arXiv:2405.03619v1 [cs.SE] 6 May 2024

The trade-offs between Monolithic vs. Distributed

Architectures

Matheus Felisberto [ FIA Business School | matheus.felisberto @gympass.com |

Abstract Software architects frequently engage in trade-off analysis, often confronting sub-optimal

solutions due to unforeseen or overlooked disadvantages.

Such outcomes can detrimentally affect a

company’s business operations and resource allocation. This article conducts a critical review of archi-
tectural styles, particularly focusing on the strengths and weaknesses of both monolithic and distributed
architectures, and their relationship to architectural characteristics. It also explores the role of cloud
computing in transitioning from monolithic to distributed-based applications. Utilizing a broad range
of sources, including papers and books from both industry and academia, this research provides an
overview from theoretical foundations to practical applications. A notable trend observed is a shift
back from distributed to monolithic architectures, possibly due to factors such as cost, complexity, and

performance.
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1 Introduction

As technology evolves in a fast-paced environment,
cloud computing has emerged significantly reshaping
how software is designed, deployed, and utilized. This
shift towards a cloud-native era, favoring agility, scala-
bility, and elasticity, represents a move away from tra-
ditional monolithic, on-premises solutions. In conjunc-
tion, new architectural styles like serverless computing,
have become a viable and popular alternative for many
businesses.

However, an often-overlooked aspect is the trade-offs
involved. The complexities introduced by these archi-
tectural choices are usually challenging to modify, as
per the definition of software architecture by [Fowler,
2002]. The trade-offs may range from underutilizing
a system, such as a database management systems, to
dealing with the intricate complexities of a distributed
transaction.

This article aims to provide a systematic review of ar-
chitectural styles exploring both benefits and inherent
challenges between monolhitc and distributed-based ar-
chitectures in what might be described as the no-free-
lunch theorem scenario in software design.

2 Methodology

This article employs a methodology that blends snow-
balling research with a grey literature review, focusing
on architectural styles and characteristics between dis-
tributed architectures and monoliths. This study began
with a search for foundational papers and reports in
these fields, using academic databases and industry pub-
lications. Through the snowballing process, the base
literature collection was progressively expanded. To

ensure a comprehensive coverage, I traced backward
and forward the references, capturing both seminal and
recent works. Supplementing these academic findings,
white papers, technical reports, blog posts and industry
case studies were also reviewed to provide a practical in-
dustry insights.

The gathered materials were deeply analyzed to iden-
tify common themes, trends and divergences in the field.
This phase involved extracting and synthesizing key in-
sights related to the research themes, leading to the
findings presented in this article. In conjunction snow-
balling research with grey literature review, enabled
a thorough and multifaceted exploration of the topics,
capturing both theoretical and practical insights.

3 Software Architecture

Software Architecture plays a crucial role in the indus-
try, however, it still lacks a descriptive and universally
convincing definition. Over the years, many experts
have attempted to delineate its boundaries, often in the
presence of exceptions and caveats. It can be thought
of as the composition of a system’s components and the
relationships between them. The primary focus is on
the public interface; the architectural significance lies
in these externally facing elements rather than in the
private details. However, even though they are not the
the main concern, can still play a role in shaping the
overall structure and functionality of the system, un-
derscores Bass et al. [2012].

Building software on a solid foundation, which might
include robust architectural patterns and coding stan-
dards, is essential, especially considering the key role it
plays in a business’s success. Failing to address a wide
range of potential scenarios could significantly mining a
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company’s growth. While many modern frameworks of-
fer solutions to common problems, supporting in these
architectural decisions, it’s important to recognize that
each system has its own unique requirements and speci-
ficities that must be carefully considered, indicates Mi-
crosoft [2009].

3.1 Architectural Characteristics

Every software inherently depends on factors beyond
its immediate domain, which architects must consider
during the design process. These factors, often referred
to as Quality Attributes or non-functional requirements,
have been studied at least since 1970s by the software
community, portrays Bass et al. [2012], and are essen-
tial for ensuring the software meets both business and
user needs. Extending from low-level code aspects, such
as modularity, to operational concerns, including scal-
ability, as detailed in Bass et al. [2021] and Richards
and Ford [2020]. It is important to recognize that every
software characteristics list, is an incomplete, ambigu-
ous, and overlapping list, regardless of the very own ISO
[2011]. For instance, Richards and Ford [2020] exem-
plifies that interoperability and compatibility might be
equivalent depending on the system. Bass et al. [2012]
also point out a particular case of denial-of-service at-
tack. Would it be an aspect of availability, performance,
security, or usability? In some extent, we can con-
sider them all. One of the main reasons behind the
imprecise definitions and the persisting ambiguity, is
the fast-pacing evolution in the industry itself. With
many different use cases, companies develop their own
terminologies, complicating efforts to establish compre-
hensive taxonomies for all categories. However, it is rec-
ommended to adopt the Domain Driven Design, specif-
ically the ubiquitous-language technique, to minimize
misunderstandings. As outlined by Evans [2003], this
approach emphasizes consistency in both language and
terminology across the whole domain, thereby fostering
a better comprehension and clearer communication.

Domain experts should object to terms or
structures that are awkward or inadequate
to convey domain understanding; developers
should watch for ambiguity or inconsistency
that will trip up design. Evans [2003]

When it comes to architectural characteristics, it is
essential to understand that not every application will
require or support every characteristic maximization. It
is a decision-making process selecting the aspects that
are relevant to solve a problem at hand, while taking
into consideration the impact among them. Take, for
example, a system where security is crucial. By prior-
itizing this characteristic, it might cause implications
on performance, such as the need for encryption at-rest
and at-transit, and secure storage strategies for sensi-
tive data. Attempting to excel in every aspect can lead
to the development of a generic architecture, which, in
its naively attempt to address a wide range of business
problems, may lack focus and efficiency.
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SLA (% Uptime) Unavailability per Year

99% 3 days 15 hours
99.9% 8 hours 45 minutes
99.95% 4 hours 22 minutes
99.99% 52 minutes

99.999% 5 minutes

Table 1. AWS availability tiers

Richards and Ford [2020] advocate for an iterative de-
sign process. This approach suggests that implementing
smaller, iterative changes is more effective than trying
to preemptively address every possible scenario, which
can lead to over complexity and unanticipated chal-
lenges.

Never shoot for the best architecture, but rather
the least worst architecture. Richards and Ford
[2020]

3.1.1 Availability

Availability refers to the aspect of software being ready
and operational when needed. Given the complexity of
systems, and the wide range of potential, and unavoid-
able issues, maintaining high availability is a critical
challenge. This involves not only identifying failures
cause by faults but also implementing repair mecha-
nisms, ideally autonomous, that is, without the need
for human intervention. Among the difficulties in de-
signing highly available, fault-tolerant systems is accu-
rately predicting potential failure modes and then de-
vising effective strategies to mitigate them. As Bass
et al. [2012] emphasize, this proactive approach to fail-
ure detection and mitigation is key to achieving and
maintaining system availability.

To quantify a system’s availability, Service Level
Agreements (SLAs) are typically established. These
agreements specify the guaranteed performance stan-
dards and outline the penalties for failing to meet these
criteria. To illustrate it, the Table 1 shows the SLAs
tiers by the public cloud provider Amazon Web Services
[2024].

The challenge lies in not designing with the false
and tempting notion of avoiding problems entirely, but
rather in considering failure as first-class citizens. By
adopting this mindset, it becomes possible to identify
the types of failures a system is prone to and to imple-
ment appropriate techniques to handle them, as high-
lighted Bass et al. [2012].

3.1.2 Interoperability

The interoperability refers to the ability of a different
systems to exchange and effectively interpret informa-
tion. This concept involves two distinct layers: syntac-
tic interoperability, which is concerned with the struc-
ture and format of the data exchange, and semantic
interoperability, which relates to the meaning and in-
terpretation of the data. These layers are comprehen-
sively described in Bass et al. [2012]. Brownsword et al.
[2004] further define interoperability as the capacity of
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a collection of communicating entities to share specified
information, and operate on that information according
to an agreed operational semantics. An integral part of
achieving interoperability is the process by which sys-
tems locate each other and manage their interfaces to
facilitate the sharing of information.

3.1.3 Modifiability

Software is a continuous work in progress, whether it is
already in production or not. Continuous development,
ranging from refactoring and adding new features to
updating dependencies, is a norm. This could involve
upgrades to the runtime, framework, or even the hard-
ware itself. According to Bass et al. [2012], there are
two main tactics to improve a system’s modifiability:
enhancing cohesion and reducing coupling. Improving
the former and minimizing the latter can significantly
boost this characteristic. A notable contribution to this
field is by Dijkstra [1967], who presented the Technische
Hogeschool Eindhoven (THE) operating system. This
work was an early example of a well-structure operat-
ing system, and introduced the hierarchical model, a
novel approach at the time. This approach promotes a
better modifiability, as each layer is designed with dis-
tinct responsabilities, abstraction levels, control flows,
and modular structures. In the same vein, Parnas
[1972] heavily influenced software design towards modu-
larization, introducing the concept of "information hid-
ing". According to Parnas, modules should have a well-
defined interface and hide its working from the rest of
the system. This philosophy enables individual modules
modifications without affecting others, provided the in-
terfaces remain consistent. Parnas also emphasized that
modules are likely to suffer changes throughout their
lifecycle, highlighting the importance of reducing inter-
module dependencies and hiding information.

3.1.4 Performance

According to the ISO [2011], performance can be under-
stood through three primary aspects: time behavior,
resource utilization, and capacity. These elements col-
lectively define how efficiently a software performs a spe-
cific computational task within predetermined time con-
straints and throughput requirements, while also opti-
mizing resource consumption. The field of performance
is broad and has been the subject of extensive research.
It necessitates a deep understanding of both hardware
and software interactions. As Liu [2009] describes, when
the performance of one component is pushed to its lim-
its, the other often plays a critical compensating role.
Performance its particularly interesting as an archi-
tectural characteristic because it is directly perceived
by the user, as much as subsection 3.1.1. Consider, for
instance, a trading system suffering by latency or an
online game where commands are delayed. Such frus-
trations can drive users away. Performance can be mea-
sured in terms of throughput or latency, depending on
the application’s requirements. In a web server handling
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thousands of requests, achieving high throughput is de-
sirable. Conversely, online gaming demands low latency.
Throughput refers to the amount of data a system can
process in a given period, whereas latency measures the
time it takes for a request to travel from sender to re-
ceiver and back. Improving performance might involve
reducing demand, such as refusing to serve requests
in an overwhelmed web server, or managing resources
more effectively through scheduling, replication, or in-
creasing the resource pool, as explained by Bass et al.
[2012].

3.1.5 Security

Is well known that data has become as valuable as oil
in the modern era. In the context of software, security
is a critical characteristic that measures a system’s abil-
ity to protect its data, particularly from unauthorized
access. According to Bass et al. [2012], there are three
main aspects of security: confidentiality, integrity, and
availability. Confidentiality ensures that data is acces-
sible only to authorized users. For example, only you
should have access to your mobile banking application.
Integrity involves safeguarding data from unauthorized
modifications ensuring that any alteration is done only
through legitimate means. Finally, availability refers to
the system being accessible and usable when legitimate
users need it.

In the recent years, regulations like the General Data
Protection Regulation (GDPR) have been established
to address growing privacy concerns. A key aspect of
these regulations is determining which information can
be shared and with whom. This decision-making pro-
cess is crucial, not just regarding what information is
shared, but also the nature of the information being
shared. Consider this scenario: you forget your pass-
word and initiate a process to recover your mobile ac-
count. You enter your email and set a new password. In
the event of a data breach, you can change your email
or password, albeit with some inconvenience. But what
if the leaked information included your biometric data?

Security is about more than just encrypting data,
whether at-rest or in-transit. It also involves meticu-
lously tracking each piece of data, understanding why
it’s needed, and ensuring traceability, as demanded by
regulatory bodies. This comprehensive approach to se-
curity helps protect sensitive information, especially in
cases where it cannot be easily changed or replaced, like
biometric data.

3.1.6 Testability

To ensure that software is functioning correctly and ide-
ally free of known faults or bugs, it’s important to un-
derstand what constitutes a software bug. Patton [2005]
outlines at least five scenarios that can be considered as
software bugs:

1. The software fails to do something that the product
specification states it should do.
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2. The software does something that the product spec-
ification explicitly says it should not do.

3. The software performs an action that the product
specification does not cover.

4. The software omits an action that is not mentioned
in the product specification but is implied or neces-
sary.

5. The software is user-unfriendly, slow, or appears
flawed to the software tester or the end user.

Testability, the ease with which software can be
tested, is crucial in this context. It refers to how readily
a software system, either in isolation or in combination,
can be tested for bugs. This is often facilitated through
test harness tools that control inputs, outputs, and pos-
sibly the state of the software, ensuring it aligns with
the provided specifications. High testability is linked to
increased reliability, making it a valuable characteristic
to consider in software architecture.

3.1.7 Usability

Usability is a measure of how easily users can inter-
act with a system. Its significance has increased over
the years, becoming a critical factor in users’ decision-
making when choosing between services. Bass et al.
[2012] describes several dimensions of usability. One
key aspect is the ease of learning system features, often
referred to as onboarding. For example, how quickly
can a new user learn to use the system? Implementing
short tutorials is a useful tactic in this regard. Efficient
use of the system and minimizing the impact of errors
are also crucial. The former could involve allowing users
to pause and later resume a long-running task. The lat-
ter ranges from displaying errors in a user-friendly man-
ner to providing recovery options, like retrying or sug-
gesting alternative steps to achieve the same objective.
Adapting the system to meet user needs is another way
to enhance usability. A familiar example is a browser
auto-filling credit card details based on previous usage.
Lastly, boosting users confidence and satisfaction also
plays a role in enhancing usability. For instance, provid-
ing visual feedback during a video upload, like showing
a progress percentage, can significantly improve the user
experience.

3.2 Architectural Styles

Architectural styles represent the macro structure of a
system and are categorized based on a set of charac-
teristics, each offering distinct advantages and disad-
vantages. One of the key responsibilities of an archi-
tect is to select the appropriate architectural style by
evaluating it against the business requirements. The
following sections systematically describe both mono-
lithic and distributed-based architectural styles in a
non-exhaustive manner.
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3.2.1 Layered Architecture

The layered architecture is one of the most straightfor-
ward and commonly used architectural styles, appre-
ciated for its simplicity, popularity, and cost-effective
implementation, as described by Richards and Ford
[2020]. This architectural style naturally aligns with
the needs and structures of many traditional business
applications.

The topology of a layered architecture style, as illus-
trated in Figure 1, is characterized by logical horizontal
layers, each assuming a specific role within the applica-
tion. While there is no strict limitation on the number
of layers, four standard ones are commonly observed:
presentation, business, persistence, and database. The
actual number and nature of these layers can vary de-
pending on the size and complexity of the application.

Presentation Layer

¥

Business Layer

¥

Persistence Layer

¥
Database Layer

Figure 1. Layered-architecture style topology

Each layer in a layered architecture has a distinct
role and responsibility. For example, the business layer
handles the application’s business logic, while the pre-
sentation layer manages browser communication and in-
terface logic. This structure ensures that each layer
abstracts its specific function to collectively fulfill a
business request. For instance, the presentation layer
doesn’t concern itself with customer details, which are
the purview of the business layer, nor does the business
layer need to manage HTML markup. This separation
of concerns facilitates the construction of layered ar-
chitectures with clearly defined responsibilities for each
layer. However, as Richards and Ford [2020] point out,
one drawback of this approach is the challenge in apply-
ing domain-driven design. In layered architectures, the
business domain tends to be dispersed across all layers,
categorized by technical role rather than being grouped
into components like Customer.

Suggested applications The layered architecture is
a great choice in the early stages of a project, partic-
ularly when there is significant uncertainty about the
product itself but development needs to begin. As
Richards [2022] details, it is also well-suited for projects
with time or budget constraints. Being a monolithic
style, it avoids the complexities associated with dis-
tributed systems, such as the need to define contracts
and manage remote procedure calls. These aspects of
distributed systems will be discussed in more detail in
Section 4.1.
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Discouraged applications One important consider-
ation with layered architecture is its scalability chal-
lenge. As a monolithic architectural style, scaling up
for improved performance, elasticity, or overall scala-
bility typically involves scaling the entire application.
This approach may not always be efficient. Further-
more, layered architectures may lack sufficient fault tol-
erance. Since all components are deployed together, a
fault in one area can potentially bring down the entire
system, as Richards [2022] notes.

3.2.2 Microkernel architecture

Inspired by operating systems, the microkernel architec-
ture style is known for its flexibility and extensibility
through the use of plugins, often referred to as plug-in
architecture. Although it was developed several years
ago, it remains widely used today. Its extensibility lies
in maintaining core functionality while allowing for the
addition of varied features through plugins. This ar-
chitecture comprises two fundamental components: the
core and plugin modules. The core provides essential
functionalities, whereas plugin modules add additional,
usually standalone, independent components. A com-
mon method for the core system to recognize available
plugins is through a plugin registry, which contains all
necessary information about them. While these plugins
have traditionally been developed as libraries, they can
also be implemented through remote services such as
REST, according to Richards [2022].

Plug-in 4

Figure 2. Microkernel architecture style topology

Suggested applications This architectural style is
an excellent choice for products that require customiza-
tion or will be expanded with more features over time,
providing an easy starting point for such projects. The
microkernel architecture also adapts well to varying con-
figurations or deployment requirements. For instance,
a microkernel application can be deployed in an on-
premise facility with a custom set of plugins tailored to
specific needs, while maintaining core functionality that
remains unchanged and completely agnostic. Richards
[2022] emphasizes that the microkernel, as well as dis-
cussed in subsection 3.2.1, offers a cost-effective and
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relatively simple setup, making it a practical option for
projects with limited time or budget.

Discouraged applications The downsides of this ar-
chitectural style lie in its heavy reliance on the core mod-
ule, which can act as a bottleneck. This dependency
complicates elasticity, reduces fault tolerance, and is
less suited for highly scalable solutions. Additionally,
the architecture discourages frequent modifications to
the core module, preferring instead to use plugins to
add features and extend functionality. When frequent
core updates are necessary, this approach becomes inad-
equate. As Richards [2022] suggests, if adhering to this
rationale is not feasible, this architectural style may not
be the best solution to the problem at hand.

3.2.3 Event-Driven architecture

Event-driven architecture is a distributed, asyn-
chronous architectural style that has become increas-
ingly popular, especially following the democratization
of the cloud by public vendors. This architecture excels
in managing complex workflows and fostering reactive,
responsive systems. It has also boosted the creation of
tools, frameworks, and cloud-based solutions tailored to
enhance accessibility and ease of setup.

In an event-driven system, decoupled event pro-
cessing components receive and process events asyn-
chronously. The process is initiated by an event, which
kicks off an asynchronous workflow. For example, con-
sider placing an order on an e-commerce platform that
uses event-driven architecture. The moment you place
the order, an event is created containing all necessary
details. This event triggers the asynchronous workflow.
Subsequently, a component, such as the payment pro-
cessor, receives this event, processes it, and may gen-
erate another event to inform the system of a state
change. Once the payment is confirmed, another event
is published, prompting the shipment component to act.
All these interactions involve physical messaging arti-
facts. Typically, initiating events utilize point-to-point
channels through messaging services or queues, while
processing events often employ publish-subscribe chan-
nels via topics or notification services, as described by
Richards [2022]. Event-driven architecture can function
as a standalone architectural style or be combined with
others, such as microservices.

Processor 1

Event Processor 2

Processor 3

Figure 3. Event-driven architecture style topology



The trade-offs between Monolithic vs. Distributed Architectures

Suggested applications Event-driven architecture
is undoubtedly an optimal choice for achieving high per-
formance, scalability, and fault tolerance. It also brings
additional benefits as it shifts the paradigm from tra-
ditional decision-tree logic to a model that reacts to
events. This approach facilitates the modeling of highly
complex systems by isolating each component within its
context, focusing on its specific responsibilities, and pro-
cessing incoming events. Moreover, it can aid organiza-
tional scaling by allowing teams to work independently
on their components, each defined by clear contracts.
However, the discussion of team typologies is out of
scope of this article.

Discouraged applications By its nature, being a
distributed asynchronous architecture, the event-driven
architectural style is not recommended for request-
based systems that require high data consistency, as re-
vealed by Richards [2022]. Due to its asynchronous na-
ture and the eventual consistency of processing, mean-
ing there is no guarantee of when an event will be pro-
cessed, event-driven architecture may not suit scenarios
demanding immediate data accuracy, such as CRUD
operations.

Additionally, managing the order in which events are
consumed and handling errors present significant chal-
lenges. Sequencing issues can complicate the architec-
ture, especially if events need to be combined to produce
further actions, or the potentially deadlock situations
where, for instance, event A waits for event B, event B
waits for event C, and event C waits for event A. Error
handling adds another layer of complexity. For example,
consider a scenario where a payment event is processed
successfully, but a subsequent inventory event fails be-
cause the item is out of stock. In such cases, stakehold-
ers must clearly define responsibilities and corrective ac-
tions for each potential issue, which can lead to corner
cases that compromise the system’s reliability in terms
of data consistency.

3.2.4 Microservice architecture

Microservice architecture is arguably the most popular
and widely used architectural style today. The term
‘microservice’ was coined in 2014 by Martin Fowler and
James Lewis. Although they were the first to publish
an article detailing its characteristics, they emphasized
that this architectural style was not a novelty but rather
rooted in UNIX philosophy. Additionally, microservices
incorporate Domain-Driven Design concepts, such as
bounded contexts, which organize entities and behav-
iors within well-defined limits in code and database
schemas. Microservices operate by integrating multiple
smaller, independently deployed services that commu-
nicate with each other. This approach is defined by
Fowler and Lewis as follows:

In short, the microservice architectural style
is an approach to developing a single appli-
cation as a suite of small services, each run-
ning in its own process and communicating
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with lightweight mechanisms, often an HTTP
resource API. These services are built around
business capabilities and independently deploy-
able by fully automated deployment machinery.
Fowler and Lewis [2014]

The primary goal of microservice architecture is to
achieve decoupling, with physical modeling that rep-
resents bounded contexts. To accomplish this, each
service is designed to be self-contained, possessing all
necessary components for operation, including its own
database systems. This approach eliminates a single
source of truth, allowing different services to utilize di-
verse technologies tailored to their specific needs. For
example, in contrast to a monolithic architecture like
a subsection 3.2.1, where performing a full-text search
using a traditional RDBMS might be unsatisfactory
at scale, a microservice architecture could leverage a
specialized Elasticsearch or Solr cluster to handle such
tasks more effectively.

Client
Service 1 Service 2 Service 3
) v v

Figure 4. Microservice architecture style topology

As a distributed architecture, each service in a mi-
croservice setup must run independently in its own pro-
cess. A significant factor in the widespread adoption
of this architectural style has been the rise of cloud
computing, which has made managing these physical
constraints easier through virtualization and containers.
According to Richards and Ford [2020], decoupling ser-
vices to the extent that each domain maintains its own
infrastructure was once impractical. However, with the
availability of free open-source operating systems and
automated infrastructure management, it is now feasi-
ble at both the domain and operational levels.

Network calls present a bottleneck in this architec-
ture, as they are typically slower than straightforward
method calls due to the process of transferring data
across a network, which often includes a layer of security.
Additionally, communication between microservices re-
quires that each service knows how to initiate contact
with others without relying on a centralized orchestra-
tor, to prevent coupling. Richards and Ford [2020] char-
acterizes this communication as protocol-aware, mean-
ing the caller must know the communication protocol
in advance, and heterogeneous, allowing services to be



The trade-offs between Monolithic vs. Distributed Architectures

developed using different technologies, thus ensuring in-
teroperability.

Suggested applications When elasticity, high fault
tolerance, and scalability are priorities, the microser-
vice architecture style is an excellent choice. Extensi-
bility is another significant advantage; adding function-
ality typically involves spinning up new services within
the already standardized infrastructure. This flexibil-
ity is crucial, allowing rapid adaptations and changes
aligned with business needs. The architecture also en-
hances maintainability due to each service’s smaller
scope and the clear boundaries guaranteed by the con-
cept of bounded contexts. Testing is generally more
straightforward, as long as dependencies on other ser-
vices are minimized. When dependencies are unavoid-
able, a robust mocking strategy can effectively facilitate
testing.

Discouraged applications The primary goal of mi-
croservices is decoupling. However, this architecture
may not be suitable in scenarios where, despite phys-
ical decoupling, there remains substantial logical cou-
pling. This is particularly problematic in systems with
complex workflows and excessive inter-service commu-
nication. Often, the need for frequent communication
between services is driven by data dependencies, which
are a critical factor in deciding whether to adopt this
architectural style. The more tightly coupled the data,
the less effective the microservice architecture becomes.

Microservices represent one of the most complex ar-
chitectures in use today. They can also be costly due
to the duplication of efforts, including data replication
across multiple databases. As the number of services
increases, the infrastructure required for each service
also grows exponentially, as delineated by Richards and
Ford [2020].

Despite what may seem counter intuitive, microser-
vices are not inherently high-performance or highly-
responsive systems. Their performance is often ham-
pered by three types of latency: network latency, se-
curity checks, and data access delays. Each of these
factors needs to be fine tuned to the specific needs of
each service, even at the database level.

4 Architectural decisions

One of the key responsibilities of a software architect is
to analyze a range of factors that differ from business to
business and technology to technology. Unfortunately,
there is no one-size-fits-all solution. Choosing an archi-
tectural style requires careful consideration of trade-offs,
ensuring that the disadvantages are not overlooked in
favor of the advantages. Many factors contribute to
this necessity. One significant factor is the hype sur-
rounding new frameworks, language features, or even
new programming languages. It is natural for develop-
ers and technologists to be excited by the purported
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innovations these new tools bring. However, this enthu-
siasm can sometimes lead to solutions that are overly
complicated, costly, and complex. Ford et al. [2021]
describe this phenomenon as evangelism, where the fo-
cus on the positive aspects leads to neglecting potential
downsides.

In order to mitigate risks while ensuring that the ar-
chitecture evolves in line with business requirements,
it is crucial to analyze and prioritize what is most im-
portant at any given time, or to project future needs
as discussed in section 3.1. Unfortunately, distributed
architectures, particularly microservices, are often de-
fault choices for many applications. This trend is driven
by misconceptions and an underestimation of the trade-
offs involved. The widespread popularity of this archi-
tectural style is not coincidental, and it necessitates a
careful consideration of its implications.

Recently, even big tech companies, equipped with
their own data centers and substantial intellectual cap-
ital, have begun shifting toward monolithic architec-
tures. This move aims to reduce costs, complexity, and
scalability issues. Ghemawat et al. [2023] propose a
programming methodology that reportedly reduces la-
tency by 15 times and costs by 9 times compared to
the current standard. The paper also critiques some
commonly touted benefits of microservices, pointing out
how they can actually lead to problems in performance,
correctness, and development agility. For example, per-
formance can suffer when the granularity of services is
poor, leading to excessive inter-service communication.
Correctness becomes challenging when considering all
possible interactions between services, including varia-
tions in service versions and handling failures. Devel-
opment agility is compromised when changes across ser-
vices cannot be made atomically, requiring extensive co-
ordination effort. To address these issues, the proposed
methodology advocates for writing monolithic applica-
tions that are modularized as components, assigning
these components to physical processes, and deploying
them atomically.

Another compelling example of cost reduction
achieved by shifting from a distributed microservices-
based architecture to a monolith is the Amazon Prime
Video case. This case study describes how the system
was initially orchestrated by a component that not only
created a bottleneck but also incurred the highest costs
within the solution. After transitioning to a monolithic
architecture, the infrastructure costs were reduced by
an astonishing 90%, and it is also reported to have en-
hanced the system’s scalability, as described by Kolny
[2023].

4.1 Fallacies of distributed systems

A common misconception about transitioning from a
monolithic to a distributed architecture is encapsulated
in the 8 fallacies of distributed systems. For instance,
a local method call used to process a business rule is
not equivalent to inter-service communication that re-
lies on the network. Numerous precautions are neces-
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sary in such environments, including robust error han-
dling. While TCP is a reliable protocol that will re-
send any lost packets, higher levels in the stack, such as
those involving REST APIs, still require individual re-
quest management. Additionally, latency increases are
a concern. Even though the TCP slow start can be mit-
igated by establishing long-lived connections, the over-
head from serialization and deserialization, along with
additional security checks, can significantly extend the
final processing time.

1. The network is reliable: Assumes that network
connections are always stable and reliable.

2. Latency is zero: Ignores the time delay in com-
munication over a network.

3. Bandwidth is infinite: Ignores the limitations in
network data transfer capacity.

4. The network is secure: Assumes that the net-
work is naturally secure from attacks and vulnera-
bilities.

5. Topology does not change: Assumes that the
way network systems are connected remains con-
stant.

6. There is one administrator: Ignores the com-
plexity of managing distributed systems with mul-
tiple administrative domains.

7. Transport cost is zero: Ignores the resources
and time required to move data across the network.

8. The network is homogeneous: Assumes that
the network’s hardware, software, and protocols
are consistent and compatible.

4.2 Data management

Data management is undoubtedly one of the most com-
plex and critical aspects to consider when comparing
monolithic and distributed architectures. In a mono-
lithic architecture, data management is generally sim-
pler because the same system both writes to and reads
from a single database. This setup naturally supports
transactional capabilities, ensuring that ACID (Atom-
icity, Consistency, Isolation, Durability) properties are
maintained. There is less concern about data integrity,
consistency, and security since authentication and au-
thorization are more straightforward in a unified envi-
ronment. Querying data is also relatively simple, al-
though it may require complex join clauses that neces-
sitate the creation of views. Nevertheless, this setup is
typically sufficient for the needs of most small to mid-
sized businesses.

Conversely, the more distributed an architecture be-
comes, the more challenging it is to maintain these prop-
erties. In such environments, ensuring data integrity,
consistency, and security across multiple services and
databases can be daunting. It is usually inadvisable —
except in exceptional cases, to attempt to manage these
aspects manually due to the increased complexity and
risk involved.
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4.2.1 Transactional complexity

Transactions are a fundamental aspect of enterprise ap-
plications, with ACID properties helping to shield de-
velopers from many concerns related to data integrity.
In monolithic architectures, these properties are typi-
cally leveraged without additional complications, as the
architecture does not introduce inherent challenges in
managing data consistency. However, distributed ar-
chitectures, particularly those utilizing a database-per-
service pattern, can encounter difficulties when transac-
tions need to update data distributed across multiple
services.

To address this, the Saga Pattern is employed, which
orchestrates a sequence of local, message-driven trans-
actions to ensure data consistency across services, as
detailed in Richardson [2018]. Yet, implementing the
Saga Pattern introduces its own challenges, such as no
isolation which necessitates countermeasures to manage
concurrency issues effectively. Sagas can be managed
through two approaches: choreography, where each lo-
cal transaction publishes events that trigger subsequent
transactions in other services, and orchestration, where
a central coordinator directs each participant to execute
their transaction. In cases of failure, the saga must initi-
ate compensating transactions in reverse order to undo
the effects, as illustrated in Richardson [2018].

4.2.2 Eventual Consistency

To enhance architectural characteristics such as avail-
ability and performance, adopting eventual consistency
is a strategic decision. Ford et al. [2021] identifies three
main patterns that facilitate this approach: background
synchronization, orchestrated request-based pattern,
and event-based pattern.

Background Synchronization Pattern This pat-
tern employs an external system to periodically check
and update all data sources to ensure they remain syn-
chronized. The level of eventual consistency achieved
depends on the frequency of the updates, which could
be scheduled as nightly batch jobs or on an hourly basis.
Although this approach effectively keeps data in sync,
it also tends to couple related services together. This
coupling occurs because the pattern requires knowledge
of all data schemas, which can lead to the violation of
bounded contexts, duplication of business logic, and a
complex implementation.

Orchestrated Request-Based Pattern Unlike the
Background Synchronization Pattern, the goal of this
pattern is to process the entire distributed transaction
within the scope of the business request itself. It can be
implemented either directly within a specific service or
through a dedicated orchestrator service. Implement-
ing it within a service tends to overload that service’s
responsibilities, as it must manage business rules and
handle errors in addition to its regular duties. The key
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Figure 5. Saga pattern topology

issue with this pattern as an eventual consistency ap-
proach is its error handling, if an error occurs during
the transaction or during a compensating transaction,
there will be no external system available to recover the
state.

Event-Based Pattern This pattern utilizes asyn-
chronous publish/subscribe or messaging systems to
post events or commands. In this approach, all services
are decoupled, and the eventual consistency time factor
is minimized due to the asynchronous and parallel na-
ture of the messaging systems, as indicated in Ford et al.
[2021]. The main challenges, similar to other patterns,
revolve around error handling. While the messaging
system does not require the consumer to be available
at the time the message is published — ensuring they
receive it when they are available, failures during the
processing of these events can still lead to consistency
issues.

4.2.3 Querying data

Monolithic architectures typically rely on a single
database, which generally simplifies the task of query-
ing data. However, in distributed applications, query-
ing becomes significantly more challenging due to the
complexities involved in managing data across multiple
services. Ford et al. [2021] outlines four patterns specif-
ically designed to address these challenges.

Interservice Communication Pattern This pat-
tern is commonly utilized to access data from another
service, typically through REST APIs or remote proce-
dure calls such as gRPC. However, it introduces several
downsides, including those mentioned in subsection 4.1,
and negatively impacts the availability due to service
coupling. Additionally, this pattern often requires com-
plex error handling strategies. For example, if a request
from service A to service B fails due to a transient error,
it directly affects the user experience at that moment.

To mitigate such issues, the Retry Pattern, as defined
in Azure [2023b], can be implemented. This pattern au-
tomatically retries recoverable failures a specified num-
ber of times with exponential backoff, enhancing usabil-
ity and availability. However, it also risks exacerbating
issues in the event of non-recoverable errors, such as a
database outage, potentially creating a cascading effect
within the service chain.

To address this, the Circuit Breaker Pattern, ex-
plained in Azure [2023a], prevents the application from

performing operations likely to fail. This safety mecha-
nism can be crucial in maintaining system stability and
preventing further complications. Both the Retry and
Circuit Breaker patterns can be implemented directly
within the application or through the infrastructure us-
ing service meshes like Istio and Traefik.

Column Schema Replication Pattern This pat-
tern involves replicating columns to make data available
across different bounded contexts, as discussed in Ford
et al. [2021]. On one hand, this strategy enhances per-
formance and eliminates dependencies on other services
when accessing data. On the other hand, maintaining
data consistency and ensuring synchronization across
services can pose significant challenges. Furthermore,
implementing the replication mechanism — whether
synchronous or asynchronous, requires careful consider-
ation. The asynchronous approach is often preferable as
it enhances system responsiveness and reduces availabil-
ity issues by minimizing dependencies among services.

Replicated Caching Pattern While caching gener-
ally improves performance by allowing data access from
memory rather than disk, it can also facilitate access to
distributed data. In this pattern, if service A needs
to access data from service B, it retrieves this data di-
rectly from a cache that contains all data from service B,
which are written to the cache upon changes and then
replicated. This approach significantly enhances scala-
bility and fault tolerance. However, it involves trade-
offs, including service dependency. For instance, as the
data owner, service B must populate the cache before
service A can begin operations. Additionally, managing
large volumes of data can be problematic; according
to Ford et al. [2021], 500 MB is considered a thresh-
old. Architects must carefully consider the volume of
data, cache size, and the number of service instances
that require the cache. Furthermore, cache replication
might experience delays in synchronizing data between
services, making this pattern less suitable for data that
changes frequently but more appropriate for data that
changes less often. Finally, configuring and managing
this pattern are complex tasks that require the services
to be aware of each other.

Data Domain Pattern Although sharing data is
generally not recommended, this pattern offers bene-
fits that may be worthwhile depending on the context,
such as decoupled services which enhance availability
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as an architectural characteristic. Responsiveness is an-
other significant advantage, as it eliminates the compli-
cations associated with the Interservice Communication
Pattern; for example, the required data is just an SQL
query away. This pattern also maintains data integrity
and consistency, and allows for the use of RDBMS fea-
tures such as views, procedures, and triggers.

Contrary to the Interservice Communication Pattern
and Replicated Caching Pattern, the Data Domain Pat-
tern does not involve contracts or abstract layers over
the database, which makes changing database schemas
more challenging as it requires coordination across all
services within the bounded context. Additionally,
there are heightened security and auditing risks, given
that services have access to the entire database.

4.3 Security and Auditing

Security is a fundamental and non-negotiable archi-
tectural characteristic, especially given the millions of
transactions that occur daily on the internet, many
of which are fraudulent or non-secure. Both architec-
tural styles must implement security measures, though
the complexity and effort involved can vary. In mono-
lithic architectures, there are relatively few entry points
into the application, and once within the application
layer, there are no additional security measures required
among components to enable communication. However,
Dias and Siriwardena [2020] highlights that the attack
surface is broader in microservice-based architectures,
thereby increasing the risk. Distributed security can
also impact performance due to the need to connect
with a remote security token service, for instance.

Sharing user context is another concern; in a mono-
lithic style, all components share the same session,
whereas distributed architectures often use JWTs — a
popular choice, to share user context among services, as
described by Dias and Siriwardena [2020].

Furthermore, data security and auditing are critical.
Encryption is required both in transit and at rest. Dis-
tributed architectures naturally have more components
to authenticate, authorize, encrypt, and so on, increas-
ing the security complexity.

4.4 Coordinating distributed
tions

opera-

In contrast to monolithic, distributed-based styles re-
quires a mechanism that enables each component to
excecute its task. This mechanism can be either an
orchestrator or a choreograpy among the services them-
selves.

Orchestration Style An orchestrator is a compo-
nent responsible for managing the workflow state, er-
ror handling, and notifications within a domain. Ford
et al. [2021] makes an important point: microservices-
based architectures typically use an orchestrator for
each workflow because relying on a single orchestrator,
such as in an Enterprise Service Bus, is discouraged due
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to the potential for undesirable coupling. The Orches-
tration Pattern offers excellent error handling, central-
ized workflow management, recovery capabilities, and
state management. However, like any other pattern, it
has its disadvantages. Responsiveness can be compro-
mised since all requests must pass through the orchestra-
tor, potentially creating a bottleneck—as was observed
in the Amazon Prime case detailed in Kolny [2023].
Moreover, fault tolerance is a concern because the or-
chestrator itself can become a single point of failure.
Scalability can also be challenging due to the orches-
trator’s numerous coordination points, and the pattern
inherently increases service coupling.

Orchestrator

Service 1 Service 3

Service 2

Figure 6. Orchestration style topology

Choreography Style In a choreography style, there
is no central orchestrating component; instead, services
communicate directly with each other. This approach
enhances responsiveness and scalability by reducing the
number of intermediaries in the workflow and poten-
tially increasing parallelism. Fault tolerance is also im-
proved due to the ability to scale services independently
of orchestrator, which also reduces coupling by the same
reason. However, distributing the workflow introduces
challenges, particularly in error handling. Services must
possess the knowledge typically centralized in an orches-
trator, complicating both error resolution and efforts
to enhance recoverability. Additionally, this style lacks
centralized state management for ongoing operations,
as delineated in Ford et al. [2021].

Event C

QQ

Event A Event B Event D

S4

Figure 7. Choreography style topology

4.5 Cost

The widespread acceptance and popularization of dis-
tributed architectures were significantly propelled by
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the advent of cloud computing. The ease of deploying
a virtual machine or container with just a few clicks —
or even automatically through scriptable configurations,
made it irresistible to explore the vast array of cloud
products available. This includes everything from mes-
sage brokers and various types of databases to load bal-
ancers, all accessible to businesses of any size. Thanks
to the cloud’s elasticity model, billing is based only on
the resources actually used. However, costs are incurred
in every aspect of usage, including data transfer, stor-
age, access, requests, communication, and authoriza-
tion, calculated down to the bit level.

The Amazon Prime case revealed by Kolny [2023],
documents a dramatic 90% cost reduction achieved by
shifting back to a monolithic architecture. According to
Su et al. [2023], cost is the most common reason com-
panies revert from microservices to monoliths. Opera-
tional expenses become unsustainable at a certain scale
as each service instance may require its own server (or
container), maintain a database, and generate separate
metrics and logs.

4.6 Observability

Regardless of the architectural style employed, observ-
ability is critical for any serious enterprise application.
Merely collecting logs, metrics, and traces is not suf-
ficient, though these are foundational for testing and
debugging systems. In Sridharan [2018], observability
is described as a property of a system that acknowledges
the following realities:

1. No complex system is ever fully healthy.

2. Distributed systems are pathologically unpre-
dictable.

3. It’s impossible to predict the myriad states of par-
tial failure various parts of the system might end
up in.

4. Failure needs to be embraced at every phase, from
system design to implementation, testing, deploy-
ment, and, finally, operation.

5. Fase of debugging is a cornerstone for the mainte-
nance and evolution of robust systems.

In Beyer et al. [2016] the Four Golden Signals of mon-
itoring are defined as latency, traffic, errors, and satu-
ration. The complexity of monitoring increases linearly
with the number of services and exponentially with the
addition of components such as data synchronization
tools. Moreover, if you implement patterns like Retry
and Circuit Breaker within a Sidecar Pattern - which
isolates components in containers, the complexity con-
tinues to rise.

As systems become more complex, observability be-
comes increasingly challenging. In distributed systems,
tracing represents a major hurdle. It involves tracking
a sequence of causally related events that describe the
flow of a request through the system, represented as
a directed acyclic graph of spans, as Sridharan [2018]
delineates. While one benefit of a distributed architec-
ture is the ability to support polyglot systems, which re-
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lies in the interoperability among diverse systems, this
same diversity makes tracing more difficult. The chal-
lenge arises from the need to instrument a variety of
frameworks, languages, and libraries.

5 Conclusion

There is always a trade-off involved with every deci-
sion. When an architect encounters a situation where
no trade-off seems apparent, it likely has not yet been
revealed. An architect’s job entails remaining unbiased
by the advantages of any particular architectural style
or pattern and not aiming solely to enhance all charac-
teristics. Instead, architects must be keenly aware of
which disadvantages could be prohibitive due to busi-
ness constraints. A clear evaluation process is essential,
one that distinguishes what is critical, what is funda-
mental, and what is merely nice to have.

Recently, there has been a trend towards revert-
ing to monolithic architectures due to concerns over
costs, complexity, and performance, among other rea-
sons. However, just as the previous enthusiasm for shift-
ing towards microservices should have met with caution,
the current trend of moving back to monoliths should
also be approached carefully. There is no one-size-fits-
all solution, as businesses vary and have their own par-
ticularities. Choosing an architectural style is not a
question of right or wrong; styles can even be combined
to achieve specific goals. It’s important to understand
the business needs and consider the foreseeable future,
while remaining grounded in reality.

Research methodologies that support decisions by
evaluating business constraints in contrast to trade-offs
among architectural styles are crucial. Additionally, in-
vestigating how to improve these architectural styles by
combining the strengths of one with the weaknesses of
another is fundamental to the evolution of software en-
gineering.
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