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Summary

Publication bias (PB) is one of the serious issues in meta-analysis. Many existing methods dealing with PB

are based on the normal-normal (NN) random-effects model assuming normal models in both the within-

study and the between-study levels. For rare-event meta-analysis where the data contain rare occurrences

of event, the standard NN random-effects model may perform poorly. Instead, the generalized linear mixed

effects model (GLMM) using the exact within-study model is recommended. However, no method has

been proposed for dealing with PB in rare-event meta-analysis using the GLMM. In this paper, we pro-

pose sensitivity analysis methods for evaluating the impact of PB on the GLMM based on the famous

Copas-Heckman-type selection model. The proposed methods can be easily implemented with the standard

software coring the nonlinear mixed-effects model. We use a real-word example to show how the usefulness

of the proposed methods in evaluating the potential impact of PB in meta-analysis of the log-transformed

odds ratio based on the GLMM using the non-central hypergeometric or binomial distribution as the within-

study model. An extension of the proposed method is also introduced for evaluating PB in meta-analysis of

proportion based on the GLMM with the binomial within-study model.
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1 INTRODUCTION

In meta-analyses comparing two groups, it is often of interest whether the events (e.g., adverse events) are more or less possible
to occur in the treatment group. This treatment effect is commonly quantified by the odds ratio (OR) or the log-transformed OR
(lnOR). When events are rare or sample sizes of studies are small, it frequently happens that the observed numbers of events
are zero, making the OR and its standard error (SE) to be zero or undefined. To address these issues, the continuity correction
(CC) methods1 are widely applied. However, the CC methods are not on sound rationale; among different CC methods, no
single method is consistently recommended.2

Despite the inconsistency of the CC methods, the standard meta-analytical methods, such as the inverse-variance methods in-
cluding the normal-normal random-effects model3 (hereinafter, the NN model), can be problematic. The NN model3 comprises
a two-level model. The within-study model assumes the reported outcome to be normally distributed with the study-specific
mean and the variance of outcome. The between-study model assumes that the treatment effect of each study is normally
distributed with a common value and between-study variance. For meta-analysis with binary outcomes (e.g., the occurrence
of event), the lnORs are often modeled using the NN model. In situations with small study sizes or rare events, the normal
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approximation in the within-study model is questionable. Additionally, the NN model assumes the independence between
lnOR estimates and their SEs, which may not be satisfied practically and introduce bias.4,5 Alternative to the NN model,3 the
generalized linear mixed model (GLMM) with exact within-study likelihood can be promising.4,5,6

Meta-analytical results are often threatened by publication bias (PB), a phenomenon where studies with significant results
are more likely to be published. Combining only those selectively published studies may lead to over-optimistic conclusions
in meta-analyses.7 In recent decades, many sophisticated selection-model-based methods have been proposed to quantita-
tively evaluate the potential impact of PB.7,8 Famous ones include the sensitivity analysis methods by Copas and colleagues,
such as the Copas-Heckman-type selection model,9,10,11 also known as the Heckman model12,13 in the field of economet-
rics; Others include the t-statistic-based selection model14 and the non-parametric worst-case bounds.15 Among them, the
Copas-Heckman-type selection model has been extensively developed16,17,18 and further extended to address PB in multivariate
meta-analyses.19,20,21,22 Most of these developments rely on the NN model or its multivariate versions. The Copas-Heckman-
type selection model could avoid the correction of zero entries in data during the inference; Hattori and Zhou19 extended the
Copas-Heckman-type selection model for diagnostic meta-analysis using the bivariate exact likelihood.

In rare-event meta-analysis, existing methods for PB inherit limitations of the CC methods or the NN model. While the
GLMM with the exact likelihood can outperform the NN model, no methods are currently available for evaluating PB in the
meta-analytical results of the GLMM. With the success of Hattori and Zhou,19 we aim to develop new methods for evaluating
the impact of PB in rare-event meta-analysis using the GLMM.

2 GLMM FOR META-ANALYSIS OF ODDS RATIOS WITHOUT PUBLICATION BIAS

Suppose that a meta-analysis contains N studies with binary outcomes. Each study has treatment and control groups; the
numbers of events and subjects are accessible. Let yi0 and ni0 be the number of events and subjects in the control group,
respectively; yi1 and ni1 are defined similarly in the treatment group. The data of study i are formulated by the contingency
matrix in Table 1. The common practice of meta-analysis is based on the NN model, where the summary statistic such as the
lnOR calculated from Table 1 is used and the likelihood is constructed based on the normal approximation. (The details are
outlined in Appendix A.)

Exact likelihoods based on the observations (yi0, yi1) are recommended and constructed as follows. The non-central hypergeo-
metric distribution is proposed for the within-study likelihood, i.e., yi1 | yi follows the non-central hypergeometric distribution.4

The between-study model is assumed to be normally distributed, i.e., θi ∼ N(θ, τ 2), where θi is the true lnOR in each study, θ
the overall lnOR of interest, and τ 2 the between-study variance. This model is called the hypergeometric-normal (HN)-GLMM
with parameters (θ, τ ) estimated from the likelihood:

N
∏

i=1

∫

∞

–∞
Li(θi)

1

τ
φ

(

θi – θ

τ

)

dθi with Li(θi) =

(

ni1

yi1

)(

ni0

yi0

)

exp(θiyi1)
∑

k∈K

(

ni1

k

)(

ni1

yi–k

)

exp(θik)
, (1)

where φ(.) denotes the density of standard normal distribution, and K is the set of all possible values of yi1 constrained by the
marginal totals in Table 1.

When many studies are involved in meta-analysis, the estimation of HN-GLMM can be computationally demanding.5 The

following binomial distribution: yi1 | yi ∼ Bin

(

yi,
exp{log(ni1/ni0) + θi}

1 + exp{log(ni1/ni0) + θi}

)

can approximate to the non-central hypergeo-

metric distribution in the HN-GLMM when the total number of events is much smaller than the sample sizes;4 we call this the
binomial-normal (BN)-GLMM with the likelihood:

N
∏

i=1

∫

∞

–∞
Li(θi)

1

τ
φ

(

θi – θ

τ

)

dθi with Li(θi) =

(

yi

yi1

)

exp{log(ni1/ni0) + θi}yi1

[1 + exp{log(ni1/ni0) + θi}]yi
. (2)

3 NEW SENSITIVITY ANALYSIS METHODS FOR PB IN THE GLMM

In the presence of selective publication of studies, the data of N studies may be biased sample from the population, possibly
leading to biased estimates of parameters. Along with the idea by Copas and Shi10 for the NN model, we construct a sensitivity
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analysis method, where a latent Gaussian variable responsible for selective publication is introduced, and a conditional likeli-
hood given the published is constructed. For the NN model, the conditional likelihood is obtained on the property of the joint
normal distribution of the outcome and the latent variable as summarized in Appendix B.

For binary outcomes, an alternative construction is needed. We consider a latent variable Zi with the selection equation on
the samples sizes:9

Zi = a0 + a1
√

ni + δi (3)

where a0 and a1 are constants, ni the total number of subjects in Table 1, and δi ∼ N(0, 1); study i is published if and only
if Zi > 0. As explained in Appendix B, the latent variable (B3) is often used for the NN model. One application of the latent
variable (3) was for PB in diagnostic meta-analysis.19

The probability of publishing study i is modeled by:

P(Zi > 0 | ni) = Φ(a0 + a1
√

ni), (4)

where Φ(.) is the standard normal cumulative distribution function. Model (4) indicates that larger studies are more likely to
be published. We then employ bivariate normal distribution with correlation coefficient ρ to present the dependence between δi

and θi in the HN-GLMM (1) or BN-GLMM (2):
(

θi

δi

)

∼ N

((

θ

0

)

,

[

τ 2 ρτ

ρτ 1

])

.

Considering PB, the likelihood conditional on the published is constructed as

N
∏

i=1

∫

Li(θi | Zi > 0, ni)
1

τ
φ

(

θi – θ

τ

)

dθi (5)

with

Li(θi | Zi > 0, ni) =
P(Zi > 0 | θi, ni)Li(θi)

P(Zi > 0 | ni)

=
P
(

a0 + a1
√

ni + δi > 0) | θi, ni

)

Li(θi)

P(Zi > 0 | ni)

=

Φ

{

a0 + a1
√

ni + ρ(θi – θ)/τ
√

1 – ρ2

}

Li(θi)

Φ(a0 + a1
√

ni)
,

where Li(θi) is defined in likelihood (1) or (2). The parameters in (5) can be estimated by the maximum likelihood method.
One concern is that parameters in (5) may not be fully identified; then, a sensitivity analysis approach can be taken as follows.
Let nmin and nmax be the minimum and maximum numbers of subjects among the published studies; Pmin and Pmax denotes
the probabilities of publishing a study with nmin and nmax subjects (practically, Pmin ≤ Pmax). With model (4), Pmin = Φ(a0 +
a1
√

nmin) and Pmax = Φ(a0 + a1
√

nmax) hold. Given the values of (Pmin, Pmax), the constants (a0, a1) are derived by

a1 =
Φ

–1(Pmax) – Φ
–1(Pmin)

√
nmax –

√
nmin

and a0 = Φ
–1(Pmax) – a1

√
nmax.

Then, the parameters (θ, τ , ρ) in the likelihood conditional on the published (e.g., likelihood (5)) can be estimated by the ML
method. On the other hand, the number of unpublished studies is estimated by

∑N

i=1{1 – P(Zi > 0 | ni)}/P(Zi > 0 | ni).

4 APPLICATION

We revisit the meta-analysis of lnORs4 with the background and estimates without PB summarized in Box 1. We employed the
proposed methods and the original Copas-Heckman-type selection model10 to evaluate the potential PB on the lnOR estimated
by the HN/BN-GLMM and the NN model, respectively. The sensitivity analysis approach was used for all the methods to
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estimate (θ, τ , ρ) by the ML method, where some reasonable values, (Pmin, Pmax) = {(0.9, 0.99), (0.8, 0.99), . . . , (0.1, 0.99)},
were fixed. The impact of PB was assessed via the changes of the estimated lnOR. Since the Copas-Heckman-type selection
model adopted selection equation on the precision (i.e., 1/si) of the lnOR,10 the parameter Pmin, for example, then indicates the
probabilities of publishing study with maximum SE (minimum subjects).

Figure 1 presents the sensitivity analysis results on the lnOR estimated by different methods with the detailed estimates of
parameters in Table A1. Given Pmax = 0.99 and decreasing Pmin, the lnOR increased with increasing number of unpublished
studies. According to the results of the proposed methods, the lnOR considering PB and estimated by the HN/BN-GLMM
remained significant, indicating that the meta-analytical results by the HN/BN-GLMM were robust against potential PB. For
the HN/BN-GLMM model, there was little change of the lnOR over Pmin (x-axis in Figure 1). On the other hand, for the NN
model, certain change was observed possibly due to the influence of sparsity of data.

5 DISCUSSION

Publication bias has been recognized as an inevitable problem in meta-analysis. Although many advanced selection-model-
based methods are proposed for evaluating the impact of PB on the meta-analytical results, implementing these methods on
rare-event meta-analysis can be problematic since they are based on the NN model. The GLMM with the exact within-study
likelihood is recommended for rare-event meta-analysis;4,5,6 we proposed sensitivity analysis methods to fill missingness of
methods for evaluating the potential PB in the GLMM, and the proposed methods can be easily implemented by the standard
statistical software. With the simple implementation, the proposed methods could have wide applicability in rare-event meta-
analysis. As demonstrated in likelihood (5), our development can handle the exact likelihoods in a unified way by setting a
relevant likelihood function. We present the additional case of rare-event meta-analysis of proportions in single group with a
real example in Appendix D. In summary, our proposal provides practical tools for evaluating PB in rare-event meta-analysis
using the GLMM.
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HIGHLIGHTS

What is already known

• For rare-event meta-analysis, the generalized linear mixed effects model (GLMM) adopting the exact within-study like-
lihood, such as the hypergeometric or the binomial distributions, are recommended than the standard normal-normal
random-effects model using the approximately normal likelihood.

• Publication bias (PB), also known as small study effects, is one of the major issues in meta-analysis; the existing methods
for PB are developed for the NN model and can be problematic for rare-event meta-analysis.

• The Copas-Heckman-type selection model is one of the famous sensitivity analysis methods for PB and has been widely
developed for various meta-analyses; however, this model cannot be used directly for PB in rare-event meta-analysis using
the GLMM.

What is new

• We successfully extended the Copas-Heckman-type selection model to deal with PB in rare-event meta-analysis based on
the GLMM.

• This work is the first development of the Copas-Heckman-type selection model for evaluating the impact of PB in rare-event
meta-analysis using the exact likelihood.

https://github.com/meta2020/metaeventsa-r
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Potential impact for Research Synthesis Methods readers outside the authors’ field

• The proposed methods help researchers analyze the impact of PB on the meta-analytical estimates (e.g., the log-transformed
odds ratio, the logit-proportion) using the GLMM, and then robust conclusions can be drawn from rare-event meta-analysis.

• The proposed methods provide simple tools for evaluating PB in rare-event meta-analysis based on the GLMM, and we
provided the open-source R codes for researchers to implement the methods in practice.
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F I G U R E 1 Application: Comparison of sensitivity analysis methods for PB in meta-analysis of lnORs.
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T A B L E 1 Example of the contingency table for data of study i

Event Non-event Total

Treatment yi1 ni1 – yi1 ni1

Control yi0 ni0 – yi0 ni0

Total yi ni – yi ni

BOX 1 Meta-analysis in the application without considering PB

Background: This is the meta-analysis of lnORs of catheter-related bloodstream infection (CRBSI) between anti-
infective-treated (AIT) central venous catheters and the standard catheter.23 The data of this meta-analysis are presented
below.

AIT catheter Standard catheter

Study CRBSI (yi1) Patients (ni1) CRBSI (yi0) Patients (ni0)

1 3 117 0 116
2 3 35 1 44
3 9 195 2 208
4 7 136 0 130
5 6 157 5 151
6 4 139 1 98
7 3 177 1 174
8 2 39 1 74
9 19 103 1 97

10 2 122 1 113
11 7 64 0 66
12 1 58 0 70
13 5 175 3 188
14 11 180 6 187
15 0 105 0 118
16 1 262 0 252
17 3 362 1 345
18 1 69 4 64

Methods: In Stijnen et al,4 the meta-analytical results by the NN model and the HN/BN-GLMM were compared
without considering selective publication of studies. We reproduced the results and estimated the parameters by the ML
method. The optimization was implemented by the R function nlminb(); the SEs of the parameters were estimated by
the inverse of the empirical Fisher information matrix following the ML theory. R function hcubature() was used
to calculate the integrals in the likelihoods of HN/BN-GLMM.

Results: The HN-GLMM and the BN-GLMM gained similar results with the lnOR estimated as –1.353 (–2.041 to –
0.665) and –1.303 (–1.966 to – 0.639), respectively, since the total number of CRBSI was relatively small to the total
number of subjects. The NN model estimated the meta-analytical lnOR to be –0.955 (95%CI, –1.501 to –0.408), which
was biased towards zero.4 Without accounting for selective publication, there are certain discrepancies between the NN
model and the HN/BN-GLMM model, indicating that normal approximation in the NN model was questionable.
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APPENDIX

A REVIEW OF THE NORMAL-NORMAL RANDOM-EFFECTS MODEL WITHOUT PUBLI-

CATION BIAS

As mentioned in Section 2 of the main text, we present the likelihood of the normal-normal random-effects model (hereinafter,
the NN model) without considering publication bias (PB).

Based on the data in Table 1 of the main text, to evaluate the occurrence of events between two groups, the measurement of
log-transformed odds ratio (lnOR) is often reported and estimated by

θ̂i = log
yi1/(ni1 – yi1)

yi0/(ni0 – yi0)
,

with its SE estimated by

si =

√

1

yi1
+

1

ni1 – yi1
+

1

yi0
+

1

ni0 – yi0
.

If there are zero entries in the data, the continuity correction method is usually conducted by adding 0.5 to the numbers of
events and non-events before estimating the lnOR and its SE.

In the absence of PB, the NN model3 assumes that, in the within-study level, the distribution of the estimated lnOR θ̂i is
modeled by

θ̂i | θi ∼ N(θi, s2
i ),

where θi is the true lnOR in each study. Following the convention in meta-analysis field, si is regarded as known and fixed. In
the between-study level, it is assumed that

θi ∼ N(θ, τ 2),

where θ is the overall lnOR of interest, and τ 2 is the between-study variance. Marginally, θ̂i has the following normal
distribution:

θ̂i ∼ N(θ, s2
i + τ 2). (A1)

In the NN model, the within-study likelihood is constructed based on the observations θ̂i which approximately follow normal
distribution. Then, allowing for the existence of between-study heterogeneity, the unknown parameters (θ, τ ) can be estimated
based on the likelihood:

N
∏

i=1

∫

∞

–∞
Li(θi)

1

τ
φ

(

θi – θ

τ

)

dθi with Li(θi) =
1

√
2πsi

exp

(

–
(θ̂i – θi)2

2s2
i

)

, (A2)

where φ(.) denotes the density of standard normal distribution.

B REVIEW OF THE COPAS-HECKMAN-TYPE SELECTION MODEL FOR PB IN THE NN

MODEL

As mentioned in Section 3 of the main text, we review the original Copas-Heckman-type selection model10 addressing PB in
the NN model.
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Based on the NN model (A1), Copas and Shi10 considered the variance components model for the outcome:

θ̂i = θ + (σi + τ 2)
1/2
ǫi,

where ǫi ∼ N(0, 1) and σ2
i = var(θ̂i | θi) is the within-study sampling variance. (Given large numbers of subjects in each study,

σ2
i can be replaced by s2

i .) They introduced a latent Gaussian variable Zi with the selection equation:

Zi = γ0 + γ1/si + δi, (B3)

where γ0 and γ1 are constants and δi ∼ N(0, 1); study i is published if and only if Zi > 0. A correlation was presented to link
publication with the outcome:

ρ = corr(ǫi, δi),

When ρ = 0, θi is independent of δi, indicating that study outcome does not influence its publication, and then there is no PB.
A probit model was employed to model the probability of selectively publishing one study:

P(Zi > 0 | si) = Φ(γ0 + γ1/si), (B4)

where Φ(.) is the standard normal cumulative distribution function. Probability (B4) indicates that studies with small SE (large
studies) are more likely to be published.

Under selective publication of studies, the log-likelihood conditional on the published studies was derived based on the NN
model, as shown in equation (4) in Copas and Shi:10

N
∑

i=1

log p(θ̂i | zi > 0, si) =
N
∑

i=1

{

log p(θ̂i) + log p(zi > 0 | θ̂i, si) – log p(zi > 0 | si)
}

=
N
∑

i=1

{

–
1

2
log(τ 2 + σ2

i ) –
θ̂i – θ

2(τ 2 + σ2
i )

– logΦ(γ0 + γ1/si) + logΦ(vi)

}

with

vi =
γ0 + γ1/si + ρ̃i(θ̂i – θ)/

√

τ2 + σ2
i

√

1 – ρ2
i

and ρ̃i =
σi

√

τ 2 + σ2
i

ρ.

The parameters (θ, τ , ρ) in the above likelihood can be estimated by the maximum likelihood method; meanwhile, the number
of unpublished studies is estimated by

∑N

i=1{1 – P(Zi > 0 | si)}/P(Zi > 0 | si).

C THE ESTIMATION RESULTS IN APPLICATION

As mentioned in Section 3 of the main text, in Table C1, we presented the estimates of parameters taking PB into account by
the proposed methods and the original Copas-Heckman-type selection model.

D NEW SENSITIVITY ANALYSIS FOR PB IN RARE-EVENT META-ANALYSIS OF PRO-

PORTIONS

In Section 2-4 of the main text, we described the developed sensitivity analysis method for evaluating the impact of PB in rare-
event meta-analysis of lnORs. As mentioned in Section 5, we introduce our sensitivity analysis method for PB in the rare-event
meta-analysis of proportions.
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T A B L E C1 Application in the main text: Summary of the estimations of different sensitivity analysis methods

Proposed method (HN-GLMM) Proposed method (BN-GLMM) Copas-Heckman-type selection model

(Pmin, Pmax) M θ (95% CI) τ (SE) ρ (SE) θ (95% CI) τ (SE) ρ (SE) M θ (95% CI) τ (SE) ρ (SE)

0 -1.35 (-2.04, -0.67) 0.83 (0.38) -1.30 (-1.97, -0.64) 0.78 (0.38) 0 -0.95 (-1.41, -0.49) 0.00 (0.81)
(0.9, 0.99) 1 -1.34 (-2.11, -0.56) 0.84 (0.39) -0.20 (2.24) -1.29 (-2.04, -0.54) 0.78 (0.39) -0.20 (2.29) 1 -0.90 (-1.38, -0.42) 0.00 (0.66) -0.54 (0.61)
(0.8, 0.99) 2 -1.32 (-2.13, -0.51) 0.84 (0.39) -0.22 (1.66) -1.28 (-2.06, -0.49) 0.78 (0.39) -0.22 (1.71) 2 -0.85 (-1.34, -0.37) 0.00 (0.58) -0.60 (0.46)
(0.7, 0.99) 3 -1.31 (-2.15, -0.47) 0.84 (0.39) -0.23 (1.39) -1.26 (-2.08, -0.45) 0.78 (0.39) -0.23 (1.44) 4 -0.81 (-1.31, -0.31) 0.00 (0.53) -0.63 (0.40)
(0.6, 0.99) 4 -1.30 (-2.17, -0.42) 0.84 (0.39) -0.24 (1.21) -1.25 (-2.09, -0.41) 0.78 (0.39) -0.23 (1.26) 5 -0.76 (-1.29, -0.24) 0.00 (0.49) -0.63 (0.38)
(0.5, 0.99) 6 -1.29 (-2.19, -0.38) 0.84 (0.39) -0.24 (1.08) -1.24 (-2.11, -0.37) 0.78 (0.39) -0.24 (1.12) 8 -0.73 (-1.28, -0.17) 0.00 (0.47) -0.61 (0.36)
(0.4, 0.99) 8 -1.27 (-2.21, -0.34) 0.84 (0.39) -0.24 (0.97) -1.23 (-2.13, -0.32) 0.78 (0.39) -0.24 (1.01) 11 -0.70 (-1.29, -0.12) 0.00 (0.46) -0.56 (0.35)
(0.3, 0.99) 11 -1.26 (-2.23, -0.29) 0.84 (0.39) -0.23 (0.87) -1.21 (-2.15, -0.28) 0.78 (0.39) -0.23 (0.91) 16 -0.69 (-1.29, -0.08) 0.00 (0.45) -0.50 (0.32)
(0.2, 0.99) 17 -1.24 (-2.25, -0.23) 0.84 (0.39) -0.23 (0.78) -1.20 (-2.17, -0.23) 0.78 (0.39) -0.23 (0.81) 24 -0.68 (-1.29, -0.06) 0.00 (0.44) -0.43 (0.29)
(0.1, 0.99) 32 -1.22 (-2.28, -0.16) 0.84 (0.39) -0.22 (0.67) -1.18 (-2.20, -0.16) 0.78 (0.39) -0.22 (0.70) 47 -0.67 (-1.29, -0.05) 0.00 (0.44) -0.35 (0.24)

M indicates the number of potentially unpublished studies; CI indicates the confidence interval; SE indicates the standard error.
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D.1 Likelihood conditional on the published studies

Suppose we are conducting the meta-analysis of proportions of event, and the parameter of interest is the proportion π. Each
study i (i = 1, . . . , N) reports the number of events yi and the total number of subjects ni. In the absence of PB, the generalized
linear mixed model (GLMM) works with the log odds θi = logit(πi) = log

πi

1 – πi

as the measurement of effect, where πi denotes

the proportion of event in each study. The GLMM uses the binomial distribution yi ∼ Binomial(ni, πi) as the within-study
model.4 The likelihood is written as

N
∏

i=1

∫

∞

–∞
Li(θi)

1

τ
φ

(

θi – θ

τ

)

dθi with Li(θi) =

(

ni

yi

)

exp(θi)yi

{1 + exp(θi)}ni
. (D5)

To evaluate the impact of PB, we follow the approach in Section 3 of the main text to construct the likelihood conditional
on the published studies. The likelihood (5) in the main text can be applied by replacing the within-study likelihood Li(θi) with
the one in likelihood (D5).

D.2 Application

As illustration of the proposed method in rare-event meta-analysis of proportions, we adopted the same data in Box 2 of the
main text but only analyze data in the AIT catheter group; the parameter of interest is the logit-transformed proportion of
CRBSI. Without considering PB, the logit-proportion of events was estimated to be –4.812 (95% CI: – 5.508 to – 4.116) by the
likelihood (D5) of GLMM and –4.238 (–4.793 to –3.682) by the likelihood (A2) NN model.3 The same scenarios of sensitivity
parameters in Section 4 of the main text were considered to evaluate PB on the estimates of logit-transformed proportion.

We presented the comparison of the proposed method and the Copas-Heckman-type selection model in Figure D1. In the
presence of potentially unpublished studies, the estimated proportion still remained significantly different from zero in both
methods. The detailed estimated results of the proposed sensitivity analysis method and the Copas-Heckman-type selection
model are in Table D2. For the proposed method, there was little change of the logit-transformed proportion over Pmin (x-axis in
Figure D1). On the other hand, for the NN model, certain change was observed possibly due to the influence of sparsity of data.
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F I G U R E D1 Comparison of the sensitivity analysis methods for PB in meta-analysis of proportions.
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T A B L E D2 Summary of the estimations of different sensitivity analysis methods

Proposed method (BN-GLMM) Copas-Heckman-type selection model

(Pmin, Pmax) M θ (95% CI) τ (SE) ρ (SE) M θ (95% CI) τ (SE) ρ (SE)

0 -4.81 (-5.51, -4.12) 0.91 (0.33) 0 -4.24 (-4.79, -3.68) 0.58 (0.26)
(0.9, 0.99) 1 -4.88 (-5.59, -4.17) 0.94 (0.34) 1.00 (NaN) 1 -4.14 (-4.70, -3.58) 0.53 (0.26) -0.71 (0.46)
(0.8, 0.99) 2 -4.93 (-5.65, -4.20) 0.96 (0.35) 1.00 (NaN) 3 -4.05 (-4.60, -3.49) 0.48 (0.27) -0.82 (0.29)
(0.7, 0.99) 3 -4.98 (-5.72, -4.24) 0.98 (0.36) 1.00 (NaN) 5 -3.95 (-4.49, -3.40) 0.41 (0.28) -0.88 (0.20)
(0.6, 0.99) 4 -5.03 (-5.79, -4.27) 1.00 (0.36) 1.00 (NaN) 7 -3.84 (-4.37, -3.31) 0.34 (0.29) -0.93 (8192.00)
(0.5, 0.99) 6 -5.09 (-5.88, -4.30) 1.02 (0.37) 1.00 (NaN) 10 -3.71 (-4.26, -3.16) 0.25 (0.35) -0.97 (8192.00)
(0.4, 0.99) 8 -5.16 (-5.99, -4.33) 1.03 (0.38) 1.00 (NaN) 15 -3.62 (-3.66, -3.58) 0.00 (0.04) -1.00 (8192.00)
(0.3, 0.99) 11 -5.15 (-6.54, -3.77) 0.99 (0.45) 0.83 (1.21) 22 -3.39 (-3.52, -3.27) 0.00 (0.07) -1.00 (8192.00)
(0.2, 0.99) 17 -5.15 (-6.28, -4.02) 0.96 (0.37) 0.69 (0.73) 36 -3.41 (-3.87, -2.95) 0.00 (0.29) -0.84 (0.11)
(0.1, 0.99) 32 -5.16 (-6.28, -4.04) 0.93 (0.34) 0.57 (0.60) 76 -3.43 (-3.88, -2.98) 0.00 (0.30) -0.71 (0.11)

M indicates the number of potentially unpublished studies; CI indicates the confidence interval; SE indicates the standard error; NaN indicates “not a value”,
an undefined value.
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