of materials di-
rectly impacts the overall performance, durability, and efficiency
of a product. Selecting the right material ensures that the design
meets its intended purpose, withstands loads, and performs opti-
mally [1]. Material selection affects manufacturing costs, mainte-
nance expenses, and the product’s lifecycle cost. Opting for cost-
effective materials without compromising quality is essential [2].
For instance, using lightweight materials can reduce transportation
costs and energy consumption. In critical applications, material
failure can have catastrophic consequences [3]. Proper material
selection ensures safety, reliability, and longevity. For instance,
selecting materials with corrosion-resistant properties for marine
structures can prevent premature deterioration. As an added com-
plexity, there is also an emerging requirement for the sustainability
of materials to be considered during selection, specifically how
choices impact the environment. Designers must consider fac-
tors like recyclability, energy consumption during production, and
the broader carbon footprint associated with a candidate material.
Materials influence the ease of manufacturing and assembly [4].
Some materials are easier to shape, weld, or join, leading to effi-
cient production processes. Conversely, poor material choices can
complicate manufacturing and increase costs. Material aesthetics
influence the product’s visual appeal and user experience. Whether
it’s a sleek smartphone casing or a comfortable chair, material se-
lection affects how users perceive and interact with the design.

When treated as an optimization problem, material selection
involves optimizing both the underlying geometry and selecting
an appropriate material. While some problems allow for sepa-
rate optimization of material and geometry, in general, they are
intertwined. The discrete nature of material selection poses chal-
lenges when combined with gradient-based geometry optimization.
Researchers have proposed innovative approaches to address this
complex problem. One such approach involves using variational
autoencoders (VAEs). This framework has been demonstrated ef-
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fectively in truss design scenarios, where optimal materials are
chosen from a database while simultaneously optimizing cross-
sectional areas [5]. However, material selection as an optimization
problem has its limitations. The multi-objective nature of mate-
rial selection involves conflicting criteria such as strength, weight,
cost, and environmental impact. Balancing these objectives can be
challenging, especially when considering multiple parts or com-
ponents in a system [6]. Material selection inherently involves
discrete choices from a finite set of options. Integrating discrete
material selection with continuous geometry optimization methods
can be computationally demanding and may require specialized
algorithms [5]. Material properties can exhibit variability due to
manufacturing processes, environmental conditions, and other fac-
tors. Incorporating uncertainty into optimization models is essen-
tial but adds complexity [7]. Selecting an optimal material often
involves trade-offs. For instance, choosing a lightweight material
may sacrifice strength. These trade-offs require careful consider-
ation during the optimization process, and might result in multi-
ple right answers to varying degrees [1]. Because of that, and
given that material requirements are often textual, it is possible
that Large Language Models (LLMs) could support the material
selection task, similarly to how they have been used for conceptual
design inspiration [8].

In recent years, LLMs, or large-scale pre-trained neural net-
works, have emerged as powerful tools for natural language un-
derstanding. These models can process and generate human-like
text, making them well-suited for handling textual material require-
ments. But can LLMs help designers navigate the multifaceted
material selection landscape? In this study, to capture designer’s
preferences towards certain material categories in different design
scenarios, we collect a dataset of material preference from experts,
across a set of design cases and design criteria. We then conduct
a series of experiments to evaluate whether model choice, prompt
engineering techniques, or hyperparameter tuning can help guide
the LLMs toward more expert recommendations for a material se-
lection task.

We focus on two primary evaluation metrics: the z-score and the
mean absolute error. These metrics serve as quantitative measures
to evaluate the performance of materials against various criteria.
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Fig. 1 Overview of the method used to create the corpus of questions submitted to survey participants and to the LLMs, the
experiments used to evaluate the LLMs, and the evaluation metrics used to compare the LLM results to the survey responses.

The z-score quantifies how many standard deviations a material
property deviates from the mean of a reference dataset. The mean
absolute error (or Manhattan distance) measures the absolute dif-
ference between the corresponding components of the two data
sets.

This paper is guided by the following research questions:

(1) To what extent do LLMs exhibit bias toward specific mate-
rials?

(2) What effective methods can be employed to steer the LLMs
towards appropriate material selection patterns?

To support further development of LLM methods and evaluation
on our data, the survey data, generated data, and code is available
on Github2.

2 Background
In this section we review works related to material selection and

associated challenges, large language models and their application
to design, and motivation specific to this problem.

2.1 Challenges in Material Selection. Material selection is a
critical part of designing and producing any physical object. Mate-
rial selection occurs in the early stages of the design workflow and
maintains relevance beyond the useful life of a product. Materials
directly influence the functionality, aesthetics, economic viability,
manufacturing feasibility, and ultimately its environmental impact
of a design [9–11]. M. F. Ashby is often cited for presenting a
systematic approach to material selection through the use of bub-
ble plots, known as "Ashby" diagrams, which allow a designer to
evaluate up to two material properties to identify those materials
that perform above a desired threshold [1]. This approach requires
an intimate understanding of a product’s design intent, the design
priorities (such as low mass), constraints (manufacturing process),
and other requirements relevant to the object being designed (in-
dustry regulations). In recent years, additional factors have also
become increasingly important to consider. Sustainability, for ex-
ample, is a growing global concern, and manufacturing alone is
reported to contribute significantly to resource consumption and
greenhouse gas emissions [12]. Thus, selecting materials with
lower environmental impact, such as recycled content or those re-
quiring less energy to produce, aligns with ethical practices and
growing consumer expectations [13–15]. Material availability is
also becoming a critical consideration due to supply chain dis-
ruptions, geopolitical challenges, or regulations on material use.
The growing complexity of design requirements, does not reduce
the implications of improper material selection which can lead to
increased overall costs, product failure, or greater environmental
harm [16].

2https://github.com/grndnl/llm_material_selection_jcise/releases/tag/v1.0

In product design, material selection can be broken down into a
general five-step procedure: (1) establishing design requirements,
(2) screening materials, (3) ranking materials, (4) researching ma-
terial candidates, and (5) applying constraints to the selection pro-
cess [17]. Performance indices and material property charts, called
Ashby diagrams, are often used to visualize, filter, and cluster ma-
terials [17, 18].

Traditionally, material selection has relied heavily on engineer-
ing intuition and familiarity with existing materials. Particularly in
industries with less prescriptive standards or specifications [19, 20].
Even with Ashby’s systematic approach to material selection, the
process is non-trivial and can still leave designers with uncer-
tainty as to how well a candidate material will perform in real-
ity [1, 18, 21]. Data and knowledge are essential, without which,
limited exploration of alternative or innovative options can occur
leading to sub-optimal designs [22, 23]. While established meth-
ods like Ashby diagrams can guide designers and encourage them
to consider a wider range of possibilities, material databases [24]
cannot often account for the ever-growing universe of materials
and broadening design considerations outlined above.

The field of material science is currently undergoing a signifi-
cant transformation due to the advent of artificial intelligence (AI).
Traditional, labor-intensive methods of materials discovery are be-
ing replaced with automated, parallel, and iterative processes, ac-
celerating the discovery and development of new materials on an
unprecedented scale [25]. Noteworthy research in this field in-
cludes the GNoME project, which claims to have discovered mil-
lions of theoretically possible materials using graph neural net-
works (GNNs) trained on expansive datasets [26]. IBM Research
has also leveraged AI to pioneer novel battery chemistries that
eschew reliance on heavy metals such as cobalt and nickel [27].

LLMs have been trained with domain-specific materials knowl-
edge to assess their effectiveness in navigating complex topics.
Recent studies exploring the readiness of LLMs, specifically those
trained with domain-specific data (known as MatSci-LLMs) [28],
suggest that domain-adaptation and task-specific prompting strate-
gies are necessary to extract the desired output from these models.
In addition, multimodel datasets require fine-tuning to yield sensi-
ble outputs and provide useful insights for deeper material science
research [29].

The rapid pace of material discovery, driven by various AI tech-
nologies, presents a challenging question: how can a non-materials
expert navigate the ever-growing array of potential materials to
identify the best candidates for specific design requirements? The
application of LLMs to material selection tasks has emerged as a
logical and increasingly crucial area of investigation. This is espe-
cially relevant for newly discovered materials, which are relatively
unexplored in terms of scalable feasibility and broader property
attributes. While previous studies have evaluated the efficacy of
LLMs for providing insights into deep, domain-specific knowledge,
the evaluation of material selection for component design remains
an open area for investigation.
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Even with full visibility of the known material universe, the task
of material selection during the conceptual design stage is not with-
out its challenges. For instance, the process can often be subjective,
potentially overlooking promising new materials simply because
designers are unfamiliar with them [30, 31]. Uncertainty regard-
ing the performance of novel materials can further hinder their
adoption. Additionally, manufacturing innovations like additive
manufacturing or meta-materials [32–34] are allowing previously
unfeasible materials to now become viable options [35]. This high-
lights the need for a data-driven approach to material selection, one
that can objectively evaluate a broader range of options while con-
sidering the complex interplay of design requirements and provide
insights when selecting a particular option [36]. Large Language
Models (LLMs) offer a powerful new tool for material selection.
By learning from vast datasets of past design experiences and ma-
terial properties, LLMs can provide valuable insights that would
otherwise require extensive research or experimentation.

2.2 Evaluating Large Language Models. Language models
(LMs) are computational models that have the ability to understand
and generate human language [37–39]. LMs have the transforma-
tive ability to predict the likelihood of word sequences or generate
new text based on a given input.

LLMs [40–42] are advanced language models with large param-
eter sizes and exceptional learning capabilities. The core module
behind many LLMs such as GPT-3 [43] and GPT-4 [44] is the
self-attention module in Transformer [45] that serves as the funda-
mental building block for language modeling tasks. Transformers
have revolutionized the field of NLP with their ability to handle se-
quential data efficiently, allowing for parallelization and capturing
long-range dependencies in text. One key feature of LLMs is in-
context learning, where the model is trained to generate text based
on a given context or prompt [46]. This enables LLMs to generate
more coherent and contextually relevant responses, making them
suitable for interactive and conversational applications.

One common approach to interacting with LLMs is prompt en-
gineering, where users design and provide specific prompt texts to
guide LLMs in generating desired responses or performing spe-
cific tasks [47–49]. This is widely adopted in existing evaluation
efforts. People can also participate in question-and-answer interac-
tions, where they pose questions to the model and receive answers,
or engage in dialogue interactions, having natural language con-
versations with LLM [50].

Assessing the performance of the model is an essential step
in evaluating the model. Due to the extensive training data for
LLMs, it might not even be feasible to evaluate deep learning
models. Thus, evaluation on a static validation set has long been
the standard choice for deep learning models [51]. For example,
computer vision models take advantage of static test sets such as
ImageNet [52] and MS COCO [53] for evaluation. LLMs also use
GLUE [54] or SuperGLUE [55] as common test sets. As LLMs are
becoming more popular with even poorer interpretability, existing
evaluation protocols may not be enough to thoroughly evaluate the
true capabilities of LLMs.

Automated evaluation is a common and perhaps the most pop-
ular evaluation method that typically uses standard metrics and
evaluation tools to evaluate model performance. Compared to hu-
man evaluation, automatic evaluation does not require intensive
human participation, which not only saves time, but also reduces
the impact of subjective factors of humans and makes the evalua-
tion process more standardized [51].

LLM-EVAL [56] is a benchmark that is a unified multidimen-
sional automatic evaluation method for open-domain conversations
with large language models (LLM). PandaLM [57] is trained to dis-
tinguish the superior model given several LLMs. Jain et al. [58]
enabled a more efficient form of evaluating models in real-world
deployment by eliminating the need for laborious labeling of new
data. Automatic evaluation is also done using standard bench-
marks such as MMLU [59], HELM [60], C-Eval [61], AGIEval
[62], AlpacaFarm [63], Chatbot Arena [64], etc.

The increasingly strengthened capabilities of LLMs have gone
beyond standard evaluation metrics on general natural language
tasks. Therefore, human evaluation becomes a natural choice in
some non-standard cases where automatic evaluation is not suit-
able. For example, in open-generation tasks where embedded sim-
ilarity metrics (such as BERTScore) are not sufficient, human eval-
uation is more reliable [65]. Human evaluation is a way to evaluate
the quality and accuracy of model-generated results through human
participation. Compared to automatic evaluation, manual evalua-
tion is closer to the actual application scenario and can provide
more comprehensive and accurate feedback. In manual LLM eval-
uation, evaluators (such as experts, researchers, or ordinary users)
are usually invited to evaluate the results generated by the model.
Bubeck et al. [66], Bang et al. [67], Liang et al. [60], Ziems
et al. [68], all manually evaluated LLMs compared to some ex-
perts or humans. Although a high variance can be observed in
human evaluations attributed to cultural and individual differences
[69], from the work of Tjuatja et al. [70], they highlight the pit-
falls of using LLMs as human proxies, and underscore the need
for finer-grained characterizations of model behavior. This behav-
ior is further backed up by the work of Hopkins et al. [71] -
LLMs struggle to induce reasonable distributions over generated
elements, suggesting that practitioners should more carefully con-
sider the semantics and methodologies of sampling from LLMs.

In this work, we also perform a human evaluation of LLMs and
prompt engineering methods by collecting a large dataset of expert-
selected scores for a set of materials in specific design scenarios.

2.3 Automating Material Selection with Machine Learning
and Large Language Models. The process of selecting materials
for engineering applications is an interdisciplinary task. It involves
an understanding of material properties, structure, and their appli-
cations in the context of design requirements. Traditionally, it has
relied heavily on the expertise of engineers and scientists and has
led to the emergence of a distinct discipline in its own right. Over
the years, research has explored the automation of this process,
targeting the selection of materials for specific types of objects
(e.g., nozzles, beams) and design functions (e.g., heat transfer and
storage), often framing material selection as an optimization chal-
lenge [72–79].

While initial efforts to automate material selection have pri-
marily utilized numerical methods and traditional optimization
techniques, there has been a shift towards incorporating machine
learning, particularly neural networks, into this process. These
approaches, however, often fall short in ranking the suitability of
selected materials, limiting their practical utility [80]. A notable
exception is the work by Zhou et al., which integrates a two-layer
neural network with a genetic algorithm to select sustainable mate-
rials, demonstrating the approach through the design of a drink con-
tainer [81]. Similarly, Chandrasekhar et al. employ a variational
autoencoder in conjunction with a geometry encoder neural net-
work, allowing for the simultaneous optimization of both the ma-
terial and the geometry of a beam structure [76]. More recent work
has leveraged large collections of CAD data with material labels
and used graph neural networks to rank the most appropriate ma-
terials with a manufacturing- and class-agnostic method [82, 83].

Advancements in the natural language processing field around
transformer-based architectures, coupled with training models on
larger and larger datasets, have resulted in several pre-trained Large
Language Models (LLMs) capable of mimicking human language,
which appear to exhibit emergent reasoning capabilities [45, 84–
88]. In the design engineering domain, recent work has looked at
leveraging LLMs to support designers during the conceptual design
stage [8, 89, 90], as well as for detail design [91–94]. Regarding
material selection, LLMs have been used to select appropriate ma-
terials from an Ashby chart [91], assist with selecting materials for
building components [95], and propose appropriate manufacturing
methods [96]. LLMs have also been fine-tuned on text extracted
from a material textbook to aid in material-related design tasks
[97].
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In this work, we further explore the potential for using LLMs
to drive material selection. Specifically, we designed a survey
to collect a dataset of expert material selection responses, and we
conduct a variety of LLM experiments in comparison to that expert
data. We investigate a wide variety of prompting approaches and
conduct a hyperparameter study over temperature, comparing LLM
results to survey responses using both statistical and distance-based
metrics.

3 Methods
3.1 Data Collection. To answer the research questions we first

collected a dataset of material preferences by conducting an online
survey among professionals with varied experiences in the field of
material selection for mechanical design.

The survey consisted of 4 design cases (kitchen utensil grip,
spacecraft component, underwater component, and safety helmet
for sport) and 4 design criteria (lightweight, heat resistant, cor-
rosion resistant and high strength) combined in a full factorial
experimental design to produce 16 scenario-based questions. The
design cases and criteria were chosen through some pilot studies
to maximize the likeness of appropriate and inappropriate material
options, and they are also used throughout the LLM experiments.
For each question, participants were asked to score a set of nine
materials (steel, aluminum, titanium, glass, wood, thermoplastic,
elastomer, thermoset, and composite) on a scale from 0 to 10, with
0 being unsatisfactory in the specific application and 10 being an
excellent choice. These material categories were chosen to cover a
wide range of design use cases, to balance high-level and low-level
material categories, and to limit the survey length.

The survey also collected basic demographic information to en-
sure that participants had the necessary knowledge and background
to provide strong preferences for material selection. After a series
of pilot studies to determine the suitability of the designs, crite-
ria, materials, and data input method, the survey was distributed
to professionals who have worked as materials scientists, materials
engineers, design engineers, or related fields, through the Autodesk
Research Community network, where it remained accessible for 30
days.

A total of 139 respondents participated in the survey. 136 par-
ticipants indicated that they had material selection experience, and
their responses were kept. As the 16 questions presented to the par-
ticipants were randomized and independent, we kept all answers
even though participants might not have completed every question
in the survey. This resulted in a total of 10,544 survey responses
across the 9 material categories. The distribution of responses
grouped by design and criteria is shown in Figure 2.

3.2 LLMs used for evaluation. We perform experiments on
three leading models, including one open-source model (Mixtral),
one closed-source model (GPT4), and one open-source model fine-
tuned on relevant work (MechGPT). The relative strengths of these
models and more justification behind their selection is articulated
below.

(1) The closed-source model from OpenAI GPT4 (gpt-4-
0125-preview) is chosen because of its high performance
on existing benchmarks, including other design tasks [91,
98, 99].

(2) Mixtral, the open-source model from Mistal AI (mixtral-
8x7b-instruct-v0.1) is chosen because of its open-source
weights and performance comparable to GPT-3.5 [100, 101].

(3) Lastly, MechGPT, a recently released fine-tuned OpenOrca-
Platypus2-13B model, is chosen as it was fine-tuned specif-
ically on a corpus of mechanics of materials and materials
modeling, which might aid in a material selection task for
product design [102, 103].

We use the default parameters for each of the models as defined
in their documentation. We use temperatures of 0.1, 0.75, and
0.4 for GPT4, Mixtral, and MechGPT respectively for each of the
experiments described in the following sections (except for the
temperature experiment).

3.3 LLM Experiments. To answer our second research ques-
tion around viable methods to steer LLMs towards expert solu-
tions for a material selection task, we evaluate a series of prompt-
engineering methods popular in the natural language processing
domain. We also report the effect of temperature as a hyper-
parameter for the material selection task.

For all experiments, we begin the prompt with a preamble, pro-
viding some context to the model and introducing each of the four
designs and four criteria being tested (substituting {design} and
{criterion} respectively), as follows:

Preamble

You are a material science and design engineer
expert.

You are tasked with designing a {design}. The
design should be {criterion}.

3.3.1 Zero-shot. Research has shown that LLMs exhibit zero-
shot reasoning capabilities for arithmetic and other logical reason-
ing tasks [104]. Thus, as a baseline, we test a zero-shot approach
to material selection, where, for each of the nine materials and 16
design scenarios, the model is prompted to report a value from 0
to 10 to describe the applicability of the material in that specific
design scenario. To the preamble described in the previous sec-
tion, we append the following text, and pass the information to the
models:

Zero-shot Prompt

How well do you think {material} would perform in
this application? Answer on a scale of 1-10, where
0 is ‘unsatisfactory’, 5 is ‘acceptable’, and 10
is ‘excellent’, with just the number and no other
words.

In this prompt, {material} is substituted for each of the nine
materials being tested, resulting in a total of 144 prompts.The
wording of the zero-shot prompt was chosen to match the questions
posed to the survey participants.
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3.3.2 Few-shot. Few-shot prompting involves providing the
model with one or more demonstrative examples, with the intent
of giving some task-specific context to the model, which has been
shown to surpass a zero-shot approach across a range of bench-
marks [84].

In the context of our material selection task, we take a two-shot
approach, where we include in the prompt two examples not present
in our survey formulation previously described in Section 3.1 and
shown in Figure 1. The two examples are a ‘bicycle frame grip’
that needs to be ‘impact resistant’, and a ‘medical implant grip’ that
needs to be ‘durable’. We assemble the prompt for this method by
appending to the preamble the following text, where {few_shot}
is replaced by the aforementioned two examples (the full text of
which can be found in Appendix A:

Few-shot Prompt

Below are two examples of how materials would per-
form from 1-10 given a design and a criterion:

{few_shot}
How well do you think {material} would perform

in this application? Answer on a scale of 1-10,
where 0 is ’unsatisfactory’, 5 is ’acceptable’,
and 10 is ’excellent’, with just the number and no
other words.

3.3.3 Parallel Agents. While the zero-shot and few-shot meth-
ods ask the model to provide a score for each of the nine materials
separately (in serial), another method is to ask the model for the
scores of all nine materials simultaneously (in parallel). Asking the
model for all nine scores in the same prompt reduces the number
of prompts from 144 to just 16. Thus, this method has the benefit
of increasing scalability to a much larger number of material cate-
gories. However, parallelizing requires more post-processing of the
output, and introduces more opportunities for model hallucination,
given the higher complexity of the question.

Initial experiments showed that at least one of the models we
evaluated required more detailed instructions to give scores for all
nine materials in a consistent manner. The additional clarifications
can be seen in the following prompt, where again, we start with
the preamble and append the following text:

Parallel Prompt

For each of the following materials, how well do
you think they would perform in this application?
Answer on a scale of 1-10, where 0 is ‘unsatisfac-
tory’, 5 is ‘acceptable’, and 10 is ‘excellent’,
just with the integers separated by commas, and no
other words or explanation. Be concise and answer
for all 9 materials.

Materials:
{materials}
Answers:

3.3.4 Chain-of-thought. Prior work has shown that generat-
ing a chain of thought, or intermediate reasoning steps, signifi-
cantly improved the ability of LLMs to perform different reasoning
tasks [105]. This method has been expanded to tree-of-thoughts (to
include multiple chains) [106], and generalized in methods that al-
low the model to reflect on the answers, provide more explanations,
or correct itself [107, 108].

In this paper, we implement a two-step chain-of-thought, where
we first ask the model to describe how the material would perform
in the specific design scenario, and include that reasoning in the
final question where we ask the model to give a score. To generate
the reasoning, we append the following text to the preamble:

Chain-of-Thought Prompt 1

How well do you think {material} would perform in
this application?

Then, the reasoning is included in the following prompt as {rea-
soning} (which is again appended to the preamble):

Chain-of-Thought Prompt 2

How well do you think {material} would perform in
this application? Below is some reasoning that you
can follow:

{reasoning}
Answer on a scale of 1-10, where 0 is ’unsatis-

factory’, 5 is ’acceptable’, and 10 is ’excellent’,
with just the number and no other words.

3.3.5 Temperature. Temperature is an LLM hyperparameter
that controls the sampling probability when selecting the next to-
ken. The three LLMs tested all have different guidance and defaults
when choosing the temperature parameter for generation. For all
prompt engineering experiments described previously, we use the
default temperature values of 0.1 for GPT-4, 0.75 for Mixtral, and
0.4 for MechGPT.

In prior literature there are mixed results regarding the impor-
tance of this hyperparameter for question and answering tasks or
more design-focused tasks [109, 110]. Thus, we add to the dis-
course in this work by including this parameter as a controlled
variable, and report zero-shot results by sweeping the temperature
from 0 to 1 for GPT-4 and Mixtral, and from 0.1 to 1 for MechGPT
(as it does not support a temperature of 0).

3.4 Evaluation. To answer the first research question, we seek
to quantify the amount of bias that LLMs have toward specific
materials with two metrics the z-score and the mean distance to
the survey data.

In statistics, the z-score, or standard score, measures the number
of standard deviations by which a value 𝑥 is above or below the
mean 𝜇 of a distribution, whose standard deviation is 𝜎:

𝑧 =
𝑥 − 𝜇

𝜎
(1)

We compute the z-score for each LLM-generated score relative
to the survey data grouped by design, criteria, and material. We
then take the mean of the z-scores, as an average measure of how
far above or below from the mean the LLMs score. The z-score
is valid between -1 and 1, and a z-score closer to 0 indicates that,
on average, the LLMs’ responses are more aligned with the survey
data.

While the z-score tends to be used in the context of normal
curves, we note that some of the survey data aggregated by mate-
rial are not normal, and exhibit bi-modal distributions. To mitigate
possible negative effects of this, we also report the mean absolute
error (MAE) of the generated values to the survey data. By treating
the problem as a regression task, the MAE can give a sense of the
average deviation between the human rankings and the model pre-
dictions. Unlike the z-score, the MAE does not consider whether
the deviation is positive or negative. To calculate the MAE, we
first group the results by design scenarios and material, then, for
each value generated by the LLMs, we compute the mean distance
to each survey data in the relative group as

MAE =
1
𝑛

𝑛∑︂
𝑖=1

|𝑦𝑖 − 𝑦̂𝑖 | (2)
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Fig. 3 Aggregate survey and zero-shot LLM responses,
showing the full range and quartiles across all designs, cri-
teria, and materials.

where 𝑛 is the number of survey responses for the specific de-
sign scenario and material, 𝑦𝑖 is the 𝑖th expert score, 𝑦̂𝑖 is the 𝑖th
predicted score by the LLM, |𝑦𝑖 − 𝑦̂𝑖 | represents the absolute error
of the 𝑖th prediction. The MAE is valid from 0 to 10, and a value
closer to 0 indicates that, on average, the LLMs’ responses are
closer to the survey participants’ responses.

4 Results and Discussion
The mean z-scores and MAE results for all experiments and

models are shown in Table 1 and 2 respectively.
The survey and zero-shot LLM responses are aggregated in Fig-

ure 3. The zero-shot results are further broken down for each
material in Figure 4, and for each design and criteria in Figure 5.
Table 3 shows the three largest and negative mean errors by GPT-4.

Figures 6 and 7 show the results from the temperature sweep
experiments for the zero-shot method across the different LLMs.

4.1 Aggregate evaluation of LLMs against expert results.
Focusing on the survey results shown in Figure 4 we see that the
minimum and maximum values selected by experts vary from 0 to
10 for all materials across the design scenarios. Also, each material
has a large variance of appropriateness as seen in the quartiles
of the box plot (aluminum has the smallest standard deviation of
2.85, while steel has the largest standard deviation of 3.23). This
is expected, as the 16 design scenarios in the survey were chosen
to maximize the appropriateness of the materials. Nonetheless,
looking at the median for each material, we see that some materials
are considered more appropriate across all 16 design scenarios than
others. For example, titanium and composite materials have the
highest median of 8. On the other hand, glass and wood have the

Table 1 Mean z-scores for all experiments across the three
models we tested. The z-score measures how far a sample
is from the mean of a set, which in this case is the distance
of the generated samples to the mean of the survey results.

Models
GPT-4 Mixtral MechGPT Mean

Zero-shot 0.451 0.722 0.179 0.451
Few-shot 0.492 0.501 0.572 0.522
Parallel 0.379 0.269 -0.312 0.112
Chain-of-thought 0.821 0.787 0.081 0.563

Mean 0.536 0.570 0.130

lowest medians of 2. Of the plastics, thermoplastic and thermoset
score higher than elastomers, on average. While aluminum scores
higher than steel, with a median score of 6 and 4 respectively.

Looking at all the LLM results grouped in Figure 3, we see
that, differently from the survey responses, GPT-4 and Mixtral do
not span quite the full breadth of the 0-10 scale. Moreover, the
overall variance of the LLMs is smaller than the experts, possibly
indicating expert results are highly variable due to the differences
in people’s experiences, familiarity with different materials and,
possibly, disagreements between experts driven by other design
assumptions not specified in the design scenario. On the other
hand, LLM responses are less diverse, possibly due to the RLHF
training driving more homogeneous responses across different de-
sign scenarios.

In Figure 4, we can see similar trends between experts and LLMs
regarding the relative appropriateness of the materials. For all mod-
els, titanium and composites score the highest, and glass and wood
score the lowest, which matches the survey results. However, there
is a noticeable difference in the variance of the LLM responses
compared to the expert responses for some materials. Mixtral
gives titanium a 9 regardless of the design scenario (SD=0.250),
MechGPT also most often scores titanium as 8 (SD=0.342), and
GPT-4 most often gives thermosets a 7 (SD=0.479). In aggregate,
the expert results have a standard deviation of 3.346, while GPT-4,
Mixtral, and MechGPT have standard deviations of 2.486, 2.488,
and 2.933, respectively. This shows the three LLMs tested are less
biased by the design and criterion provided in the prompt, com-
pared to experts, and are instead more biased by the material itself,
and possibly prior information about the materials that was found
in the training corpus.

In general, models tend to score all materials well above experts
as shown in Tables 1 and 2, where all MAEs are around 3, on
the 0 to 10 scale. Only MechGPT when used in combination with
the parallel prompt resulted in a negative z-score, indicating that
the mean is below that of the experts (Table 1). This is driven by
MechGPT scoring many materials as 0, when prompted in parallel.
When using the zero-shot prompt, Figure 4 also shows that LLMs
particularly score steel and plastics (thermoplastic, elastomer, and
thermoset) higher than experts, compared to the other materials.

It is difficult to draw conclusions about which model performs
better at this task, as the two metrics we evaluate show different
trends. In Table 1, showing the mean z-scores for each model,
the best-performing model is MechGPT, but the negative value of
the parallel prompt drives down its mean. However, MechGPT
still outperforms Mixtral and GPT-4 in the zero-shot and chain-of-
thought prompts by a wide margin, and performs similarly to the
other models when using few-shot and parallel prompts. However,
using the mean distance metric, MechGPT underperforms with a
mean distance of 3.244, while Mixtral, on average, generates values
3.163 away from expert values, and GPT-4 is the best-performing
model, with a mean distance of 3.155.

4.2 Zero-shot. Using a zero-shot approach for the material
selection problem results in an MAE of 3.069 and a z-score of

Table 2 Mean absolute errors (MAE) to survey data for all
experiments across the three models we tested. A lower MAE
indicates that the model is generating, on average, values
closer to the actual survey responses.

Models
GPT-4 Mixtral MechGPT Mean

Zero-shot 2.949 3.243 3.015 3.069
Few-shot 3.121 3.234 3.265 3.207
Parallel 2.911 2.859 3.365 3.045
Chain-of-thought 3.477 3.314 3.332 3.374

Mean 3.115 3.163 3.244
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0.451 averaged across all models. MechGPT performs impres-
sively well compared to the other models, with a narrow z-score of
0.179, followed closely by GPT-4 in terms of MAE. However all
models, on average, score the appropriateness of materials 3 points
above experts, which is a qualitatively large error. For zero-shot
prompts, Mixtral is the worst performing model, with a z-score of
0.722, and an MAE of 3.243.

Further breaking down the zero-shot results by design and cri-
teria (Figure 5) highlights some interesting trends. The minimum
and maximum values of the survey results go from 0 to 10, which
is once again expected, as some materials will be very appropriate
for a specific design scenario, while others will be not appropriate
at all. The lower and upper quartile values of the survey results
also tend to span a large amount of the scale, except for the high
strength kitchen utensil grip, which appear to have a smaller vari-
ance than other scenarios. The LLMs however, do not exhibit this

broad behavior, both in terms of minimum and maximum values,
as well as in terms of how much the quartiles span. For exam-
ple, all materials seem to be appropriate for lightweight kitchen
utensil grip, and corrosion resistant kitchen utensil grip, which is
unexpected and does not reflect the expert responses.

While aggregating results by model, materials, and design sce-
narios can help conclude general trends, we can also isolate the
most extreme errors in the data. The mean largest and smallest
errors by GPT-4 using the zero-shot prompt are shown in Table 3.
GPT-4 has a positive mean error of 6.21 for elastomer in the con-
text of a lightweight kitchen utensil grip. On the opposite end, the
model indicates that steel might not be appropriate for a lightweight
safety helmet, scoring it on average -4.58 points away from the ex-
perts. Given the lack of transparency and explainability in the
LLM’s outputs, it is difficult to draw conclusions about the rea-
sons for these discrepancies. One explanation is that the model
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Design Criteria Material Mean Error
Kitchen utensil grip Lightweight Elastomer 6.21
Underwater component Lightweight Wood 5.47
Underwater component Corrosion resistant Thermoplastic 5.37

...
Kitchen utensil grip Heat resistant Aluminium -4.21
Kitchen utensil grip High strength Glass -4.47
Safety helmet Lightweight Steel -4.58

Table 3 Largest positive and negative mean errors by GPT-
4 using the zero-shot prompt.

might not have seen in its training data examples of lightweight
steel helmets.

4.3 Few-shot. Considering the MAE of all models, few-shot
prompting does not seem to improve on zero-shot prompting, in-
creasing the MAE from 3.069 to 3.207. The z-score also increases
from 0.451 for zero-shot, to 0.522 for few-shot prompts. Mixtral
is the only model to improve the z-score with few-shot prompt-
ing (from 0.722 to 0.501), with a marginal improvement in MAE.
This loss in performance could be due to the two examples chosen
(found in Appendix A) not being sufficient for the model to learn
in-context, or more examples being required for this task.

4.4 Parallel Agents. The parallel agent prompting method
achieves the best MAE of 3.045 averaged across the three models.
Regarding z-scores, the parallel prompt helped both GPT-4 and
Mixtral achieve their best results (0.379 and 0.269 respectively).
Notably, this was the only method where a model, MechGPT, had
a negative mean z-score of -0.312, driven by the presence of many
0’s in the generated answers. However, the driving factor behind
the many 0’s in MechGPT’s answers is unclear: it could be a failure
mode of the model, or the parallel prompting might have resulted
in more extreme classification.

In our testing, we found that parallelizing material generation
greatly reduces computational times (from 3 minutes to 35 sec-
onds for GPT-4), since the total number of prompts falls from 144
to 16. This has the potential to greatly improve the scalability of
the material search, where more than 9 material categories could be
more cheaply evaluated in a single prompt. However, the parallel
generation required a lot of manual error-checking to post-process
the output (especially for MechGPT), since the models did not
follow the prompt to the letter every time. This limitation could
potentially be addressed by combining the parallel agents prompt-
ing with some few-shot examples.

Overall, our experiments show that parallelizing the prompt and
asking the model to evaluate multiple materials at the same time,
has both computational and qualitative benefits.
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Fig. 6 The effect of changing the temperature hyperparam-
eter on the z-score for zero-shot generation.

4.5 Chain-of-Thought. Using the chain-of-thought approach,
as implemented in Section 3.3.4, did not seem to benefit the ma-
terial selection task. GPT-4 and Mixtral achieved the worst re-
sults both in terms of z-score (0.821 and 0.787 respectively) and
MAE (3.477 and 3.314). On the other hand, using this prompting
method, MechGPT achieved the best z-score (0.081), but a high
MAE (3.332). It is possible that MechGPT’s fine-tuning is driving
the impressive results when using this chain-of-thought prompting
method.

While running the experiment, we found that the chain of
thought method greatly increased computational times (from 3
to 57 minutes for GPT4), since we are not limiting the length
of the reasoning generation. This could be curbed by limiting
the maximum number of tokens generated by the models. More-
over, other implementations of the chain-of-thought method have
been developed (such as simply asking the model to ‘think step by
step’ [104]), which might yield better results and could be assessed
in future work.

Aside from the apparent loss in performance and increase in
computational time, the chain-of-thought approach benefits from
increased explainability behind the ultimate results. While the
focus of this paper is to compare the raw scores on a 0 to 10 scale
to select an appropriate material, it is important to note that in
practice, the benefit of the additional reasoning provided by the
chain-of-thought approach might greatly benefit a designer hoping
to use an LLM for this task.

4.6 Temperature. As the three models tested all suggest dif-
ferent temperature values in their documentation, the temperature
experiment sought to evaluate the effects that temperature might
have on the material selection task. Figures 6 and Figure 7 show
the effect of varying the temperature on the z-scores and MAE re-
spectively. The models do not appear to be affected by temperature
when measured using the z-score, with only GPT-4 and MechGPT
exhibiting a slight improvement at a temperature of 0.6. When
measuring MAE, GPT-4 and Mixtral are unaffected by changing
temperature, while MechGPT shows a slight dip at the extremes
(0.1 and 1.0).

These results indicate that the default model values (listed in
Section 3.3.5) are suitable for all experiments conducted in this
work. Furthermore, the material selection task does not seem to
be significantly affected by this hyperparameter, which echoes the
results found in other work [109].

5 Limitations and Future Work
This work is limited by several factors, each of which implies

valuable future work. These areas include explainability, design
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Fig. 7 The effect of changing the temperature hyperparam-
eter on MAE for zero-shot generation.
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scenario authenticitiy, prompt generation methodology, and the
range of models evaluated.

Most of the experiments presented in this work focus on giving
materials a score from 0 to 10, without requiring any additional
justification about why the material is appropriate. A notable ex-
ception is the chain-of-thought prompt, but even then the reasoning
exhibited in the response is not evaluated in this work. This leaves
a substantial gap in research around the usefulness and usability of
these generated scores when performing a material selection task
in practice. In future work, a user study should be conducted to
understand how people might interact with LLMs during the ma-
terial selection process, when providing this information would be
most beneficial to the designer, and whether justifying the reason-
ing could help further inspire the designer towards better material
choices.

The design scenarios used in this study are limited in number
and relatively simple. Including multiple conflicting design cri-
teria would make the scenarios more realistic, and increase the
applicability of the results. This study also assumes that the ex-
pert solutions are the ground truth. However, material selection
is driven by careful consideration of conflicting design tradeoffs.
Thus, further research should evaluate more complex scenarios and
potential LLM biases towards certain design criteria.

The current study was limited to a small set of prompt engi-
neering methods to control the generation process, which could be
expanded further. Also, combining prompting methods, such as
chain-of-thought with parallel prompting (which performed best),
might improve the results and increase the explainability and trans-
parency of the generated responses.

More models could be evaluated which might perform better.
Furthermore, while we evaluate a fine-tuned model, MechGPT, it
is important to note that the dataset used for fine-tuning may not
align perfectly with the task of material selection, as it is primarily
focused on failure mechanics of materials. Thus, fine-tuning on a
different corpus, or implementing a retrieval augmented generation
(RAG) system might improve the results.

6 Conclusions
In summary, this work provides insights into the efficacy of

large language models (LLMs) in the material selection process,
a critical aspect of conceptual design. We identified two notable
failure modes: the low variance of recommendations across differ-
ent design scenarios and the tendency toward the overestimation
of material appropriateness. These findings underscore the chal-
lenges in adapting current LLMs directly for nuanced tasks like
material selection, where diversity in recommendations and accu-
rate assessment of material characteristics are paramount.

Our exploration into the robustness of these models, particularly
with respect to temperature, revealed that certain methodologies,
such as the parallel prompting method, could enhance the LLMs’
performance by mitigating some of the identified failure modes.
The parallel prompting method not only demonstrated improved
quality of the outputs but could also be leveraged to scale up to a
larger number of materials efficiently.
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Appendix A: Few-Shot Prompt
The following is the text we use in the few-shot prompt, defined

as {few_shot} in Section 3.3.2:

Few-Shot Prompt Details

- Example 1

You are tasked with designing the grip of a
bicycle frame which should be impact resistant.

How well do you think each of the provided ma-
terials would perform in this application? (Use a
scale of 0-10 where 0 is ‘unsatisfactory’, 5 is
‘acceptable’, and 10 is ‘excellent’).

Steel: 6
Aluminium: 5
Titanium: 4
Glass: 2
Wood: 8
Thermoplastic: 9
Elastomer: 9
Thermoset: 6
Composite: 7
- Example 2
You are tasked with designing a medical implant

which should be durable.
How well do you think each of the provided ma-

terials would perform in this application? (Use a
scale of 0-10 where 0 is ‘unsatisfactory’, 5 is
‘acceptable’, and 10 is ‘excellent’).

Steel: 7
Aluminium: 2
Titanium: 9
Glass: 5
Wood: 0
Thermoplastic: 8
Elastomer: 8
Thermoset: 7
Composite: 7
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