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Abstract

The integration of neural representations in the two hemispheres is an important problem in neu-

roscience. Recent experiments revealed that odor responses in cortical neurons driven by separate

stimulation of the two nostrils are highly correlated. This bilateral alignment points to structured

inter-hemispheric connections, but detailed mechanism remains unclear. Here, we hypothesized

that continuous exposure to environmental odors shapes these projections and modeled it as on-

line learning with local Hebbian rule. We found that Hebbian learning with sparse connections

achieves bilateral alignment, exhibiting a linear trade-off between speed and accuracy. We identified

an inverse scaling relationship between the number of cortical neurons and the inter-hemispheric

projection density required for desired alignment accuracy, i.e., more cortical neurons allow sparser

inter-hemispheric projections. We next compared the alignment performance of local Hebbian rule

and the global stochastic-gradient-descent (SGD) learning for artificial neural networks. We found

that although SGD leads to the same alignment accuracy with modestly sparser connectivity, the

same inverse scaling relation holds. We showed that their similar performance originates from

the fact that the update vectors of the two learning rules align significantly throughout the learn-

ing process. This insight may inspire efficient sparse local learning algorithms for more complex

problems.

I. INTRODUCTION

Animals with bilateral symmetry must integrate information from the two sides of the

brain to form a coherent picture of the environment. This problem has been studied in vision

and audition, where similarities and asymmetries in information sampled through the two

sides can offer interpretable computational clues [1–4]. But it is less clear how information

from two sensors is integrated in olfaction [5–9].

In many species including rodents, the two nares are separated by a septum that prevents

inhaled odors from transferring between nostrils. Since the two nostrils may sample inde-

pendent pockets of air [10–12], bilateral information can be used, in principle, to discover

features of the odor stimulus not readily available to a single nostril. By comparing odor
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concentration across the two nostrils, foraging animals may locate odor sources under condi-

tions where smooth gradients exist [8, 13–16]. Such asymmetric information processing from

the two nostrils has also been observed in humans, who can sense the direction of an odor

source presented close to their nose [6, 17]. In contrast to computations emphasizing the

differences between the two sides, many behaviors require making common inferences that

are independent of the stimulated nostril. For instance, animals must be able to identify

relevant smells of food or a predator, regardless of the odor source’s location relative to their

nose and independent of any asymmetries in air flow through the nostrils [7, 18].

These behaviors using two nostrils require neural computations that rely on inter-

hemispheric communication, which occurs via axons crossing through the anterior com-

missure [8, 9, 19]. Two brain regions, anterior olfactory nucleus (AON) and anterior

piriform cortex (APC), are strong candidates to integrate information from the two nostrils

[9, 10, 20–24] – we will refer to these regions collectively as olfactory cortex (OC). The

olfactory bulb (OB), the first stage of circuit processing in the olfactory system, sends

projections exclusively to the ipsilateral OC. Neurons in the OC, however, send projections

to the opposite hemisphere through the anterior commissure, and make functional synapses

[20, 24–27].

Single OC neurons can respond to odors presented separately to ipsilateral nostril or

contralateral nostril. Although direct projections from the OB account for ipsilateral re-

sponses, inter-hemispheric projections are the likely substrate for the responses of OC neu-

rons to odors presented to the contralateral nostril [9, 10, 21, 22, 28] [Fig. 1(a)]. It is unclear

whether, and how similar, the responses to ipsi- and contralateral stimuli are in the OC.

Systematically different responses can be used to compute the direction from which an odor

stimulus arises in natural situations [21]. However, useful computations may not be possible

if the responses are entirely uncorrelated.

Recently, we used a panel of diverse odors to probe the structure of odor responses in

individual mouse olfactory cortical neurons to ipsilaterally and contralaterally presented

stimuli [29]. We found that individual neurons responded to odors presented to the con-

tralateral nostril in a similar way to the same odors presented ipsilaterally [29]. This similar

tuning, which we refer to as bilateral alignment, was significantly better than chance and is

not easily explained by the apparently random and disperse projections to the OC [30–34].

Matching responses to odors presented separately to the two nostrils must therefore arise

3



from coordinated connectivity in the inter-hemispheric projections, which must somehow be

aligned with the ipsilateral projections. To achieve such coordinated connectivity, thus bilat-

eral alignment, an attractive and plausible hypothesis is that Hebbian or correlation-based

synaptic plasticity shapes synapses formed by inter-hemispheric axons [Fig. 1(a)].

In the present work, we hypothesized that the continuous exposure of both nostrils to

environmental odors shapes the functional properties of inter-hemispheric projections, and

tested whether online learning with local Hebb’s rule is sufficient to account for matched

responses found experimentally. Furthermore, mammals have millions of olfactory cortical

neurons [35], while the typical number of synapses onto one neuron is 103 − 104 [36, 37];

thus, a cortical neuron in one hemisphere is unlikely to connect with all the neurons in

the other hemisphere [24, 38], leading to the questions of whether sparse inter-hemispheric

connectivity could achieve bilateral alignment, and if so, how sparse/dense the connections

need to be. Finally, within the context of bilateral alignment, we studied the differences

and similarities between the local Hebb’s rule and gradient-based global learning rules in

particular the stochastic gradient descent (SGD) rule (algorithm) that is prevalent in training

artificial neural networks.

The paper is organized as follows: First, we define the problem by describing the online

Hebbian learning process in a simplified network model of the olfactory cortex and the

testing criterion for bilateral alignment. We then present three main findings from our

study: 1) Online Hebbian learning can successfully achieve bilateral alignment with highly

sparse inter-hemispheric projections, and the learning rate modulates the trade-off between

alignment accuracy and convergence speed. 2) For a given degree of alignment, the required

density of inter-hemispheric projections scales inversely with the number of cortical neurons,

meaning that more cortical neurons allow sparser connections. 3) The SGD learning rule

achieves the same alignment performance with modestly sparser connectivity but exhibits

the same scaling relation. Furthermore, we showed that the similar performance for local

Hebbian rule and global SGD rule is due to the fact that the update vectors of the two

learning rules are partially aligned during the learning process.
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II. MODEL SETUP AND TRAINING PROCESS

To study whether online Hebbian learning can lead to bilateral alignment, we use a

minimum learning model as illustrated in Figs. 1(a)-(c), where (a) and (b) illustrate the

circuits for contral- and ipsi-lateral responses respectively. As shown by the neural network in

Fig. 1(c), odor elicited the same OB responses in two sides, denoted as x ∈ Rm (anatomically,

m stands for the number of OB glumeruli [39, 40], and for simplicity, we refer to the responses

of output neurons of the glumeruli as “OB responses”.). The projections from OBs to OCs

(WA and WB) are modeled to be largely random. This lead to different cortical odor

representations in two hemispheres rA, rB ∈ Rn, which are also modulated by the inter-

hemispheric interactions (GAB and GBA).

For simplicity, the OB response x to an odor is drawn from Gaussian distribution with

0 mean: x ∼ N (0,Σ) (negative firing rates indicate suppressed activities of OB output

neurons, compared to their baseline firing rates). Here Σ is the input covariance matrix,

and for analytical tractability, we take Σ = γ2Im (independent and identically distributed

or IID Gaussian distribution) with γ the input strength. To characterize the sparse OB-to-

OC projections [34, 41], we denote the density of WA and WB as ρW (the fraction of their

non-zero elements). For analytical tractability, we assume that the nonzero elements of WA

and WB are also IID Gaussian variables, i.e., Wij ∼ N (0, 1) , ∀Wij ̸= 0, which are sampled

at the beginning and fixed after that. In contrast, the inter-hemispheric projection matrix

GBA will be updated during learning [the blue arrows in Fig. 1(a)-(c)], whose connectivity

density is ρG. We initialize the non-zero entries of GBA with IID Gaussian distribution

GBA,ij ∼ N (0, σ2
0) ,∀GBA,ij ̸= 0 [the same for GAB, which is not shown in Fig. 1(c) to avoid

clutter], where the variance σ2
0 is chosen to be similar to that of the final learned weights.

During learning, each step contains three parts [Fig. S1(b)-(c)]: firstly, one training odor is

“delivered” to two nostrils [Fig. 1(c) and Fig. S1(a)]. The two cortical odor representations,

i.e., the firing rate vectors rA and rB, are then determined by the steady state solution of

the following neural dynamics:

τ
drA
dt

= −rA + tanh(WAx+GABrB),

τ
drB
dt

= −rB + tanh(WBx+GBArA),

(1)

where τ is the single-neuron integration time constant (τ = 10ms is used in this study) and
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we adopted the hyperbolic tangent function tanh() as the activation function.

Secondly, assuming a time scale separation between the neural dynamics and learning

(synaptic update), we update GBA by a discrete Hebb’s rule (similar for GAB):

∆GBA = η(rBr
⊤
A − βGBA)⊙ ĜBA, (2)

with η the learning rate and β the weight decay constant. Here, ⊙ represents element-wise

product; ĜBA is a fixed sparsity mask matrix with binary entries (0 or 1, the probability of

ĜBA,ij = 1 is ρG), to enforce the sparsity of inter-hemispheric connections (note that ĜBA

is also applied to the initial weights). This Hebb’s rule is local because the right hand side

of Eq. (2) only involves the pre-synaptic and the post-synaptic neurons.

Finally, with the Hebbian-updated GBA and GAB, following experiments, we simulate

the contralateral response to this single training odor [rctB , Fig. 1(a)], as well as the ipsilat-

eral response ripB [Fig. 1(b)]. Equations for rctB and ripB can be seen in Appendix A 1. To

characterize the performance of online Hebbian learning at step T , we randomly generate

K test odors from the same distribution, then simulate their ipsi- and contra-lateral re-

sponses. We define the test Bilateral Alignment Level (BAL) as the mean cosine similarity

a(T ) := ⟨cos(ripB , rctB )⟩K , which characterizes the alignment performance at step T .

III. RESULTS

A. Dynamics of learning for bilateral alignment: learning rate modulates the

speed-accuracy tradeoff

To study whether sparse inter-hemispheric projections are sufficient for bilateral align-

ment, we started with (m,n, ρW, ρG) = (20, 500, 0.1, 0.05), N = 1000 steps, and a learning

rate of η = 0.01 s2. Other parameters are listed in Appendix Table I. As shown by the blue

curve in Fig. 2(a), the test BAL converged to 0.51 within 200 steps, meaning that Hebb’s

rule can achieve bilateral alignment using sparse connections.

We then adopted a smaller learning rate η = 0.001 s2, which led to higher test BAL

but slower convergence [the red curve in Fig. 2(a)]. Furthermore, we varied η with other

parameters fixed, and found that test accuracy decreases linearly with η [the blue dots in

Fig. 2(b)]. In contrast, the convergence speed increases linearly with η [the red dots in
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Fig. 2(b), see Appendix E: Methods for the numerical estimation of the convergence speed

and Fig. S2 for one example]. As a result, test accuracy and convergence speed exhibit a

linear tradeoff [the inset green line in Fig. 2(b)].

To understand why Hebb’s rule leads to accurate bilateral alignment, we considered a

scenario with small input strength γ and large decay rate β, where Eq. (1) can be linearized

due to the small magnitudes of x, GAB, and GBA (See Appendix C for details):

τ
drA
dt

= −rA +WAx+GABrB,

τ
drB
dt

= −rB +WBx+GBArA,

(3)

which has an exact steady state solution (Appendix A 2). Furthermore, with small GAB and

GBA, the steady-state solutions of rA and rB as well as the ipsi- and contra-lateral responses

become (Appendix A 2)

rA ≈ WAx, rB ≈ WBx,

ripB ≈ WBx, rctB ≈ GBAWAx.
(4)

Then Hebb’s rule Eq. (2) becomes

∆GBA ≈ η
(
WBxx

⊤W⊤
A ⊙ ĜBA − βGBA

)
. (5)

In the continuum time limit, the above learning rule can be described by the following

stochastic differential equation (SDE)

dGBA

dt
= ηβ

(
WBxx

⊤W⊤
A ⊙ ĜBA −GBA

)
, (6)

where we have made the scaling transformation βGBA → GBA, which does not affect the

cosine similarity. In steady state where ⟨dGBA/dt⟩ = 0 in Eq. (6) (⟨⟩ means average over

time or samples), we have the Hebbian solution

G† := WB⟨xx⊤⟩W⊤
A ⊙ ĜBA = WBΣW⊤

A ⊙ ĜBA, (7)

indicating that the Hebb’s rule learned two feedforward projection matrices and the input

correlation matrix to achieve bilateral alignment. The above analytical solution was verified

by numerical simulations (Fig. S3).

To explain the speed-accuracy tradeoff, we vectorizeGBA and write gBA(T ) := vec[GBA(T )] =

g†+δg(T ), with g† the vectorized Hebbian solution and δg the variation around it. For con-

venience, we drop the subscript “BA” in gBA, and rewrite the continuum SDE for Hebbian
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learning [Eq. (6)] as:
dg

dt
= ηβ

(
g† − g

)
+ ηβξ, (8)

which is just the well-known Langevin equation for an Ornstein-Uhlenbeck process [42] that

can be solved analytically. Here, the term ξ = vec
[
WB(xx

⊤ −Σ)⊤W⊤
A ⊙ ĜBA

]
represents

the white noise that originates from input fluctuations (random training odors). Denote

its covariance matrix as cov(ξ) := 2D, where D is determined by WA,WB, ĜBA,Σ but

independent of ηβ. It is clear from Eq. (8) that the relaxation timescale to reach the

Hebbian solution g† is τ ∼ 1
ηβ
, which explains the linear dependence of the learning or

convergence speed (s = 1/τ ∼ ηβ) as observed in Fig. 2(b).

By solving Eq. (8), we can show that in steady state (T → ∞), g has a Gausian distri-

bution with the Hebbian solution g† as its mean and a covariance matrix given by:

lim
T→∞

cov[δg(T )] = ηβD. (9)

To determine the test BAL, we Taylor-expanded a(g) to the second order around its mean

a† = a(g†) at the Hebbian solution g†:

a(g) = a† +

(
∂a

∂g
|g†

)⊤

δg +
1

2
δg⊤H†δg, (10)

where H† := H(g†) is the Hessian matrix evaluated at g†. Averaging over the Gaussian

distribution of δg, the stationary test BAL is:

a(η, β) = a† +
1

2
⟨δg⊤H†δg⟩δg = a† +

ηβ

2
Tr
(
DH†) . (11)

Both numerical and analytical results showed that the Hessian matrixH† is negative definite:

concretely, in Appendices B 3-B 4, we showed that a(g) is concave around g†, which is verified

numerically in Fig. S4. Furthermore, as a covariance matrix, D is positive definite. As a

result, Tr(DH†) < 0 (see Appendix B 5 for the proof). Therefore, the test BAL decreases

with ηβ linearly, in agreement with Fig.2(b).

B. Larger networks require sparser connections to achieve bilateral alignment: an

inverse scaling relation

In the previous section, we demonstrated that the system can achieve bilateral alignment

using relatively sparse inter-hemispheric connections (5% connectivity) in a relatively small
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network (n = 500 neurons). However, in realistic biological systems such as the piriform

cortex, there are millions of cortical neurons [35, 43], and the inter-hemispheric projections in

mammals might be much sparser than the 5% connectivity (as suggested by the experimental

data [24] and the typical 103 − 104 synapses onto one neuron [36, 37]). Therefore, in this

section, the critical question we aim to address is whether bilateral alignment can be achieved

in a larger network with sparser inter-hemispheric connections (smaller ρG and larger n), or

equivalently, how the required sparsity to attain a given alignment performance depends on

the network size.

To investigate this question, we varied the number of cortical neurons n and studied its

relationship with the required inter-hemispheric projection density ρ⋆G to achieve a desired

level of test BAL. In this section, we used a small learning rate η = 0.001 s2 to eliminate

the effect of learning rate, i.e., a ≈ a†, which only depends on the properties of the network

(ρG, ρW, m and n). For fixed m and ρW, we varied ρG for n ranging from 50 to 2000, and

plotted the ensemble average of the test BAL versus ρG in Fig. 3(a) (here the ensemble

means different samples of the matrices WA,WB, ĜAB, ĜBA, given m,n, ρW, ρG). We found

that a(ρG) has a power law dependence on ρG, with an exponent ≈ 0.5 (the left red dashed

line) for small ρG before it saturates to near perfect alignment a ∼ 1. We define ρ⋆G(n) as the

inter-hemispheric projection density needed to reach a given (high) alignment level a⋆ = 0.5

(the black horizontal line), i.e., a(ρ⋆G(n)) = a⋆. Our simulation results revealed an inverse

scaling relationship between ρ⋆G and n [Fig. 3(b)], i.e., ρ⋆G(n) ∼ n−1, which suggests that with

more cortical neurons, the inter-hemispheric projections can be even sparser. Remarkably,

when we rescaled ρG by ρ⋆G(n), i.e.,
ρG

ρ⋆G(n)
∝ nρG, all data points in Fig. 3(a) for different

values of n collapsed onto one single curve for the full range of sparsity [Fig. 3(c)].

To understand the inverse scaling between ρ⋆G and n, we evaluate the Weight Alignment

Level (WAL) defined as

c := cos(WB,G
†WA), (12)

which describes the alignment between the two vectorized weight matrices WB and G†WA

(here, we have omitted the notation of vectorization, a convention adopted throughout this

paper). Intuitively, c is highly correlated with the bilateral alignment level a, e.g., perfect

alignment (a = 1) is achieved when c = 1 (or equivalently, G†WA ∝ WB) since rctB =

G†WAx ∝ WBx = ripB ,∀x. Indeed, both simulations and derivations demonstrated that for

IID Gaussian input, a ≈ c in general [see Fig. S5(a) and Appendix B 1 for details]. Using
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the Hebbian solution Eq. (7) and averaging over independent elements of WA,WB, ĜBA

with law of large numbers, we derived the theoretical expression of WAL and test BAL at

the Hebbian solution (see Appendix B 2 for details):

a† ≈ c ≈
(

nρG
m+ 3/ρW + nρG

)1/2

. (13)

The above approximation of a† agrees well with the numerical results for a wide range of

parameters, as shown in Fig. 3(c) [see also Figs. S5(b)-(d) where we varied ρW, ρG for given

m = 20, n = 50].

From Eq. (13), we can see that the required density ρ⋆G to achieve a given level alignment

a⋆ satisfies

nρ⋆G =
a⋆2(m+ 3/ρW)

1− a⋆2
= const. (14)

Therefore, ρ⋆G scales inversely with n. Note that Eq. (13) also explains the power law a ∝ ρ0.5G

in the sparse regime: when nρG ≪ m+ 3/ρW, a ≈
√

nρG
m+ 3/ρW

∝ ρ0.5G .

The biological interpretation of this inverse scaling is interesting to point out. nρG in

Eq. (13) represents the average number of projections that one cortical neuron receives from

the contralateral cortical neurons. Thus, our results show that a good alignment performance

(e.g., a = 0.5) can be achieved when the average number of connections per neuron is larger

than a threshold that is independent of the network size. Therefore, to maintain the same

alignment performance, the total number of required inter-hemispheric connections only

scales linearly with n instead of n2, much sparser than all-to-all connections.

As an application of Eq. (13), we estimated the required density of the inter-hemispheric

projections, using biologically realistic parameters [35, 41, 43, 44]: with m = 3700, n =

5 × 105, ρW = 0.1 and the required BAL a⋆ = 0.31, the corresponding ρ⋆G ≈ 7.93 × 10−4

and nρ⋆G ≈ 397, meaning ∼ 400 inter-hemispheric projection synapses per neuron, which

is reasonable given the 103 − 104 synapses per neuron typically [36, 37]. Note that, the

above estimation is insensitive to the exact value of ρW provided that m ≫ 3/ρW. The

exact sparsity of interhemispheric connections has not been measured: given the many

components of OC such AON and APC, the optogenetic experiments in [24] only showed

that the inter-hemispheric projections from AON to contralateral AON are sparser than

those from AON to ipsilateral aPC. Therefore, this rough estimation nρ⋆G ≈ 400 may inspire

future experiments to get more quantitative measurement.
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Finally, we confirmed that the fine structure of OC does not change our results: with

several subregions and diverse neuron types in the olfactory cortex [24, 45], it is likely that

only a subpopulation of cortical neurons project contralaterally. While the exact fraction is

unknown, we verified that this fraction does not alter the results. We denoted this fraction

as f and assumed that these neurons project to all the contralateral cortical neurons with

equal probability, which suggests that each of these neurons needs to project to
n2ρG
nf

=
nρG
f

neurons. A natural constraint is that f ⩾ ρG.

An example of the f = ρG case is shown in Fig. S6(a): for (m,n, ρW, ρG) = (20, 500, 0.1, 0.05),

within one olfactory cortex, only n × f = 25 neurons will project contralaterally and each

of them has to project to all 500 neurons in the other olfactory cortex. However, even in

this extreme case, the Hebbian solution G† matches well with the temporal mean ⟨GBA⟩

[Fig. S6(b) and the pink dot in Fig. S6(c)], and same for the analytical expression of test

BAL Eq. (13) [the pink dot in Fig. S6(d)]. We also studied other values of f from 0.1 to 1

with ρG = 0.05, and found that the results do not depend on f [see Fig. S6(c)-(d)], which is

expected as long as all elements in ĜBA,WA,WB are chosen independently (see Appendix

B 2 for details). These results indicate that significant alignment can be achieved even if

only a small fraction of OC neurons project contralaterally.

C. Global vs local learning rules: SGD modestly outperforms Hebbian rule but

obeys the same inverse scaling relation

While the motivation of using local Hebbian learning rule was to respect the biological

constraint, we next asked whether global learning rules such as stochastic gradient descent

(SGD), the predominant learning algorithm in artificial neural networks, could achieve better

test BAL. To investigate this question, we introduced the following global alignment loss

function (other global loss functions such as the cosine similarity itself were tested and did

not affect the general results):

L =
1

2

N∑
µ=1

||rµB − λGBAr
µ
A||

2, (15)

where µ is the odor index and λ is the scaling factor between ipsi- and contra-lateral re-

sponses. For each sequentially presented sample xµ, the “learning” is implemented by opti-
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mizing GBA via the online SGD update rule:

∆Gµ
BA = η(rµBr

µ⊤
A − λGBAr

µ
Ar

µ⊤
A )⊙ ĜBA. (16)

This SGD rule is non-local, because in the second term, (GBAr
µ
Ar

µ⊤
A )ij =

∑
k GBA,ikr

µ
A,kr

µ
A,j

involves other synapses and neurons. Note that the first term is the same as in Hebbian

update rule Eq. (2), therefore, to make SGD and Hebbian updates (and their solutions)

comparable in size, we adopted λ =
β

mρWγ2
(see Appendix D for details).

We found that with global information, SGD indeed outperforms Hebbian learning but

showed similar dependence on the network properties such as connection sparsity and net-

work size. In particular, using the same parameters as the Hebbian learning simulations

shown in Figs. 3(a), we varied ρG for different n and computed the bilateral alignment level

aS for SGD. Quantitatively, we found that aS(ρG) > aH(ρG) [compare the solid (SGD) and

the dashed (Hebbian) purple lines in Fig. 4(a) for n = 2000]. However, aS has similar depen-

dence on ρG and n as in Hebbian learning [Fig. 3(a)], e.g. the power law relation between a

and ρG for small ρG with the same exponent 0.5 (the left blue dashed line). Furthermore,

following the analysis in the previous section, we defined ρ⋆SG (n) as the density for SGD to

achieve a given level of alignment a⋆, i.e., aS[ρ⋆SG (n)] = a⋆, and found the same inverse scaling

between ρ⋆SG and n [the red line in Fig. 4(b)].

Since Hebbian learning and SGD both exhibit the inverse scaling, the ratio of ρ⋆SG (n) to

ρ⋆HG (n) is a constant. Therefore, to quantitatively compare Hebb’s rule and SGD, we defined

α(m, ρW) :=

〈
ρ⋆SG (n)

ρ⋆HG (n)

〉
n

, the mean ratio of required SGD inter-hemispheric connection den-

sity to that of Hebbian learning. A smaller α means that SGD needs fewer inter-hemispheric

connections to achieve the same performance as the Hebbian learning. For m = 20, ρW = 0.1

used in Fig. 3, we found that α ≈ 0.42 (Fig. S7) corresponding to modestly sparser connec-

tivity. By varying m and ρW, we found that α(m, ρW) increases with m and ρW [Fig. 4(c)]

and approaches ∼ 1 at large values of m and ρW, meaning that Hebbian larning has almost

the same performance as SGD with more OB neurons and denser feedforward projections.

To explain the similarity between SGD and Hebb’s rule for this alignment task, we

compared their weight updates upon receiving the same input (training) data at the same

time point along the learning trajectory. Specifically, the Hebbian and SGD updates at step
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T are given by:

∆GH
T = η

(
rBr

⊤
A − βGH

T

)
⊙ ĜBA,

∆GS
T = η

(
rBr

⊤
A − λGS

T rAr
⊤
A

)
⊙ ĜBA.

(17)

We calculated their cosine similarity, i.e., cos(∆gH
T ,∆gS

T ) where ∆g is the vectorized ∆G.

We found significant overlap between the two update vectors during the entire learning

process as shown in Fig. 5(a). Furthermore, this update alignment level increases with m

and ρW [see Fig. 5(b), where we averaged over T and n to get ⟨cos(∆gH,∆gS)⟩]. We also

calculated the solution alignment level, i.e., the cosine similarity between the final SGD

solution at step T = N and the Hebbian solution [⟨cos(gS,g†)⟩ in Fig. 5(c)]. We found

that the solution alignment level also increases with m and ρW. In fact, both the solution

alignment level and α are strongly correlated with the update alignment level [the blue and

the red dots in Fig. 5(d)].

To understand the origin of the update alignment and its dependence on m and ρW, we

decomposed the weight update vectors d1(x) := ∆gH
T and d2(x) := ∆gS

T as

d1(x) = h(x)− h1(x),

d2(x) = h(x)− h2(x),
(18)

where h(x) = vec(ηrBr
⊤
A⊙ĜBA) is the Hebbian correlation term shared by both update rules,

h1(x) = ηβgH
T is the Hebbian-specific update vector, and h2(x) = vec(ηλGS

T rAr
⊤
A ⊙ ĜBA) is

the SGD-specific update vector, as illustrated in Fig. 6(a). We then evaluated the averaged

cosine similarity and amplitude ratio between the shared component h(x) and the specific

components, h1(x) and h2(x), for Hebbian rule and SGD respectively, which are denoted as

c1 = ⟨cos(h(x),h1(x))⟩x, r1 = ⟨|h(x)|/|h1(x)|⟩x;

c2 = ⟨cos(h(x),h2(x))⟩x, r2 = ⟨|h(x)|/|h2(x)|⟩x.
(19)

We found that r1 ≫ 1 and it increases significantly with m as shown in Fig. 6(b). This

indicates that d1(x) is highly aligned with h(x) and the alignment increases with m as

illustrated by Fig. 6(a) and shown by Fig. S8(b) in the SM. For SGD, r2 is larger than

1 and it increases with m and ρW as shown in Fig. 6(c), and c2(< 1) decreases with m

and ρW [see Fig. S8(c) in SM]. Since r1 ≫ 1, we can approximate d1 ≈ h and show that

d1 · d2 ≈ |h|2(1 − c2/r2) > 0, which means that the Hebbian and SGD update vectors are

positively aligned. Furthermore, as r2 increases and c2 decreases with m and ρW, d1(x)

13



and d2(x) align better with higher input dimension and denser feedforward projections as

shown in Fig. 5(b). Consequently, a higher alignment between the update vectors of the two

learning rules results in a higher similarity between the two solutions [Fig. 5(c)] and thus a

larger required-density ratio α [Fig. 5(d)], which means that Hebbian learning is closer to

SGD in bilateral alignment performance.

IV. DISCUSSION

We have demonstrated that a simple online Hebbian learning rule is sufficient to align

bilateral cortical representations even with sparse inter-hemispheric projections. Through

numerical simulations and analytical calculations of a simplified neural network model, we

discovered that to achieve a certain level of bilateral alignment, each cortical neuron (on

average) must receive a fixed number of inter-hemispheric projections that is independent of

the total number of cortical neurons. Consequently, the required projection density scales

inversely with the number of cortical neurons. Remarkably, this scaling law also holds for a

global learning rule, SGD, that optimizes a similar alignment loss function. Although SGD

outperforms the local Hebbian rule in terms of achieving higher bilateral alignment levels,

the difference diminishes with higher input dimensions and denser feedforward projections.

Our analysis revealed that this reduction is due to a higher overlap between the Hebbian

update vector and the SGD update vector.

Our model offers a mechanistic understanding of how the olfactory system achieves bi-

lateral alignment, a mechanism that could extend to other neural systems. Additionally,

our model generates several predictions or insights that are potentially testable. Firstly, the

inverse scaling relation between the inter-hemispheric connectivity and the cortical neuron

number could be be examined through analysis of connectomic data across different species

and brain regions. In addition to this inverse scaling, Eq. (14) predicts other quantitative

and testable relations, specifically, given n and a⋆, ρ⋆G increases with m and 1/ρW. Finally,

our model predicts that the fine structure of OC (the fraction of subpopulation projecting

contralaterally) does not affect the alignment performance or the inverse scaling.

The update alignment between SGD and Hebb’s rule shares the same feature as many

recently-developed biologically plausible learning algorithms for training deep neural net-

works, such as the feedback alignment algorthm and its variants [46, 47]. There, the learn-
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ing signals generally aligns well with that of the backproporgation algorithm (BP) [48, 49].

In our bilateral alignment task, local and unsupervised Hebb’s rule exhibits overlap with

the weight update vector of SGD, which optimizes a global alignment loss function. These

results suggest that a biologically plausible learning algorithm can perform well if its weight

update contains information of the corresponding error gradient. This insight provides a

guidance to search for biologically plausible learning algorithms in a much larger admissible

solution space. This is because, the algorithm does not have to be an approximation of the

BP as long as its learning signal has significant overlap with that in the BP. Future studies

in comparing learning dynamics with the Hebbian-like rule and the global SGD rule are

necessary for developing brain-inspired efficient local learning algorithms for solving more

complex problems.

The current model, aimed at simplicity and analytical tractability, inevitably simplifies

biological complexity, which entails certain limitations. We discuss these limitations and

possible future directions to address them.

For the training data used in our model for alignment, we opted for IID Gaussian input to

facilitate analytical tractability. However, realistic OB signals may be correlated and sparse

[50]. It is thus interesting to study whether and how correlated and sparse inputs change

the test BAL formula Eq. (13) and the inverse scaling.

Our model for the OB-OC projections is simplified as it only included the “effective”

direct connections WA and WB. For analytical tractability, elements of WA and WB take

randomly assigned positive or negative values, which seemingly violates Dale’s principle

[51]. However, such simplification may be justified by considering the indirect inhibitory

connections through the feed-forward inhibitory neurons in the OC [45, 52, 53], which can

lead to odor-evoked suppressed cortical responses [29, 54]. In addition, our work adopted

random OB-to-OC projections, but a recent work showed that these projections exhibit some

structure [55]. Studying how local inhibitory circuits and other structural constraints affect

distributions of WA and WB and the bilateral alignment performance provides another

avenue for future exploration.

Last but not least, our current model did not explicitly incorporate the recurrent con-

nections within each olfactory cortex [45, 52]. Such recurrent connections have long been

postulated to play a significant role in associative memory and pattern completion: with

distorted inputs, it can recover the true patterns through internal dynamics [56–59]. How
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such recurrent dynamics contributes to the bilateral alignment is unknown. One hypoth-

esis is that given the required level of bilateral alignment, these recurrent connections can

relax the structural requirement of the inter-hemispheric projections (potentially allowing

for sparser or more random projections, thus easier implementation during development).

Exploring this hypothesis in future models could provide valuable insights on the role of

recurrent connections.

Our work may also have implications for other brain areas where representations in the

two hemispheres have to be matched or integrated. In sensory regions with topographic rep-

resentations, a coarse spatial template for organizing cross-hemispheric projections can po-

tentially be genetically specified, with further refinements arising through activity-dependent

mechanisms [60–62]. However, in other brain regions with more scattered, mosaic representa-

tions, coordination is likely to occur through more flexible activity-dependent mechanisms.

Commissural projections in the medial entorhinal cortex, an area strongly implicated in

spatial and episodic memory, play an active role in memory retrieval [63]. Whether this

inter-hemispheric interaction requires detailed functional alignment is an interesting ques-

tion for future work. In another intriguing example, interhemispheric projections in a brain

region called anterior lateral motor cortex, has been shown to play a role in working memory

by helping restore population activity when perturbed [64, 65]. Remarkably, this restoration

is a key hallmark of attractor networks, which may be formed flexibly during learning, poten-

tially through Hebbian-like mechanisms in interhemispheric connections [65, 66]. Therefore,

our modeling and analytical framework could be extended to these other regions and func-

tions.
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FIG. 1: Background and model setup. (a) A sketch of the early mouse olfactory system and

the experimental setup to measure the contralateral response (left), and the corresponding neural

circuit (right). Odor is delivered to the nostril on Side A, and the contralateral response is

measured by the electrode placed in the Side-B olfactory cortex. Adapted from [29].
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(b) A sketch of the experimental setup to measure the ipsilateral response (left), and the

corresponding neural circuit (right). (c) Neural network of the bilateral alignment circuit

during training. The pink box represents Side-A hemisphere, and the green one is for Side-B.

Training odors are delivered to both nostrils. Due to the two random and different OB-to-

OC projections (WA and WB), the cortical representations rA, rB are also different. The

blue arrows (GBA) illustrate the inter-hemispheric projections that Side-B OC receives from

Side-A OC, with density ρG. GAB is not shown in this network.
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FIG. 2: Hebbian learning can align bilateral responses using sparse connections, with

learning rate η controlling the linear speed-accuracy tradeoff. (a) Two learning curves

with η = 0.01 s2 (blue) and η = 0.001 s2 (red), given (m,n, ρW, ρG) = (20, 500, 0.1, 0.05). (b) Test

accuracy (a, left y-axis) and convergence speed (s, right y-axis) both depend on η linearly but

with opposite signs, resulting in a linear tradeoff (the green line of the inset). Here each dot is

from numerical results, and the dashed lines are from linear fitting.
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FIG. 3: Numerical and theoretical results of test BAL, and the inverse scaling

between ρ⋆G and n. (a) Test BAL increases with ρG in a power law fashion with an exponent

around 0.5 for small ρG. The required density ρ⋆G to achieve an alignment of 0.5 are determined

by the black dashed line, e.g., the purple ρ⋆G ≈ 8.3h for n = 2000. Colors indicate different values

of n with fixed m = 20, ρW = 0.1. (b) ρ⋆G scale inversely with n. (c) All the data points in Panel

A collapse onto a single curve with normalized ρG, and match well with theoretical prediction

(the orange line).
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FIG. 4: Global SGD learning rule outperforms local Hebb’s rule but has the same

inverse scaling, and two learning rules get closer with larger m and ρW. (a) Test BAL

under SGD learning shows similar power-law scaling with ρG as that in the Hebbian learning.

Colors indicate different n as in Fig. 3(c). (b) ρ⋆G in both Hebbian and SGD learning rules scale

inversely with n. (c) Larger m and ρW lead to better alignment between Hebbian and SGD

learning rules, as shown by the heatmap of α(m, ρW).
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FIG. 5: The weight update vector of Hebbian learning aligns better with the

corresponding SGD vector for larger m and ρW, leading to higher solution alignment

level and larger α. (a) The temporal dynamics of update alignment cos(∆gH,∆gS) for two

pairs of parameters [red for m = 100, ρW = 0.4, ρ⋆HG (n = 500) = 0.11, and blue for

m = 40, ρW = 0.02, ρ⋆HG (n = 500) = 0.072]. (b) The update alignment level increases with m and

ρW . (c) Similar trend is observed for the final SGD solution and the theoretical Hebbian

solution, i.e., cos(gS,g†). (d) Both the solution alignment level cos(gS,g†) (blue dots for the left

y-axis) and α (red dots for the right y-axis) strongly correlate with update alignment level

cos(∆gH,∆gS). Here each dot corresponds to one pair of (m, ρW) in Panels (b)-(c).
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FIG. 6: Both Hebbian and SGD weight update vectors overlap more with the

common Hebbian term with larger m and ρW. (a) The geometric representation of how

h1(x),h2(x),d1(x),d2(x) change with (m, ρW), compared to h(x) (the central arrow). Blue

arrows: small m and ρW. Pink arrows: large m and ρW. (b) |h(x)|/|h1(x)| ≫ 1 and increases

with m. Here, for each pair of (m, ρW), the mean is obtained by averaging over x and n. (c) In

general, h(x) is more dominant over h2(x) in magnitude for larger m and ρW.
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SUPPLEMENTARY MATERIALS

Appendix A: Analysis of the neural dynamics

1. Equations of ipsi- and contra-lateral responses

Based on Eq. (1) in the main text (MT, for short) and the diagram in Fig. 1(b), the

stationary ipsilateral response ripB is determined by the fixed point of the following ordinary

differential equations (ODEs)

τ
dr′A
dt

= −r′A + tanh(GABr
ip
B ),

τ
dripB
dt

= −ripB + tanh(WBx+GBAr
′
A).

(A1)

Similarly, corresponding to the diagram in Fig. 1(a), the stationary contralateral response

rctB is determined by the fixed point of

τ
drA
dt

= −rA + tanh(WAx+GABr
ct
B ),

τ
drctB
dt

= −rctB + tanh(GBArA).

(A2)

2. The analytical form of the steady-state cortical responses

The linearized neural dynamics MT Eq. (3) has an exact fixed point solution

rA
rB

 =

I2n −
 0 GAB

GBA 0

−1 WA

WB

x, (A3)

where I2n is an identity matrix of dimension 2n × 2n. Using the fact that the entries of

GAB,ij ≪ 1,GBA,ij ≪ 1, we can take the Taylor expansion of the above inverse matrix with

respect to GAB and GBA and keep the first order:rA
rB

 =

I2n +
 0 GAB

GBA 0

+ · · ·

WA

WB

x ≈

WAx+GABWBx

WBx+GBAWAx

 , (A4)

which gives us the approximate steady-state solutions [MT Eq. (4)].
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Appendix B: Derivations of Hebbian test BAL

1. Weight Alignment Level (WAL) approximates test Bilateral Alignment Level

(BAL)

In this section, we show that the WAL c and BAL a† are approximately equal. Start

from the stationary ipsilateral and contralateral responses ripB ≈ WBx, r
ct
B ≈ G†WAx,

⟨cos(ripB , r
ct
B )⟩2x :=

〈
ripB · rctB

|ripB | · |rctB |

〉2

x

≈

(
⟨ripB · rctB ⟩x

⟨|ripB |⟩x⟨|rctB |⟩x

)2

≈ ⟨ripB · rctB ⟩2x
⟨|ripB |2⟩x⟨|rctB |2⟩x

. (B1)

In the above approximation, we swapped the average over x and the fraction. The legitimacy

is verified numerically (see Fig. S5(a)). For x ∼ N (0, γ2I), we have

⟨ripB · rctB ⟩x = ⟨Tr
(
(WBx)

⊤G†WAx
)
⟩x = γ2Tr(G†WAW

⊤
B), (B2)

⟨|ripB |
2⟩x = ⟨Tr(WBx)

⊤WBx⟩x = γ2Tr(W⊤
BWB) = γ2∥WB∥2F, (B3)

⟨|rctB |2⟩x = ⟨Tr(G†WAx)
⊤G†WAx⟩x = γ2∥G†WA∥2F. (B4)

Plug the above equations in (B1), we have

a†2 ≈ ⟨cos(ripB , r
ct
B )⟩2x =

Tr2(W⊤
BG

†WA)

||WB||2F · ||G†WA||2F
= cos2(G†WA,WB) = c2. (B5)

2. Calculate the Weight Alignment Level

In this section, we calculate WAL c, which is also the analytical expression of test BAL,

i.e., MT Eq. (13). With the Hebbian solution G† = β−1WBΣW⊤
A⊙ĜBA = β−1γ2WBW

⊤
A⊙

ĜBA in our study,

Tr(W⊤
BG

†WA) ≈ β−1γ2Tr
[
W⊤

B(WBW
⊤
A ⊙ ĜBA)WA

]
= β−1γ2

[∑
il

ĜBA,il

∑
jk

WA,lkWA,ljWB,ijWB,ik

]

= β−1γ2

[∑
il

ĜBA,il

∑
j

(
W 2

A,ljW
2
B,ij +

∑
k ̸=j

WA,lkWA,ljWB,ijWB,ik

)]

(Due to LLN) ≈ β−1γ2

[∑
il

ĜBA,il

∑
j

(
W 2

A,ljW
2
B,ij

)]
(Due to LLN) ≈ β−1γ2mn2ρ2WρG,

(B6)

31



where we utilized the law of large numbers (“LLN”) in the last two lines, as well as the

normal distribution of WA,lj and WB,ij. Here, n2ρG enters the penultimate line via the

summation of ĜBA,il, therefore, is the total number of inter-hemispheric projections. As we

will show soon, nρG remains when taking the fraction. Thus, intuitively, we can say that

nρG in MT Eq. (13) represents the number of inter-hemispheric projections received per

cortical neuron.

And ||G†WA||2F in the denominator of Eq. (13) is

||G†WA||2F ≈ β−2γ4

{∑
ij

[
(WBW

⊤
A ⊙ ĜBA)WA

]2
ij

}
:= β−2γ4

∑
ij

C2
ij, (B7)

where Cij =
∑

kl WB,ikWA,lkĜBA,ilWA,lj. Therefore,

C2
ij =

∑
kk′ll′

ĜBA,ilĜBA,il′WB,ikWB,ik′WA,lkWA,l′k′WA,ljWA,l′j. (B8)

In order to have nonzero summation after applying LLN, it is required that WA’s and WB’s

elements must have even powers, such as W 2
A,lj and W 2

B,ij in Eq. (B6). This includes three

scenarios:

1. l′ ̸= l, k′ = k = j,

2. l′ = l, k′ = k ̸= j,

3. l′ = l, k′ = k = j,

which gives

C2
ij =

∑
l,l′ ̸=l

ĜBA,ilĜBA,il′W
2
B,ijW

2
A,ljW

2
A,l′j

+
∑
l

∑
k ̸=j

Ĝ2
BA,ilW

2
B,ikW

2
A,lkW

2
A,lj

+
∑
l

Ĝ2
BA,ilW

2
B,ijW

4
A,lj

(Due to LLN) ≈n2ρ2Gρ
3
W +mnρGρ

3
W + nρGρ

2
W · 1 · 3

=nρGρ
2
W(nρGρW +mρW + 3),

∴ ||G†WA||2F ≈β−2γ4mn2ρGρ
2
W(nρGρW +mρW + 3).

(B9)

For the other term in the denominator of Eq. (B1), we have

||WB||2F =
∑
ij

W 2
B,ij ≈ mnρW. (B10)

32



Combining Eqs. (B6), (B9), and (B10), we get MT Eq. (13):

(a†)2 = ⟨cos(ripB , r
ct
B )⟩2x ≈ Tr2(W⊤

BG
†WA)

||WB||2F · ||G†WA||2F
=

nρG
m+ 3/ρW + nρG

. (B11)

Finally, we pointed out that as long as all elements in ĜBA,WA,WB are chosen indepen-

dently, the LLN still applies in Eqs. (B6)-(B10), which explains the result that the fraction of

subpopulations projecting contralaterally does not affect bilateral alignment level (Fig. S6).

3. Gradient and Hessian matrix of test BAL a, and its 2nd-order Taylor expansion

From Eq. (13), in general, we can derive the gradient of test BAL a regarding any GBA

under the sparsity constraint ĜBA

∂a

∂GBA

⊙ ĜBA =
a

u

[
WBW

⊤
A − u

v2
GBAWAW

⊤
A

]
⊙ ĜBA, (B12)

where v = ||GBAWA||F, u = Tr(W⊤
BGBAWA). To simplify the notation, we denote G ≡

GBA, Ĝ ≡ ĜBA, and E ≡ WAW
⊤
A.

To derive the Hessian matrix, we firstly assume that v(G) and u(G) are slow variables

such that they roughly remain constant with small G fluctuation. Therefore, if we denote

B :=
∂a

∂G
⊙ Ĝ, we have

∂Bij

∂Gkl

≈ − a

v2
∂

∂Gkl

(
∑
m

GimEmjĜij) = − a

v2

∑
m

EmjĜijδikδlm. (B13)

As a result, the second-order term of the Taylor expansion of a(G+ δG) is

δ(2)a :=
1

2

∑
ijkl

δGij ·
∂Bij

∂Gkl

· δGkl

= − a

2v2

∑
ijkl

δGij ·
∑
m

EmjĜijδikδlm · δGkl

= − a

2v2

∑
ijl

δGij · EljĜij · δGil

= − a

2v2
Tr
[
(δG)E(δG⊙ Ĝ)⊤

]
.

(B14)

Note that E = WAW
⊤
A ≈ mρWIn. Thus, Eq. (B14) becomes

δ(2)a ≈ −amρW
2v2

Tr
[
(δG)(δG⊙ Ĝ)⊤

]
= −amρW

2v2
||δG⊙ Ĝ||2F < 0, (B15)
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indicating that test BAL a(G) is concave, or equivalently, the Hessian matrix H† in Eq. (10)

is negative definite.

The 2nd-order Taylor expansion of a(G+ δG) now becomes

a(G+ δG) = a(G) + Tr(B⊤δG)− a

2v2
Tr
[
(δG)E(δG⊙ Ĝ)⊤

]
. (B16)

4. Visualization of the concave landscape of test BAL

To verify the validity of the expansion Eq. (B16) around the Hebbian solution, we adopted

the methods in [67] to visualize the landscape of a(G) or a(g). Firstly, we performed

principal component analysis (PCA) on the temporal matrix of g(T ):[
g(T = 1),g(T = 2), · · · ,g(T = N)

]
, (B17)

from which we got the variances at each principal component (PC) direction. Denote the

unit vector of i-th PC direction as pi and the variance of g(T ) at this direction as σ2
i . Then

we set the perturbation g′ = g†+ θipi, where θi is the projection onto the i-th PC direction.

From the analytical expression Eq. (B1), we calculated the test BAL for g′ as

a1(g
′) =

Tr(W⊤
BG

′WA)

||WB||F · ||G′WA||F
, (B18)

where G′ is the matrix form of g′. On the other hand, we could use the expansion Eq. (B16)

to approximate the test BAL as

a2(g
′) = a† + θiTr(B

⊤Pi)−
a†θ2i
2v2

Tr
[
PiWAW

⊤
A(Pi ⊙ Ĝ)⊤

]
, (B19)

where Pi is the matrix form of pi.

To reflect the fluctuation of g(T ) during learning, we varied θi from−3σi to 3σi, then com-

puted and compared corresponding a1 and a2. As shown in Fig. S4(a), for (m,n, ρW , ρG, ξ) =

(20, 500, 0.1, 0.05, 0.01), the landscape of a1 along the first PC direction is concave (the

blue curve, calculated with Eq. (B18)), which is well approximated by a2 from Eq. (B19).

The concavity and the matching between a1 and a2 are also verified in other PC direc-

tions [see Figs.S4(b)-(c) for i = 5 and i = 10], as well as with other parameters [see

Figs.S4(d)-(e) for a smaller learning rate ξ = 0.001 and Figs.S4(g)-(i) for (m,n, ρW , ρG, ξ) =

(20, 50, 0.5, 0.5, 0.001)].
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5. The test BAL decreases with ηβ

In the main text, we asserted that the test BAL decreases with ηβ. This is built on the

fact that Tr(DH†) < 0. We now show this more explicitly.

Since D is positive definite, a real matrix Q exists such that D = QQ⊤. Then

Tr (DH) = Tr
(
QQ⊤H

)
= Tr

(
Q⊤HQ

)
=
∑
i

q⊤
i Hqi < 0, (B20)

where qi is the i-th column of Q.

Appendix C: Requirements of the linear neural dynamics and the Hebbian solution

In deriving the Hebbian solution Eq.(7), we have linearized the neural dynamics Eq. (3).

In this section, we examine the requirements of γ and β for this linear approximation.

Comparing MT Eqs. (1) and (3), to make the latter (linearized dynamics) valid, we

require that

−1n ≪ WAx ≪ 1n, −1n ≪ GABrB ≪ 1n,

−1n ≪ WBx ≪ 1n, −1n ≪ GBArA ≪ 1n,
(C1)

where 1n is a n-dimensional vector with all elements being 1 and the “much less than”

symbol applies elementwise. Focusing on the second row, with MT Eq. (4), the requirement

becomes

−1n ≪ WBx ≪ 1n, −1n ≪ GBArA ≪ 1n, (C2)

Furthermore, to perform zeroth-order approximation in Eq. (A4) and obtain the expressions

of rA and rB in MT Eq. (4), we ask for a stronger condition

−1n ≪ GBAWAx ≪ WBx ≪ 1n. (C3)

For the middle inequality in Eq. (C3), an approximate condition is
||G†WA||2F
||WB||2F

≪ 1,

which, according to Eqs. (B9)-B10, becomes

β−2γ4nρGρW(nρGρW +mρW + 3) ≪ 1. (C4)

And for the first and the last inequalities in Eq. (C3), note that ∀i, the mean and the

variance of (WAx)i are ⟨(WAx)i⟩x = ⟨
∑

j WA,ijxj⟩x = 0. We have

var[(WAx)i] =
∑
jk

WA,ijWA,ik⟨xjxk⟩x =
∑
jk

WA,ijWA,ikδjkγ
2 =

∑
j

W 2
A,ijγ

2 ≈ mρWγ2,

(C5)
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where we utilized the assumption that x is an IID Gaussian variable, and implicitly, the law

of large numbers in the last approximation. Therefore, an approximate condition is

mρWγ2 ≪ 1, (C6)

which, combining with Eq. (C4), gives the condition for linearizing the neural dynamics:

γ ≪ (
1

mρW
)1/2, β ≫ γ2[nρGρW(nρGρW +mρW + 3)]1/2 (C7)

These conditions are satisfied for the parameters used in Fig. 2(a), where (ρW, ρG)
m
n =

(0.1, 0.05)20500, β = 3 Hz2, γ = 1
30
Hz (Table I).

Appendix D: Derivation of the SGD scaling factor λ

Note that the average of the second term −λGBArAr
⊤
A in the SGD learning rule Eq. (16)

is 〈
−λGBArAr

⊤
A

〉
x
= −λGBA

〈
rAr

⊤
A

〉
x
≈ −mρWγ2λGBA. (D1)

Thus to make SGD rule (16) and Hebbian updates (2) comparable in magnitude, we

require 〈
λGBArAr

⊤
A

〉
x
∼ βGBA, (D2)

which leads to

λ =
β

mρWγ2
(D3)

With the above condition Eq. (D3), the SGD and Hebbian solutions are also comparable

in magnitude. Since the two learning rules share the first term, their second terms are equal

at stationary state:

βG† ≈ λGS
BA⟨rAr⊤A⟩x ≈ mρWγ2GS

BA = βGS
BA. (D4)

Thus, GS
BA and G† should have similar magnitudes.

Appendix E: Methods

Bisection method to identify ρ⋆G(n) more accurately. For each n in Fig. 3(a), we

adopted ten values of ρG then identified ρ⋆G(n). To find a more accurate ρ⋆G(n), we require a
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relative error ϵ: at the beginning, if |a(ρ
⋆
G)−a⋆

a⋆
| < ϵ, the algorithm ends and outputs ρ⋆G directly.

Otherwise, denote the two adjacent values of ρ⋆G(n) as ρ1 and ρ2, where ρ1 < ρ⋆G(n) < ρ2.

We took the interval [ρ1, ρ2], ran simulations to calculate the test BAL for the midpoint

ρ3 =
ρ1 + ρ2

2
, then compared a(ρ3) with a⋆ and a(ρ⋆G) to find a new interval. This bisection

method was repeated until the relative error or the maximum of searching loops was reached,

and the new ρ⋆G(n) was output. In this work, we adopted ϵ = 5%, which is sufficient to

generate Fig. 3(b).

Numerical estimation of the convergence speed for Hebbian learning. Given

the Hebbian solution g†, we calculated the cosine similarity cos(gT ,g
†) at each step. Then we

used the exponential function q exp(−vT ) to fit the difference ∆ cos(gT ,g
†) := 1−cos(gT ,g

†)

and determine the two parameters q, v. Here, v represents the convergence speed, which is

used to generate Fig. 2(b). See Fig. S2 for the comparison between numerical and fitting

results of ∆ cos(gT ,g
†).

Appendix F: The parameters

τ = 10 ms The single-neuron integration time constant.

β = 3 Hz2 The decay constant of the synapses.

γ = 1/30 Hz The input strength.

K = 20 The number of test odors.

TABLE I: Parameter values and the interpretations.
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SUPPLEMENTARY FIGURES

(b)(a)
OB OC

Odor
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GAB GBA

rB

G

rA

OC responses rμ 
A(GT-1), r

μ 
B(GT-1)

(c)

Training odor μ(T)

Step T

OB response xμ 

 GT(r
μ 
A, rμ 

B, GT-1) Test BAL a(T)Hebbian update Test odor set {υ(T)}  {rip 
B (GT), r

ct 
B (GT)}

FIG. S1: Model setup and training process. (a) Neural circuit to generate the cortical

representations rA and rB, with the single training odor delivered to both nostrils, which

corresponds to the network in Fig. 1(d). (b) During learning, each step contains three sequential

parts that are elaborated in panel (c). (c) The three parts for step T . Part I (the blue box): a

single training odor µ(T ) is “delivered” to both nostrils, which has the OB response xµ; the OC

responses rµA and rµB are simulated based on Eq. (1), given the inter-hemispheric projection

matrices GAB and GBA at step T − 1 (shortened as GT−1 in the bracket). Part II (the pink box):

GAB and GBA will be updated with Hebb’s rule Eq. (2), to produce GAB and GBA at step T

shortened as GT , which depends on rµA, r
µ
B and GT−1. Part III (the green box): we randomly

generate a test odor set {ν(T )} (each odor is distinguished by its OB response xν), and simulate

their ipsi- and contra-lateral responses {ripB (GT ), r
ct
B (GT )}; then we calculate the cosine similarity

between rip,νB and rct,νB for each test odor ν(T ) and average over the test odor set to get the test

BAL a(T ).
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FIG. S2: Numerical estimation of the convergence speed, for

(m,n, ρW, ρG, ξ) = (20, 500, 0.1, 0.05, 0.001) in Fig. 2(a). Blue line: numerical curve for

∆ cos(gT ,g
†). Red dashed line: the q exp(−vT ) curve after the exponential fitting.
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FIG. S3: Hebbian solution matches numerical results for simulations in Fig. 2. (a) The

heatmap of the Hebbian solution G† for η = 0.01 s2, only the first 50 neurons in cortex A and

those in cortex B are shown. Here, only a handful of the 502 · ρG = 125 nonzero elements are

clearly visible, as some are significantly smaller than others. (b) Similar to Panel A, but for the

temporal mean inter-hemispheric projection matrix ⟨GBA⟩. It is visually almost identical to G†,

and their elementwise comparison is in Panel (c) with a cosine similarity of 0.96. (d) Similar to

Panel C, but for η = 0.001 s2 which has the same Hebbian solution. And the cosine similarity

between two matrices is 0.99.
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FIG. S4: The concave landscape of test BAL a. (a)-(c) For

(m,n, ρW , ρG, ξ) = (20, 500, 0.1, 0.05, 0.01), the landscape of a along the PC directions i = 1, 5, 10.

(a) The landscape along the first PC direction. θ1 (the projection onto the first PC) ranges from

−3σ1 to 3σ1 (x-axis). The blue curve (a1) is the analytical result calculated with Eq. (B18). The

red curve (a2) is the second-order approximation using Eq. (B19). (b-c) Similar to Panel (a), but

for the 5-th and 10-th PC directions. Here, the y-axes in (b) and (c) have smaller range, due to

smaller fluctuations in these directions. (d)-(f) Similar to Panels (a)-(c) but for a smaller

learning rate ξ = 0.001. (g)-(i) Similar to Panels (d)-(f), but for a smaller system with denser

projections (m,n, ρW , ρG) = (20, 50, 0.5, 0.5).
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FIG. S5: Theory of Hebbian learning matches simulations. (a) test BAL a(n, ρG) matches

Weight Alignment Level c(n, ρG) very well, even if c < 1. Here, the data for each pair of (n, ρG) is

from Fig. 3(a). (b) The heatmap of a(ρW, ρG), given m = 20, n = 50. The range of ρW and ρG is

0.1 to 1. Consistent with Eq. (B11), a increases with ρW and ρG. (c) Pairwise comparison

between numerical test BAL and its theoretical values, for chosen data in Panel (b). Here we

only showed the data corresponding to ρW = 0.1, 0.2, 0.5, 0.6, 0.8, 1 (different colors), with all

values of ρG. The red line: y = x. (d) Similar to (c), but for the data corresponding to

ρG = 0.1, 0.2, 0.5, 0.6, 0.8, 1 and all values of ρW. Here, the data points are more separate across

various ρG than Panel (c), because ρG has a larger impact on test BAL than ρW, as predicted by

Eq. (B11).
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FIG. S6: The fraction of subpopulations projecting contralaterally does not affect

bilateral alignment level. (a) Heatmap for the temporal average of the inter-hemispheric

projection matrix ⟨GBA⟩. Here, only 25 neurons from olfactory cortex A project to cortex B

(shuffled as columns 1-25 here), with all other elements in ⟨GBA⟩ being 0). These 25 neurons

project to all neurons in cortex B. Parameters: (ρW, ρG)
m
n = (0.1, 0.05)20500, η = 0.001 s2, and

f = ρG = 0.05. (b) For simulation in Panel (a), the element-wise comparison between the

Hebbian solution GH
BA and ⟨GBA⟩. The cosine similarity between two vectorized matrices

cos(⟨gBA⟩,g†) = 0.992. (c) cos(⟨gBA⟩,g†) vs f = 0.1, 0.2, 0.5, 0.6, 0.8, 1. The errorbars are over 3

samples. The pink dot: the mean cos(⟨gBA⟩,g†) = 0.992 for f = ρG = 0.05. (d) Test BAL vs f .

The red dashed line indicates a theoretical value of 0.577, according to Eq. (B11). The pink dot:

the mean numerical test BAL is 0.618 for f = ρG = 0.05.
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FIG. S7: The calculation of α for (m, ρW) = (20, 0.1). With the identified values of ρ⋆HG (n)

and ρ⋆SG (n) in Fig. 4(b),
ρ⋆SG (n)

ρ⋆HG (n)
was calculated and plotted for each n. The blue line corresponds

to α := ⟨
ρ⋆SG (n)

ρ⋆HG (n)
⟩n ≈ 0.42.
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FIG. S8: Numerical results of cos(h(x),h1(x)), cos(d1(x),h(x)), cos(h(x),h2(x)), and

cos(d1(x),d2(x)). (a) cos(h(x),h1(x)) decreases with m. (b) d1 highly aligns with h, with the

alignment level slightly higher for larger m. (c) cos(h(x),h2(x)) decreases with ρW. (d) In

general, cos(d2(x),h(x)) increases with m and ρW.
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