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Abstract

Viewing group cohomology as a so-called cohomological functor, G. Mislin has
generalised Tate cohomology from finite groups to all discrete groups by defining
a completion for cohomological functors in [24]. For any cohomological functor
T
• : C → D we have constructed its Mislin completion T̂

• : C → D in [15] under mild
assumptions on the abelian categories C and D which generalises Tate cohomology
to all T1 topological groups. In this paper we investigate the properties of Mislin
completions. As their main feature, Mislin completions of Ext-functors detect finite
projective dimension of objects in the domain category. We establish a version of
dimension shifting, an Eckmann-Shapiro result as well as cohomology products such
as external products, cup products and Yoneda products.
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1 Introduction

Because Tate cohomology and its generalisations are the main motivation of this work, we
first outline Tate cohomology for a finite group G based on [1, p. 78–79]. For any module
M over the group ring Z[G] and any integer n ∈ Z there is a Tate cohomology group

Ĥn(G,M). Note that Ĥn(G,M) = Hn(G,M) for n ≥ 1 and Ĥn(G,M) = H−n−1(G,M)
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for n ≤ −2, whence Tate cohomology unites both group cohomology and group homology.
According to [5, p. 136], Tate cohomology of G satisfies dimension shifting and possesses
cup products. The former means that for any M there are Z[G]-modules M∗, M

∗ such

that Ĥn−1(G,M∗) ∼= Ĥn(G,M) and Ĥn+1(G,M∗) ∼= Ĥn(G,M) for every n ∈ Z. Thus, if
one desires to establish a property for every degree Ĥn(G,−) of Ĥ•(G,−), then one only
needs to establish it for a carefully chosen degree n. If N is a Z[G]-module and m ∈ Z
another integer, then a cup product is a homomorphism of the form

⌣: Ĥn(G,M)⊗ Ĥm(G,N)→ Ĥm+n(G,M ⊗N)

where the tensor product M ⊗N is a Z[G]-module endowed with the diagonal action of
G. Importantly for us, Tate cohomology for G vanishes on projectives according to [1,

p. 79], meaning that Ĥn(G,P ) = 0 for any projective Z[G]-module P and n ∈ Z. Then
complete cohomology generalises Tate cohomology for finite groups and was introduced
for all discrete groups by G.Mislin, P.Vogel, D.J.Benson and J.F.Carlson using different
constructions all yielding isomorphic cohomology groups [21, p. 196–197].

In [15] we have generalised these constructions to a previously unknown extent. In par-
ticular, since our generalisation takes Tate cohomology to condensed mathematics, one
can construct Tate cohomology for any topological group in which every point is closed,
meaning for any T1 topological group. More specifically, condensed mathematics is a
novel theory developed by D. Clausen and P. Scholze in 2018 [31]. In [32], P. Scholze
writes that he wants “to make the strong claim that in the foundations of mathematics,
one should replace topological spaces with condensed sets”. Independently of whether
this claim turns out to be true, it provides a very promising unified approach for studying
topological groups, rings and modules [31, p. 6]. This is follow-up paper to [15] in which
we investigate the properties of this generalisation of Tate cohomology and more gener-
ally, of Mislin completions.

Hence, let us provide a brief summary of Mislin completions. If C, D denote two abelian
categories, then a family of additive functors (T n : C → D)n∈Z is a cohomological func-
tor if there are so-called connecting homomorphisms (δn : T n → T n+1)n∈Z satisfying
two (natural) axioms [21, p. 201–202]. In particular, if G is a discrete group, R a dis-
crete ring and A a discrete R-module, then setting Hn

R(G,−) = 0 and ExtnR(A,−) = 0
for n < 0 renders group cohomology and Ext-functors into cohomological functors [21,
p. 201], [24, p. 295]. We refer the reader unfamiliar with abelian categories to the ac-
count in [23, p. 249–257], [34, Tag 00ZX] or [38, Section A.4]. G.Mislin generalised Tate

cohomology to all discrete groups by defining complete cohomology Ĥ•
R(G,−) as a spe-

cific completion of ordinary group cohomology H•
R(G,−) in his paper [24]. Following the

convention from [21, p. 197/202], we call such a completion of a cohomological functor
a Mislin completion. Formally, a Mislin completion of T • : C → D is a cohomological
functor T̂ • : C → D together with a morphism Φ• : T • → T̂ • such that T̂ n(P ) = 0
for any projective P ∈ obj(C) and n ∈ Z and such that any morphism T • → V • to a
cohomological functor V • : C → D also vanishing on projectives factors uniquely through
Φ• [24, Definition 2.1]. By its universal property, any Mislin completion is unique up to

isomorphism [21, p. 202]. In [15], we construct the Mislin completion T̂ • if C has enough
projectives and in D all countable direct limits exist and are exact.

2

https://stacks.math.columbia.edu/tag/00ZX


In order to present a key feature of Mislin completions, let us make a few comments on Ext-
functors and group cohomology. If Ab denotes the category of abelian groups, then we do
not only consider the “ordinary” unenriched Ext-functors Ext•C(A,−) : C → Ab arising as
derived functors of the usual Hom-functors in C, but also so-called enriched Ext-functors
Ext•C(A,−) : C → D where the abelian category D does not need to be Ab. For instance,
we consider enriched Ext-functors in condensed mathematics in [15, Theorem 7.1]. We
remind the reader that group cohomology can be constructed as a specific Ext-functor.
More specifically, if CR,G is the respective category of module objects over the group ring
(object) of G over R, one can define Hn

R(G,−) := ExtnCR,G
(R,−) where G acts trivially on

R. As with Ext-functors, group cohomology can be enriched or unenriched. Adhering to
the terminology in [15], the Mislin completions of Ext-functors are called completed Ext-
functors and the Mislin completion of group cohomology is termed complete cohomology.
We say that an object has finite projective dimension if it admits a projective resolution
of finite length [5, p. 152]. The group (object) G has finite cohomological dimension over
R if the module object R has finite projective dimension in CR,G [5, p. 184–185]. In this
level of generality, at least the following two results pertain to condensed mathematics
and thus to all T1 topological groups [15, Section 7]. Namely, we first obtain

Lemma 1.1 (= Lemma 3.1)

1. Assume that T • : C → D is a cohomological functor where C has enough projectives
and in D all countable direct limits exist and are exact. If M ∈ obj(C) has finite

projective dimension, then T̂ n(M) = 0 for every n ∈ Z. In particular, if every object
in C has finite projective dimension such as in a category of modules over a ring of
finite global dimension, then T̂ • = 0 for any cohomological functor T •.

2. If one takes enriched Ext-functors ExtnC(A,−) : C → D with A ∈ obj(C) of finite

projective dimension, then Êxt
n

C(A,−) = 0 for every n ∈ Z. In particular, com-

plete cohomology Ĥ•
R(G,M) vanishes if the group object G has finite cohomological

dimension or M ∈ CR,G has finite projective dimension. As this applies to any con-
densed ring R and any condensed group G, this holds for any T1 topological group
by taking its condensate.

Then the main feature of completed Ext-functors is the following theorem which gener-
alises Lemma 4.2.4 from [21]:

Theorem 1.2 (= Theorem 3.2) If Êxt
•

C(A,−) : C → Ab denote completed unenriched
Ext-functors for A ∈ obj(C), then the following are equivalent.

1. The object A has finite projective dimension.

2. Êxt
n

C(A,−) = Êxt
n

C(−, A) = 0 for any n ∈ Z.

3. Êxt
0

C(A,A) = 0.

In particular, the zeroeth complete cohomology group detects whether a group (object) has
finite cohomological dimension. This applies to any condensed group and thus to any T1
topological group.

We provide a (partial) version of dimension shifting for Mislin completions.
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Theorem 1.3 (= Theorem 4.3) Let T • : C → D be a cohomological functor where C has
enough projectives and in D all countable direct limits exist and are exact. Then for every
M ∈ obj(C) there is M∗ ∈ obj(C) such that T̂ n+1(M∗) ∼= T̂ n(M) for every n ∈ Z. In

addition, if there is a monomorphism f : M → N in C with T̂ k(N) = 0 for every k ∈ Z,
then T̂ n−1(Coker(f)) ∼= T̂ n(M).

The conditions of this theorem are satisfied for instance if C is the category of discrete
R-modules for a discrete commutative ring R and G is a discrete group together with a
finite index subgroup of finite cohomological dimension. Another instance is if C is the
category of profinite S-modules for a commutative profinite ring S and if K is a profinite
group with an open subgroup of finite cohomological dimension (Example 4.4). Let us
explain the terminology involved in the latter example. An inverse limit is a specific type
of limit [39, p. 12]. A profinite group is a topological group that can be equivalently
defined as an inverse system of finite discrete groups, as a closed subgroup of a cartesian
product of finite discrete groups endowed with the product topology [39, Corollary 1.2.4]
or as a (not necessarily finite) Galois group endowed with the Krull topology [39, Theo-
rem 3.3.2]. Profinite spaces, rings, modules etc. are defined analogously [29, p. 1]. The
completed group ring S[[K]] is a profinite ring that is a profinite version of a (discrete)
group ring [29, p. 171]. We note that the category of profinite S[[K]]-modules has enough
projectives [37, p. 353]. Lastly, we follow the convention in [9, p. 235] that the cohomology
groups H•

S(K,M) are U(S)-modules where U(S) denotes the ring S without its topology.
The reader is referred to [29] and [39] for more background on profinite groups and to [33]
and [37] for sources specialising on cohomology of profinite groups.

Moving back to greater generality, we recall that any M ∈ obj(CR,H) can be turned into
an object in CR,G by induction IndGH(M) and coinduction CoindGH(M). Contrarily, any
M ∈ obj(CR,G) can be turned into an object in CR,H by restriction ResGH(M). Under
specific circumstances we can retrieve an Eckmann-Shapiro type result.

Lemma 1.4 (= Lemma 4.1)

1. If both ResGH(−) and CoindGH(−) are exact and preserve projective objects, then

Êxt
n

CR,H
(ResGH(A), B) ∼= Êxt

n

CR,G
(A,CoindGH(B)) as unenriched completed Ext-functors

for every n ∈ Z, A ∈ obj(CR,G) and B ∈ obj(CR,H). In particular, in the case where

A = R we have Ĥn
R(H,B) ∼= Ĥn

R(G,Coind
G
H(B)).

2. If IndGH(−) and ResGH(−) are exact and preserve projectives, then for every n ∈ Z,
A ∈ obj(CR,H) and B ∈ obj(CR,G) observe for unenriched completed Ext-functors

that Êxt
n

CR,G
(IndGH(A), B) ∼= Êxt

n

CR,G
(A,ResGH(B)).

Similar to before, the conditions of this lemma are satisfied by the category of discrete
R-modules for a discrete commutative ring R and by a discrete group G together with
a finite index subgroup. Or by the category of profinite S-modules for a commutative
profinite ring S and by a profinite group K with an open subgroup (Example 4.2).

Let us investigate cohomology products. We can establish external products for completed
unenriched Ext-functors and cup products for complete unenriched group cohomology un-
der certain conditions. Recall that external products of unenriched Ext-functors descend
from tensor products in the domain category where external products restricted to group
cohomology give rise to cup products.
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Theorem 1.5 (= Theorem 6.2)

1. Let ⊗C : C × C → C be a bi-additive functor and assume that P ⊗C Q is projective
whenever P,Q ∈ obj(C) are projective. Let A•, C• be projective resolutions of
A,C ∈ obj(C) such that the tensor product of resolutions A• ⊗C C• is a projective
resolution of A ⊗C C. If B,E ∈ obj(C) possess projective resolutions of a specific
form, then for every m,n ∈ Z external products

∨ : Êxt
m

C (A,B)⊗ Êxt
n

C(C,E)→ Êxt
m+n

C (A⊗C C,B ⊗C E)

can be defined for completed unenriched Ext-functors.

2. If R is a ring object in C and G a group object, then we take the tensor product to be
of the form ⊗R : CR,G × CR,G → CR,G. Assume that there are natural isomorphisms
Θ′
M : M ⊗R R → M and Θ′′

M : R ⊗R M → M and that R• ⊗R R
′
• is a projective

resolution of R for any two projective resolutions R•, R
′
• of R. Then for every

m,n ∈ Z there are cup products

⌣: Ĥm
R (G,M)⊗ Ĥn

R(G,N)→ Ĥm+n
R (G,M ⊗R N)

for completed unenriched group cohomology that descend from the above external
products.

The conditions of this theorem are fulfilled for example by the category of discrete R[G]-
modules for a discrete group G and a principal ideal domain R. Moreover, the restriction
of A, B, C, E to R-modules needs to be projective. Analogously, the conditions are
satisfied by the category of profinite S[[K]]-modules for a profinite group K and profi-
nite commutative ring S with a unique maximal open ideal where the restriction of A,
B, C, E to profinite S-modules needs to be projective (Example 6.4). In the latter case,
there is a profinite tensor product ⊗S defined for profinite S[[K]]-modules [29, p. 177/191].

Remember that Yoneda products of unenriched Ext-functors descend from compositions
of morphisms in the domain category. By generalising [3, p. 110], we construct Yoneda
products for completed unenriched Ext-functors.

Theorem 1.6 (= Theorem 6.6) Let F,H, J ∈ obj(C). If ⊗ denotes the tensor product
in Ab, then for every m,n ∈ Z Yoneda products

◦ : Êxt
n

C(H, J)⊗ Êxt
m

C (F,H)→ Êxt
m+n

C (F, J)

can be defined for completed unenriched Ext-functors.

All of the above cohomology products are natural (Lemmaa 7.1) and compatible with
connecting homomorphisms (Lemma 7.6) where external and cup products satisfy a ver-
sion of graded commutativity (Proposition 7.5). We develop requirements under which
they are associative (Lemma 7.2). We also demonstrate under which conditions cup prod-
ucts turn complete cohomology and Yoneda products turn completed Ext-functors into a
graded ring with identity (Lemma 7.3).

Moreover, complete cohomology generalises Tate-Farrell cohomology. More specifically,
F. T. Farrell generalised Tate cohomology of finite groups to discrete groups having a
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finite index subgroup of finite cohomological dimension in his paper [13] by using so-
called complete resolutions. A complete resolution of an object A in C is a particular
acyclic chain complex (An)n∈Z of projective objects in C that agrees with a projective
resolution of M in sufficiently high degree [8, Definition 1.1]. Following [13, p. 158], we
define the Tate-Farrell Ext-functor Ext

•

C(A,B) as the cohomology of the cochain complex
HomC(A•, B) where we the Hom-functor is unenriched. Then we show

Lemma 1.7 (= Lemma 3.5) The Tate-Farrell Ext-functors Ext
•

C(A,−) are isomorphic

to the completed unenriched Ext-functors Êxt
•

C(A,−) as cohomological functors.

Using F.T.Farrell’s work, P.Symonds deduces in [36, p. 34] that Tate-Farrell cohomology
exists for every profinite group having an open subgroup of finite cohomological dimen-
sion. In particular, complete cohomology for profinite groups generalises P. Symonds
Tate-Farrell cohomology taking coefficients in profinite modules (Example 3.6).

Let us mention a few examples. In [35], P.Symonds computes the Tate-Farrell cohomology
of the Morava stabiliser group Sp−1 with coefficients in the moduli space Ep−1 for odd
primes p. However, there are groups for which their complete cohomology cannot be
calculated by a complete resolution. For instance, a free abelian group of countable rank⊕

n∈N Z, GLn(K) for K a subfield of the algebraic closure of Q, the Thompson group
F and the free product ∗n∈N Zn do not admit complete resolutions [8, Example 5.3],
[10, p. 119–120]. By [24, p. 297–298], the cohomology of the first three examples is
isomorphic to their complete cohomology while all cohomology groups of the last group
are distinct from its complete cohomology groups [20, p. 432]. The zeroeth complete
cohomology group of this last example is calculated in [10, Corollary 2.4 and Theorem A].
In [11], F. Dembegioti calculates the zeroeth complete cohomology group of a class of
discrete polycyclic groups, but also explains why one cannot determine a general formula
calculating the zeroeth complete cohomology groups for all polycyclic groups. Lastly, if
p is a prime number, then pro-p groups are a class of profinite groups for which there is
a rich theory of their group cohomology. See for instance [33, Chapter I] or [37]. One
example of a pro-p group that is also a pro-p ring are the p-adic integers Zp which are
studied in [39, Section 1.5]. These examples give rise to the following questions.

Question 1.8 As in [29, Example 3.3.8(c)], let
∏

N Zp denote the free abelian pro-p
group over N. Is its cohomology H•

Zp
(
∏

N Zp,−) isomorphic to its complete cohomology

Ĥ•
Zp
(
∏

N Zp,−) as a cohomological functor?

Question 1.9 In accordance with [28, p. 137–140], denote by G =
⊔
n∈N∪{∞}Gn the

following free pro-p product over the one-point compactification of the integers N ∪ {∞}.
Set Gn = Znp for n ∈ N and G∞ = {1}. Can one compute the zeroeth complete cohomology

Ĥ0
Zp
(G,A) for an Zp[[G]]-module A?

On the other hand, we obtain the following positive result generalising Proposition 3.9
of [19] from discrete groups to pro-p groups.

Lemma 1.10 (= Lemma 3.9) Let G be a pro-p group. Then G is finite if and only

if H0
Zp
(G,−) is naturally isomorphic to Ĥ0

Zp
(G,−) and Hn

Zp
(G,−) ≇ Ĥn

Zp
(G,−) for any

n ≥ 0.

6



Lastly, we note that the terms of the canonical morphism of the Mislin completion of

unenriched Ext-functors Ext•C(A,−)→ Êxt
•

C(A,−) fit into a long exact sequence relating
three distinct cohomological functors (Lemma 3.11).

For the reader’s convenience, we showcase in Section 2 the relevant constructions of Mislin
completions that we have generalised in [15]. We establish several properties of completed
Ext-functors including the above feature of their canonical morphism in Section 3. More
specifically, we show that zeroeth completed unenriched Ext-functors detect whether an
object in the domain category has finite projective dimension, that completed unenriched
Ext-functors generalise Tate-Farrell Ext-functors and that complete unenriched group co-
homology detects finiteness of pro-p groups. Thereafter, in Section 4, we prove a (partial)
version of dimension shifting and an Eckmann-Shapiro type lemma. To pave the way
for cohomology products, we provide an overview of external products for unenriched
Ext-functors and cup products for unenriched group cohomology in Section 5. Then,
in Section 6, we construct external and Yoneda products for completed unenriched Ext-
functors and cup products for completed unenriched group cohomology. We conclude by
proving various properties of these cohomology products in Section 7.

Notation and terminology

We adopt the convention that the natural numbers N include 1, but do not include 0.
We write N0 for N ∪ {0}. Moreover, we adopt B. Poonen’s convention from [27] that a
ring is an abelian group together with a totally associative product, meaning a binary
associative relation admitting an identity element. In particular, ring homomorphisms
are understood to map identity elements to identity elements. We use the symbol lim

−→
only to denote direct limits. If D is a category, then lim

−→D
denotes a direct limit in this

category and if I is a directed set, then lim
−→i∈I

denotes a direct limit indexed over I. We

write lim
−→k∈N

(Mk, µk) if µk :Mk → Mk+1 are the morphisms giving rise to the direct limit.
Lastly, we use the same numbering to label diagrams and equations.

2 Outline of constructions

This section provides an overview of the constructions of Mislin completion we have
generalised in [15]. In order to present these, let us axiomatically define cohomological
functors. For two abelian categories C, D a family of additive functors (T n : C → D)n∈Z
is called a cohomological functor if it satisfies the following two axioms [21, p. 201–202].

Axiom 2.1 For every n ∈ Z and short exact sequence 0→ A→ B → C → 0 in C, there
is natural connecting homomorphism δn : T n(C)→ T n+1(A).

Being natural means in this context that for every commuting diagram in C

0 A B C 0

0 A′ B′ C ′ 0

f g

with exact rows there is a commuting diagram

7



T n(A) T n+1(A)

T n(A′) T n+1(C ′)

δn

Tn(g) Tn+1(f)

δn

in D.

Axiom 2.2 For every short exact sequence 0 → A
ι
−→ B

π
−→ C → 0 in C there is a long

exact sequence

. . .
Tn−1(π)
−−−−−→ T n−1(C)

δn−1

−−→ T n(A)
Tn(ι)
−−−→ T n(B)

Tn(π)
−−−→ T n(C)

δn
−→ T n+1(A)

Tn+1(ι)
−−−−→ . . .

Assume that (T •, δ•) and (U•, ε•) are cohomological functors from C to D. Then a family
of natural transformations (νn : T n → Un)n∈Z is a morphism of cohomological functors if
it satisfies the axiom [21, p. 202]

Axiom 2.3 For every n ∈ Z and short exact sequence 0 → A → B → C → 0 in C, the
following square commutes:

T n(C) T n+1(A)

Un(C) Un+1(A)

δn

νn νn+1

εn

Let us generalise G.Mislin’s Definition 2.1 from [24].

Definition 2.4 (Mislin completion) Let (T •, δ•) be a cohomological functor from C to

D. Then its Mislin completion is a cohomological functor (T̂ •, δ̂•) from C to D together

with a morphism ν• : T • → T̂ • satisfying the following two conditions:
1. For every n ∈ Z and every projective P ∈ obj(C) we have T̂ n(P ) = 0.
2. If (U•, ε•) is any cohomological functor vanishing on projectives, then each morphism

T • → U• factors uniquely as T • ν•
−→ T̂ • → U•.

Hence, if (U•, ε•) is another Mislin completion of (T •, δ•), then there is an isomorphism

µ• : T̂ • → U•, meaning that µn(M) : T̂ n(M) → Un(M) is an isomorphism for any n ∈ Z
andM ∈ obj(C) [21, p. 202]. This allows us to state G.Mislin’s definition from [24, p. 297]
in greater generality.

Definition 2.5 (Axiomatic, Mislin) For any A ∈ obj(C) we extend the (enriched or
unenriched) Ext-functors to cohomological functor by setting ExtnC(A,−) = 0 for n < 0

and define completed Ext-functors as the Mislin completion (Êxt
•

C(A,−), δ̂
•). Analogously,

if G is a group object in C and R a ring object, then we extend group cohomology to a
cohomological functor (H•

R(G,−), δ
•) by imposing Hn

R(G,−) = 0 for n < 0 and define

complete cohomology as the Mislin completion (Ĥ•
R(G,−), δ̂

•).

To ensure that complete cohomology exists, we introduce left satellite functors to present
a construction due to G. Mislin. As we assume that C has enough projective objects,
there is for any M ∈ obj(C) a short exact sequence 0 → K → P → M → 0 in C with

8



P projective. For a cohomological functor (T •, δ•), we define the zeroeth left satellite
functor of T n as S0T n := T n, the first left satellite functor as

S−1T n(M) := Ker
(
T n(K)→ T n(P )

)

and the kth left satellite functor as S−kT n := S−1(S−k+1T n) for k ≥ 2 [6, p. 36]. It
is shown in [6, Section III.1] that left satellite functors do not depend on the choice of
short exact sequence. Since they have been defined as kernels, it follows from Axiom 2.2
that δn : T n → T n+1 induces a morphism δn : T n(M) → S−1T n+1(M) and therefore
S−kδn+k : S−kT n+k(M) → S−k−1T n+k+1(M) for any k ∈ N [21, p. 207–208]. Here, our
assumption hits in that all countable direct limits exist in the codomain category D of
T •.

Definition 2.6 A partially ordered set (I,≤) is a directed set if for every i, j ∈ I there
is k ∈ I such that i, j ≤ k [29, p. 1]. According to [29, p. 14], a diagram {Di}i∈I in D
indexed over a directed set is called a direct system in D. More formally, I can be turned
into a category whose objects are its elements and there is a unique morphism i → j
whenever i ≤ j ∈ I. Then a direct system is a covariant functor I → D, i 7→ Di. A direct
limit lim

−→i∈I
Di in D is a colimit of a direct system {Di}i∈I . Direct limits in D are called

exact if for every direct system of short exact sequence {0→ Ai → Bi → Ci → 0}i∈I also

0→ lim
−→
i∈I

Ai → lim
−→
i∈I

Bi → lim
−→
i∈I

Ci → 0

is a short exact sequence [34, Tag 079A].

Hence, we can extend G.Mislin’s construction from [24, p. 293].

Definition 2.7 (Via satellite functors, Mislin) The Mislin completion of a cohomo-

logical functor (T •, δ•) can be defined as T̂ n(M) := lim
−→k∈N0

(S−kT n+k(M), S−kδn+k) for

anyM ∈ obj(C) and n ∈ Z. Accordingly, Ĥn
R(G,M) := lim

−→k∈N0
(S−kHn+k

R (G,M), S−kδn+k)

is a definition of complete cohomology.

In order that the above forms a cohomological functor, one needs to impose that all
direct limits in D are exact. The reader might be aware that one can define cohomology
of discrete groups and cohomology of profinite groups taking discrete coefficients by using
that the respective category C has enough injectives [5, p. 61], [33, p. 9]. One could
assume instead that C has enough injectives and in the category D all countable inverse
limits exist and are exact. One could then perform a construction via right satellite
functors dual to the above. This completion of group cohomology would have a universal
property as a Mislin completion, except that it would vanish on injective objects instead
of projective ones. However, cohomology of discrete groups as well as of profinite groups
taking discrete coefficients already vanishes on injectives [5, p. 61], [33, p. 9]. Thus, such
a completion would not yield Tate cohomology whence we assume that C has enough
projectives instead of enough injectives.

Notation 2.8 For the rest of the paper, C always denotes an abelian category with enough
projectives and D an abelian category in which all countable direct limits exist and are
exact.

9
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Let us go over to what we term the resolution construction that occurs in [7, Lemma B.3]
and can be retrieved from page 299 in G.Mislin’s paper [24]. If (Mn)n∈N0 is a projective

resolution of M ∈ obj(C), let us define M̃0 := M and M̃k := Ker(Mk−1 → M̃k−1) for
k ∈ N. This is called the kth syzygy of M• in the Gorenstein context [26, p. 89]. The
choice of our notation is meant to reflect that our syzygies do not necessarily arise from
a specific choice of projective resolution as in [21] and [24]. Since for every k ∈ N0 we

have the short exact sequence 0 → M̃k+1 → Mk → M̃k → 0, there is a connecting

homomorphism δn+k : T n+k(M̃k) → T n+k+1(M̃k+1) for every n ∈ Z. Then the following
definition makes it more apparent why Mislin completions vanish on projective objects.

Definition 2.9 (Resolutions, Mislin) The Mislin completion of a cohomological func-

tor (T •, δ•) can be defined as T̂ n(M) := lim
−→k∈N0

(T n+k(M̃k), δ
n+k) for any n ∈ Z and

M ∈ obj(C). Accordingly, Ĥn
R(G,M) := lim

−→k∈N0
(Hn+k

R (G, M̃k), δ
n+k) is a definition of

complete cohomology.

The next two constructions only give rise to completed unenriched Ext-functors. Let A•,
B• are projective resolutions of A,B ∈ obj(C) and let f̃n+k : Ãn+k → B̃k be a morphism
for n ∈ Z and k ∈ N0 such that n + k ≥ 0. Then we can write the commuting diagram

0 Ãn+k+1 An+k Ãn+k 0

0 B̃k+1 Bk+1 B̃k 0

f̃k+1 fk+1 f̃k

whose terms arise as follows. Since the bottom row is exact and the term An+k projective,
there is a lift fk of f̃k making the right-hand square commute. Because B̃k+1 → Bk+1 is
a kernel, there is a morphism f̃k+1 making the left-hand side commute. If HomC(−,−)

denotes the (unenriched) Hom-functor in C, then HomC(Ãn+k, B̃k) is an abelian group

by virtue of C being an abelian category. We define PC(Ãn+k, B̃k) to be the subgroup

of HomC(Ãn+k, B̃k) consisting of all morphisms factoring through a projective object and

write the quotient as [Ãn+k, B̃k]C := HomC(Ãn+k, B̃k)/PC(Ãn+k, B̃k) [21, p. 203]. As in
the case of modules over a ring covered by [21, p. 204], we prove that

tÃn+k,B̃k
: [Ãn+k, B̃k]C → [Ãn+k+1, B̃k+1]C ,

f̃k + PC(Ãn+k, B̃k) 7→ f̃k+1 + PC(Ãn+k+1, B̃k+1)

is a well defined homomorphism. Through this we generalise the following definition from
D. J.Benson and J. F.Carlson’s paper [3, p. 109].

Definition 2.10 (Näıve construction, Benson & Carlson) We can define the nth

completed unenriched Ext-functor as Êxt
n

C(A,B) := lim
−→k∈N0,n+k≥0

([Ãn+k, B̃k]C, tÃn+k,B̃k
)

for n ∈ Z. In particular, if R• is a projective R[G]-resolution of R ∈ obj(CR,G), we can de-

fine complete unenriched cohomology as Ĥn
R(G,B) := lim

−→k∈N0,n+k≥0
([R̃n+k, B̃k]C, tR̃n+k,B̃k

).

Lastly, we present what we call the hypercohomology construction of complete coho-
mology. We define the chain complex (A′

n)n∈Z by A′
n = An for n ≥ 0 and A′

n = 0
for n < 0 and similarly (B′

n)n∈Z [21, p. 209]. Define the hypercohomology complex
(HypC(A

′
•, B

′
•)n, d

n)n∈Z by having n-cochains HypC(A
′
•, B

′
•)n =

∏
k∈Z HomC(A

′
k+n, B

′
k).
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To ease notation in the following, we view abelian groups as Z-modules. If we denote
by an : A′

n → A′
n−1 and bn : B′

n → B′
n−1 the differentials induced from the respective

projective resolution, we define for n ∈ Z the differential

dn : HypC(A
′
•, B

′
•)n → HypC(A

′
•, B

′
•)n+1 (2.1)

(ϕn+k)k∈Z 7→ (bk+1 ◦ ϕn+k+1 − (−1)nϕn+k ◦ an+k+1)k∈Z

Let us define the bounded complex BddC(A
′
•, B

′
•)n∈Z as the subcomplex of HypC(A

′
•, B

′
•)n∈Z

given by BddC(A
′
•, B

′
•)n =

⊕
k∈Z HomC(A

′
k+n, B

′
k). Now we define the Vogel complex

VogC(A
′
•, B

′
•)n∈Z as the quotient complex HypC(A

′
•, B

′
•)n/BddC(A

′
•, B

′
•)n [21, p. 209]. By

this, we generalise Definition 1.2 from F.Goichot’s paper [16] where he attributes it to P.
Vogel on page 39.

Definition 2.11 (Hypercohomology, Vogel) For n ∈ Z we can define the nth com-

pleted unenriched Ext-functor as Êxt
n

C(A,B) := Hn((VogC(A
′
•, B

′
•)k, d

k)k∈Z). We can thus

define complete unenriched cohomology as Ĥn
R(G,M) := Hn((VogR(R

′
•, B

′
•)k, d

k)k∈Z).

Let us remark why it is unlikely that the previous two constructions could yield Mislin
completions of more general enriched Ext-functors. For the näıve construction, one aims
to find a morphism HomC(Ãn+k, B̃k)→ HomC(Ãn+k+1, B̃k+1). If one tries to lift along the

morphisms induced by An+k → Ãn+k and Bn+k → B̃n+k, one requires that HomC(An+k,−)
preserves epimorphisms. For unenriched Hom-functors, this role is exactly played by pro-
jective objects [38, Lemma 2.2.3]. For the hypercohomology construction we require that
the coproduct BddC(A

′
•, B

′
•) maps into the product HypC(A

′
•, B

′
•). Moreover, as can be

seen in [15, Subsection 6.1], the cohomology groups of the Vogel complex VogC(A
′
•, B

′
•)

correspond exactly to so-called almost chain maps modulo almost chain homotopy. How-
ever, this implies that the objects HomC(Ap, Bq) ∈ obj(D) describe morphisms of the form
Ap → Bq in C.

3 Completed Ext-functors and canonical morphisms

In this section, we establish several properties of completed Ext-functors and one for their
canonical morphism. First, we show that zeroeth completed unenriched Ext-functors de-
tect whether an object in the domain category has finite projective dimension. After
providing results on when the terms of a cohomological functors agree with the ones of
its Mislin completion, we show that completed unenriched Ext-functors generalise Tate-
Farrell Ext-functors. We then move on to demonstrate that complete unenriched group
cohomology detects when a pro-p group is finite. Lastly, we prove that the terms of the
canonical morphism from unerniched Ext-functors to their Mislin completion fit into a
long exact sequence relating three distinct cohomological functors.

Recall from Section 1 that an object in a category is said to have finite projective dimension
if it admit a projective resolution of finite length. Remember that group cohomology as
well as complete cohomology can be defined as a specific (completed) Ext-functor. Then
we re-establish Lemma 4.2.3 from [21] in greater generality where we refer the reader to [15,
Section 7] for an implementation of complete cohomology into condensed mathematics.

Lemma 3.1 1. Assume that T • : C → D is a cohomological functor where C has
enough projectives and in D all countable direct limits exist and are exact. If
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M ∈ obj(C) has finite projective dimension, then T̂ n(M) = 0 for every n ∈ Z. In
particular, if every object in C has finite projective dimension such as in a category
of modules over a ring of finite global dimension, then T̂ • = 0 for any cohomological
functor T •.

2. If one takes enriched Ext-functors ExtnC(A,−) : C → D with A ∈ obj(C) of finite

projective dimension, then Êxt
n

C(A,−) = 0 for every n ∈ Z. In particular, com-

plete cohomology Ĥ•
R(G,M) vanishes if the group object G has finite cohomological

dimension or M ∈ CR,G has finite projective dimension. As this applies to any con-
densed ring R and any condensed group G, this holds for any T1 topological group
by taking its condensate.

Proof If M has finite projective dimension, then there is m ∈ N0 such that M̃k = 0 for
any k ≥ m. In particular, T n+k(M̃k) = 0 for any k ≥ m and T̂ n(M) = 0 according to
the resolution construction. On the other hand, if A has finite projective dimension, then
there m′ ∈ N0 such that Extn+kC (A,−) = 0 for any n + k ≥ m′. We conclude as before

that Êxt
n

C(A,−) = 0. �

This allows us to re-establish the following version of a theorem that appears in the
literature as [2, Proposition IX.1.3], [17, Theorem 4.11] and [18, Theorem 3.10].

Theorem 3.2 If Êxt
•

C(A,−) : C → Ab denote completed unenriched Ext-functors for
A ∈ obj(C), then the following are equivalent.

1. The object A has finite projective dimension.

2. Êxt
n

C(A,−) = Êxt
n

C(−, A) = 0 for any n ∈ Z.

3. Êxt
0

C(A,A) = 0.

In particular, the zeroeth complete cohomology group detects whether a group has finite
cohomological dimension. This applies to any condensed group and thus to any T1 topo-
logical group.

Given the torsion-theoretic framework in which A. Beligiannis and I. Reiten work, this
theorem follows from their definitions in [2]. On the other hand, S. Guo and L. Liang
in [17] as well as J. Hu et al. in [18] prove this theorem using the hypercohomology
construction. For completeness, we generalise a proof by the näıve construction found
in [21, p. 205].

Proof As the second statement implies the third, it suffices by Lemma 3.1 to prove that

A has finite projective dimension if Êxt
0

C(A,A) = 0. By the construction of direct limits

of abelian groups from [25, p. 261], there is k ∈ N0 such that idÃk
+ PC(Ãk, Ãk) = 0

in [Ãk, Ãk]C. Because unenriched Hom-functors are used, we conclude that idÃk
factors

through a projective. In particular, Ãk is projective and A has finite projective dimen-
sion. �

The following generalisation of Lemma 2.3 in [24] provides a criterion determining when
a cohomology group T n of a cohomological functor agrees the corresponding cohomology
group T̂ n of its Mislin completion

12



Proposition 3.3 Let T • : C → D be a cohomological functor. Then for n ∈ Z the
following are equivalent.

1. For any k ≥ n the functor T k vanishes on projective objects.

2. For any k ≥ n the functor T k is naturally isomorphic to T̂ k.

Proof As the second assertion implies the first, assume that T k vanishes on projective
objects for any k ≥ n. Let T • → U• be a morphism of cohomological functors where
U• vanishes on projective objects. According to the proof of Lemma 3.2 in [15], this
morphism factors uniquely as T • → T •〈n〉 → U•. Because T •〈n〉 vanishes on projectives
by our assumptions, we infer that it is a Mislin completion. In particular, we observe for
any k ≥ n that T k = T k〈n〉 ∼= T̃ k. �

Let us present a criterion for when a cohomological functor vanishing on projectives is a
Mislin completion. The following is a generalisation of Lemma 2.4 in [24].

Proposition 3.4 Let T •, V • : C → D be cohomological functors where V • vanishes on
projective objects. Assume that Φ• : T • → V • is a morphism such that there is n ∈ Z
with the property that Φk is an isomorphism for any k ≥ n. Then V • together with Φ•

forms a Mislin completion of T •.

Proof Note that T k vanishes on projectives for any k ≥ n. It follows from the proof of

Proposition 3.3 that there is a unique factorisation Φ• : T • → T •〈n〉
Ψ•

−→ V • where T •〈n〉
is the Mislin completion of T •. According to the proof of Lemma 3.2 in [15], Ψk = Φk is
an isomorphism for any k ≥ n. Therefore, Ψ• is an isomorphism of cohomological functors
by Lemma 3.1 in [15] and V • is a Mislin completion. �

Moving forward, a complete resolution of A ∈ obj(C) is an acyclic chain complex (An)n∈Z
of projectives such that there is n ∈ N0 for which (Ak)k≥n agrees with a projective resolu-
tion of A and such that for any projective P ∈ obj(C) the cochain complex HomC(A•, P ) is
acyclic where HomC(−,−) denotes the unenriched Hom-functor [8, Definition 1.1]. In ac-
cordance with [13, p. 158], we define Ext

•

C(A,B) := H•(HomC(A•, B)). By [8, Lemma 2.4],
any two complete resolutions are chain homotopic and thus, Tate-Farrell Ext-functors do
not depend on the choice of a complete resolution. In [17, Proposition 4.15], S.Guo and L.
Liang demonstrate that the Tate-Farrell Ext-functor Ext

n

C(A,−) is naturally isomorphic

to Êxt
n

C(A,−) for every n ∈ Z. Then we obtain the following version of Theorem 4.6
from [18]

Lemma 3.5 The Tate-Farrell Ext-functors Ext
•

C(A,−) are isomorphic to the completed

unenriched Ext-functors Êxt
•

C(A,−) as cohomological functors.

Apart from the proof found in [18], one can demonstrate this by using the proof of
Theorem 1.2 in [8] together with Proposition 3.4.

Example 3.6 P. Symonds constructs in [36, p. 34] Tate-Farrell cohomology for a profi-
nite group with an open subgroup of finite cohomological dimension taking coefficients in
profinite modules. Thus, complete cohomology generalises his Tate-Farrell cohomology.
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As mentioned in Section 1, for a prime number p the pro-p groups are a class of profinite
groups for which there is a rich theory of their group cohomology. One example of a
pro-p group that is also a pro-p ring are the p-adic integers Zp which are studied in [39,
Section 1.5]. If G is a profinite group, R a profinite commutative ring and M a profinite
R[[G]]-module, recall the convention from [9, p. 235] seen in Section 1 that Hn

R(G,M)
is a U(R)-module where U(R) denotes the ring R without its topology. To see that
complete cohomology can determine whether a pro-p group is finite, we need the following
description of H0

R(G,M) that has been already determined for discrete R[[G]]-modules
M in [29, Lemma 6.2.1] and that can be retrieved from [39, p. 165].

Proposition 3.7 Let G be a profinite group and R a profinite commutative ring. As any
profinite R[[G]]-module M comes with a continuous G-action by [29, Proposition 5.3.6],
define its U(R)-submodule

MG := {m ∈M | ∀g ∈ G : g ·m = m} .

Then H0
R(G,M) ∼= HomR[[G]](R,M) ∼= MG.

Proof Because group cohomology is defined as a derived functor of HomR[[G]](−,M), we
see that H0

R(G,M) = HomR[[G]](R,M) by [38, p. 50]. Let f : R→M be a R[[G]]-module
homomorphism. Remember that we follow B. Poonen’s convention that any ring has a
unit. As the R[[G]]-module R is endowed with a trivial G-action, we see that f(1) ∈MG.
Moreover, the homomorphism f is uniquely determined by the value f(1). Thus there is
an injective U(R)-module homomorphism

ev : HomR[[G]](R,M)→ MG, f 7→ f(1) .

Hence, assume that m ∈MG. Because M can be seen as a R-module, this gives rise to an
R-module homomorphism f : R → M, r 7→ r ·m that is also a continuous map between
R[[G]]-modules. Given that R and z are fixed by the G-action, the homomorphism f is
G-equivariant and thus an R[G]-module homomorphism where R[G] denotes the usual
group ring. The fact that R[G] is dense in R[[G]] by [29, Lemma 5.3.5] and that f is
continuous imply that it is an R[[G]]-module homomorphism. In particular, ev is an
isomorphism. �

Let us restrict our attention to the profinite ring R = Zp. By [29, p. 171], the com-
pleted group ring can be given by Zp[[G]] = lim

←−UEG open
Zp[G/U ]. In the case of the

Zp[[G]]-module Zp[G/U ] with U E G open, we can provide a more explicit description of
H0

Zp
(G,Zp[G/U ]).

Proposition 3.8 For any profinite group G and any open subgroup U E G we have

Zp[G/U ]
G =

{
(by)y∈G/U ∈

∏

y∈G/U

Zp | ∃b ∈ Zp ∀y ∈ G/U : by = b
}
.

If V E U E G is another open subgroup and G/V → G/U denotes the projection homo-
morphism, then the induced homomorphism is given by

Zp[G/V ]→ Zp[G/U ], (b)y∈G/V → (|U : V | · b)y′∈G/U .
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Proof Let (by)y∈G/U ∈ Zp[G/U ]G. Then (bg·y)y∈G/U = g · (by)y∈G/U = (by)y∈G/U for any
g ∈ G. According to [12, Section 0.9] the p-adic integers Zp can be embedded into the
p-adic rationals Qp which are a topological field. In particular, one can embed Zp[G/U ]

into the Qp-vector space Q|G:U |
p . This implies that by = bg·y for any y ∈ G/U and g ∈ G,

proving the first assertion. For the second assertion, if f : X → Y is a map between two
finite discrete spaces, then the corresponding induced homomorphism is given by

Zp[f ] : Zp[X ]→ Zp[Y ], (cx)x∈X 7→
( ∑

x∈f−1(y)

cx

)
y∈Y

.

Note now that the kernel of the group homomorphism G/V → G/U is given by U/V . �

This allows us to generalise Proposition 3.9 of [19] from discrete groups to pro-p groups.

Lemma 3.9 Let G be a pro-p group. Then G is finite if and only if H0
Zp
(G,−) is naturally

isomorphic to Ĥ0
Zp
(G,−) and Hn

Zp
(G,−) ≇ Ĥn

Zp
(G,−) for any n ≥ 0.

Proof Given that G. Mislin states in [24] that complete cohomology agrees with Tate
cohomology for a finite group G, one assertion follows from [1, p. 78–79] as we have seen

at the start of Section 1. Assume that H0
Zp
(G,−) is naturally isomorphic to Ĥ0

Zp
(G,−)

and that Hn
Zp
(G,−) ≇ Ĥn

Zp
(G,−) for any n ≥ 0. By Proposition 3.3, this is equivalent to

saying that there is a projective Zp[[G]]-module P such that H0
Zp
(G,P ) 6= 0. According

to [29, Lemma 5.2.5], P is a quotient of a free profinite module (Zp[[G]])[[X ]] on a profinite
space X where the quotient homomorphism has a (continuous) section. In particular,
H0

Zp
(G, (Zp[[G]])[[X ]]) 6= 0. By [29, Proposition 5.2.2], (Zp[[G]])[[X ]] = lim

←−i∈I
(Zp[[G]])[Xi]

where X = lim
←−i∈I

Xi with every Xi a finite discrete space. Denote the corresponding

Zp[[G]]-homomorphisms by fi,j : (Zp[[G]])[Xj] → (Zp[[G]])[Xi]. We conclude from [38,
p. 50] that H0

Zp
(G,−) = HomZp[[G]](Zp,−) where Hom-functors of this form preserve limits

according to [22, p. 116]. In particular, lim
←−i∈I

H0
Zp
(G, (Zp[[G]])[Xi]) 6= 0 which is an inverse

limit of U(Zp)-modules by our convention. If we use [29, p. 2–3] and Proposition 3.7, we
can describe it as the submodule of the product

∏
i∈I H

0
Zp
(G, (Zp[[G]])[Xi]) given by

{
(ai)i∈I ∈

∏

i∈I

H0
Zp
(G, (Zp[[G]])[Xi]) | ∀i ≤ j : fi,j(aj) = ai

}
.

Thus, there is i ∈ I such that 0 6= ai ∈ H0
Zp
(G, (Zp[[G]])[Xi]). As is noted in [29,

p. 167], (Zp[[G]])[Xi] =
∏

x∈Xi
Zp[[G]] which implies that H0

Zp
(G,Zp[[G]]) 6= 0. Assume

by contradiction that G is infinite. Because the completed group ring can be given as
Zp[[G]] = lim

←−UEG open
Zp[G/U ] by [29, p. 171], we may conclude the existence of a nonzero

element bU0 ∈ H
0
Zp
(G,Zp[G/U0]) as before. Moreover, because G is infinite, we can also

conclude that there is a countable sequence of open subgroups Un+1 �⊳ Un E G and
of elements bUn

∈ H0
Zp
(G,Zp[G/Un]) such that for any m ≤ n ∈ N0 the projection

homomorphism Zp[G/Un] → Zp[G/Um] maps bUn
to bUm

. It follows from Proposition 3.8
that there is a b ∈ Zp such that bU0 = (b)x∈G/U0 ∈

∏
x∈G/U0

Zp. Since G is assumed to be
a pro-p group, it also follows that b is divisible by arbitrarily large powers of p. However,
this is impossible by [39, p. 26–27] and thus G is finite. �

In order to prove that the terms Φn : ExtnC(A,−) → Êxt
n

C(A,−) fit into a long exact
sequence relating three distinct cohomological functors, we generalise a remark from [21,
p. 210] to
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Proposition 3.10 For unenriched Ext-functors Ext•C(A,−) : C → Ab the quotient map
HypC(A•, B•)• → VogC(A•, B•)• of chain complexes from the hypercohomology construc-

tion induces the canonical morphism Φ• : Ext•C(A,B) → Êxt
•

C(A,B) of cohomological
functors from the definition of a Mislin completion.

Proof Denote by Φ• : Ext•C(A,−)→ Êxt
•

C(A,−) the canonical morphism of cohomologi-
cal functors established through the satellite functor construction in [15, Lemma 3.2]. If

ω• : Êxt
•

C(A,−)→ Ext•ResC(A,−) is the isomorphisms of cohomological functors to the res-
olution construction from [15, Theorem 4.5], then ω• ◦ Φ

• : Ext•C(A,−)→ Ext•Res,C(A,−)
is also a canonical morphism to the Mislin completion. By Diagram 4.6 of the proof
of Lemma 4.1 in [15], each term ωn ◦ Φ

n : ExtnC(A,B) → ExtnRes,C(A,B) is a homomor-
phism to the direct limit occurring in the resolution construction as in Definition 2.9.
If both Ext•C(A,−) and Ext

•
Res,C(A,−) are taken as in [15, Definition 6.7], we denote by

Ψ• : Ext•C(A,−)→ Ext
•
Res,C(A,−) an analogous morphism to the direct limit. Taking the

isomorphisms of cohomological functors ζ• and ζ• also from [15, Definition 6.7], we see
that the diagram

Ext•C(A,−) Ext•C(A,−)

ExtRes,•C (A,−) Ext•Res,C(A,−)

ζ•

ω•◦Φ•
Ψ•

ζ•

commutes. Since Ext•C(A,−) is a different description of the Ext-functors Ext•C(A,−)
according to [15, Notation 6.1], Ψ• also represents a canonical morphism to the Mislin
completion. If ϑ0• denote homomorphisms from the proof of [15, Lemma 6.9] and ϑ• the
isomorphism of a cohomological functors from [15, Theorem 6.13], then the diagram

Ext•C(A,−)

Ext•Res,C(A,−) Êxt
•

C(A,−)

Ψ•

ϑ0•

ϑ•

is commutative. As before, we infer that ϑ0• is a canonical morphism to the Mislin com-

pletion Êxt
•

C(A,−). Note that we can restrict the quotient map of chain complexes

(HypC(A•, B•)n, d
n)n∈Z → (VogC(A•, B•)n, d

n
)n∈Z

to a homomorphism Ker(dn) → Ker(d
n
) for any n ∈ Z. Again by [15, Notation 6.1],

the latter is equivalent to HomCh(C)(A[n]•, B•)→ ĤomCh(C)(A[n]•, B•). By definition, this

further descends to the homomorphism ϑ0n : ExtnC(A,B)→ Êxt
n

C(A,B) as desired. �

From this proposition we deduce

Lemma 3.11 The short exact sequence of chain complexes

0→ BddC(A•, B•)• → HypC(A•, B•)• → VogC(A•, B•)• → 0

from the hypercohomology construction induces the long exact sequence

. . . → Hn(BddC(A•, B•)•)→ ExtnC(A,B)
Φn

−→ Êxt
n

C(A,B)→ Hn+1(BddC(A•, B•)•)→ . . .
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where Φ• : Ext•C(A,B) → Êxt
•

C(A,B) is the canonical morphism from the definition of a
Mislin completion. In particular, the terms Φn fit into a long exact sequence relating three
distinct cohomological functors.

Remark 3.12 This lemma is similar to Proposition 4.6 in S. Guo and L. Liang’s pa-
per [17]. Both results contain the same long exact sequence where our contribution lies in
determining that it involves the terms of the canonical morphism to the Mislin completion.

4 Dimension shifting and an Eckmann-Shapiro Lemma

One of the properties for Tate cohomology of finite groups that we have seen at the
start of Section 1 is dimension shifting. As we only recover a partial version, we need
an Eckmann-Shapiro type result in order to provide examples where dimension shifting
holds in full generality.

For this, we formally define induction, coinduction and restriction as can be found in [5,
p. 62–63 and p. 67]. Denote by CR,G the subcategory of C of module objects over the group
ring (object) R[G]. Let C contain a tensor product −⊗− : C×C → C that is right-adjoint
to an internal Hom-functor of the form HomC(−,−) : C

op ×C → C. Let H be a subgroup
object of G. If we regard the group ring object R[G] as an (R[G], R[H ])-bimodule object,
then we define restriction and coinduction as

ResGH(−) := −⊗R[G] R[G] : CR,G → CR,H and

CoindGH(−) := HomCR,H
(R[G],−) : CR,H → CR,G .

These form adjoint functors in the sense that

HomCR,H
(ResGH(A), B) ∼= HomCR,G

(A,CoindGH(B))

for every A ∈ CR,G and B ∈ CR,H where HomC(−,−) : Cop × C → Ab denotes the
unenriched Hom-functor. Instead, if we regard R[G] as an (R[H ], R[G])-bimodule, then
we define induction and restriction as IndGH(−) := − ⊗R[H] R[G] : CR,H → CR,G and
ResGH(−) := HomCR,G

(R[G],−) : CR,G → CR,H . This redefinition of restriction allows us

to conclude that (IndGH(−),Res
G
H(−)) is a pair of adjoint functors. We say that a functor

F : C → D preserves projectives if for every projective P ∈ obj(C) also F (P ) ∈ obj(D) is
projective.

Lemma 4.1 (Eckmann-Shapiro) 1. If both ResGH(−) and CoindGH(−) are exact and
preserve projectives, then for every n ∈ Z, A ∈ obj(CR,G) and B ∈ obj(CR,H) we

have that Êxt
n

CR,H
(ResGH(A), B) ∼= Êxt

n

CR,G
(A,CoindGH(B)) as unenriched completed

Ext-functors. In particular, Ĥn
R(H,B) ∼= Ĥn

R(G,Coind
G
H(B)) if A = R.

2. If IndGH(−) and ResGH(−) are exact and preserve projectives, then for every n ∈ Z,
A ∈ obj(CR,H) and B ∈ obj(CR,G) observe for unenriched completed Ext-functors

that Êxt
n

CR,G
(IndGH(A), B) ∼= Êxt

n

CR,G
(A,ResGH(B)).

Proof We only prove the assertion for the pair of adjoint functors (ResGH(−),Coind
G
H(−))

as the other one is analogous. For this we use the resolution construction. If f : A→ C
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is a morphism in CR,H , then it follows from the naturality of the adjunction and the Five
Lemma [6, Proposition I.1.1] that

Ker
(
HomCR,H

(ResGH(f), B)
)
∼= Ker

(
HomCR,G

(f,CoindGH(B)
)
and

Coker
(
HomCR,H

(ResGH(f), B)
)
∼= Coker

(
HomCR,G

(f,CoindGH(B)
)
.

To ease notation, write Ker(Res(f), B) for Ker
(
HomCR,H

(ResGH(f), B)
)
, Ker(f,Coind(B))

for Ker
(
HomCR,H

(f,CoindGH(B)
)
and analogously Coker(Res(f), B), Coker(f,Coind(B)).

If (Al, al)l∈N0 is a projective resolution of A, then letm, k ∈ N0 withm = n+k and consider

the short exact sequence 0 → B̃k+1 → Bk → B̃k → 0. This gives rise to the diagram on
the next page. The homomorphisms from the front to the back are isomorphisms arising
from the above adjunction. By naturality of this adjunction, the front and back squares
as well as the vertical squares running from front to back commute. Using the universal
property of kernels and cokernels together with the naturality of the adjunction, we can
deduce that also the horizontal squares running from front to back commute. Since we
assume that restriction and coinduction are exact and preserve projectives, all rows are
exact. Thus, the front and back side give rise to the connecting homomorphisms of the
respective Ext-functors. In particular, this diagram gives rise to the commuting square

ExtmCR,H
(ResGH(A), B̃k) ExtmCR,G

(A,CoindGH(B̃k))

Extm+1
CR,H

(ResGH(A), B̃k+1) Extm+1
CR,H

(A,CoindGH(B̃k+1))

∼=

δm δm

∼=

These squares form a direct system in whose direct limit we obtain the desired isomor-
phism. �

For the following example, recall that we have defined profinite groups and their associated
completed group rings in Section 1.

Example 4.2 The conditions of Lemma 4.1 are satisfied in the following two instances.

1. Let C be the category of discrete R-modules for a discrete commutative ring R and
let G be a discrete group together with a finite index subgroup H. The group rings
R[G] and R[H ] are taken to be discrete.

2. Let C be the category of profinite S-modules for a profinite commutative ring S and
let K be a profinite group together with an open subgroup L. The group rings S[[K]]
and S[[L]] are taken to be profinite.

Proof Let us first clarify some points regarding the profinite setting. Since the subgroup
L is open in K, it is of finite index [39, Lemma 0.3.1]. Although there is no internal Hom-
functor for profinite modules in general, coinduction and restriction can be nevertheless
defined because L is open subgroup of the profinite group K. Namely, for any S[[L]]-
module M and any S[[K]]-module N , endowing CoindKL (M) = HomS[[L]](S[[K]],M) and
ResKL (N) = HomS[[K]](S[[K]], N) with the compact-open topology turns them into profi-
nite modules [37, p. 369–371]. As there is a tensor product for profinite modules [29,
p. 177/191], induction and restriction can be defined in this case. By [4, Lemma 7.8]
restriction is left adjoint to coinduction and induction left adjoint to restriction in the
profinite case.
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Extm
CR,G

(A,CoindGH (B̃k))

Extm
CR,H

(ResGH (A), B̃k)

Coker(am,Coind(B̃k+1)) Coker(am,Coind(Bk)) Coker(am,Coind(B̃k)) 0

Coker(Res(am), B̃k+1) Coker(Res(am), Bk) Coker(Res(am), B̃k) 0

0 Ker(am+1,Coind(B̃k+1)) Ker(am+1,Coind(Bk)) Ker(am+1,Coind(B̃k))

0 Ker(Res(am+1), B̃k+1) Ker(Res(am+1), Bk) Ker(Res(am+1), B̃k)

Extm+1
CR,G

(A,CoindGH (B̃k+1))

Extm+1
CR,H

(ResGH (A), B̃k+1)
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As both the discrete and profinite case can be treated analogously from this point, we write
R[G] for either the discrete or profinite group ring of G over R and denote by H the finite
index (open) subgroup. It follows from the description ResGH(−) = HomR[G](R[G],−)
that restriction is exact. By [5, Proposition I.3.1], [29, Proposition 5.4.2] and [29, Propo-
sition 5.7.1] the R[H ]-module R[G] is projective. We thus infer by [38, Lemma 2.2.3]
that coinduction is exact and by [29, Proposition 5.5.3] and [38, p. 68] that induction
is exact. According to the proof of [4, Corollary 7.9], induction preserves projectives.
Because the (open) subgroup H is of finite index in G, IndGH(M) ∼= CoindGH(M) for every
R[H ]-module M by [5, Proposition III.5.9] and [37, p. 371]. Due to this isomorphism
and [38, Lemma 2.2.3], coinduction preserves projectives. �

Theorem 4.3 (Dimension shifting) If T • : C → D is a cohomological functor, then

for any M ∈ obj(C) there is M∗ ∈ obj(C) such that T̂ n+1(M∗) ∼= T̂ n(M) for every n ∈ Z.
In addition, if there is a monomorphism f : M → N in C with T̂ k(N) = 0 for every

k ∈ Z, then T̂ n−1(Coker(f)) ∼= T̂ n(M).

Proof We consider the short exact sequence 0→ M̃1 →M0 → M → 0 and setM∗ := M̃1.
Then the first assertion follows from Axiom 2.2 and Definition 2.4. The second assertion
is deduced analogously. �

Example 4.4 The conditions of Theorem 4.3 are satisfied in the following two instances.

1. Let C be the category of discrete R-modules for a discrete commutative ring R and let
G be a discrete group together with a finite index subgroup H of finite cohomological
dimension. The group rings R[G] and R[H ] are taken to be discrete.

2. Let C be the category of profinite S-modules for a profinite commutative ring S and
let K be a profinite group together with an open subgroup L of finite cohomological
dimension. The group rings S[[K]] and S[[L]] are taken to be profinite.

Proof As the discrete and profinite case can be treated largely analogously, we denote by
R[G] either the discrete or profinite group ring and by H the finite index (open) subgroup
of finite cohomological dimension. Then by [5, Proposition III.5.9] and [37, p. 371] we
deduce that there is a (continuous) injective R[H ]-module homomorphism

const :M → HomR[H](R[G],Res
G
H(M)) = CoindGH(Res

G
H(M))

defined by

const(m) : R[G]→ ResGH(M), x 7→

{
x ·m if x ∈ R[H ]

0 if x /∈ R[H ]

for every m ∈M . Specifically in the profinite case, since const is a continuous R-module
homomorphism that is invariant under the G-action, it is invariant under the ordinary
group ring of G over R. Because the latter is dense in the profinite group ring R[G] [29,
Lemma 5.3.5], const is a continuous R[G]-module homomorphisms. Returning to full
generality, we conclude by Lemma 3.1 and Example 4.2 that

Ĥn
R

(
G,CoindGH(Res

G
H(M))

)
∼= Ĥn

R(H,Res
G
H(M)) = 0

for every n ∈ Z. Specifically for discrete groups of finite virtual cohomological dimen-
sion this can be proved in a different manner. As mentioned in Section 1, Tate-Farrell
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cohomology can be defined by taking a complete resolution in this case [13, p. 157–158].

By [38, Lemma 2.3.4], Ĥ•
R(G,−) vanishes on injectives where the category of discrete

R[G]-modules has enough injectives [5, p. 61]. However, this argumentation does not pass
through to profinite groups because the category of profinite R[G]-modules does not have
enough injectives in general [37, p. 353]. �

5 External products of unenriched Ext-functors

In order to construct external and thus cup products of completed unenriched Ext-functors
in the next section, we provide an outline of these products for unenriched Ext-functors
in this section. As we have not found a treatment of external products when working in
an abelian category C with enough projectives, we generalise them to this setting based
on K. S.Brown’s account of cup products in group cohomology found in [5, Chapter V].

The starting point of external products and thus of cup product are tensor products. We
assume that there is a bi-additive functor suggestively written as ⊗C : C × C → C. If
P,Q ∈ obj(C) are projective, then we impose that also P ⊗C Q is projective. We refer to
the bifunctor ⊗C as a tensor product. If A,C ∈ obj(C) and (An, an)n∈N0, (Cn, cn)n∈N0 are
corresponding projective resolutions, then we define the tensor product A•⊗CC• of A• and
C• as the following chain complex. For B1, . . . , Bn ∈ obj(C) there is a coproduct

⊕n
i=1Bi

whose canonical monomorphisms we denote by in,Bk
: Bk →

⊕n
i=1Bi and canonical

epimorphisms by pn,Bk
:
⊕n

i=1Bi → Bk; see [23, p. 250–251] for more detail. According
to [23, p. 163] we form for n ∈ N0 the n-chains as

(A• ⊗C C•)n :=

n⊕

i=0

Ai ⊗C Cn−i

and the corresponding boundary map as

Dn+1 :=

n+1∑

k=0

(
in+1,Ak−1⊗CCn+1−k

◦ (ak ⊗C idCn+1−k
) ◦ pn+2,Ak⊗CCn+1−k

(5.1)

+ (−1)kin+1,Ak⊗CCn−k
◦ (idAk

⊗C cn+1−k) ◦ pn+2,Ak⊗CCn+1−k

)
: (A• ⊗C C•)n+1 → (A• ⊗C C•)n

where it is understood that a0 = c0 = 0. Due to our assumptions, all terms of A• ⊗C C•

are projective. If A′
• and C ′

• are different projective resolutions, then A• ⊗C C• is chain
homotopic to A′

• ⊗C C
′
• [23, p. 164]. Write a : A0 → A, c : C0 → C for the augmentation

maps. As can been inferred from [23, p. 164/229], one needs to impose conditions on
A•⊗CC• to ensure that it is an acyclic complex and thus a projective resolution of A⊗CC
with augmentation map a⊗C c : A0 ⊗C C0 → A⊗C C.

External products arise from defining tensor products of chain maps. For this let (Bn, bn)N0 ,
(En, en)n∈N0 be chain complexes that vanish in negative degrees. As at the end of Section 2
when discussing the hypercohomology construction, we extend the projective resolutions
A•, C• to chain complexes indexed over Z by setting them to zero in negative degrees.
For m,n ∈ N0 let u• ∈ HypC(A•, B•)m and v• ∈ HypC(C•, E•)n be cochains in the re-
spective hypercohomology complex. Similar to the start of Subsection 6.1 in [15], we
consider them as componentwise morphisms of the form {um+k : Am+k → Bk}k∈Z and
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{vn+l : Cn+l → El}l∈Z which do not need to be chain maps. According to [5, p. 10],
defining

(u• ⊗C v•)k :=

k∑

l=0

(−1)(m+l)nik,Bl⊗CEk−l
◦ (um+l⊗Cvn+k−l) ◦ pm+n+k,Am+l⊗CCn+k−l

: (5.2)

(A• ⊗C C•)m+n+k → (B• ⊗C E•)k .

for any k ∈ N0 yields a cochain u• ⊗C v• ∈ HypC(A• ⊗C C•, B• ⊗C E•)m+n. Since we have
assumed that ⊗C is bi-additive, this yields a homomorphism

HypC(A•, B•)m ⊗HypC(C•, E•)n → HypC(A• ⊗C C•, B• ⊗C E•)m+n, u• ⊗ v• 7→ u• ⊗C v•

where ⊗ denotes the tensor product of abelian groups. If we take the differential

dm+n : HypC(A• ⊗C C•, B• ⊗C E•)m+n → HypC(A• ⊗C C•, B• ⊗C E•)m+n+1

as in Equation 2.1, then it is also noted in the above source that

dm+n(u• ⊗C v•) = (dmu•)⊗C v• + (−1)mu• ⊗C (d
nv•) . (5.3)

Let B,E ∈ obj(C). Similar to the start of Subsection 6.1 in [15], we may consider the
chain complex i(B)• whose only nonzero terms is B in degree 0 and similarly i(E)•. If
we define unenriched Ext-functors as derived functors of unenriched Hom-functors, then
ExtnC(A,B) = Hn(HypC(A•, i(B)•)) by definition of the corresponding differentials. We
assume now explicitly that A• ⊗C C• is a projective resolution of A ⊗C C. By this and
Equation 5.3, the tensor product of cochains as in Equation 5.2 descends to a well defined
homomorphism

∨ : ExtmC (A,B)⊗ ExtnC(C,E)→ Extm+n
C (A⊗C C,B ⊗C E) (5.4)(

u+ Im(HomC(am, B))
)
⊗

(
v + Im(Hom(cn, E))

)
7→ (−1)mn(u⊗C v) ◦ pm+n,Am⊗CCn

+ Im(Hom(Dm+n, B ⊗C E))

that is termed an external product [5, p. 109–110].

Let us present some properties of external products of unenriched Ext-functors that we
shall generalise to completed unenriched Ext-functors. To demonstrate that external
products are natural as is mentioned in [5, p. 110], let r : X → A, s : Y → C, f : B →M ,
g : E → N be morphisms in C. If we take corresponding projective resolutions, assume
that X• ⊗C Y• is a projective resolution of X ⊗C Y and consider lifts to chain maps
r• : X• → A•, s• : Y• → C• as in the Comparison Theorem [38, Theorem 2.2.6]. Due to
Equation 5.3, the chain map r• ⊗C s• : X• ⊗C Y• → A• ⊗C C• only depends on r and s up
to chain homotopy. Because the tensor product ⊗C respects compositions of morphisms,
the square

ExtmC (A,B)⊗ ExtnC(C,E) Extm+n
C (A⊗C C,B ⊗C E)

ExtmC (X,M)⊗ ExtnC(Y ,N) Extm+n
C (X ⊗C Y ,M ⊗C N)

∨

Extm
C
(r, f)⊗Extn

C
(s, g) Extm+n

C
(r⊗Cs, f⊗Cg)

∨

(5.5)

commutes and external products are indeed natural.
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As is proved in [5, p. 110–111], external products of Ext-functors respect connecting
homomorphisms, which is important in the construction of external products of completed
Ext-functors. More specifically, if 0→ B′′ → B′ → B → 0 is a short exact sequence and
E is such that 0→ B′′ ⊗C E → B′ ⊗C E → B ⊗C E → 0 remains a short exact sequence,
then the diagram

ExtmC (A,B)⊗ ExtnC(C,E) Extm+n
C (A⊗C C,B ⊗C E)

Extm+1
C (A,B′′)⊗ ExtnC(C,E) Extm+n+1

C (A⊗C C,B
′′ ⊗C E)

∨

δm⊗id δm+n

∨

(5.6)

commutes. On the other hand, if 0 → E ′′ → E ′ → E → 0 is a short exact sequence and
B is such that 0→ B ⊗C E

′′ → B ⊗C E
′ → B ⊗C E → 0 remains a short exact sequence,

then the diagram

ExtmC (A,B)⊗ ExtnC(C,E) Extm+n
C (A⊗C C,B ⊗C E)

ExtmC (A,B)⊗ Extn+1
C (C,E ′′) Extm+n+1

C (A⊗C C,B ⊗C E
′′)

∨

id⊗δn (−1)mδm+n

∨

(5.7)

commutes.

To conclude that external products are associative as mentioned in [5, p. 111], we impose
that ⊗C is associative in the following sense. For any objects X, Y, Z in C there is an
isomorphism

assoc : X ⊗C (Y ⊗C Z)→ (X ⊗C Y )⊗C Z

and for any morphisms f : X → X ′, g : Y → Y ′, h : Z → Z ′ the diagram

X ⊗C (Y ⊗C Z) (X ⊗C Y )⊗C Z

X ′ ⊗C (Y
′ ⊗C Z

′) (X ′ ⊗C Y
′)⊗C Z

′

assoc

f⊗C(g⊗Ch) (f⊗Cg)⊗Ch

assoc

(5.8)

commutes. Moreover, we assume that tensor products distribute over finite products in
the sense that there are isomorphisms

distr1 : (X ⊕ Y )⊗C Z → (X ⊗C Z)⊕ (Y ⊗C Z) and

distr2 : X ⊗C (Y ⊕ Z)→ (X ⊗C Y )⊕ (X ⊗C Z)

rendering the diagrams

(X ⊕ Y )⊗C Z (X ⊗C Z)⊕ (Y ⊗C Z)

(X ⊕ Y )⊗C Z (X ⊗C Z)⊕ (Y ⊗C Z)

distr1

(f⊕g)⊗Ch (f⊗Ch)⊕(g⊗Ch)

distr1

(5.9)

and

X ⊗C (Y ⊕ Z) (X ⊗C Y )⊕ (X ⊗C Z)

X ⊗C (Y ⊕ Z) (X ⊗C Y )⊕ (X ⊗C Z)

distr2

f⊗C(g⊕h) (f⊗Cg)⊕(f⊗Ch)

distr2

(5.10)
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commutative. It follows from this and Equation 5.4 that external products are associative,
meaning that

∀x ∈ ExtmC (A,B), y ∈ ExtnC(C,E), z ∈ ExtoC(F ,G) : x ∨ (y ∨ z) = (x ∨ y) ∨ z . (5.11)

Instead, if we assume that the tensor product ⊗C is symmetric, then the external product
∨ is graded commutative which is demonstrated in [5, p. 111–112]. More specifically, let
swap : X ⊗C Y → Y ⊗C X be an isomorphism that is natural in both variables X and Y .
For any two chain complexes (Xn)n∈Z, (Yn)n∈Z which vanish in negative degrees there is
a chain isomorphism given by

swapk :=

k∑

l=0

(−1)l(k−l)ik+1,Yk−l⊗CXl
◦ swap ◦ pk+1,Xl⊗CYk−l

: (5.12)

(X• ⊗C Y•)k → (Y• ⊗C X•)k

for any k ∈ Z. In case X•, Y• are projective resolutions of X and Y such that X• ⊗C Y•
is a projective resolution of X ⊗C Y , then swap• : X• ⊗C Y• → Y• ⊗C X• is a chain map
lifting swap : X ⊗C Y → Y ⊗C X as in the Comparison Theorem [38, Theorem 2.2.6].
Moreover the diagram

HypC(A•, B•)m ⊗HypC(C•, E•)n HypC(A• ⊗C C•, B• ⊗C E•)m+n

HypC(C•, E•)n ⊗HypC(A•, B•)m HypC(C• ⊗C A•, E• ⊗C B•)m+n

(−1)mnswap HypC(swap•, swap•)m+n
(5.13)

commutes where the horizontal homomorphisms are taken as in Equation 5.2. Therefore

∀x ∈ ExtmC (A,B), y ∈ ExtnC(C,E) : Ext
m+n
C (swap, swap) ◦ (x ∨ y) = (−1)mny ∨ x (5.14)

as desired.

In the case of group cohomology, external products give rise to cup products. Although
our account is based on [5, p. 107–110], it differs from the source as our tensor product
takes a slightly different form. For this let R be a ring object in C and G be a group object.
In the following, we only work in the category CR,G and take the tensor product to be of
the form ⊗R : CR,G×CR,G → CR,G. Given that −⊗R− is a bifunctor, we assume that there
are natural isomorphisms Θ′

M :M ⊗RR→M and Θ′′
M : R⊗RM →M . If R•, R

′
• are two

projective resolutions of R, then we assume that R• ⊗R R
′
• is also a projective resolution

of R. Consequently, the external product from Equation 5.4 becomes the so-called cup
product

⌣: Hm
R (G,B)⊗Hn

R(G,E)→ Hm+n
R (G,B ⊗R E) . (5.15)

Diagram 5.6 and 5.7 as well as Equation 5.11 pertain to hold for cup products, meaning
that they are associative and respect connecting homomorphisms. Because the chain
isomorphism swap• defined in 5.12 goes from one projective resolution of R to another,
Equation 5.14 states for cup products that

∀x ∈ Hm
R (G,B), y ∈ Hn

R(G,E) : H
m+n
R (G, swap) ◦ (x ⌣ y) = (−1)mny ⌣ x

where Hm+n
R (G, swap) arises from Extm+n

CR,G
(swap, swap).

24



Contrary to external products, there is under certain conditions a multiplicative unit for
cup products which is shown in [5, p. 111]. In particular, this turns group cohomology
into a graded ring. We assume that there is a projective resolution (R•, ∂•) of R with
augmentation map ε : R0 → R such that for any k ∈ N0 and any morphism f : Rk → M
the diagram

(R• ⊗R R•)k Rk ⊗R R Rk

M ⊗R R M

(id⊗Rε)◦pk+1,Rk⊗RR0

(f⊗Rε)◦pk+1,Rk⊗RR0

Θ′
Rk

f

Θ′
M

(5.16)

commutes. Note that the top morphism forms part of a chain map R•⊗RR• → R• lifting
Θ′
R : R⊗R R→ R and thus induces an isomorphism on the level of group cohomology. If

we write (R•, ∂•) := (R•, ∂•), then we assume further that the diagram

(R• ⊗R R•)k R⊗R Rk Rk

R⊗RM M

(ε⊗Rid)◦pk+1,R0⊗RRk

(ε⊗Rf)◦pk+1,R0⊗RRk

Θ′′

Rk

f

Θ′′
M

(5.17)

commutes. As before, the top morphism forms part of a chain map R•⊗RR• → R• lifting
Θ′′
R : R ⊗R R → R and also induces an isomorphism in group cohomology. If we thus

write 1 ∈ H0
R(G,R) for the element arising from the augmentation map ε : R0 → R, then

∀x ∈ Hn
R(G,M) : Hn

R(G,Θ
′
M)(x ⌣ 1) = x = Hn

R(G,Θ
′′
M)(1⌣ x) .

If we define cup products with at least one element of negative degree to vanish, then the
cup product turns

⊕
n∈ZH

n
R(G,R) into graded ring with identity 1.

6 Existence of cohomology products

In this section we establish external products and cup products under specific conditions
and provide examples which meet these conditions. Moreover, we construct Yoneda prod-
ucts in full generality. For clarity, we introduce the following notation. Reserving the
letter ‘D’ for boundary maps, we denote the arguments of external products usually by
A, B, C and E. We write G for a group (object) and R for a ring (object). As we have
used the letter ‘I’ for index sets previously, we denote the arguments for Yoneda products
by F , H and J in order to distinguish them from the arguments of external products. As
most constructions of these cohomology products involve taking direct limits, we require
the following result that we have not found in the literature in this manner.

Proposition 6.1 Let (Mi, mi)i∈N, (Ni, ni)i∈N be direct systems of abelian groups and de-
note by ⊗ the tensor product of abelian groups. Then

lim
−→
i∈N

(Mi ⊗Ni, mi ⊗ ni) ∼= (lim
−→
j∈N

Mj)⊗ (lim
−→
k∈N

Nk) .

Proof We demonstrate that lim
−→i∈N

(Mi ⊗ Ni, mi ⊗ ni) satisfies the universal property of

the tensor product (lim
−→j∈N

Mj) ⊗ (lim
−→k∈N

Nk) that can be found in [34, Tag 00CV] for
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instance. Denote by Mi ×Ni the cartesian product and observe that the squares

Mi ×Ni Mi ⊗Ni

Mi+1 ×Ni+1 Mi+1 ⊗Ni+1

qi

mi×ni mi⊗ni

qi+1

(6.1)

commute. Although Mi × Ni and Mi+1 × Ni+1 are abelian groups and mi ⊗ ni a ho-
momorphism, we regard the former as sets and the latter as a function. In particular,
Diagram 6.1 gives rise to a direct system of functions in whose direct limit we obtain

q := lim
−→
i∈N

qi : lim
−→

Set,i∈N

(Mi ×Ni, mi × ni)→ lim
−→

Set,i∈N

(Mi ⊗Ni, mi ⊗ ni) (6.2)

where the latter is taken to be a direct limit of sets. By [34, Tag 002W], the former direct
limit can be given by

lim
−→

Set,i∈N

(Mi ×Ni, mi × ni) ∼= ( lim
−→

Set,j∈N

Mj)× ( lim
−→

Set,k∈N

Nk) . (6.3)

In particular, if mi,∞ : Mi → (lim
−→Set,j∈N

Mj) and ni,∞ : Ni → (lim
−→Set,k∈N

Nk) denote

functions to the respective direct limit, then the function

mi,∞ × ni,∞ :Mi ×Ni → ( lim
−→

Set,j∈N

Mj)× ( lim
−→

Set,k∈N

Nk) (6.4)

represents the function to the direct limit lim
−→Set,i∈N

(Mi ×Ni, mi × ni). According to [34,

Tag 04AX], if ⊔ denotes the disjoint union of sets, then the latter direct limit in Equa-
tion 6.2 can be constructed as

lim
−→

Set,i∈N

(Mi ⊗Ni, mi ⊗ ni) =
⊔

n∈N

Mn ⊗Nn/ ∼ (6.5)

where xi ∈Mi⊗Ni ∼ yj ∈Mj ⊗Nj if there is i, j ≤ k such that xi and yj are mapped to
the same element in Mk⊗Nk. It follows from the proof of [29, Proposition 1.2.1] and [34,
Tag 09WR] that it can be endowed with the structure of an abelian group such that it
forms the colimit lim

−→i∈N
(Mi ⊗ Ni, mi ⊗ ni) of abelian groups and not just of sets. Same

holds true for lim
−→i∈N

Mi and lim
−→i∈N

Ni from Equation 6.3. Hence, the function q from
Equation 6.2 can be written as

q : (lim
−→
j∈N

Mj)× (lim
−→
k∈N

Nk)→ lim
−→
i∈N

(Mi ⊗Ni, mi ⊗ ni) .

To prove that q satisfies the above mentioned universal property, consider a bilinear
function a : (lim

−→j∈N
Mj)× (lim

−→k∈N
Nk)→ A for an abelian group A. Composing with the

homomorphisms mi,∞ and ni,∞ occurring in Equation 6.4 yields a bilinear function

Mi ×Ni
mi,∞×ni,∞

−−−−−−→ (lim
−→
j∈N

Mj)× (lim
−→
k∈N

Nk)
a
−→ A .

By the universal property of the tensor product, there exists a unique homomorphism
bi :Mi ⊗Ni → A such that the square

Mi ×Ni Mi ⊗Ni

(lim
−→j∈N

Mj)× (lim
−→k∈N

Nk) A

qi

mi,∞×ni,∞ bi

a

(6.6)
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commutes. By this and Diagram 6.1 we infer that the triangle

Mi ⊗Ni

Mi+1 ⊗Ni+1 A

bi
mi⊗ni

bi+1

(6.7)

is commutative whence there is a homomorphism

b := lim
−→
i∈N

bi : lim−→
i∈N

(Mi ⊗Ni, mi ⊗ ni)→ A

By Diagram 6.1, 6.6 and 6.7 we obtain the factorisation

a : lim
−→

Set,i∈N

(Mi ×Ni, mi × ni)
q
−→ lim
−→

Set,i∈N

(Mi ⊗Ni, mi ⊗ ni)
b
−→ A .

Because b is unique in this factorisation due to Equation 6.5 and the uniqueness of the ho-
momorphisms bi from Diagram 6.6 and 6.7, lim

−→i∈N
(Mi⊗Ni, mi⊗ni) satisfies the universal

property of the tensor product (lim
−→j∈N

Mj)⊗ (lim
−→k∈N

Nk). �

Theorem 6.2 1. Let ⊗C : C×C → C be a bi-additive functor and assume that P⊗CQ is
projective whenever P,Q ∈ obj(C) are projective. Let A•, C• be projective resolutions
of A,C ∈ obj(C) such that the tensor product of resolutions A•⊗C C• is a projective
resolution of A ⊗C C. Let B•, E• be projective resolutions of B, E such that for
their syzygies F̃k ∈ {B̃k, Ẽk} the functors −⊗C F̃k, F̃k ⊗C − : C → C are exact and
preserve projectives. Then for every m,n ∈ Z external products

∨ : Êxt
m

C (A,B)⊗ Êxt
n

C(C,E)→ Êxt
m+n

C (A⊗C C,B ⊗C E)

can be defined for completed unenriched Ext-functors equivalently through the reso-
lution and the hypercohomoology construction.

2. If R is a ring object in C and G a group object, then we take the tensor product to be
of the form ⊗R : CR,G × CR,G → CR,G. Assume that there are natural isomorphisms
Θ′
M : M ⊗R R → M and Θ′′

M : R ⊗R M → M and that R• ⊗R R
′
• is a projective

resolution of R for any two projective resolutions R•, R
′
• of R. Then for every

m,n ∈ Z there are cup products

⌣: Ĥm
R (G,M)⊗ Ĥn

R(G,N)→ Ĥm+n
R (G,M ⊗R N)

for completed unenriched group cohomology that descend from the above external
products.

Proof As can be observed from the previous section, the existence of cup products follows
from the existence of external products. Hence, we only prove the latter where we first
use the resolution construction. Since we need to consider direct limit systems for this,
let k, l ∈ N0 and write K := m + k and L := n + l. Then by Diagram 5.6, Diagram 5.7
and [6, Proposition III.4.1] we see that the cube
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ExtK
C
(A, B̃k)⊗ExtL

C
(C, Ẽl) ExtK+L

C
(A⊗CC, B̃k⊗CẼl)

ExtK+1
C

(A, B̃k+1)⊗ExtL
C
(C, Ẽl) ExtK+L+1

C
(A⊗CC, B̃k+1⊗CẼl)

ExtK
C
(A, B̃k)⊗ExtL+1

C
(C, Ẽl+1) ExtK+L+1

C
(A⊗CC, B̃k⊗CẼl+1)

ExtK+1
C

(A, B̃k+1)⊗ExtL+1
C

(C, Ẽl+1) ExtK+L+2
C

(A⊗CC, B̃k+1⊗CẼl+1)

δK⊗id

∨

id⊗δL

δK+L

(−1)KδK+L

∨

id⊗δL

δK⊗id

∨

δK+L+1

∨

(−1)K+1δK+L+1

(6.8)
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According to the above cube, this gives rise to a homomorphism

lim
−→
k∈N0

∨ : lim
−→
k∈N0

(
Ext

m+P (o)k
C (A, B̃P (o)k)⊗Ext

n+D(o)k
C (C, ẼD(o)k)

)

→ lim
−→
k∈N0

Extm+n+k
C (A⊗C C, B̃P (o)k ⊗C ẼD(o)k)

in the direct limit. Although the homomorphisms giving rise to the right hand direct
limit involve changing signs, these have no effect as one can group the terms of the direct
system such that these signs cancel each other. In particular, the right hand direct limit

equals Êxt
m+n

C (A ⊗C C,B ⊗C E) by the resolution construction. If the sequence o takes
the value 0 only finitely many times, then there would be d ∈ N0 such that the above
homomorphism would be of the form

lim
−→
k∈N0

∨ : Extm+d
C (A, B̃d)⊗ Êxt

n

C(C,E)→ Êxt
m+n

C (A⊗C C,B ⊗C E) .

Since we do not wish to consider this to be an external product, we conclude that both
values 0 and 1 occur infinitely often in o. By the proof of [15, Lemma 4.10] and Dia-
gram 6.8, it does not matter which sequence o we choose as they all result in the same
direct limits. Thus, if we choose o to alternate between 0 and 1, then the homomorphism
in the direct limit takes the form

lim
−→
k∈N0

∨ : lim
−→
k∈N0

(
Extm+k

C (A, B̃k)⊗ Extn+kC (C, Ẽk)
)
→ Êxt

m+n

C (A⊗C C,B ⊗C E) .

By Proposition 6.1, this results in the desirerd external product

∨ := lim
−→
k∈N0

∨ : Êxt
m

C (A,B)⊗ Êxt
n

C(C,E)→ Êxt
m+n

C (A⊗C C,B ⊗C E) .

In order to translate this to the hypercohomology construction, consider two almost chain
maps ϕ•+m : A[m]• → B• and ψ•+n : C[n]• → E•. For k ∈ N0 write πk : Bk → B̃k for

the morphism to the kth syzygy and define ϕ′
m+k := πk ◦ ϕm+k : Am+k → B̃k where we

define ψ′
n+k : Cn+k → Ẽk analogously. According to [15, Lemma 6.6] and the proof of [15,

Lemma 6.9], there is κ ∈ N0 such that (ϕm+k)k≥2κ is a chain map that gives rise to the

element ϕ′
m+2κ + Im(HomC(am+2κ, B̃2κ) in Extm+2κ

C (A, B̃2κ). We see by the proofs of [15,
Lemma 6.6] and of [15, Lemma 6.9] that

δm+K
(
ϕ′
m+K + Im(HomC(am+K , B̃K)

)
= ϕ′

m+K+1 + Im(HomC(am+K+1, B̃K+1)

for any K ≥ 2κ. Analogously, there is λ ∈ N0 such that (ψn+l)l≥2λ is a chain map that

gives rise to the element ψ′
n+2λ+Im(HomC(cn+2λ, Ẽ2λ) in Extn+2λ

C (C, Ẽ2λ). Given K ≥ 2κ,
L ≥ 2λ, the external product of (ϕm+k)k≥K and (ψn+l)l≥L arises from

ϕ′
m+K ⊗C ψ

′
n+L : Am+K ⊗C Cn+L → B̃K ⊗C ẼL

according to Equation 5.4. Observe that the diagrams

Am+K ⊗C Cn+L BK ⊗C ẼL

B̃K ⊗C ẼL

ϕm+K⊗Cψ
′
n+L

ϕ′
m+K

⊗Cψ
′
n+L

πK⊗C id (6.9)
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and

Am+K ⊗C Cn+L B̃K ⊗C EL

B̃K ⊗C ẼL

ϕ′
m+K

⊗Cψn+L

ϕ′
m+K

⊗Cψ
′
n+L

id⊗CπL (6.10)

commute. In order that the external product of ϕ•+m and ψ•+n is again an almost chain
map modulo chain homotopy, a choice of a projective resolution of B ⊗C E is required.
Define the projective resolution B• ⊗

o
C E• by setting for any k ∈ N0 the kth term to be

(B• ⊗
o
C E•)k :=

{
BP (o)k ⊗ ẼD(o)k if P (o)k+1 = P (o)k + 1

B̃P (o)k ⊗ ED(o)k if P (o)k+1 = P (o)k

and extend it to be zero in negative degrees. We define the componentwise morphism

ϕ•+m ⊗
o
C ψ•+n : (A• ⊗C C•)[m+ n]• → B• ⊗

o
C E•

by setting the kth degree correspondingly to

ϕm+P (o)k ⊗C ψ
′
n+D(o)k

◦ pk+1,Am+P (o)k
⊗CCn+D(o)k

: (A• ⊗C C•)m+n+k → BP (o)k ⊗C ẼD(o)k or

ϕ′
m+P (o)k

⊗C ψn+D(o)k ◦ pk+1,Am+P (o)k
⊗CCn+D(o)k

: (A• ⊗C C•)m+n+k → B̃P (o)k ⊗C ED(o)k

whenever m + P (o)k, n + D(o)k ≥ 0 and to be zero otherwise. Due to the construction
of external products through the resolution construction, Diagram 6.9 and Diagram 6.10,
ϕ•+m⊗

o
C ψ•+n is a chain map in degrees k for which P (o)k ≥ 2κ, D(o)k ≥ 2λ and thus an

almost chain map. Likewise we conclude that

Êxt
m

C (A,B)⊗ Êxt
n

C(C,E)→ Êxt
m+n

C (A⊗C C,B ⊗C E)

(ϕ•+m + N̂ullCh(C)(A[m]•, B•))⊗ (ψ•+n + N̂ullCh(C)(C[n]•, E•))

7→ (ϕ•+m ⊗
o
C ψ•+n + N̂ullCh(C)((A• ⊗C C•)[m+ n]•, B• ⊗

o
C E•)

is the external product given by the hypercohomology construction. �

Remark 6.3 In [3, p. 110], D. J. Benson and J. F. Carlson establish external products
for completed unenriched Ext-functors of any category of modules over a ring through
the näıve construction and thus cup products for complete unenriched cohomology of any
discrete group. We do not know whether our constructions are equivalent to theirs, but
we doubt that this is the case in general. They mention there that external products for
completed Ext-functors cannot be defined through tensor products of almost chain maps
as in Equation 5.2 because this does not yield an almost chain map in general.

Example 6.4 All conditions of Theorem 6.2 are satisfied in the following two instances.

1. Let C be the category of discrete R[G]-modules for a discrete group G and a principal
ideal domain R. The restriction of A, B, C, E to R-modules needs to be projective.

2. Let C be the category of profinite S[[H ]]-modules for a profinite group H and profinite
commutative ring S with a unique maximal open ideal. Then the restriction of A,
B, C, E to profinite S-modules needs to be projective.

30



Remark 6.5 The p-adic integers Zp are an example of a profinite commutative ring with
the unique maximal ideal pZp [39, p. 27]. The restriction of any p-torsionfree profinite
Zp[[G]]-module to a Zp-module is projective [37, Corollary 2.1.2].

Proof There is a tensor product ⊗R for discrete R[G]-modules and one ⊗̂S for profinite
S[[H ]]-modules [29, Section 5.5 and 5.8]. By [29, Proposition 5.5.3], tensoring with the
coefficient ring R (resp. S) yields isomorphisms as required for tensor products. Be-
cause the coefficient ring is projective as a module over itself, all requirements for cup
products are met as soon as all conditions on external products from Theorem 6.2 are met.

To prove the latter, denote by F any of A, B, C or E. By [5, p. 10–11] and [39,
Lemma 9.8.2], there is a resolution F• of F such that Fk is a free R[G]-module (resp.
S[[H ]]-module) for every k ∈ N0. Then Fk is free as an R-module (resp. S-module) where
the result for discrete modules follows by construction and for profinite ones by [29, Corol-
lary 5.7.2]. In particular, Fk is a projective R-module where one invokes [29, Proposi-
tion 5.4.2] for the profinite case. Because E is projective as an R-module (resp. S-module),

the short exact sequence 0→ F̃1 → F0 → F → 0 is split and hence F̃1 projective as an R-
module (resp. S-module). Inductively, we conclude for every k ∈ N0 that F̃k is projective

as an R-module (resp. S-module). According to [5, p. 29] and [29, Proposition 5.5.3], F̃k
is flat and according to [30, Theorem 9.8] and [39, Proposition 7.5.1], it is also free as an

R-module. It then follows from the proof of [37, Proposition 3.3.2] that tensoring F̃k with
a projective R[G]-module (resp. S[[H ]]-module) gives rise to another projective module.

This does not only prove B and E have projective resolutions of the desired form, but
also that P ⊗RQ (resp. P ⊗̂SQ) is projective whenever P and Q are projective. According
to [39, Lemma 10.4.4], A• ⊗R C• is a projective resolution of A ⊗R C (resp. A•⊗̂SC• of
A⊗̂SC). �

Contrary to external and cup products, we construct in the following Yoneda products
in full generality. To this end, recall that for every n ∈ Z the completed unenriched Ext-

functor Êxt
n

C(−,−) : C
op × C → Ab forms a bifunctor that is additive in both variables

by [15, Proposition 5.5] and [15, Proposition 6.3]. We generalise hereby the constructions
of Yoneda products found in [3, p. 110] and prove that they are equivalent.

Theorem 6.6 Let F,H, J ∈ obj(C). If ⊗ denotes the tensor product in Ab, then for
every m,n ∈ Z Yoneda products

◦ : Êxt
n

C(H, J)⊗ Êxt
m

C (F,H)→ Êxt
m+n

C (F, J)

can be defined for completed unenriched Ext-functors equivalently by the hypercohomology
construction as composition of almost chain maps or by the näıve construction as a direct
limit of the composition functors of the functors [−,−]C from [15, Proposition 5.1].

Proof The definition of Yoneda products through the hypercohomology construction is
analogous to their definition for unenriched Ext-functors, which is covered in [14, p. 166]
for instance. Namely, if the almost chain map f [n]•+m : F [m + n]• → H [n]• is a repre-

sentative an element in Êxt
m

C (F,H) and g•+n : H [n]• → J• a representative of an element

in Êxt
n

C(H, J), then their composition g•+n ◦ f [n]•+m : F [m+n]• → J• is again an almost
chain map. If f ′

•+m is chain homotopic to f•+m and g′•+n chain homotopic to g•+n, then
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g•+n ◦ f [n]•+m is chain homotopic to g•+n ◦ f
′[n]•+m which is in turn chain homotopic to

g′•+n ◦ f
′[n]•+m. Hence,

g•+n ◦ f [n]•+m + N̂ullCh(C(F [m+ n]•, J•)

is a well defined element in Êxt
m+n

C (F, J). Since this operation is bi-additive, it constitutes
a Yoneda product

Êxt
n

C(H, J)⊗ Êxt
m

C (F,H)→ Êxt
m+n

C (F, J) .

Moving over to the näıve construction, one can see in [15, Proposition 5.1] that for any
k ∈ N0 with n +m + k, n + k ≥ 0 the composition functor of morphisms descends to a
bifunctor

◦ : [H̃n+k, J̃k]C × [F̃n+m+k, H̃n+k]C → [F̃n+m+k, J̃k]C .

In particular, if we take an element f ′
n+m+k + PC(F̃n+m+k, H̃n+k) in [F̃n+m+k, H̃n+k]C and

an element g′n+k + PC(H̃n+k, J̃k) in [H̃n+k, J̃k]C, then they give rise to a well defined ele-

ment g′n+k ◦ f
′
n+m+k + PC(F̃n+m+k, J̃k) in [F̃n+m+k, J̃k]C. By [15, Proposition 5.2] and [15,

Definition 5.3] we can pass to the direct limit to obtain

lim
−→
k∈N0

(
[H̃n+k, J̃k]C × [F̃n+m+k, H̃n+k]C

)
→ Êxt

m+n

C (F, J) .

Because this operation is bi-additive, this yields by Proposition 6.1 the second Yoneda

product. Applying the isomorphism ρn+m : Êxt
n+m

C (F, J) → BCn+m
C (F, J) from [15,

Definition 6.16], we deduce from the proof of [15, Lemma 6.17] that

ρn+m
(
g•+n◦f [n]•+m+N̂ullCh(C)(F [n+m]•, J•)

)
=

(
g̃n+2k◦f̃n+m+2k+PC(F̃n+m+2k, J̃2k)

)
k≥K

where K ∈ N0 is chosen such that both (fn+m+k)k≥2K and (gn+k)k≥2K are chain maps.
This demonstrate that the two Yoneda products agree. �

Remark 6.7 Using our constructions, we do not know whether cup products and Yoneda
products agree in complete unenriched group cohomology. In contrast, D. J. Benson and
J. F. Carlson prove in [3, p. 110] that Yoneda products agree with the cup products that
they construct for complete cohomology of discrete groups.

7 Properties of cohomology products

This final section is dedicated to the properties of external, cup and Yoneda products.
First, we develop requirements for when these cohomology products are associative. Then
we provide conditions under which cup products turn complete cohomology and Yoneda
products turn completed Ext-functors into a graded ring with identity. We show that
the canonical morphism from Ext-functors to their Mislin completion preserves coho-
mology products. Lastly, we prove that external and cup products satisfy a version of
graded commutativity and that cohomology products are compatible with connecting ho-
momorphisms. As we have only constructed these products for completed unenriched
Ext-functors in the previous section, all Ext-functors are understood to be unenriched
from this point on.
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Lemma 7.1 1. External products of completed Ext-functors and thus cup products
of complete group cohomology are natural in both variables. More specifically, let
r : X → A, s : Y → C, f : B → M and g : E → N be morphisms such that their
objects satisfy all conditions in Theorem 6.2. Then the square

Êxt
m

C (A,B)⊗ Êxt
n

C(C,E) Êxt
m+n

C (A⊗C C,B ⊗C E)

Êxt
m

C (X,M)⊗ Êxt
n

C(Y ,N) Êxt
m+n

C (X ⊗C Y ,M ⊗C N)

∨

Êxt
m

C (r, f)⊗Êxt
n

C(s, g) Êxt
m+n

C (r⊗Cs, f⊗Cg)

∨

commutes. In the case of cup products, we take the first variable of each completed
Ext-functor to be the coefficient ring R and assume the existence of the required
natural isomorphisms Θ′ and Θ′′.

2. Yoneda products of completed Ext-functors

◦ : Êxt
n

C(H, J)⊗ Êxt
m

C (F,H)→ Êxt
m+n

C (F, J)

are natural in the variable F and J .

Proof (1) To establish naturality via the resolution construction, let k, l ∈ N0, write
K := m + k, L := n + l and consider the lifts f• : B• → M•, g• : C• → N• as in [15,
Proposition 4.2]. By the naturality of connecting homomorphisms, Diagram 5.5 and Di-
agram 5.6, the cube on the next page is commutative. If we use Diagram 5.7 instead of
Diagram 5.6, we find an analogous commuting cube with δK ⊗ id replaced id ⊗ δL and
δK+L by (−1)KδK+L. This together with the construction of external products in proof
of Theorem 6.2 implies the assertion.

(2) This assertion follows from [15, Definition 6.2] together with the definition of Yoneda
products via the hypercohomology construction. �

Lemma 7.2 1. Assume that the bifunctor ⊗C : C × C → C is associative and dis-
tributes over finite products in the sense of satisfying Diagram 5.8, Diagram 5.9
and Diagram 5.10. If there are A,B,C,E, F,H ∈ obj(C) such that A• ⊗C C• ⊗C H•

is a projective resolution of A ⊗C C ⊗C H and the corresponding pairs satisfy the
conditions of Theorem 6.2, then

∀x ∈ Êxt
m

C (A,B), y ∈ Êxt
n

C(C,E), z ∈ Êxt
p

C(F,H) : (x ∨ y) ∨ z = x ∨ (y ∨ z) .

2. If the first variable of each completed Ext-functor is set to the coefficient ring R
and the required natural isomorphisms Θ′ and Θ′′ exist, then also cup products for
complete cohomology are associative.

3. Yoneda products of completed Ext-functors are associative.
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E
x
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E
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,Ñ
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E
x
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+
L

C
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⊗
C
Y
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k
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C
Ñ

l
)

E
x
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+
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C
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,Ñ

l
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E
x
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+
L
+
1

C
(X

⊗
C
Y
,M̃

k
+
1
⊗

C
Ñ

l
)

δK
⊗
id

∨

E
x
tK C

(r
,f̃

k
)⊗

E
x
tL C

(s
,g̃

l
)

δK
+
L

Ê
x
tK

+
L

C
(r
⊗

C
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f̃
k
⊗

C
g̃
l
)

∨

E
x
tK

+
1

C
(r
,f̃

k
+
1
)⊗

E
x
tL C

(s
,g̃

l
)

δK
⊗
id

∨

δK
+
L

∨

Ê
x
tK

+
L
+
1

C
(r
⊗

C
s,
f̃
k
+
1
⊗

C
g̃
l
)

Proof For Yoneda products this follows for instance from their definition through the
hypercohomology construction. In order to establish associativity of external products,
we first need to introduce some notation. In the proof of Theorem 6.2 we labelled direct
systems by sequences o ∈ {0, 1}N taking the values 0 and 1 infinitely many times that lead
to the definition of external products via the resolution construction. Now we consider
sequences o ∈ {0, 1, 2}N that take each value infinitely often. For i ∈ {0, 1, 2} and k ∈ N we
define Fi(o)k to be the number of times that the sequence o has taken the value i up to and
including the kth term. We set Fi(o)0 := 0 and define F (o) := (F1(o)k, F2(o)k, F3(o)k)k∈N0.
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Then the element (x ∨ y) ∨ z arises from a homomorphism going from the direct limit of

(
Ext

m+F1(r)k
C (A, B̃F1(r)k)⊗ Ext

n+F2(r)k
C (C, ẼF2(r)k)⊗ Ext

p+F3(r)k
C (F, H̃F3(r)k)

)
k∈N0

(7.1)

to the direct limit of

(
Extm+n+p+k

C (A⊗C C ⊗C F, B̃F1(r)k ⊗C ẼF2(r)k ⊗C H̃F2(r)k)
)
k∈N0

(7.2)

where r ∈ {0, 1, 2}N takes each value infinitely often. This uses that A• ⊗C C• ⊗C F• is
a projective resolution of A ⊗C C ⊗C H and that external products of unerniched Ext-
functors are associative which requires the other conditions stated in the lemma as can
be seen in Section 5. The element x ∨ (y ∨ z) arises from an analogous homomorphism
between two direct limits arising from a different sequence s ∈ {0, 1, 2}N taking each
value infinitely often. In order to relate the corresponding direct systems, we tensor the
terms in Diagram 6.8 with Ext

p+F3(r)k
C (F, H̃F3(r)k) and its corresponding identity map. If

Ext
p+F3(r)k
C (F, H̃F3(r)k) appears as the right most term in the resulting tensor products,

then no sign changes are required. If it occurs as the middle or left most term, then we
need to multiply the corresponding connecting homomorphisms δn+k+p and δn+k+p+1 on
the left hand side with a factor of either (−1)m+F1(r)k or of (−1)m+F1(p)k+n+F2(r)k according
to Diagram 5.6 and Diagram 5.7. This brings us into the situation of the proof of [15,
Lemma 4.10]. More specifically, the direct limits in Equation 7.1 and Equation 7.2 arising
from r and s agree whenever there are infinitely many indices k ∈ N0 for which the terms
of the sequences (F (r)k)k∈N0 and (F (s)k)k∈N0 coincide.

However, they coincide only in finitely many terms in general. Thus, it suffices to construct
a sequence u ∈ {0, 1, 2}N inductively such that F (u) has infinitely many terms in common
with both F (r) and F (s). Note that the latter sequences coincide for k = 0. Assume
that κ ∈ N0 is the last index for which F (r)κ = F (s)κ and set uk := rk for 1 ≤ k ≤ κ.
Inductively assume that there is K ∈ N0 such that F (u)K = F (r)K. As F (u)K 6= F (s)K ,
there are {h, i, j} = {0, 1, 2} such that Fh(u) > Fh(s) and Fi(u) < Fi(s). We apply the
following procedure for k ≥ K. If sk = j, we set uk := j. In case sk = h, set uk := i and
in case sk = i, set uk := h. This yields an index K ′ ≥ K for which Fh(u)K ′ = Fh(s)K ′ or
Fi(u)K ′ = Fi(s)K ′. If this is the case for the value h and we have that Fj(u)K ′ 6= Fj(s)K ′,
then we repeat the above procedure where we swap the roles of the values h and j. This
provides us an index K ′′ ≥ K ′ such that F (u)K ′′ = F (s)K ′′. The same procedures yield
an index K ′′′ ≥ K ′′ such that F (u)K ′′′ = F (r)K ′′′ from which we can inductively construct
the desired desired sequence u ∈ {0, 1, 2}. �

Lemma 7.3 For any A ∈ obj(C) denote by 1A the element in Êxt
0

C(A,A) represented by
the (almost) chain map id• : A• → A•.

1. Assume that Diagram 5.16 and Diagram 5.17 commute and that R,M ∈ obj(CR,G)
possess projective resolutions R•, M• such that they satisfy all conditions ensuring
the existence of cup products in complete cohomology. Then

∀n ∈ Z, x ∈ Ĥn
R(G,M) : Ĥn

R(G,Θ
′
M)(x ⌣ 1R) = x = Ĥn

R(G,Θ
′′
M)(1R ⌣ x) .

In particular, if cup products satisfy the conditions of Lemma 7.2, then they turn⊕
n∈Z Ĥ

n
R(G,R) into a graded ring with identity 1R.
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2. One has that

∀B ∈ obj(C), n ∈ Z, y ∈ Êxt
n

C(A,B), z ∈ Êxt
n

C(B,A) : y ◦ 1A = y and 1A ◦ z = z .

Hence, the Yoneda product turns
⊕

n∈Z Êxt
n

C(A,A) into a graded ring with identity
1A.

Proof As the assertion for Yoneda products follows from their construction via the hy-
percohomology construction, we prove the assertion for cup products by the resolution
construction. For any x ∈ Ĥn

R(G,M) there is k ∈ N0 and a morphism f : Rn+k → M̃k

such that the element in Hn+k
R (G, M̃k) represented by f is mapped to x in the direct

limit. By [15, Proposition 6.4] the augmentation map ε : R0 → R gives rise to the
element in H0

R(G,R) = Ext0CR,G
(R,R) represented by id• : R• → R• which is mapped

to 1R ∈ Ĥ
0
R(G,R) in the direct limit. Then passing through an appropriate direct sys-

tem and using Diagram 5.16 as well as Diagram 5.17 implies the desired identities. More
specifically, the right hand morphism in Diagram 5.16 gives rise to x in the direct limit and
the left hand morphism to x ⌣ 1R. Taking a projective resolution of M ⊗R R whose first
terms are of the formMl⊗RR, we see that the bottom morphism gives rise to the isomor-
phism Ĥn

R(G,Θ
′
M). The top morphism gives rise to isomorphisms in group cohomology

and thus to an isomorphism in complete cohomoloogy after taking the direct limit. This
proves that Ĥn

R(G,Θ
′
M)(x ⌣ 1R) = x. An analogous argument using Θ′′

M instead of Θ′
M

and Diagram 5.17 instead of Diagram 5.16 demonstrates that Ĥn
R(G,Θ

′′
M)(1R ⌣ x) = x.�

Proposition 7.4 Let Φ• : Ext•C(A,−) → Êxt
•

C(A,−) denote the canonical morphism of
the Mislin completion.

1. Then Φ• preserves external and cup products whenever they exist. More specifically,
if A, B, C and E are objects in C satisfying the conditions of Theorem 6.2, then

∀x ∈ ExtmC (A,B), y ∈ ExtnC(C,E) : Φ
m(x) ∨ Φn(y) = Φm+n(x ∨ y) .

The corresponding statement for cup products is obtained by setting A,C = R and
by assuming the existence of the required natural isomorphisms Θ′ and Θ′′. In par-
ticular, if the conditions of Lemma 7.3 are satisfied and the ring structure derived
from the cup product is taken, then

⊕

n∈Z

Φn(R) :
⊕

n∈Z

Hn
R(G,R)→

⊕

n∈Z

Ĥ•
R(G,R)

is a ring homomorphism.

2. Moreover, Φ• preserves Yoneda products, meaning that

∀ξ ∈ ExtmC (H, J), υ ∈ ExtnC(F,H) : Φn(υ) ◦ Φm(ξ) = Φm+n(υ ◦ ξ) .

In particular, if one takes the ring structure derived from the Yoneda product, then

⊕

n∈Z

Φn(F ) :
⊕

n∈Z

ExtnC(F, F )→
⊕

n∈Z

Êxt
•

C(F, F )

is a ring homomorphism.
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Proof (1) In the proof of Proposition 3.10 we have seen that the canonical morphism

Φn : ExtnC(A,−)→ Êxt
n

C(A,−) can be taken as the canonical morphism to the direct limit
occurring in the resolution construction. This together with the construction of external
products via the resolution construction implies that Φ• preserves external and cup prod-
ucts. By the proof of Lemma 7.3, it induces the desired ring homomorphism because the
identity element of

⊕
n∈ZH

n
R(G,R) arising from the augmentation map ε : R0 → R is

sent to the identity 1R of
⊕

n∈Z Ĥ
•
R(G,R).

(2) The definition of the Yoneda product via the hypercohomology construction from
the proof of Theorem 6.6 is analogous to the one of Yoneda products of unenriched Ext-
functors. Namely, instead of considering almost chain maps modulo chain homotopy we
take chain maps modulo chain homotopy and compose them. Thus, Φ• preserves Yoneda
products by Proposition 3.10. If the element 1F from Lemma 7.3 is also taken to be a
chain map modulo chain homotopy living in Ext0C(F, F ), then it represents the identity
of

⊕
n∈Z Ext

n
C(F, F ) with the ring structure derived from the Yoneda product. Because⊕

n∈Z Φ
n(F ) maps the identity element to the identity element by Proposition 3.10, it is

a ring homomorphism. �

The following proposition states that external and cup products satisfy a form of graded
commutativity.

Proposition 7.5 Let A, B, C and E satisfy the conditions of Theorem 6.2 and assume
that Diagram 5.13 commutes. If one takes the homomorphism swap as in the latter
diagram, then the homomorphisms in the following commutative diagram

Extm+k
C

(A, B̃k)⊗Extn+k
C

(C, Ẽk) Extn+k
C

(C, Ẽk)⊗Extm+k
C

(A, B̃k)

Extm+k+1
C

(A, B̃k+1)⊗Extn+k
C

(C, Ẽk) Extn+k
C

(C, Ẽk)⊗Extm+k+1
C

(A, B̃k+1)

Extm+k+1
C

(A, B̃k+1)⊗Extn+k+1
C

(C, Ẽk+1) Extn+k+1
C

(C, Ẽk+1)⊗Extm+k+1
C

(A, B̃k+1)

(−1)(m+k)(n+k)swap

δm+k⊗id (−1)n+k id⊗δm+k

(−1)(m+k+1)(n+k)swap

(−1)m+k+1id⊗δn+k

δn+k⊗id
(−1)(m+k+1)(n+k+1)swap

(7.3)

give rise to the homomorphism

ŝwap : Êxt
m

C (A,B)⊗ Êxt
n

C(C,E)→ Êxt
n

C(C,E)⊗ Êxt
m

C (A,B)

in the direct limit. Moreover, the diagram

Êxt
m

C (A,B)⊗ Êxt
n

C(C,E) Êxt
m+n

C (A⊗C C,B ⊗C E)

Êxt
n

C(C,E)⊗ Êxt
m

C (A,B) Êxt
m+n

C (B ⊗C E,A⊗C C)

∨

ŝwap Êxt
m+n

C (swap, swap)

∨

(7.4)

commutes. The corresponding statements for cup products are obtained by imposing that
A,C = R and by assuming the existence of the required natural isomorphisms Θ′ and Θ′′.

Proof If we apply Proposition 6.1, the homomorphisms on the left hand side of Dia-

gram 7.3 do not seem to yield Êxt
m

C (A,B) ⊗ Êxt
n

C(C,E) in the direct limit according to
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the resolution construction. However, if we concatenate four copies of Diagram 7.3, the
sign issues vanish yielding the direct limit of the desired form. For the same reason the
homomorphisms on the right hand side result in the correct direct limit from which we
obtain the homomorphism ŝwap. Next, we form with Diagram 5.13 the following direct
system of commuting squares. We connect its left hand homomorphisms via Diagram 7.3
to each other. We connect its top and bottom homomorphisms via Diagram 5.6 and
Diagram 5.7 where the factor of (−1)m is assigned to the term id⊗ δn instead of the term
δm+n in the latter diagram. According to Equation 5.14, the right hand morphisms are
of the form Extm+n+2k(swap, swap) and connected by connecting homomorphism. Then
Diagram 7.4 results as the direct limit of these squares. �

Lemma 7.6 1. Let 0 → B → B′ → B′′ → 0 and 0 → E → E ′ → E ′′ → 0 be short
exact sequences in C. If for B ∈ {B,B′, B′′} and E ∈ {E,E ′, E ′′} the objects A, B,
C, E as well as A, B, C, E satisfy the conditions of Theorem 6.2, then the diagrams

Êxt
m

C (A,B)⊗ Êxt
n

C(C,E) Êxt
m+n

C (A⊗C C,B ⊗C E)

Êxt
m+1

C (A,B′′)⊗ Êxt
n

C(C,E) Êxt
m+n+1

C (A⊗C C,B
′′ ⊗C E)

∨

δ̂m⊗id δ̂m+n

∨

(7.5)

and

Êxt
m

C (A,B)⊗ Êxt
n

C(C,E) Êxt
m+n

C (A⊗C C,B ⊗C E)

Êxt
m

C (A,B)⊗ Êxt
n+1

C (C,E ′′) Êxt
m+n+1

C (A⊗C C,B ⊗C E
′′)

∨

id⊗δ̂n (−1)m δ̂m+n

∨

(7.6)

commute. The corresponding diagrams for cup products are obtained by setting
A,C = R and by assuming the existence of the required natural isomorphisms Θ′

and Θ′′.

2. For any F,H, J ∈ obj(C) and any short exact sequence 0 → J → J ′ → J ′′ → 0 the
diagram

Êxt
n

C(H,J)⊗ Êxt
m

C (F ,H) Êxt
m+n

C (F , J)

Êxt
n+1

C (H,J ′′)⊗ Êxt
m

C (F ,H) Êxt
m+n+1

C (F , J ′′)

◦

δ̂n◦id δ̂m+n

◦

commutes.

Proof The statement about Yoneda products follows their definition via the hypercoho-
mology construction and the construction of the connecting homomorphism found in [15,
Definition 6.5]. Let us argue that Diagram 7.5 commutes. It follows from Diagram 6.8
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iagram

ExtK
C
(A, B̃k)⊗ExtL

C
(C, Ẽl) ExtK+L

C
(A⊗CC, B̃k⊗CẼl)

ExtK+1
C

(A, B̃′′
k+1)⊗ExtL

C
(C, Ẽl) ExtK+L+1

C
(A⊗CC, B̃

′′
k+1⊗CẼl)

ExtK
C
(A, B̃k)⊗ExtL+1

C
(C, Ẽl+1) ExtK+L+1

C
(A⊗CC, B̃k⊗CẼl+1)

ExtK+1
C

(A, B̃′′
k+1)⊗ExtL+1

C
(C, Ẽl+1) ExtK+L+2

C
(A⊗CC, B̃

′′
k+1⊗CẼl+1)

ExtK+1
C

(A, B̃k+1)⊗ExtL+1
C

(C, Ẽl+1) ExtK+L+2
C

(A⊗CC, B̃k+1⊗CẼl+1)

ExtK+2
C

(A, B̃′′
k+2)⊗ExtL+1

C
(C, Ẽl+1) ExtK+L+3

C
(A⊗CC, B̃

′′
k+2⊗CẼl+1)

(−1)kδK⊗id

∨

id⊗δL (−1)kδK+L
(−1)KδK+L

∨

id⊗δL

(−1)kδK⊗id

∨

δK⊗id (−1)kδK+L+1
δK+L+1

∨

δK+1⊗id

(−1)K+1δK+L+1

(−1)k+1δK+1⊗id

∨

(−1)k+1δK+L+2

∨

δK+L+2

(7.7)
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ExtK
C
(A, B̃k)⊗ExtL

C
(C, Ẽl) ExtK+L

C
(A⊗CC, B̃k⊗CẼl)

ExtK
C
(A, B̃k)⊗ExtL+1

C
(C, Ẽ′′

l+1) ExtK+L+1
C

(A⊗CC, B̃k⊗CẼ
′′
l+1)

ExtK+1
C

(A, B̃k+1)⊗ExtL
C
(C, Ẽl) ExtK+L+1

C
(A⊗CC, B̃k+1⊗CẼl)

ExtK+1
C

(A, B̃k+1)⊗ExtL+1
C

(C, Ẽ′′
l+1) ExtK+L+2

C
(A⊗CC, B̃k+1⊗CẼ

′′
l+1)

ExtK+1
C

(A, B̃k+1)⊗ExtL+1
C

(C, Ẽl+1) ExtK+L+2
C

(A⊗CC, B̃k+1⊗CẼl+1)

ExtK+1
C

(A, B̃k+1)⊗ExtL+2
C

(C, Ẽ′′
l+2) ExtK+L+3

C
(A⊗CC, B̃k+1⊗CẼ

′′
l+2)

(−1)m+lid⊗δL

∨

δK⊗id (−1)lδK+L

δK+L
∨

δK⊗id

(−1)m+lid⊗δL

∨

id⊗δL (−1)l+1δK+L+1
(−1)m+1δK+L+1

∨

id⊗δL+1

δK+L+1

(−1)m+l+1id⊗δL+1

∨

(−1)l+2δK+L+2

∨

(−1)m+1δK+L+2
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com
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s
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