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MV-FRAMES

JEAN B. NGANOU

Abstract. Complete MV-algebras are naturally equipped with frame structures. We

call them MV-frames and investigate some of their main the properties as frames. We

completely characterized algebraic MV-frames as well as regular MV-frames. In addition,

we consider nuclei on MV-frames in general and on MV-frames of ideals of  Lukasiewicz

rings. Finally, we used the Chang-Mundici functor to explore the frame structures of

complete unital lattice-ordered groups.

1. Introduction

An MV-algebra can be defined [5] as an Abelian monoid (A,⊕, 0) with an involution
¬ : A → A (i.e., ¬¬x = x for all x ∈ A) satisfying the following axioms for all x, y ∈ A:

¬0⊕ x = ¬0, ¬(¬x⊕ y)⊕ y = ¬(¬y⊕ x)⊕ x. For any x, y ∈ A, if one writes x ≤ y when

¬x ⊕ y = ¬0 := 1, then ≤ induces a partial order on A, which is in fact a lattice order

where x ∨ y = ¬(¬x ⊕ y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y).

Complete MV-algebras are known to satisfy the following distributive laws [5, Lem.

6.6.4]: for every x ∈ A and every X ⊆ A

x ∧
∨

X =
∨

(x ∧X) x ∨
∧

X =
∧

(x ∨X)

A frame is a complete lattice L in which the frame law holds:

a ∧
∨

S =
∨

{a ∧ s | s ∈ S},
for all a ∈ L and S ⊆ L. The theory of frames has been for the past century one of

the most active area of lattice theory. Frames deal with a framework in which important

algebraic and topological properties of ideals, filters or congruences in rings, lattices or

other algebras are investigated (see [1, 2, 8, 16]).

As observed above, every complete MV-algebra is both a frame and a dual frame. For

uniformity in terminologies, as the terminology Boolean frames is used complete Boolean

algebra viewed frames, we shall use the terminology MV-frames for complete MV-algebras

treated as frames. This work is intended to be an introductory treatment of MV-frames

where we explore some of the basic frame notions in the MV-algebraic framework. In

particular, we investigate which of the MV-frames are algebraic and discovered that they

are precisely the Stone MV-algebras, that the coherent MV-frames are finite MV-algebras

and the algebraic and regular MV-frames are powerset algebras. In addition, we consider
nuclei on MV-frames and their nuclear which under certain assumptions are MV-frames
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of their own. One important class of MV-frames treated is that of MV-frames of ideals of

 Lukasiewviez rings [3]. In this case, the standard radical of ideals is proved to carry many

important properties. Given that MV-algebras are categorically equivalent to abelian

lattice-ordered groups with distinguished units [6], it is only natural that we peak at the

other side of the equivalence and consider some of the frame concepts in the context of

complete abelian ℓ-groups. We use the equivalence to introduce some frame concepts on
complete abelian ℓ-groups and characterize algebraic ℓu-frames.

The paper is organized as follows:

In section 2, we introduce the notion of MV-frames and investigated some of their main

attributes. In particular, we determine compact elements of completely distributive MV-

frames and use it to characterize algebraic MV-frames and obtain that they are precisely

the direct products of finite MV-chains (Theorem 2.8). Furthermore, we obtain that

coherent MV-frames are finite (Corollary 2.10), that among the algebraic MV-frames, the

regular ones are exactly the powerset Boolean algebras (Corollary 2.9), and that coherent

frame morphisms are the complete homomorphisms preserving maximal compact elements

(Proposition 2.12).

In section 3, we introduce nuclei on MV-frames and consider various type of nuclei. We

obtain that the radical on the MV-frame of ideals of a  Lukasiewicz ring is a nucleus that

is inductive (Proposition 3.6). We also obtain that the nuclear of any inductive nucleus

of MV-type is an algebraic MV-frame (Proposition 3.7).

In section 4, we use the Chang-Mundici equivalence to consider the frame concepts

on lattice-ordered abelian groups. We introduce the notions of ℓu-frames, of compact

elements and algebraic ℓu-frames. We prove in particular that MV-frames correspond to

ℓu-frames (Proposition 4.1 and that the Chang-Mundici equivalence restricts to an equiv-

alence between MV-frames and ℓu-frames (Theorem 4.3). We also use the equivalence to
derive a characterization of all algebraic ℓu-frames (Theorem 4.5).

Recall that an element a of a frame L is called compact if for every S ⊆ L such that

a ≤ ∨

S, there exists a finite subset F of S such that a ≤ ∨

F . The set of compact

elements of L is. denoted by k(L). If the top element 1 of L is compact it is said that L is

compact. In addition, L is said to have the finite intersection property (always abbreviated

FIP) if for any pair a, b ∈ k(L), it follows that a ∧ b ∈ k(L). The frame L is algebraic if

every a ∈ L is the join of compact elements below it (a =
∨{x ∈ k(L) : x ≤ a}). For every

x, y ∈ L, we write x � y (read x is way below y) if y ∨ x∗ = 1 (where x∗ is the pseudo

complement of x). An element x ∈ L is called regular if x =
∨{a ∈ L : a � x}. The

frame L is regular if all of its elements are regular; L is coherent if it is compact, algebraic

and has the FIP. Given two frames L1 and L2, a frame homomorphism from L1 → L2

is any lattice homomorphism that preserves arbitrary joins. A frame homomorphism

f : L1 → L2 is called coherent if f(k(L1)) ⊆ k(L2). Details about frames, their basic

terminologies and results can be found in the following references [7, 8, 10, 11, 12]. Basic

notions of MV-algebras can be reviewed in the classic texts [5, 13].
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Throughout the paper, A will denote a complete MV-algebra and B(A) the Boolean

center of A, that is the largest Boolean subalgebra of A.

2. Coherent MV-algebras

In this section, we aim to determining the intersection of the class of MV-frames and

known classes of frames such as algebraic and coherent. In other words, we wish to

characterize all MV-frames that are algebraic and all MV-frames that are coherent.
Recall that for z ∈ A, the pseudocomplement of z is defined as z∗ =

∨{x|x ∧ z = 0}.

This pseudocomplementation is known to carry the following properties (see [5, p.133]).

(P.1) z∗ ∈ B(A), for all z ∈ A; (P.2) z ≤ z∗∗, for all z ∈ A; (P.3) x ≤ y implies x∗∗ ≤ y∗∗,

for all x, y ∈ A; (P.4) z∗∗ = z, for all z ∈ B(A).

We begin with the following lemma.

Lemma 2.1. For every x ∈ A, if x ∈ k(A), then x∗∗ ∈ k(B(A)).

Proof. Let x ∈ k(A). Note that by P.1, x∗∗ ∈ B(A). Moreover, suppose that x∗∗ ≤ ∨

S

for some S ⊆ B(A). Then, by P.2 x ≤ ∨

S and since x is compact in A, there exists a

finite subset T of S such that x ≤ ∨

T . Note that as T ⊆ B(A), then
∨

T ∈ B(A). In

addition, as x ≤ ∨

T , it follows from P.3 and P.4 that x∗∗ ≤ (
∨

T )∗∗ =
∨

T . Therefore

x∗∗ is compact in B(A) as required. �

Proposition 2.2. If A is an algebraic MV-frame, then B(A) is an algebraic Boolean

frame.

Proof. First, as A is complete, B(A) is a complete Boolean algebra [5, Cor. 6.6.5]. Suppose

that A is algebraic and let x ∈ B(A). Then x =
∨{a ∈ k(A) : a ≤ x}. Note that for every

a ∈ k(A) such that a ≤ x, by Lemma 2.1, P.3 and P.4, a∗∗ ∈ k(B(A)) and a∗∗ ≤ x. It

follows that
∨{a∗∗ : a ∈ k(A), a ≤ x} ≤ ∨{a ∈ k(B(A)) : a ≤ x}. But since a ≤ a∗∗, then

x =
∨{a ∈ k(A) : a ≤ x} ≤ ∨{a∗∗ : a ∈ k(A), a ≤ x} ≤ ∨{a ∈ k(B(A)) : a ≤ x}. Thus,

x ≤ ∨{a ∈ k(B(A)) : a ≤ x} ≤ x and x =
∨{a ∈ k(B(A)) : a ≤ x}. Whence, B(A) is an

algebraic Boolean frame. �

Corollary 2.3. Every algebraic MV-frame is isomorphic to a direct product of the form
∏

k∈K Ak, where each Ak is either a finite MV-chain or the standard MV-algebra [0, 1].

Proof. Let A be an algebraic MV-frame. Then, B(A) is an algebraic Boolean frame by

Proposition 2.2. Recall that in a complete Boolean algebra, the compact elements are

precisely the finite joins of atoms. It follows that algebraic Boolean frames must be

atomic. Thus, as A is a complete MV-algebra, by the above and [5, Cor. 6.6.5], B(A) is

a complete and atomic Boolean algebra [5, Cor. 6.6.5]. It follows from [5, Thm. 6.8.1]

that A is complete and completely distributive. The conclusion is clear from [14, Thm.

2.2]. �

Proposition 2.4. Let A :=
∏

k∈K Ak, where each Ak is either a finite MV-chain or the

standard MV-algebra [0, 1].
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Let I = {k ∈ K : Ak is a finite MV − chain} and J = {k ∈ K : Ak = [0, 1].

Then, for every α ∈ A, α is compact if and only if (c1) α ∈ ⊕k∈KAk, and (c2) {k ∈ K :

α(k) 6= 0} ⊆ I.

Proof. ⇒) : Suppose that α is compact in A. For each k ∈ K, define βk ∈ A by:

βk(j) =

{

α(k), if j = k

0, if j 6= k

Then α =
∨{βk : k ∈ K} and since α is compact, there exists a finite subset F of K such

that α ≤ ∨{βk : k ∈ F}. It follows that α(k) = 0 for all k /∈ F since β(k) = 0 for all

k /∈ F and the suprema in A are computed coordinate-wise. Thus, α ∈ ⊕k∈KAk, which

is (c1). For (c2), suppose by contradiction that there exists j ∈ J such that α(j) 6= 0.

Then, choose a strictly increasing sequence (xjn)n ⊆ [0, 1] that converges to α(j). Now,
define the sequence (βn)n ⊆ A by:

βn(k) =

{

xjn, if k = j

α(k), if k 6= j

Then, α ≤ ∨{βn : n ∈ N} and there are no finite subsets F ⊆ N such that α ≤ ∨{βn :

n ∈ F}. This contradicts the compactness of α and α(k) = 0 for all k ∈ J .

⇐) : Suppose that α ∈ A satisfies (c1), (c2). Let F := {k ∈ K : α(k) 6= 0}. Now, let

α ≤ ∨{βx : x ∈ X} for some X ⊆ K. For each k ∈ F , k ∈ I and (
∨{βx : x ∈ X})(k) =

Max{βx(k) : x ∈ X}. So, there exists xk ∈ X such that (
∨{βx : x ∈ X})(k) = βxk

(k). It

follows that α ≤ ∨{βxk
: x ∈ F} and α is compact. �

We obtain the following straight from Proposition 2.4.

Corollary 2.5. For every nonempty set X and {nx : x ∈ X} a set of integers greater

than or equal to 2, k([0, 1]X) = {0} and k(
∏

x∈X  Lnx
) = ⊕x∈X  Lnx

Corollary 2.6. Every MV-frame of the form in Proposition 2.4 has the FIP.

Definition 2.7. Let L be an algebraic frame. An element a ∈ k(L) is called maximal

compact if it is a maximal element in (k(L),≤).

We can now prove our first result characterizing all algebraic MV-frames.

Theorem 2.8. Algebraic MV-frames are up to isomorphism the direct products of finite

MV-chains.

Proof. ⇒) : Suppose that A is an algebraic frame. Then by Corollary 2.3, A =
∏

k∈K Ak,

where each Ak is either a finite MV-chain or the standard MV-algebra [0, 1]. Let I =

{k ∈ K : Ak is a finite MV − chain} and J = {k ∈ K : Ak = [0, 1]. We need to prove

that J = ∅ . By contradiction, suppose that there exists k0 ∈ K such that Ak0 = [0, 1].

Define α ∈ A by:

α(k) =

{

1, if k = k0

0, if k 6= k0
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Note that by Proposition 2.4, 0 is the only compact element of A that is below α. It

follows that α cannot be the supremum of the set of compact below it. Therefore, A is

not algebraic.

⇐) : Conversely, assume that A :=
∏

x∈X  Lnx
. For each α ∈ A and t ∈ X , define βt ∈ A:

βt(x) =

{

α(t), if x = t

0, if x 6= t

Then βt is compact for every t ∈ X again by Proposition 2.4 and βt ≤ α. Clearly

α =
∨{βt : t ∈ X}, from which it follows that α =

∨{β ∈ k(A) : β ≤ α}. Thus, A is

algebraic as needed. �

By the preceding Theorem, we are discovering that whether one considers algebraic

MV-frames, profinite MV-algebras [15, Thm. 2.5], or Stone MV-algebras [14, Thm. 2.3],

one is dealing with the exact same class of MV-algebras.

Important characterizations of regular algebraic frames can be found in [11, Theorem

2.4(a)] and they state in part that an algebraic frame L is regular if and only if a∨a∗ = 1,

for all ak(L).

Corollary 2.9. Let A be an algebraic MV-frame. Then, A is regular if and only if A is

isomorphic to a powerset (Boolean) algebra.

Proof. Suppose that A is an algebraic MV-frame that is regular. Then, by Theorem 2.8,

we may write A =
∏

x∈X  Lnx
and by [11, Theorem 2.4(a)], a ∨ a∗ = 1 for all a ∈ k(A).

Suppose that there exists x0 ∈ X and 0 < t < 1 in  Lnx0
. Consider α ∈ A defined by

α(x0) = t and α(x) = 0 for all x 6= x0. Then α ∈ k(A) by Proposition 2.4 and (α∗)(x0) = 0

and α∗(x) = 1 for all x 6= x0. It follows that (α ∨ α∗)(x0) = t and α ∨ α∗ < 1. This

contradicts the fact that A is regular. Therefore, for every x ∈ X , nx = 2 and  Lnx
= 2,

the two-element Boolean algebra. Thus, A =
∏

x∈X 2 = 2X ∼= P(X). Conversely, it is

that every powerset algebra satisfies a ∨ a∗ = 1 for all a ∈ k(A) and is regular by [11,

Theorem 2.4(a)].

�

Corollary 2.10. The only coherent MV-frames are finite MV-algebras.

Proof. Since finite MV-algebras are finite direct products of finite MV-chains [5, Prop.

3.6.5], it is clear that these are coherent. Conversely, suppose that A is a coherent MV-

frame. As A is algebraic, then by Theorem 2.8, A ∼=
∏

x∈X  Lnx
, for some set X and a set

of integers (nx)x∈X . Since A is compact,
∏

x∈X  Lnx
is compact. Note that if X is infinite,

then 1 := (1)x∈X /∈ ⊕x∈X  Lnx
, which means by Corollary 2.5 that 1 is not compact. This

is contradictory to
∏

x∈X  Lnx
is compact. Therefore, X is finite and it follows that A is

finite. �

As observed above, { Lnx
: x ∈ X} ∏x∈X  Lnx

is a Stone MV-algebra under the product

of the discrete topologies. We seek to characterize the coherent maps between algebraic
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MV-frames.

We start with the following Remark.

Remark 2.11. Let A :=
∏

x∈X  Lnx
be an algebraic MV-frame. The maximal compact

elements of A are of the form χF , (the characteristic function of F in X), for some finite

subset F of X. Indeed as k(A) = ⊕x∈X  Lnx
, then the maximal elements of

∏

x∈X  Lnx
are

of the stated form.

Proposition 2.12. Let A,B be algebraic MV-frames and ϕ : A → B be an MV-
homomorphism. Then the following assertions are equivalent:

(i). ϕ is coherent;
(ii). ϕ is complete and preserves maximal compact elements;

(ii). ϕ is continuous and preserves maximal compact elements.

Proof. (i) ⇒ (ii) : Assume that ϕ is a coherent MV-homomorphism. Then ϕ preserves

arbitrary suprema. In addition, since
∧

S = ¬(
∨¬S) [5, Lem. 6.6.3] and ϕ preserves ¬,

then ϕ preserves arbitrary infima as well. Hence ϕ is complete. That ϕ and preserves

maximal compact elements is clear as it preserves all compact elements

(ii) ⇔ (iii) : In light of Theorem 2.8, this equivalence is part of [15, Prop. 3.5].

(ii) ⇒ (i) : Assume that ϕ is complete and and preserves maximal compact elements.

We only need to prove that ϕ maps compact elements of A to compact elements in B.

By Theorem 2.8, we may set A :=
∏

x∈X  Lnx
and B :=

∏

y∈y  Lmy
. Let α ∈ k(A), then by

Corollary 2.5 α ∈ ⊕x∈X  Lnx
. So, {x ∈ X : α(x) 6= 0} := F is finite. Therefore, there exists

an integer N ≥ 2 such that Nα = χF , the characteristic function of F in X . Note that

χF is a maximal compact element of A (Remark 2.11), so ϕ(χF ) is a maximal compact

element of B. Thus, there exists G ⊆ Y finite such that ϕ(χF ) = χG. But as Nα = χF ,

Nϕ(α) = ϕ(χF ) = χG and Nϕ(α) = χG. From the latter, it follows that ϕ(α) ∈ ⊕y∈y  Lmy

and ϕ(α) ∈ k(B). �

Example 2.13. Consider the three-element  Lukasiewicz chain and natural inclusion τ :

 L3 →  LN

3 , that is τ(x)(n) = x for all x ∈  L3 and n ∈ N. Then, τ is complete but does not

preserve maximal compact elements since τ(1
2
) is not even compact.

Example 2.14. Consider ϕ :
∏∞

n=2  Ln → ∏∞
n=2  L2n−1 defined by ϕ(α)(n) = α(n). Note

that for every n ≥ 2, the projection
∏∞

n=2  Ln →  Ln is equal to the composition of ϕ

followed by the projection
∏∞

n=2  L2n−1 →  L2n−1. This means that ϕ is complete by [15,

Prop. 3.5]. In addition, it is clear that ϕ(⊕∞
n=2  Ln) ⊆ ⊕∞

n=2  L2n−1, which means that ϕ

preserves compact elements. Thus, ϕ is a coherent homomorphism.

3. Nuclei of MV-frames

A closure operation on an MV-algebra A has the usual meaning, i.e maps from A → A

that are extensive, monotonic nondecreasing, and idempotent.

Definition 3.1. Suppose that j : A → A is a closure operator.
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d1. The sets of fixed points of j is denoted by jA.

d2. j is called nucleus if j(a ∧ b) = j(a) ∧ j(b), and in this case jA is called nuclear.

d3. A nucleus j is dense if j(0) = 0, that is 0 ∈ jA.

d4. If A is an algebraic MV-frame, then j is called inductive if j(x) =
∨{j(a) : a ∈

k(A) and a ≤ x}
Note that as j2 = j, then jA = j(A).

Example 3.2. (1) The identity j(x) = x and the constant map j(x) = 1 are obvious

examples of closure operators on any MV-algebra A.

(2) The double-pseudocomplementation j(x) = x∗∗ is a closure operator on any MV-
algebra. This is clear from the properties of pseudocomplementation listed in Sec-

tion 2. In addition, by the same listed properties, j is nucleus and jA = B(A),

the Boolean center of A.

(3) Let X be a topological space and A := Cont(X) be the MV-algebra of continuous

functions from X → [0, 1]. Fix t0 ∈ [0, 1] and define j : A → A by j(f)(x) =

Max(f(x), t0). Then j is a closure operator on A. Moreover, j is nucleus and

jA = {f ∈ A : f(x) ≥ t0 for all x ∈ X}.

(4) Let A :=
∏∞

n=2  Ln and define j : A → A by:

j(α)(n) =

{

α(n), if n is even

1, if n is odd

Then, j is a nucleus closure operator on A. In addition, jA = {α ∈ A : α(2k+1) =

1, for all k ≥ 1}. Moreover, one can verify that j is inductive.

As witnessed in the examples above, the nuclear jA may fail to be a sub-MV-algebra of

A. One would like to consider closure operators for which jA is an algebraic MV-frame.

Definition 3.3. A nucleus j : A → A will be called of MV-type if jA is closed under ¬
and ⊕.

Example 3.4. Consider the standard MV-algebra [0, 1] (which is clearly an MV-frame)

and j : [0, 1] → [0, 1] defined by j(x) = ⌈x⌉. Then j is a dense nucleus of MV-type. Note

that j is not inductive, however. This Example shows that being of MV-type is stricter

weaker than requiring that j preserves the MV-operations. Indeed, j is of MV-type as

stated (j[0, 1] =  L2) but j does not preserve ¬.

Note that a nucleus j : A → A is of MV-type if and only if jA is a sub-MV-algebra of

A. This is because j(1) = 1 (as j is extensive) and 0 = ¬1 and since jA is closed under

¬, then j(0) = 0.

Example 3.5. Consider A :=
∏

n=1  L2n+1. For each n ≥ 1, consider jn :  L2n+1 →  L2n+1

and j : A → A defined by:

1. jn(0) = 0,
2. jn(2k−1

2n
) = jn( k

n
) = k

n
for all k = 1, 2, . . . , n,
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3. j(α)(n) = jn(α(n)) for all α ∈ A and n = 1, 2, . . ..

Then j is a nucleus that is inductive and of MV-type. Indeed, one can verify that jA =
∏

n=1  Ln+1, which is clearly a sub-MV-algebra of A.

One area of algebra where both frames and nuclei naturally arise is the ideal theory of
commutative rings. Indeed, such the ideals of a commutative unitary ring form a frame

and closure operators of various types have been studied on this frame. We would like to

consider broadly speaking the intersection of these topics and MV-frames. Belluce and

Di Nola [3] investigated and completely characterized the commutative rings R generated

by idempotents for which the frame Id(R) of ideals of R is an MV-algebra, that is an

MV-frame. Recall [3] that in the MV-frame Id(R), one has: ¬I = I∗, the annihilator of

I, I⊕J = (I∗J∗)∗, 0 := {0} and 1 := R; if {Ix}x∈X ⊆ Id(R), then
∧

x∈X Ix = ∩x∈XIx and
∨

x∈X Ix = 〈∪x∈XIx〉. These rings are called  Lukasiewicz rings and were shown [3, Thm.

7.7] to be up to isomorphism the direct sums commutative unitary Artinian chain rings.

For every  Lukasiewicz ring R, the MV-frame Id(R) is algebraic. This follows from

the fact that Id(R) is complete and atomic ([3, Prop. 3.15], that complete and atomic

MV-algebras are direct products of finite chains ([5, Cor. 6.8.3]) and Theorem 2.8 above.

We can now find some examples of nuclei of on the MV-frame Id(R), where R is a

 Lukasiewicz ring either using classical constructions in ring theory or by taking advantage

of the fact that Id(R) is a direct product of finite chains.

Let R be a  Lukasiewicz ring and A := Id(R), the MV-algebra of ideals of R. From

the preceding comment, we may write A =
∏

x∈X  Lnx
, for some nonempty set X and

{nx : x ∈ X} a set of integers greater than or equal to 2. The next result uses these

notations.

Proposition 3.6. For I ∈ Id(R), let
√
I :=

⋂{P ∈ Spec(R) : I ⊆ P}.

Then, I 7→
√
I is (i) a closure operator, (ii) a nucleus, (iii) is inductive, (iv) is not dense,

unless nx = 2 for all x ∈ X.

Proof. (i) This is known (see, e.g., [9, Ex. 2.1.2](3)).

(ii) Given I, J ∈ Id(R), and P a prime ideal of R, I ∩ J ⊆ P if and only if I ⊆ P or

J ⊆ P . It follows from this that every prime ideal containing I∩J must contain
√
I∩

√
J .

Thus,
√
I ∩

√
J ⊆

√
I ∩ J . The reverse inclusion is clear.

(iii) To see that
√

is inductive, it is easier to translate this operator explicitly on the

MV-algebra A as the MV-algebra of functions f from X → ⊔x∈X  Lnx
. For f ∈ A,

√

f =
∨

{α ∈ A : α co-atom and f ≤ α}

The above formula for
√
f is derived from the fact that prime ideals of R are maximal

[3, Prop. 3.13] and that the maximal ideals of R correspond to the coatoms in
∏

x∈X  Lnx
.

Now, the co-atoms of A are precisely the functions α for which there exists x0 ∈ X such
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that α(x0) =
nx0

−2

nx0
−1

and α(x) = 1 for all x 6= x0. It follows that:

(

√

f
)

(x) =

{

nx−2
nx−1

, if f(x) < 1

1, if f(x) = 1

We wish to show that

√

f =
∨

{√
α : α ∈ k(A) ∧ α ≤ f

}

We consider two cases:

Case 1: f(x) < 1 for all x, then
(√

f
)

(x) = nx−2
nx−1

for all x ∈ X . In this case,
(√

f
)

(x) =
nx−2
nx−1

for all x ∈ X . For each t ∈ X , define αt ∈ A by αt(t) = f(t) and αt(x) = 0 for all x 6=
t. Then, αt ∈ k(A) (Corollary 2.5) and αt ≤ f for all t ∈ X . In addition

(√
αt

)

(x) = nx−2
nx−1

for all x ∈ X . It follows that
∨

t∈X

√
αt =

√
f and

∨{√α : α ∈ k(A) ∧ α ≤ f} =
√
f .

Case 2: The set S := {x ∈ X : f(x) = 1} 6= ∅. For each s ∈ S, define αs ∈ A by αs(s) = 1

and αs(x) = 0 for all x 6= s. Then, αt ∈ k(A) (Corollary 2.5) and αt ≤ f for all t ∈ X .

Moreover,
(√

αs

)

(s) = 1 and
(√

αs

)

(x) = nx−2
nx−1

if x 6= s. It follows that

(

∨

s∈S

√
αs

)

(x) =

{

nx−2
nx−1

, if x /∈ S

1, if x ∈ S
=
(

√

f
)

(x)

Therefore,
√

f =
∨

{√
α : α ∈ k(A) ∧ α ≤ f

}

.

(iv) We use the set-up from (iii). It is clear that if nx = 2 for all x ∈ X , then
√

0 = 0.

In addition, if nx0
> 2 for some x0 ∈ X , then

(√
0
)

(x0) =
nx0

−2

nx0
−1

> 0. Hence,
√

0 > 0 and
√

is not dense. �

We would like to point out that in the preceding Proposition, the nuclear
√
A =

∏

x∈X{nx−2
nx−1

, 1}. In particular, while
√
A is a not a sub-MV-algebra of A, unless nx = 2

for all x ∈ X .

When j is inductive and of MV-type, we have the following that provides a method of

constructing algebraic MV-frames from such nuclei.

Proposition 3.7. If A is any MV-frame and j : A → A is a nucleus that is inductive of

MV-type, then jA is an algebraic MV-frame.

Proof. First, we observed before Example 3.5 that jA is a sub-MV-algebra of A, therefore

an MV-algebra. The completeness of jA is again obtained from [17, Prop. 7.2] but in

this case the meets in jA and A coincide. Indeed, using the relation between joins and

meets in any MV-algebra [5, Lem. 6.6.3](Eq. 6.8), we obtain for every nonempty subset
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S ⊆ jA,

∨jS = ¬j ∧j ¬jS by (Eq. 6.8) in the MV-algebra jA

= ¬ ∧ ¬S as jA is a sub-MV-algebra and the meets in jA and A coincide

= ∨S by (Eq. 6.8) in the MV-algebra A

Therefore, jA is an MV-frame, indeed a sub-MV-frame of A.

To see that jA is algebraic, let x ∈ jA. Then,

x =
∨

{j(a) : a ∈ k(A), a ≤ x} (j is inductive)

≤
∨

{j(a) : a ∈ k(A), j(a) ≤ x} (j(x) = x)

≤
∨

{b : b ∈ jk(A), b ≤ x}

≤
∨

{b : b ∈ k(jA), b ≤ x} (jk(A) = k(jA))

≤ x

Hence, x =
∨ {b : b ∈ k(jA), b ≤ x} and jA is algebraic. �

Remark 3.8. Note that one particularity of MV-frames compare to general frames resides

in the MV-frame jA, the joins in jA coincide with those in A.

4. ℓu-Frames

In this section, we use the Chang-Mundici equivalence between MV-algebras and abelian

ℓ-groups with strong units to consider ℓ-groups as frames and some of their properties.

This investigation is motivated in part by the fact while there exists an equivalence of

categories, the frame notions such as compactness, algebraic many others are not directly

categorical concepts.

Lattice-ordered groups (or ℓ-groups for short) are groups equipped with a lattice struc-

ture that is compatible with the group operations. The only ℓ-groups that we shall deal

with are Abelian, therefore we will use the additive notation 〈G,+,−, 0〉. We shall also
use the following traditional notations: given a ∈ G, a+ = a ∨ 0, a− = −a ∨ 0 and

|a| = a− + a+ = a ∨ −a, in particular a+, a−, |a| ∈ G+.

Given an Abelian ℓ-group G, an element u ∈ G+ is called a strong unit if for all x ∈ G,

there exists an integer n ≥ 1, such that |x| ≤ nu.

Given an abelian ℓ-group 〈G,+,−, 0〉 together with a strong unit u ∈ G (called ℓu-group

for short), let ΓG := [0, u] := {x ∈ G : 0 ≤ x ≤ u}. Then it is known that 〈ΓG,⊕,¬, 0〉
is an MV-algebra where for every x, y ∈,

x⊕ y = (x + y) ∧ u and ¬x = u− x

Indeed, it is established in [6] that Γ defines an equivalence of categories from the category

ABGu of ℓu-groups onto the category of MV of MV-algebras and its inverse is denoted

by Φ.
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Consider a complete ℓ-group G (i.e., every nonempty bounded subset of G has a l.u.b

and a g.l.b) and u ∈ G is a strong unit. Then, G satisfies the infinite distributivity law

[18, F.3], that is: ∧ distributes over all suprema that exists. For this reason, we shall refer

to any pair 〈G, u〉, where G is a complete ℓ-group and u ∈ G is a strong as an ℓu-frame.

In addition, if the frame G has a property (P ) (for e.g., algebraic, regular,...etc), we will

say that the ℓu-frame has property (P ). Given 〈G1, u1〉 and 〈G2, u2〉, two ℓu-frames, a
homomorphism from 〈G1, u1〉 → 〈G2, u2〉 is both a group and lattice homomorphism from

G1toG2 that preserves arbitrary suprema that exists and maps u1 to u2. It is clear that

MV-frames and frame homomorphisms form a category that shall be denoted by MV-

Frm and the ℓu-frames and their homomorphisms form a category that shall be denoted

by ℓu-Frm. We seek to use the categorical equivalence described above to characterize

some classes of ℓu-frames.

Given a lattice-ordered group G and x ∈ G, define M(x) := {a ∈ G : x ≤ a} and

L(x) := {a ∈ G : a ≤ x}. The interval topology is the topology generated by taking all

of the sets {M(x), L(x) : x ∈ G}, as a subbasis for the closed sets.

Proposition 4.1. 1. For every ℓu-frame, ΓG is an MV-frame.

2. For every MV-frame A, Φ(A) is an ℓu-frame.

Proof. 1. Assume that 〈G, u〉 is an ℓu-frame. Let (gx)x∈X ⊆ ΓG, then (gx)x∈X is bounded

and as G is complete, then
∨

x∈X gx and
∧

x∈X gx exist in G. Clearly
∨

x∈X gx,
∧

x∈X ∈ ΓG

and
∨

x∈X gx (resp.
∧

x∈X) is the supremum (resp. the infimum) of (gx)x∈X in ΓG.

2. Let A be an MV-frame. Then, A = ΓG, for some ℓu-group 〈G, u〉. We need to prove

that G is complete under the assumption that [0, u] is complete. Using [4, Lem. 2], we

show that every bounded set (gx)x∈X ⊆ G+ has a g.l.b. Let g ∈ G such that gx ≤ g for all

x ∈ X . There exists n ≥ 1 integer such that g ≤ nu. Thus, there exists an integer n ≥ 1

such that gx ≤ nu for all x ∈ X . Choose the smallest integer N ≥ 1 with the preceding

property. For each x ∈ X , as [0, u] is complete, let bx :=
∨{a ∈ [0, u] : Na ≤ gx} and

let b =
∨

x∈X bx. It can be shown using [19, Lem. 2] that Nb is the l.u.b of (gx)x∈X .

Therefore, G is complete by [4, Lem. 2]. �

Proposition 4.2. 1. Given 〈G1, u1〉 and 〈G2, u2〉, two ℓu-frames and f : 〈G1, u1〉 →
〈G2, u2〉 a morphism, Γ(f) : ΓG1 → ΓG2 is frame homomorphism.

2. Given A,B two MV-frames and a frame homomorphism φ : A → B, Φ(φ) :

Φ(A) → Φ(B) is a homomorphism of ℓu-frames.

Proof. 1. Let f : 〈G1, u1〉 → 〈G2, u2〉 a morphism. Define Γ(f) : [0, u1] → [0, u2] to be the

restriction of f to [0, u1], then Γ(f) is a well-defined MV-homomorphism. In addition,

since the suprema in [0, ui] are from Gi (i = 1, 2) and f preserves the suprema, then Γ(f)

preserves the suprema. Thus, Γ(f) is a frame homomorphism.

2. Let A,B be two MV-frames and a frame homomorphism ϕ : A → B. It is known

by Proposition 4.1 that there exists two ℓu-frames 〈G1, u1〉, 〈G2, u2〉 and a morphism

ϕ : 〈G1, u1〉 → 〈G1, u1〉 such that A = [0, u1], B = [0, u2] and φ = ϕ|[0,u1]. To show

that ϕ = Φ(φ) preserves suprema, we will use the notations and the description of the
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supremum in the proof of Proposition 4.1(2). Let (gx)x∈X ⊆ G+ be a bounded subset of

G,

ϕ

(

∨

x

gx

)

= ϕ

(

N
∨

x

bx

)

= Nφ

(

∨

x

bx

)

= N
∨

x

φ(bx)

= N
∨

x

φ
(

∨

{a ∈ [0, u] : Na ≤ gx}
)

= N
∨

x

(

∨

{φ(a) ∈ [0, u] : Na ≤ gx}
)

= N
∨

x

(

∨

{ϕ(a) ∈ [0, u] : Na ≤ gx}
)

≤ N
∨

x

(

∨

{a′ ∈ [0, u] : Na′ ≤ ϕ(gx)}
)

=
∨

x

ϕ(gx)

Note that inequality
∨

x ϕ(gx) ≤ ϕ (
∨

x gx) is always true. Thus,
∨

x ϕ(gx) = ϕ (
∨

x gx).
For the general case, if (gx)x is a bounded set in G and z is a lower bound of (gx)x, then

(gx − z)x ⊆ G+ and is bounded. It follows from the preceding step that:

ϕ (
∨

x gx) − ϕ(z) = ϕ (
∨

x gx − z) = ϕ (
∨

x(gx − z)) =
∨

x ϕ(gx − z) =
∨

(ϕ(gx) − ϕ(z)) =
∨

ϕ(gx) − ϕ(z). From this, one obtains that ϕ (
∨

x gx) =
∨

ϕ(gx). �

Theorem 4.3. The categories MV-Frm of MV-frames and ℓu-Frm of ℓu-frames are

categorically equivalent.

Proof. Recall [6] that Γ defines an equivalence of categories from the category ABGu

of ℓu-groups onto the category of MV of MV-algebras and its inverse is denoted by Φ.

In addition, by Proposition 4.1 and Proposition 4.2, the restriction of Γ to ℓu-Frm is

a functor onto MV-Frm and the restriction of Φ to MV-Frm is also a functor onto

ℓu-Frm. It is therefore clear that Γ is an equivalence from ℓu-Frm → MV-Frm �

Definition 4.4. Let 〈G, u〉 be an ℓu-frame and A := Γ(〈G, u〉).

(1) An element g ∈ G is called compact if |g|∧u is a compact element of the MV-frame

Γ(〈G, u〉). That is,

k(〈G, u〉) = {g ∈ G : |g| ∧ u ∈ k(A)}
(2) The ℓu-frame 〈G, u〉 is algebraic if for every g ∈ G, g =

∨{a ∈ k(〈G, u〉) : a ≤ g}.

We obtain the following characterization of algebraic ℓu-frames.

Theorem 4.5. Algebraic ℓu-frames are up to isomorphism of the form 〈ZX ,n〉 for some

set X, where n is a sequence of positive integers..

Proof. Let 〈G, u〉 be an algebraic ℓu-frame and let A := Γ(〈G, u〉). We prove that A is

an algebraic MV-frame. Indeed, let x ∈ A, then x ∈ G and since 〈G, u〉 is algebraic,
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then x =
∨{a ∈ k(〈G, u〉) : a ≤ x}. Note that for every a ∈ k(〈G, u〉) such that a ≤ x,

a ≤ |a|∧u, since a ≤ |a| and a ≤ x ≤ u. Hence,
∨{a ∈ k(〈G, u〉) : a ≤ x} ≤ ∨{|a|∧u : a ∈

k(〈G, u〉) and a ≤ x}. But, as {|a| ∧ u : a ∈ k(〈G, u〉) and a ≤ x} ⊆ {b ∈ k(A) : b ≤ x},

then
∨{|a| ∧ u : a ∈ k(〈G, u〉) and a ≤ x} ≤ ∨{b ∈ k(A) : b ≤ x} ≤ x. Therefore,

x =
∨{a ∈ k(〈G, u〉) : a ≤ x} ≤ ∨{|a| ∧ u : a ∈ k(〈G, u〉) and a ≤ x} ≤ ∨{b ∈ k(A) :

b ≤ x} ≤ x. Thus, x =
∨{b ∈ k(A) : b ≤ x} and A is algebraic. It follows from Theorem

2.8 that A ∼=
∏

x∈X  Lnx
, for some nonempty set X and a set of positive integers (nx)x∈X .

Thus, 〈G, u〉 ∼= Φ(A) ∼= Φ
(
∏

x∈X  Lnx

) ∼=
∏

x∈X Φ ( Lnx
) ∼=

∏

x∈X〈Z, nx − 1〉 ∼= 〈ZX ,n〉,
where n = (nx− 1)x∈X . In addition, one can verify that k

(

Z
X ,n〉

)

= ⊕x∈XZ and use this
to show that 〈ZX ,n〉 is algebraic. �

5. Conclusion and final remarks

In this introductory work, we introduce MV-frames and their nuclei as well as ℓu-frames.

We also investigated some of the main frame concepts in the framework of MV-algebras

and abelian lattice-ordered groups. We completely described algebraic MV-frames (ℓu-

frames), coherent MV-frames and regular MV-frames among algebraic ones. We also

studied nuclei on MV-frames, especially on the MV-frame of ideals of  Lukasiewicz rings.

In addition, we studied the nuclear of nuclei and under certain conditions obtained them

as algebraic sub-MV-frames. We anticipate that some of our future works will look into
deepening some of the areas introduced here. For instance, we would like to find out what

new properties of  Lukasiewicz rings can be discovered from the properties of the nuclei

on their MV-frames of ideals.
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