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ABSTRACT
Optimization plays a central role in modern radiation therapy,
where it is used to determine optimal treatment machine parame-
ters in order to deliver precise doses adapted to each patient case.
In general, solving the optimization problems that arise can present
a computational bottleneck in the treatment planning process, as
they can be large in terms of both variables and constraints. In this
paper, we develop a GPU accelerated optimization solver for radia-
tion therapy applications, based on an interior point method (IPM)
utilizing iterative linear algebra to find search directions. The use
of iterative linear algebra makes the solver suitable for porting to
GPUs, as the core computational kernels become standard matrix-
vector or vector-vector operations. Our solver is implemented in
C++20 and uses CUDA for GPU acceleration.

The problems we solve are from the commercial treatment plan-
ning system RayStation, developed by RaySearch Laboratories
(Stockholm, Sweden), which is used clinically in hundreds of cancer
clinics around the world. RayStation solves (in general) nonlin-
ear optimization problems using a sequential quadratic program-
ming (SQP) method, where the main computation lies in solving
quadratic programming (QP) sub-problems in each iteration. GPU
acceleration for the solution of such QP sub-problems is the fo-
cus of the interior point method of this work. We benchmark our
solver against the existing QP-solver in RayStation and show that
our GPU accelerated IPM can accelerate the aggregated time-to-
solution for all QP sub-problems in one SQP solve by 1.4 and 4.4
times, respectively, for two real patient cases.

1 INTRODUCTION
Optimization problems arise in a number of applications areas,
including machine learning [2], operations research [31], radia-
tion therapy planning [39] and many more. In many applications,
the problems are large and challenging in terms of the number
of variables and constraints, and computational performance of
the optimization solver used can be key. There exists a wide vari-
ety of different optimization algorithms, from first-order methods
such as gradient descent or augmented Lagrangian methods [24],
to second-order methods such as sequential quadratic program-
ming [4] or interior point methods [22], each with their respective
advantages and disadvantages. The focus in this paper will lie on in-
terior point methods (IPM), which are popular for linear, quadratic
and also nonlinear optimization as well as semidefinite program-
ming. Interior point methods are well known for their fast practical
convergence and polynomial time complexity, and are available in
many commercial and open source software packages.

The specific application we have in mind for this work is opti-
mization of radiation therapy treatment plans, a topic where com-
putational speed and efficiency plays a crucial role in the clinical
setting. The goal of treatment planning for individual patient cases
is to determine treatment machine parameters such that the dose
delivered to the patient conforms as close as possible to the target
(tumor) volume. Hopefully, the end result is the killing of tumor
cells, while surrounding healthy tissue is spared as much as possible,
thereby reducing radiation-induced side effects or even secondary
cancers. Finding such a treatment plan can be considered an inverse
problem [5], where the desired dose distribution is known, and the
machine parameters to produce such a dose are sought. In practice,
this inverse problem is solved using optimization, with a dose-based
objective function and constraints that encourage these desirable
qualities in the plan.

In radiation treatment planning, computational speed is impor-
tant. Resources at the clinics are limited, and the creation of high-
quality treatment plans for each patient is often a trial and error
process, requiring the tuning of different modeling decisions and
settings in the optimization problem to achieve a satisfactory plan.
Furthermore, practical limitations and time constraints can hinder
the use of more sophisticated planning and treatment techniques
[30, 39]. A prominent example of this is the fact that most treat-
ment plans are created ahead of the commencement of all treatment
sessions, and variations in the patient between treatment sessions
are not fully taken into account. This can be addressed by online
adaptive radiation therapy, where treatment plans are re-created
and adapted during each treatment session [30]. The adaptation or
re-creation of the new treatment plan cannot take too long either,
since it is done with the patient present in the online adaptive case.
This is one concrete example of where computational speed plays
an important role in treatment planning. Naturally, higher com-
putational speed is desirable in general, even outside the context
of adaptive therapy, not least for convenience and efficiency for
clinicians.

This (natural) desire for faster calculations in radiation treatment
planning has already led to widespread use of GPU computing in
many areas of radiation treatment planning [18], such as dose
calculation [21, 38] and various image processing workloads [17].
With the advent of deep neural networks and machine learning,
GPUs have also found uses in neural network based automatic
segmentation algorithms [33]. One further area in radiation therapy
we see that could benefit from GPU acceleration is the optimization
algorithms used for optimizing treatment plans.
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Most optimization solvers based on interior point methods (IPM)
use direct linear solvers to solve linear systems for finding search di-
rections for the solver to update its computed solution. This may in
part be motivated by inevitable ill-conditioning that linear systems
in many IPMs exhibit, which has been shown (both theoretically
and through practical experience) to be benign when direct linear
solvers are employed [40, 41]. For iterative linear solvers, the situa-
tion is different, as the poor conditioning affects the convergence
of the linear solver itself. Nonetheless, the move to iterative linear
solvers has many potential benefits, such as suitability for large
scale problems [15] but also may enable efficient GPU acceleration.

In this paper, we present a GPU-accelerated IPM implementation
for quadratic optimization problems, based on previous work on
using Krylov subspace solvers to solve linear systems [20]. Further-
more, while our focus lies on interior point methods for quadratic
optimization problems, we mainly consider the case where the
quadratic problems are solved as part of a sequential quadratic
programming (SQP) algorithm for general nonlinear optimization
problems. The SQP use-case is not artificial either, as this is the
approach employed for optimization by the commercial treatment
planning system (a software product to facilitate all computational
aspects of treatment planning for radiation therapy) RayStation [3],
used in clinical practice around the world.

2 RELATEDWORK
GPU accelerated optimization algorithms are already widely used in
many contexts, especially for problems where first-order gradient
based algorithms (that do not require Hessian information) are used.
Prominent examples include gradient-descent based algorithms
for training deep neural networks and similar. For second-order
methods with Hessian information such as interior point methods
and sequential quadratic programming, GPU accelerated solvers
do not appear to be as widespread.

For linear programming, GPU accelerated interior point meth-
ods have been studied previously by Smith et al. and Gade-Nielsen
[12, 36], which are both based on a matrix-free method proposed by
Gondzio in [16]. Notably, Gondzio’s matrix-free method also uses a
preconditioned conjugate gradient method, with regularization in
the IPM itself as well as a custom preconditioner. GPU accelerated
IPMs have also been studied for other types of optimization prob-
lems, e.g. quadratic programming support vector machines [19],
as well as more general nonlinear optimization [8]. The paper by
Cao et al. in [8] bears similarity to ours in that they use a precon-
ditioned conjugate gradient method with Jacobi preconditioning
as well. However, they consider mainly equality constrained op-
timization problems and use a different formulation of the KKT
system.

GPU acceleration for interior point methods using direct lin-
ear solvers has also been studied previously, see e.g. [26], where
the KKT-system is condensed into a dense form, which is more
amenable to GPU accelerated factorization. Hybrid factorization
and iterative methods for solving KKT systems have also been pro-
posed previously [32], with promising performance results demon-
strated on problems from optimal power flow, another application
area where large-scale optimization problems are frequently en-
countered. An example of a software package for IPM with support

for GPU acceleration is HiOp [27, 28], which has also been used for
optimal power flow problems [29].

For first-order optimization methods for quadratic optimization
problems, GPU acceleration has been explored in for example the al-
ternating direction method of multipliers (ADMM) [6] based solver
OSQP [37]. The GPU porting of OSQP is described in [34].

3 BACKGROUND
The optimization algorithm used in this work is based on the
method described in [20]. Our contribution in this work is to port
the algorithm to GPU accelerators, and address related challenges
in performance optimization. We give a brief overview of the opti-
mization method used for completeness, but refer to [20] for more
details.

3.1 Interior Point Methods
Interior point methods are commonly used for many types of con-
strained continuous optimization problems, including linear, qua-
dratic, nonlinear and semidefinite programming. Our interest in
this paper is in interior point methods for quadratic programming
(i.e. optimization problems with quadratic objectives and linear
constraints). Generally those problems are of the form

min. 1
2𝑥

𝑇𝐻𝑥 + 𝑝𝑇 𝑥

s.t. 𝑙 ≤ 𝐴𝑥 ≤ 𝑢
(1)

where 𝐻 is the 𝑛 × 𝑛 Hessian of the objective function 𝑝 ∈ R𝑛 are
linear coefficients of the objective function, 𝐴 is an𝑚 × 𝑛 matrix
with coefficients for the linear inequality constraints. A common
trick in optimization solvers is to introduce slack variables 𝑠𝑙 , 𝑠𝑢 for
inequality constraints, which together with converting the upper
bound constraint to a lower bound (by flipping the sign) for (1)
yields a problem of the form:

min. 1
2𝑥

𝑇𝐻𝑥 + 𝑝𝑇 𝑥

s.t. 𝐴𝑥 − 𝑠𝑙 − 𝑙 = 0
𝐴𝑥 − 𝑠𝑢 + 𝑢 = 0
𝑠𝑙 , 𝑠𝑢 ≥ 0.

(2)

One advantage of the slack variable reformulation for interior point
methods is that it becomes trivial to select a feasible initial guess
with respect to the inequality constraints for the solver, since any
positive guess for the slack variables is sufficient.

Interior point methods can be viewed from the perspective of
introducing a logarithmic barrier function to deal with inequal-
ity constraints. For our slack variable reformulated problem, an
introduction of a log-barrier term for the inequality constraints
gives:

min. 1
2𝑥

𝑇𝐻𝑥 + 𝑝𝑇 𝑥 − −𝜇
∑︁
𝑖

log((𝑠𝑙 )𝑖 ) − 𝜇
∑︁
𝑖

log((𝑠𝑢 )𝑖 )

s.t. 𝐴𝑥 − 𝑠𝑙 − 𝑙 = 0
−𝐴𝑥 − 𝑠𝑢 + 𝑢 = 0.

(3)

The intuition is that the logarithmic terms in the objective tend
towards infinity as the boundary of the feasible region is approached
from within, or in this case, when 𝑠𝑙 , 𝑠𝑢 become close to zero. 𝜇 is
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known as the barrier parameter, and its value can be chosen by the
solver. The idea is that as 𝜇 tends towards 0, an optimal solution
should be found.

It can be shown that there exists Lagrange multipliers 𝜆 such
that solutions 𝑥 to the barrier problem (3) satisfy the following
system of equations, sometimes referred to as perturbed optimality
conditions [11]:

𝑟𝐻 B 𝐻𝑥 + 𝑝 −𝐴𝑇 𝜆𝑙 +𝐴𝑇 𝜆𝑢 = 0
𝑟𝑙 B 𝐴𝑥 − 𝑠𝑙 − 𝑙 = 0

𝑟𝑢 B −𝐴𝑥 + 𝑠𝑢 + 𝑢 = 0
𝑟𝑐1 B (𝜆𝑙 )𝑖 (𝑠𝑙 )𝑖 − 𝜇 = 0, 𝑖 ∈ {1, ...,𝑚𝑙 },
𝑟𝑐2 B (𝜆𝑢 )𝑖 (𝑠𝑢 )𝑖 − 𝜇 = 0, 𝑖 ∈ {1, ...,𝑚𝑢 },

(4)

where 𝜆𝑙 denotes the multipliers for the lower bounds and 𝜆𝑢 for
the upper bounds. The slack variables 𝑠 are subscripted in the
same way. Those familiar with theory for constrained optimization
may recognize that the conditions (4) are very similar to the first
order Karush-Kuhn Tucker conditions for optimality [23, Theorem
12.1] for constrained optimization problems, except that the final
equation is shifted by the barrier parameter 𝜇 (hence the name
perturbed optimality conditions).

A popular approach is a so called primal-dual [42] approach,
which loosely speaking is based on numerically finding points
satisfying the perturbed system of equations (4) using e.g. New-
ton’s method, while successively decreasing the value of the barrier
parameter 𝜇 → 0. Applying Newton’s method to the perturbed
optimality conditions gives a linear system to solve of the form

©«
𝐻 −𝐴𝑇 𝐴𝑇

𝐴 −𝐼
−𝐴 −𝐼

𝑆𝑙 Λ𝑙

𝑆𝑢 Λ𝑢

ª®®®®®¬
©«
Δ𝑥
Δ𝜆𝑙
Δ𝜆𝑢
Δ𝑠𝑙
Δ𝑠𝑢

ª®®®®®¬
= −

©«
𝑟𝐻
𝑟𝑙
𝑟𝑢
𝑟𝑐1
𝑟𝑐2

ª®®®®®¬
, (5)

where Λ, 𝑆 are diagonal matrices with the Lagrange multipliers
and slack variables on the diagonal matrix, respectively, and 𝑒 is
an appropriately sized vector of ones. Newton’s method does not
take into account the implicit condition that the slack variables and
Lagrange multipliers remain positive throughout. This is accounted
for by some line search method instead, where the search direction
is scaled by some step length 𝛼 such that the slacks and multipliers
remain positive [42].

3.2 Sequential Quadratic Programming
Sequential quadratic programming (SQP) [4] is an optimization
algorithm for solving (in general) non-linear optimization problems
with constraints. The basic idea is to solve, in each SQP iteration, a
quadratic sub-problem consisting of a quadratic approximation of
the objective function or Lagrangian and linear approximation of
the constraints. To give a concrete example, consider a problem of
the form:

min. 𝑓 (𝑥)
subject to 𝑔(𝑥) ≤ 0, (6)

where 𝑓 : R𝑛 → R is the objective function and 𝑔 : R𝑛 → R𝑚
are the constraints. We assume both 𝑓 (𝑥) and 𝑔(𝑥) to be three
times continuously differentiable. We define the Lagrangian of the

problem as

L(𝑥, 𝜆) = 𝑓 (𝑥) − 𝜆𝑇𝑔(𝑥). (7)

In SQP, we find search directions to iteratively solve problem (6)
from the quadratic sub-problem:

min.
𝑑

𝑑𝑇∇2𝑥𝑥L(𝑥, 𝜆)𝑑 + 𝑑𝑇∇𝑓 (𝑥)

subject to 𝑑𝑇∇𝑔(𝑥) + 𝑔(𝑥) ≤ 0,
(8)

where 𝑑 is the search direction for the current iteration. This gives
us a quadratic program (QP) to solve in each iteration. These QPs
solved in an SQP solver will often be referred to as QP subproblems
in the remainder of the paper, to emphasize that they arise from
an SQP algorithm for solving a different optimization problem. For
many practical problems, the Hessian of the Lagrangian may be
too expensive to compute exactly. In such cases, it is common to
use quasi-Newton type approximations of the Hessian instead. This
is the approach used in the RayStation problems considered later
in this paper, where a Broydon-Fletcher-Goldfarb-Shanno (BFGS)
[7, 9, 14, 35] type quasi-Newton approximation for the Hessian is
used. This makes our QP-subproblems convex, as the BFGS updates
for the quasi-Newton Hessian preserve definiteness, and our initial
guess for the Hessian is positive definite by construction.

One of the main computational efforts in SQP-solvers is the solu-
tion of the QP-subproblems in each iteration. In principle, any algo-
rithm for QPs may be used to solve the subproblems, however, we
are mainly concerned with the case when the QP subproblems are
solved using interior point methods [22]. While interior point meth-
ods can be used directly to solve nonlinear optimization problems as
well, there are practical reasons why one may prefer an SQP-based
method instead. For instance, SQP algorithms may be more suitable
in the case that the optimization can be "warm-started" from a well-
informed initial guess [13]. In this paper, an SQP solver provides
the QP subproblems that we evaluate our proposed method on.

4 IMPLEMENTATION

Algorithm 1 Interior Point Method
1: for 𝑖 ← 1 to 𝑁 do
2: Solve (10) using preconditioned conjugate gradients (PCG)

(GPU)
3: Assemble full search direction from solution to (10) (CPU)
4: Compute maximum step length 𝛼𝑥 , 𝛼𝜆 (CPU)
5: 𝑥 ← 𝑥 + 𝛼𝑥Δ𝑥 (CPU)
6: 𝜆 ← 𝜆 + 𝛼𝜆Δ𝜆 (CPU)
7: 𝑠 ← 𝑠 + 𝛼𝑥Δ𝑠 (CPU)
8: Update diagonal 𝐷 in KKT system (CPU / GPU)
9: Compute residuals 𝑟 (CPU)
10: if | |𝑟 | | < 𝜇 then
11: if 𝜇 ≤ 𝜇𝑡𝑜𝑙 then
12: Return solution
13: end if
14: 𝜇 ← 𝜇/10
15: end if
16: end for
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Solving the system (5) is the computational core of our method.
As is common in practical implementations, we reduce the size of
the system through block-row elimination for efficiency reasons.
Furthermore, it is common that our optimization problems will
include bound constraints on the variables (of the form 𝑎 ≤ 𝑥 ≤ 𝑏).
In the more general formulation (1), these are handled implicitly
in the linear constraints. For computational efficiency however, it
is beneficial to separate the rows of the constraint matrix 𝐴 corre-
sponding to such bound constraints. The result of these reductions
gives us a system to solve of the form(

𝑄 −𝐵𝑇
𝐵 𝐷

) (
Δ𝑥
Δ𝜆𝐴

)
=

(
𝑟1
𝑟2

)
, (9)

where

𝑄 = 𝐻 + 𝑆−1
𝑙𝑥

Λ𝑙𝑥 + 𝑆
−1
𝑢𝑥

Λ𝑢𝑥 , 𝐵 =

(
𝐴

−𝐴

)
𝐷 =

(
Λ−1
𝑙𝐴

𝑆𝑙𝐴
Λ−1𝑢𝐴

𝑆𝑢𝐴

)
, Δ𝜆𝐴 =

(
Δ𝜆𝑙𝐴
Δ𝜆𝑢𝐴

)
.

𝑆 denotes diagonal matrices with the slack variables on the diagonal,
and Λ denotes diagonal matrices with the lagrange multipliers on
the diagonal. They are subscripted based on the type of constraint
they correspond to, 𝑙𝑥 and 𝑢𝑥 for lower and upper bounds on the
variables, respectively, and 𝑙𝐴 and 𝑢𝐴 for lower and upper bounds
on the linear constraints, respectively. A more detailed derivation
of the block-reductions leading to the formulation above can be
found in [20].

To symmetrize the system (9), we consider a doubly augmented
formulation [10](

𝑄 + 2𝐵𝑇𝐷−1𝐵 𝐵𝑇

𝐵 𝐷

) (
Δ𝑥
Δ𝜆𝐴

)
=

(
𝑟1 + 2𝐵𝑇𝐷−1𝑟2

𝑟2

)
, (10)

A high-level algorithmic overview of our method is shown in
Algorithm 1 (adapted from [20]). The main part of the computation
that we have ported to GPU is the solution of the doubly augmented
linear system (10) on line 2, while the remainder of the algorithm
is run on CPU. The data transfer required in each iteration is not
large, as we keep the doubly augmented KKT system on the GPU
throughout the optimization, only updating the diagonal 𝐷 , and
the diagonal term of the Hessian block block each iteration. More
concretely, the data transfer betweenCPU andGPU in each iteration
consists of:

• The residuals which form the basis of the RHS of (10).
• The solution (Δ𝑥,Δ𝜆𝐴) from the PCG solver.
• The diagonal matrix 𝐷 .
• The diagonal terms 𝑆−1

𝑙𝑥
Λ𝑙𝑥 + 𝑆−1𝑢𝑥

Λ𝑢𝑥 of the Hessian block.
Implementation wise, the Hessian 𝐻 can be implemented us-

ing different data structures or storage formats, as the solver only
requires the Hessian to inherit from the (abstract) interface class
SymmetricLinearOperator, which requires a concrete implemen-
tation for performing matrix-vector products and a method to ex-
tract the diagonal of the matrix. This means that we can support
matrix-free versions for the Hessian, which is especially useful
for the BFGS-type quasi-Newton Hessian representations from the
SQP solver. On matrix form, such a Hessian can be written on
matrix-form as

𝐻 = 𝐻0 +𝑈𝑊𝑈𝑇 , (11)

where 𝐻0 is an initial guess for the Hessian (usually diagonal in
our case), 𝑈 is an 𝑛 × 2𝑘 (𝑘 being the number of SQP iterations
the Hessian has been updated) matrix of update vectors (each SQP
iteration adds two update vectors to the BFGS approximation), and
𝑊 is a diagonal, 2𝑘 × 2𝑘 matrix with the scalar update weights on
the diagonal. In typical cases, this will be a dense𝑛×𝑛matrix, where
𝑛 is the number of variables in the optimization problem. In our
solver, the Hessian does not need to be assembled and the matrix-
vector products can be computed as 𝐻𝑥 = 𝐻0𝑥 + 𝑈 (𝑊 (𝑈𝑇 𝑥)),
which should be significantly cheaper when 𝑘 << 𝑛 as in our cases.

4.1 GPU Acceleration
The most time consuming part in the optimization algorithm is
the preconditioned conjugate gradient solver used to solve the
KKT-system at each iteration, which makes it a natural target for
GPU acceleration. There are essentially three components to this,
computing the matrix-vector products with the KKT-matrix on
the GPU, the Jacobi preconditioner, and then general performance
considerations for CG on GPUs.

4.1.1 Doubly Augmented KKT Matrix-Vector Multiplications. Mul-
tiplications with the doubly augmented KKT-system are relatively
straightforward to implement efficiently on GPU, and we always
work with the matrix in unassembled form by computing the prod-
ucts with different sub-blocks of the matrix separately. In the KKT-
matrix, the Hessian H is stored on the GPU exclusively, as are the
diagonal block 𝐷 and the diagonal terms in 𝑄 . The constraint ma-
trix 𝐵 is stored on both CPU and GPU. Since the constraint matrix
remains constant throughout the optimization, the copy to GPU is
done when the problem is initialized and no further data transfer
between CPU and GPU is needed for the constraint matrix in the
solver. We store the sub-blocks of the 𝐵 matrix in CSR format, and
we also pre-compute and store their transposes. This enable us to
use transpose-free SpMV kernels for all of our sparse matrix-vector
products, which improves performance.

Another important consideration is the need for temporary ar-
rays to store intermediate products when computing the matrix-
vector products. For example, the top left block requires one to
compute a matrix-vector product of the form (𝑄 + 2𝐵𝑇𝐷−1𝐵)𝑥 ,
where we only have access to the 𝑄, 𝐵, 𝐷 matrices separately. Es-
pecially on the GPU, it is important to allocate space for these
temporary storage arrays in once, to avoid a large amount of mem-
ory allocations and de-allocations for temporary storage, which
can significantly degrade the performance. Similar pre-allocation
optimizations are also important for the quasi-Newton type Hessian
on GPU.

The (slightly modified) C++ source code for the kernel is shown
in Listing 1. Implementation wise, the DoublyAugmentedKKT class
is templated on the type representing dense vectors. This is to allow
for execution on both CPU and GPU; for the GPU accelerated case,
we provide the template argument CudaDenseVector (representing
a GPU dense vector implemented in CUDA) and for the CPU case,
we use the corresponding CPU class DenseVector. The previously
mentioned pre-allocated arrays for intermediate results are data
members of the DoublyAugmentedKKT class (with names starting
with tmp_vec). The matrix-free approach enabled by the use of
Krylov solvers can also be seen in the code, as the multiplication is
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1 t emp l a t e <typename DenseVectorT >
2 vo id DoublyAugmentedKKT<DenseVectorT > : : vec_mul t_acc (
3 s t d : : span < con s t double > x ,
4 s t d : : span <double > y ) con s t
5 {
6 / / E x t r a c t subspan co r r e spond ing to d i f f e r e n t b l o c k s
7 / / i n the KKT mat r i x .
8 s t d : : span < con s t double > dx_span =
9 x . subspan ( 0 , num_vars ) ;
10 s t d : : span < con s t double > d l_ span =
11 x . subspan ( num_vars , num_cons ) ;
12 s t d : : span <double > rh s_va r s _ span =
13 y . subspan ( 0 , num_vars ) ;
14
15 / / Compute A^T D^ { −1 } A ∗ dx
16 A−>vec_mul t ( dx_span , tmp_vec_ . span ( ) ) ;
17 tmp_vec_ . d i v ( d i a gona l _b l o ck_ , tmp_vec_2_ ) ;
18 A−> vec_mu l t _ t _ a c c ( tmp_vec_2_ . span ( ) ,
19 rh s_va r s _ span ) ;
20 typename DenseVectorT : : RefType
21 r h s _ v a r s _ r e f { r h s _va r s _ span } ;
22 s c a l e ( 2 . 0 , r h s _ v a r s _ r e f ) ;
23
24 / / Then compute H ∗ dx
25 H−>vec_mul t ( d e l t a_x_ span , tmp_vec_3_ . span ( ) ) ;
26
27 / / Add the d i a gona l term from the hand l i ng
28 / / o f the bound c o n s t r a i n t s on the v a r i a b l e s
29 typename DenseVectorT : : ConstRefType
30 d e l t a _ x _ r e f { d e l t a _ x_ sp an } ;
31 d e l t a _ x _ r e f . mult ( diag_term_H_ , tmp_vec_4_ ) ;
32 / / Add r e s u l t t o H ∗ dx
33 axpby ( 1 . 0 , tmp_vec_3_ ,
34 1 . 0 , tmp_vec_4_ , tmp_vec_3_ ) ;
35 / / Add to ou tpu t v e c t o r
36 axpby ( 1 . 0 , tmp_vec_3_ ,
37 1 . 0 , r h s _ v a r s _ r e f , r h s _ v a r s _ r e f ) ;
38
39 / / r h s _va r s _ span = rh s_va r s _ span + A^T x . . .
40 A_−> vec_mu l t _ t _ a c c ( d l_span ,
41 rh s_va r s _ span ) ;
42 / / Here , the top b l o ck
43 / / o f the ou tpu t v e c t o r shou ld be comple te . . .
44 s t d : : span <double > rhs_cons_span =
45 y . subspan ( num_vars , num_cons ) ;
46
47 typename DenseVectorT : : ConstRefType
48 d l _ r e f ( d l _ span ) ;
49 / / Compute D ∗ d l
50 tmp_vec_2_ . copy ( d l _ r e f ) ;
51 tmp_vec_2_ . e l ement_wise_mul t ( d i a g on a l _ b l o c k _ ) ;
52
53 typename DenseVectorT : : RefType
54 r h s _ c on s _ r e f { rh s_cons_span } ;
55 axpby ( 1 . 0 , tmp_vec_ ,
56 1 . 0 , r h s _ con s_ r e f , r h s _ c on s _ r e f ) ;
57 axpby ( 1 . 0 , tmp_vec_2_ ,
58 1 . 0 , r h s _ con s_ r e f , r h s _ c on s _ r e f ) ;
59 }

Listing 1: Code listing for vector multiply function for the
class for the doubly augmented KKT matrix. Some function
and variable names have been abbreviated from their original
version for space reasons.

done by accumulating results from each separate block and term
of the matrix separately. No fully assembled representation of the

entire KKT matrix is ever required, we only store the components
of the full matrix (e.g. Hessian 𝐻 and constraint matrix). We do not
go into full detail on the software architectural design choices here;
they are instead described in Section 4.2.

4.1.2 Computing the Jacobi Preconditioner. For the Jacobi precon-
ditioner, one needs to compute the diagonal elements of the KKT-
matrix. For the bottom right block, consisting of the 𝐷 matrix, this
is trivial, since the matrix is already diagonal, so one can simply
extract the elements directly. The top left block is different, since
it is not explicitly formed in the solver. Furthermore, the Hessian
𝐻 for our radiation therapy problems is from a quasi-Newton type
approximation in a sequential quadratic programming solver, and
can be written on matrix form as: 𝐻 = 𝐻0 +𝑈𝑊𝑈𝑇 , where 𝐻0 is
some initial positive definite estimate for the Hessian (diagonal in
our case),𝑈 is an 𝑛 × 𝑘 matrix of update vectors and𝑊 is a 𝑘 × 𝑘
diagonal matrix of update weights.

The computation of the diagonal of the Hessian is relatively
straightforward, and this calculation only needs to be performed
once, since the Hessian does not change throughout the optimiza-
tion. For the remainder of the optimization, we cache the pre-
computed diagonal of the Hessian and provide that directly when-
ever required.

For the diagonal of the 2 ∗ 𝐴𝑇𝐷−1𝐴 term in the top left block,
the situation is more complicated. First, this term changes each IPM
iteration, since the diagonalmatrix𝐷 does, and secondly, computing
the diagonal in parallel on the GPU is less straightforward due to
a subtle difference in the data access pattern. We address this by
keeping an extra copy of the constraint matrix on the CPU, which
is used to compute 𝑑𝑖𝑎𝑔(𝐴𝑇𝐷−1𝐴). This presents some overhead
in data transfer between CPU and GPU, but since the diagonal only
needs to be re-computed once per IPM iteration (of which there are
typically less than 100), this trade-off was found to be acceptable.

4.2 Software Design and implementation
The prototype solver developed in this paper is implemented in
C++20 and CUDA for GPU acceleration, but is also capable of
running entirely on CPU. This presents a challenge in the design
of the code, in order to avoid code repetition as much as possible.
We describe some key design choices to reduce code repetition and
improve code structure here.

The interior point method itself consists of a number of steps
in each iteration. In our prototype, the GPU acceleration is mainly
limited to the calculation of the search direction, which essentially
consists of solving the doubly augmented KKT-system of equations
using PCG. The other steps in the IPM are run on the CPU, but
importantly, the KKT-matrix is composed of different matrices that
are required for other operations in the IPM solver as well (e.g. the
Hessian 𝐻 and constraints matrix 𝐵). To ensure a uniform inter-
face when using these matrices, we use inheritance and dynamic
polymorphism. More precisely, all different matrix classes used
(for example sparse CSR matrices, or dense matrices) on both CPU
and GPU all inherit from the abstract base class LinearOperator,
which contain pure virtual functions for e.g. computing products
with vectors which inheriting classes need to specialize. The in-
put arguments for these functions make heavy use of the C++20
standard library class std::span, which represents a (non-owning)



Felix Liu, Albin Fredriksson, and Stefano Markidis

view of a contiguous array. Being essentially a wrapper around a
pointer and an array size, it is usable for both CPU and GPU arrays.

For types representing dense vectors on CPU and GPU, we
instead rely on templates and static polymorphism. One motiva-
tion for static over dynamic polymorphism in this case is to make
allocation of small temporary or intermediate results easier. For
now, we provide two distinct classes representing dense vectors,
DenseVector and CudaDenseVector, for CPU and (CUDA) GPU
respectively. The vector classes are expected to implement common
vector operations, such as dot products, element wise multiplication
or division, or 𝑥 ← 𝑎 ∗ 𝑥 + 𝑏 ∗ 𝑦 (axpby) type operations. Further-
more, we would like to be able to use the dense vector interface
for non-owning views, such as for a std::span over some existing
array. This is accomplished by implementing corresponding "ref"
types for the dense vector classes, e.g. DenseVectorRef for CPU
and CudaDenseVectorRef for GPU.

Many of the design decisions mentioned can be seen in the func-
tion in Listing 1. As described previously, the component blocks of
the doubly augmented KKT matrix (e.g. the Hessian𝐻 or constraint
matrix 𝐵) are all specialization of abstract base classes representing
different kinds of linear operators, which provides a common inter-
face for both GPU and CPU implementations. The use of std::span
can also be seen, which can represent both CPU and GPU arrays.
Another convenience of std::span in this case is the ease by which
sub-spans can be extracted (see e.g. lines 8-12 in Listing 1). This is
especially useful for blocked matrices, where sections of the input
and output vectors corresponding to different block rows can be
extracted easily.

5 EXPERIMENTAL SETUP
In the following we describe the experimental setup, in terms of
the hardware and software used as well as the source of the test
problems.

5.1 Hardware Resources
The following test systems were used to conduct the performance
evaluations in this work.

• Bluedog is a local workstation equipped with an AMD
Ryzen 9 7900X CPU, and 64 GB of DDR5 RAM@ 5200 MHz.
The GPU is an Nvidia GeForce RTX 4080 with 16 GB of
GDDR6X RAM.

• RS_WKS is a local Windows workstation with RayStation
version 2024A installed. The system is equipped with an
Intel Core i9-7940x CPU and 64 GBs of DDR4 RAM@ 2666
MHz.

• NJ is a local server at KTH equipped with an AMD EPYC
7302p 16 core CPU. The GPU is an Nvidia A100 with 40GB
of HBM2 memory.

We evaluate the performance of our method in multiple ways. We
measure the impact of GPU acceleration on our solver, by evaluating
the performance improvement compared to the CPU version of
the solver. We also analyze the performance of our solver on a
range of different GPUs, to see how the performance varies across
GPUs for our problem case. Finally, to give an idea of how the
GPU accelerated solver may improve solution times for radiation
treatment planning in practive, we compare our optimization solver

to the one implemented in RayStation. RayStation is a commercial
treatment planning system (TPS) developed by the Stockholm based
company RaySearch Laboratories, and is used in clinical practice
by hundreds of clinics around the world.

5.2 Test Problems from RayStation

Problem Vars. Lin. cons. Bound cons.
Proton H&N 77373 0 77373
Proton H&N
(after spot filtering)

33531 0 33531

VMAT H&N 13425 68618 13425
Table 1: Dimensions of the optimization problems used in
the performance analysis in terms of number of variables,
linear constraints and bound constraints. The proton case is
shown before and after spot filtering, which occurs after 100
SQP iterations.

The optimization problems we use are quadratic programming
subproblems exported directly from the RayStation SQP solver.
These are the problems the SQP method solves to find search di-
rections in each iteration, and represent the main computational
burden. We consider two cases, one for cancer in the head and
neck region treated using protons, and one head and neck case
treated using photons with a treatment technique known as Volu-
metric Modulated Arc Therapy (VMAT) [25]. For the proton case,
the RayStation SQP solver performs so-called spot filtering after
100 SQP iterations, which reduces the size of the optimization prob-
lem by eliminating variables that are close to zero. Spots, in this
case, are intensities of the proton beam in discrete points along
the scanning path which can be controlled to achieve the desired
dose. Dimensions of the QP subproblems for our test problems are
shown in Table 1. The total number of SQP iterations used for the
proton case was 200, and for the photon VMAT case 33 iterations.
This also corresponds to the number of QP subproblems for the
different cases.

We expect the QP subproblems to become more expensive to
solve in later SQP iterations due to the quasi-Newton Hessian be-
coming larger for each iteration. This is since each iteration adds
two terms to the BFGS Hessian approximation, making the (dense)
matrix of update vectors𝑈 from (11) 2 columns larger each itera-
tion. Spot filtering resets the quasi Newton Hessian approximation,
which is another important factor in reducing computational cost
after filtering.

6 RESULTS
This section presents our results from performance analysis and
profiling of the GPU kernels and CPU performance, as well as
runtime comparisons with RayStation on realistic cases.

6.1 Performance Analysis and Profiling
6.1.1 GPU and CPU comparison. We begin by measuring execu-
tion time on different GPUs and on the CPU of our solver to see the
impact of GPU acceleration. Figure 1 shows some results from this
comparison. We see that the GPU acceleration brings significant
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Figure 1: Comparison of performance for our solver on different GPUs and on the CPU. The CPU and RTX4080 benchmarks
were run on Bluedog. The A100 benchmark was performed on NJ.

performance benefits to our solver, as we would expect, with a
speedup in the total time of approximately 6× when comparing the
CPU baseline to the RTX4080 results for the proton head and neck
case and approximately 5.1× for the VMAT head and neck case.
Interestingly, the solver performs better on the RTX4080 system
(Bluedog) than on the A100 system (NJ), despite the peak through-
put in both memory bandwidth and floating point operations being
higher for the A100. One reason for this observed difference could
be that many compute kernels launched in the solver are relatively
small in size, making the peak throughput less crucial, compared
to kernel launch latency, for example. The RTX4080 is also a newer
generation GPU, being of the Ada Lovelace microarchitecture (with
compute capability 8.9) compared to the Ampere generation A100
(compute capability 8.0).

6.1.2 GPU Profiling. In most of the evaluated problems, the major-
ity of the run-time (>90%) is spent in the GPU portion of the code
consisting essentially of the CG solver for the doubly augmented
KKT system. To understand how the time is spent on the GPU cur-
rently, we performed profiling using Nvidia Nsight Systems [1] to
measure the proportion of GPU time spent in different kernels. The
results are shown in Figure 2. Since we use cuBLAS and cuSparse
for many of our dense and sparse matrix operations, respectively,
we have collected kernel calls related to different types of opera-
tions into one category in some cases (for example, SpMV for sparse
matrices is split into multiple kernels in Nsight Systems, but are
grouped as one in the figure). The specific QP-subproblems used
for the profiling were from SQP iteration 9 in the VMAT case and
99 in the proton case, as those problems were the slowest to solve
for our solver for each respective case.

For the VMAT head and neck problem problem, the majority of
GPU time is spent in sparse matrix vector products (SpMV) with the
constraints matrix. This follows what one would expect from the
fact that the VMAT case has many more linear constraints (though

mostly sparse) than variables, see Table 1. For the proton case, the
solver spends a vast majority of time in gemv operations (dense
matrix-vector products), which arise from the multiplications with
the quasi Newton Hessian, see (11). The quasi-Newton Hessian is
significantly smaller for the VMAT case, since both the number of
variables 𝑛 and the SQP iteration count 𝑘 are smaller.

Our initial profiling shows that the runtime of the solver is
dominated by a few important kernels, namely dense matrix-vector
products (gemv) and sparse matrix vector products for the VMAT
case. To understand further how well those kernels utilize GPU
resources, we further analyze the performance of those selected
kernels using Nsight Compute, which (among other things) shows
the kernel’s utilization as a percentage of the peak compute and
memory throughput. Again, the proton sub-problem from SQP
iteration 99 and VMAT problem from SQP iteration 9were used. The
results for the gemv and transpose gemv for the proton case, as well
as for the SpMV-kernel on the VMAT case are shown in Table 2. For
the SpMV kernel launches, the utilization varies depending on the
size of the kernel launch, since the kernel is used for multiplications
of blocks in the linear constraint matrix 𝐵 corresponding to lower
and upper bounds separately. Since the number of lower bounds can
be different from the number of upper bounds, the performance for
kernel launches also varies correspondingly. In the VMAT problem
in Table 2 the number of lower bounds was 15751 and the number
of upper bounds was 52867, and we show profiling utilization for
different lower and upper bounds separately. Note that we use
the flag CUSPARSE_SPMV_CSR_ALG2 1 in order to ensure bitwise
reproducible results for our solver when run on the same system, a
requirement from RayStation. This may incur some extra overhead
in the SpMV computation.

Results in Table 2 for the proton case shows, as one would ex-
pect, that the key gemv kernel in the proton case is memory bound.

1Documentation: https://docs.nvidia.com/cuda/cusparse/index.html#cusparsespmv

https://docs.nvidia.com/cuda/cusparse/index.html#cusparsespmv


Felix Liu, Albin Fredriksson, and Stefano Markidis

0 100

Proton H&N

VMAT H&N

48.8 37.9

57.1

4.6

17 8.4 5.9 4.4

3.0

4.1

5.7

3.1

gemv transpose

gemv

CSR SpMV

dot product

daxpy

vector mult.

vector div.

explicit memcpy

other

Figure 2: GPU kernel runtime profiling using Nsight Systems. The percentage of GPU time spent in each kernel type is shown.
The tested sub-problems are selected as the VMAT and Proton sub-problem that our solver was slowest on, from SQP iteration
9 and 99 respectively.

RTX 4080
Proton Head and Neck

Kernel Duration (𝜇𝑠) Compute utilization Memory utilization
gemv 189.12 25.04% 95.28%

gemv transpose 199.36 33.67% 91.14%
VMAT Head and Neck

csrmv partition (UB) 6.82 0.41% 0.6%
csrmv (UB) 10.11 26.82% 38.86%

spmv fixup (UB) 7.26 0.23% 0.45%
csrmv partition (LB) 5.02 0.49% 0.26%

csrmv (LB) 7.14 7.78% 14.68%
spmv fixup (LB) 6.05 0.18% 3.99%

A100
Proton Head and Neck

Kernel duration (𝜇𝑠) Compute util. Memory util.
gemv 111.39 11.35% 73.67%

gemv transpose 103.78 10.38% 67.79 %
VMAT Head and Neck

csrmv partition (UB) 13.50 0.21% 0.38%
csrmv (UB) 15.55 6.73% 11.34%

spmv fixup (UB) 13.12 0.04% 0.35%
csrmv partition (LB) 9.49 0.22% 0.32%

csrmv (LB) 16.64 1.49% 2.9%
spmv fixup (LB) 14.40 0.03% 0.25%

Table 2: Profiling results from Nsight Compute for the most time consuming kernels in the solver for the proton and VMAT
case. For the VMAT case, the cuSPARSE SpMV rountines are split into multiple kernel calls. For the VMAT case UB is for the
matrices from upper bound constraints, LB for lower bound constraints.

For the RTX 4080, the memory utilization as measured by Nsight
Compute is above 90% for both the transpose and non-transposed
gemv. On the A100, memory utilization is lower at around 68%
and 73% for transpose and non-transpose, respectively. This may
be a result of the matrix size being too small to fully utilize the
A100. For the VMAT case, we show the three kernels we found
involved in the SpMV function from cuSPARSE. It is clear that
the overhead from the partition and fixup kernel is substantial, as
they take similar execution time as the main SpMV kernel with
significantly lower utilization (often less than 1%). This overhead
may be unavoidable however for the bitwise reproducibility en-
sured by cuSPARSE. Furthermore, we see that the compute and
memory utilization is significantly lower for the smaller matrix
for the lower bounds constraints on both the A100 and RTX4080,
indicating that merging the two matrices, at least for the purpose

of computing matrix-vector products in the PCG solver, would be
useful to improve performance.

6.2 Realistic Cases
Figure 3 shows the solution time comparison between our solver
running on Bluedog (with the Nvidia RTX 4080 GPU) and RaySta-
tion running on RS_WKS. The times shown are solution times for
QP subproblems in the RayStation SQP solver. The runs using our
GPU accelerated optimizer are performed by exporting QP sub-
problems from RayStation. In total, we see that our optimization
solver outperforms RayStation’s optimizer by 4.4× for the proton
problem and roughly 1.4× for the photon VMAT problem. For the
proton case, the dashed vertical line in the plot shows the point
where spot filtering occurs, which is an intermediate step in the
SQP optimization where variables that are close to zero are pruned
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Figure 3: Comparisons of subproblem solution times for all SQP iterations in RayStation. Only solution time for QP subproblems
is measured, and does not include e.g. updating the quasi-Newton Hessian or similar. Total solution time (for all subproblems)
for the RayStation optimizer and our solver is shown in the textbox.

from the problem, which also leads to faster solution times after
pruning. The reason, we believe, for the relatively larger improve-
ment for the proton case is twofold. First, the proton case is a bound
constrained problem, and tended to require fewer CG iteration in
each IPM iteration to converge. Secondly, the main computations in
the VMAT case are sparse matrix operations, which may relatively
speaking benefit less from GPU porting compared to more dense
operations for the proton case. While a completely fair compari-
son between a CPU and GPU implementation is impossible, we
emphasize that the RayStation optimization algorithm is originally
developed for CPU only, and may not benefit from direct porting
to GPU at all. The comparison above is rather intended to give an
idea of the speedup obtainable in practice by shifting to the GPU
based optimization solver instead.

7 CONCLUSIONS
In this paper, we presented our GPU accelerated interior point
method implementation which is tailored for solving optimiza-
tion problems from treatment planning for radiation therapy. Our
method is based on previous work in [20], where a special, positive
definite, formulation of the linear systems in interior point methods
is considered and solved using a Jacobi-preconditioned conjugate
gradient method. The main motivation for the move towards itera-
tive linear solvers, as compared to direct solvers (which are more
commonly used in interior point methods), was better suitability
for GPU acceleration. We showed in this paper that this method
is amenable to GPU acceleration, which brings considerable per-
formance benefits compared to the CPU version. The solver we
have developed is made for quadratic programming (optimization
problems with quadratic objective function and linear constraints),
which can also be extended to the nonlinear optimization as part
of a sequential quadratic programming (SQP) algorithm. The SQP

application of our solver is not artificial either, as an SQP solver
is used as part of the commercial treatment planning system (a
software package for all computational aspects related to treatment
planning for radiation therapy) RayStation, developed by RaySearch
Laboratories (Stockholm, Sweden) and used by hundreds of clinics
around the world.

We measured the performance our solver on different Nvidia
GPUs and on CPU and show that GPU acceleration, as one would
expect in this case, brings significant performance benefits com-
pared to the CPU only implementation. Furthermore, we compare
the performance of our solver with the CPU based solver used by
the clinical treatment planning system RayStation and found that
our GPU accelerated solver was able to improve total optimiza-
tion times by 1.4× and 4.4× on two realistic cases exported from
RayStation.
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