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Finite size effect on gluon dissociation of J/ψ in relativistic heavy ion collisions

Jingjing Wang,1 Baoyi Chen,1 and Yunpeng Liu1, ∗

1Department of Applied Physics, Tianjin University, Tianjin 300350, China

Thermal quantities, including the the entropy density and gluon spectrum, of quark matter within
a box that is finite in the longitudinal direction are calculated using a bag model. Under the
assumption of entropy conservation, the corresponding gluon dissociation rate of J/ψ is studied. It
reaches a maximum at a certain longitudinal size Lm, below which the suppression is weak even
if the temperature becomes higher than that without the finite size effect, and above which the
dissociation rate approaches to the thermodynamic limit gradually with increasing longitudinal size
of the fireball.

PACS numbers: 25.75.Nq, 12.38.Mh, 25.75.-q

I. INTRODUCTION

The quark-gluon plasma (QGP) is widely accepted as the state of matter with strong interaction at high temperature
and/or high density in theory [1–7], and it is also studied for decades in experiments of relativistic heavy ion collisions
at a typical space scale of 10 fm and a typical time scale of 10 fm/c [8–12]. Many probes are suggested to detect the
new state of matter in such small scales, one of which is the J/ψ suppression [13, 14]. Different from light hadrons,
part of J/ψs survive the hot medium due to its large binding energy, and its suppression carries the information
of the fireball at its early stage [15–19]. In a microscopic view, the leading order process of J/ψ suppression is the
gluon dissociation through a dipole interaction [20–22]. Later on, the inverse process is also suggested to play an
important role in nucleus-nucleus collisions when charm pairs are abundant [21, 23, 24]. High order processes were
also considered [25]. The study also extends from J/ψ to its excited states [14, 21, 26] and their analogs Υs [27], and
even Bc mesons [28–33].
Most theories focus on the thermodynamic quantities in the thermodynamic limit, while the size of the fireball is

small, especially in the longitudinal direction at early stage of the fireball. The finite size effect is attracting more
attention in relativistic heavy ion collisions [34–37]. This may be less important for light hadrons, which are produced
in later stage of the fireball. However, for particles like J/ψ that carries the information of the fireball at early stage,
it is necessary to discuss the finite size effects, which come from the fact that the wave function of particles is within
a finite size. In Ref. [38], the gluon dissociation of J/ψ with finite size effect is compared with that at infinity space at
exactly the same temperature. It is found that even if the temperature of the medium is high, the suppression could
still be small due to a small size in space. It is also found that the binding energy of a J/ψ becomes smaller when its
wave function is constrained in a sphere rigoriously [39].
Heavy quarkonia are affected by the finite size effects via two aspects.

1. Direct effects. The finite size of the fireball changes the gluon distribution, which directly modifies the decay
rates of J/ψ at a certain temperature.

2. Indirect effects. The finite size of the fireball changes the thermal properties of the medium, such as the equation
of state and consequently the critical temperature of deconfinement, which affect the total suppression of J/ψs
in heavy ion collision.

The finite size effect on gluon distribution and the corresponding J/ψ dissociation rate have been studied in previous
work [38, 39]. This work focus on the finite size effect on the bulk medium, especially its equation of state and the
J/ψ dissociation in this hot medium.
In this paper, we assume that the system is uniform and infinitely large in the transverse direction, but with a

finite size L = 2ct in the longitudinal direction proportional to the time t after collision, because all wave functions
of partons vanishes on the boundary of the light cone of the nucleus collision. It is also assumed that the expansion
is adiabatic, which indicates conserved entropy, as is usually assumed in a 2+1 D hydrodynamic models. As a result,
the entropy density s evolves as s ∝ 1/t. Therefore a comparison of quantities between the cases with and without
the finite size effect at the same time t is equivalent to a comparison at the same entropy density s. For this reason,
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we discuss the finite size effect on the thermal quantities, especially on the entropy density s, in section II. The
dissociation rate of J/ψ with the finite size effects is calculated and discussed in section III. In Section IV, we shortly
summarize the results. For simplicity, we only consider the gluon dissociation process of J/ψs at middle rapidity as
in Ref. [38], and the natural units ~ = c = kB = 1 are adopted.

II. ENTROPY DENSITY WITH A FINITE LONGITUDINAL SIZE

The medium is described by a bag model with a first-order phase transition. [40] The grand thermal potential reads

J(T, L) =

{

−T lnZ0
QGP +BV, for QGP

−T lnZHG, for hardon gas

where Z0
QGP and ZHG are the partition functions of ideal parton gas and that of ideal hadron gas. Partons includes

massless gluons and u, d quarks, and massive s quarks with its mass ms = 150 MeV. Hadrons are those in the particle
list with its mass below 2 GeV. The temperature, volume and longitudinal size of the fireball are denoted as T , V , and
L, respectively, and B is the bag constant, which is taken as B = (236 MeV)4 in our numerical calculations leading
to a critical temperature Tc = 165 MeV in an infinite space.
For each particle i with mass mi in the ideal gas, the corresponding partition function Zi satisfies

lnZi = ±

∫ +∞

mi

D(εi) ln
(

1± e−βεi
)

dεi. (1)

The upper and lower signs are for fermions and bosons, respectively, here and below. The density of states at particle
energy εi is [40]

D(εi) =
giV εi
2πL

[

piL

π

]

, (2)

with gi counting the inner degree of freedom of particle i, and pi =
√

ε2i −m2
i being the magnitude of its momentum.

The square brackets here and below stand for the least integer function, which comes from the summation on the
discrete longitudinal momentum pz =

nzπ
L with nz = 1, 2, 3 · · ·. By substituting the density of states into Eq. (1), we

have

lnZi = ±
giV

2πβ3Λ

∫ +∞

0

x

[

xΛ

π

]

ln
(

1± e−ξi
)

dx, (3)

with ξi =
√

x2 + m̄2
i , m̄i = βmi, and β = 1/T .

Accordingly, the entropy of particle i is

Si =
giV

2πβ3Λ

∫ +∞

0

x

[

xΛ

π

](

± ln
(

1± e−ξi
)

+
ξi

eξi ± 1

)

dx.

Taking the limit L→ +∞ (technically just by removing the square brackets) in all the equations above, the results in
infinite space will be recovered. In the other limit L → 0, the constraint in space increases the energy of the ground
state. As a result, the differences between bosons and fermions are negligible, and thus it can be approximately
described in a classical limit. For a massless classical particle, its entropy is

Scl
i =

giV

2πβ3

1

π

ηq

1− q

(

η2
1 + q

(1− q)2
+

3η

1− q
+ 3

)

, (4)

with η = π/Λ, q = e−η, and Λ = LT . This is a good approximation of the entropy of a massless quantum particle
in the sense that the error is within 10% in the whole range of L. In the small L limit, that is Λ → 0, η → +∞ and
q → 0, it gives

Si =
giAπ

2L2
e−

π
Λ , (5)

where A = V/L is the transverse area of the system. Summing up all the light partons, one obtains the total entropy
per area

sA ≡
S

A
≈

Gπ

2L2
e−

π
Λ , (6)
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where G is the total internal degree of freedom of light partons. At early time of heavy ion collisions, the longitudinal
size of the fireball is small, and the transverse expansion is negligible, so that the entropy per area sA keeps constant.
Therefore Eq. (6) implies that when we go to the early limit t → 0, that is L → 0, we have Λ → 0 at a speed in the
order of magnitude of 1/(ln(1/L)) in spite of T → +∞, with the assumption that sA is a constant. Therefore the
time evolution of T is that T drops with t at a speed slightly slower than T ∝ 1/t at small L.
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FIG. 1: The ratio of entropy density of a massless particle in finite space to that in infinite space at the same temperature as
a function of Λ.

The entropy of massless particles in infinite space is

Si(Λ = ∞,m = 0) =
(15∓ 1)π2giV

360β3
(7)

The ratio between the entropy Si(Λ,m = 0) of massless particles in finite space to Si(Λ = ∞,m = 0) above only
depends on Λ = LT , and is independent of T itself. The ratio

RS(Λ) ≡
Si(Λ,m = 0)

Si(Λ = +∞,m = 0)

is shown in Fig. (1). It can be seen that the ratio increases with Λ monotonically. The asymptotic expression is

RS(Λ) =

{

1− b±
Λ , for large Λ

180
(15∓1)πΛ3

(

1 + 3Λ
π + 3Λ2

π2

)

e−
π
Λ , for small Λ.

with b± = 7∓1
15∓1

270ζ(3)
8π3 , that is b+ ≈ 0.561 and b− ≈ 0.654, and its classical corresponding is bcl =

3π
16 ≈ 0.589. In

practice, this formula works well for Λ > 2 or Λ < 0.5. The results show that the entropy density becomes smaller
when the finite size effect is included compared with that in infinite space at the same temperature, and therefore at
a fixed entropy density higher temperature is expected in finite space than that in infinite space.
The time evolution of the temperature T is shown in Fig. 2. The sA is fixed by taking the temperature to be

T = 250 MeV at t = 0.6 fm/c in the case without the finite size effects. In the hadrons phase with large time t, the
finite size effect is small and negligible, and in the mixed phase the difference between the two curves shows the shift
of the critical temperature [40]. The most significant modification happens at the early time when the temperature of
the medium is remarkably higher with the finite size effect, although the entropy densities are the same in two cases.
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FIG. 2: Time evolution of the medium temperature with and without the finite size effect. The entropy densities are taken the
same in both cases.

III. J/ψ SUPPRESSION

The suppression of heavy quarkonia is attributed to gluon dissociation at the leading order, and the dissociation
rate of J/ψ is

α(p, T, L)

=
1

EL

+∞
∑

nz=1

∫

dkT
(2π)2εg

pµk
µσcc̄gJ/ψfg(kT , nz, T, L),

where p = (E,p) and k = (εg,kT , kz) are four-momenta of the J/ψ and the gluon, respectively, with kz = π
Lnz.

The cross section of gluon dissociation process of J/ψ can be calculated via the Operator Production Expansion
method [20, 41] as

σcc̄gJ/ψ = A0
(ω/ǫ− 1)3/2

(ω/ǫ)5
, (8)

where ω = (p+k)2−m2

2m is the energy of gluon in J/ψ frame, and m is the mass of a J/ψ. In the above, ǫ =
4m2

c−m
2

2m is

the threshold of the process, with the constant A0 = 211π/(27
√

m3
cǫ). The distribution function of gluons is assumed

to be thermal in the lab frame

fg(kT , nz, T, L) =
gg

eβεg − 1
(9)

with gg = 16 being the degree of freedom of spin and color, and ǫg is the energy of gluon in the medium frame.
When the system size is finite, the gluon spectrum is

fεg ≡
dNg

dεgdV
=

gg
2πL

[

εg
ε0

]

εg
eβεg − 1

, (10)

where Ng and ε0 = π/L are the number of gluons and the energy of their ground state, respectively. The spectra
of gluons in both finite and infinite size at the same temperature are compared in Ref. [38]. With the assumption
that the medium expands adiabatically, a comparison at the same entropy density makes sense. For simplicity, we
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FIG. 3: Finite size effect on the gluon spectrum. All curves are with the same entropy density but different longitudinal size
L. The temperature of gluons at L = +∞ is 200 MeV.

consider the medium as massless gluon gas without quarks firstly. This is shown in Fig. 3. The spectrum starts to be
finite at εg = ε0, and there is a jumping point in the spectrum at every multiple of ε0 because of discrete momentum
values in the longitudinal direction. Integrating the spectrum function, one obtains the average number of gluons

Ng =
∫

fεgdεgdV . In a small Λ limit, it gives Ng =
ggAΛ
2L2 e

− π
L = ΛSg/π. As discussed in the previous section, with

fixed entropy density, Λ decreases slowly as L decreases at small L. Therefore the number density of gluons becomes
slightly smaller, when L becomes smaller. Besides that, when the system becomes smaller, the spectrum shifts to
the higher energy side. For gluon dissociation, the cross section is negligible when the energy of gluon is far larger
than the threshold ǫ. Therefore when the size is small enough, even if the temperature of the medium is high, the
suppression may still be weak.
The dissociation rate α of J/ψs at rest as functions of entropy density of gluon gas is shown in Fig. 4, so that α

with different longitudinal fireball size L can be compared. To be intuitive, we have replaced the entropy density on
the x-axis by the temperature for L = +∞ in the figure. In this calculation, we have taken mc = 1.87 GeV, and
m = 3.1 GeV, so that the threshold is ǫ = 0.71 GeV. The dissociation rate α increases with L when L is small up to
about L = 0.8 fm. Then it decreases a little at L = 1 fm, and finally approaches to the curve with L = +∞. For the
curve L = 0.2 fm, the energy of ground state of gluon is ω0 = π/L = 3.1 GeV≫ ǫ, which leads to small cross section
as indicated by Eq. (8), and therefore the dissociation rate is far smaller than that in infinite space. At L = 0.8 fm,
the corresponding ω0 = 0.77 GeV is comparable with ǫ. In other words, the length that maximize the dissociation
rate can be estimated as Lm = π/ǫ if the system is thermalized. This offers a time scale, far before which the gluon
dissociation is negligible, even if the temperature of the fireball is high. Values of Lm are listed in Tab. I, where the
binding energy is taken as that in vacuum. Around Lm, almost all the gluons are above the threshold, but not too
far from it, so that α is larger than that in infinite space in which case some gluons are with low energy, especially
when the entropy density is relatively small. When L exceeds Lm, part of gluons drops below the threshold, resulting
in a smaller α, as the curve of L = 1 fm shows. In this case, α is smaller at the high entropy density region than that
in infinite space because of the valley structure in gluon spectrum, and it is larger at the low entropy density region
because the energy of gluons are still remarkably larger than the thermal average in infinite space. (See Fig. 3)
With the dissociation rate, one finds the survival probability R of a initially produced J/ψ

R = e−
∫ tf
t0

αdt. (11)

In models without the finite volume effects, t0 is usually taken as the formation time of the QGP to avoid the
divergence of α, and the suppression before the formation of the QGP is neglected. Therefore the survival probability
depends on the parameter t0. The results of Tab. I implies that the time scale of gluon dissociation varies dramatically
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FIG. 4: Comparison of the dissociation rate α of J/ψ with with different longitudinal size L of space. Points at the same
x-coordinate have the same entropy density. To be intuitive, we label the x-axis by the temperature T of the infinite space
instead.

quarkonium J/ψ ψ′ Υ(1S) Υ(2S) Υ(3S)

m (GeV) 3.097 3.686 9.460 10.023 10.355

ǫ (GeV) 0.71 0.054 1.16 0.55 0.21

Lm (fm) 0.87 11.6 0.53 1.1 3.0

TABLE I: Threshold ǫ and the longitudinal size Lm that approximately maximize the dissociation rate at fixed entropy density.

for different bound states. Since α vanishes at t = 0, an alternative way to calculate the survival probability is to set
t0 = 0 in Eq. (11) to include part of the dissociation before the formation of QGP and the parameter t0 dependent is
released. The following calculation adopted the later one.
In order to understand the results of R, we work out three calculations for comparison: (I) taking tf as the end of

the mixed phase (about 6.5 fm/c in Fig. 2), when the QGP entirely vanish with L dependent critical temperature Tc,
(II) taking tf as the beginning of the mixed phase (about 2.0 fm/c in Fig. 2) with L dependent Tc, (III) taking tf as
the end of the mixed phase (about 7.0 fm/c in Fig. 2) with fixed Tc = 165 MeV but L dependent equation of state
in QGP phase. The results are listed in Tab. II with different initial entropy density, the entropy density is labeled
by the temperature T at time t in the QGP phase without finite volume effects. By comparing (II) and (III), one
finds that the shift of Tc affect the survival probability of J/ψ little. By comparing (I) and (II), one finds that the
suppression is mainly due to the pure QGP phase, and the mixed phase plays a minor role under the conditions listed
in the table. These results are observed with both pT = 0 GeV and pT = 3 GeV of J/ψs, and with different entropy
densities.

pT (GeV) 0 3

calculation (I) (II) (III) (I) (II) (III)

t = 1.0 fm T = 250 MeV 0.482 0.412 0.416 0.511 0.436 0.433

t = 0.6 fm T = 250 MeV 0.693 0.622 0.627 0.723 0.649 0.643

t = 1.0 fm T = 200 MeV 0.743 0.688 0.686 0.768 0.711 0.702

TABLE II: Survival probabilities of J/ψ at different calculations.
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IV. SUMMARY

Gluon dissociation of J/ψ is studied in a box that is finite in the longitudinal direction and infinitely large in the
transverse direction. The longitudinal boundary conditions change the spectrum of thermal partons, the equation of
state of the medium and the critical temperature of the deconfinement phase transition. This modifies the values of
the medium temperatures at the same entropy density, and therefore modifies the time evolution of the temperature
under the assumption of entropy conservation. With different values of the temperatures and the time evolution of
the bulk medium, the J/ψ dissociation rate and the survival probability are calculated. The finite size effect reduces
the J/ψ suppression. When the medium size is around Lm = π/ǫ, the corresponding gluon distribution located in
this finite volume gives the strongest dissociation on J/ψ with its binding energy ǫ.
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