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We propose a model for the streamwise velocity variance in wall-bounded turbulent flows. It
hypothesizes that the wall-parallel motions of the attached eddies induce internal turbulent boundary
layers. A logarithmic variance profile is obtained. The peak value of the variance scaled using the
friction velocity has a logarithmic dependence on the ratio the wall-normal length of the flow to the
thickness of the internal boundary layer induced by the largest attached eddies (δo), the latter having
a dependence on the friction Reynolds number in the form of a Lambert W function. Both the peak
and the length ratio are unbounded at asymptotically large Reynolds numbers. The model also
predicts that the streamwise velocity fluctuations induced by the attached eddies near the viscous
layer scale with the friction velocity; therefore the scaled velocity variance there remains finite at
asymptotically large Reynolds numbers.

Introduction

The variances of wall-parallel fluctuating velocities in
the near-wall region in wall-bounded turbulent flows
are important statistic for fundamental understanding
of such flows and for engineering applications. For ex-
ample, in the zero-pressure-gradient turbulent boundary
layer, the streamwise derivative of the streamwise veloc-
ity variance, ∂u2

1/∂x, is one of the quantities determining
the higher-order mean velocity profile. Also, dispersion
in such flow depends on the spanwise velocity variance.
Townsend [1] predicted using the attached-eddy model

that the peak of the scaled variance u2+
1 = u2

1/u
2
∗ ∼

lnRe∗ = lnu∗δ/ν, where u∗, Re∗, ν, and δ are the friction
velocity, the friction Reynolds number, the kinematic vis-
cosity, and the wall-normal scale of the flow, which can
be the half channel width, pipe radius, or the boundary
layer thickness. This prediction is in apparent contradic-
tion of the law-of-the-wall [2] type scaling which requires
that the scaled variance is independent of Re∗. In recent
years, there have been many efforts devoted to this issue
[3–13].

Experimental and direct numerical simulation results

have both shown that u2+
1 has a (inner) peak near

y+ = u∗y/ν = 15 and the peak value appears to increase
with Re∗ [5, 14, 15], consistent with Townsend’s predic-
tion, where y is the wall-normal coordinate. On the other
hand, Chen & Sreenivasan [12] argued that this predic-
tion will lead to an unbounded viscous-scaled dissipation
rate as Re∗ → ∞, which is inconsistent with the maxi-
mum of 1/4 for the scaled production. They proposed a
model based on the dissipation rate, which predicts that

the inner peak of u2+
1 will asymptote to a value of ap-

proximately 12. They also argue that their prediction fits
the existing data better than Townsend’s prediction.

While the asymptotic behavior of the inner peak has
not been fully resolved, experimental results [16–18] have
shown that another peak is emerging further away from
the wall, with its location in terms of y+ increasing with

Re∗. This peak, often referred to as the “outer” peak, has
has also received some attention in recent years. Pullin
[19] obtained a logarithmic dependence of the peak value

of u2+
1 on Re∗. In this work, we propose a model for

the streamwise velocity variance by hypothesizing the
existence of internal turbulent boundary layers induced
by the attached eddies. The model provides both the
Reynolds number dependence of the “outer” peak and
the contributions from attached eddies to the velocity
variance near the viscous layer. The latter will also help
address the issue of boundedness of the inner peak near
the viscous layer.

Internal boundary layer analysis

In the traditional understanding of the attached eddy
model and the interpretations of experimental and sim-
ulation results based on the understanding, the wall-
parallel motions of the attached eddies are considered
to extend towards the wall until viscous effects damp
them (at y+ ∼ 15) (e.g.,[1]). In this work we argue that
because these near-wall motions are approximately two-
dimensional, the nonlinear interactions among them are
weak. They have significant interactions only with scales
of order y (or smaller), thereby generating their own, or
internal, turbulent boundary layers with a “free-stream”
velocity of order u∗; therefore, the magnitudes of the ve-
locities of these motions will begin to decrease well before
the viscous effects on them are dominant. By analyzing
the boundary layers, the contributions of the attached
eddies to the velocity variance can be calculated and the

peak value of u2+
1 and its location can be estimated. Note

that we do not consider the streamwise fluctuations due
to mean shear production in the near-wall layer consid-
ered, which are not part of the contributions of the at-
tached eddies, and has been investigated by [12].

For convenience we analyze the properties of the inter-
nal boundary layers in horizontal Fourier space. For a
horizontally homogeneous velocity field, ui, we define its
horizontal Fourier transform over a horizontal physical
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domain of size L × L as [20]

ûi(k) =
1

L2

∫ L

0

ui(x, t)e
−ikxdx, (1)

where k is the horizontal wavenumber vector. Divid-
ing the usual definition of the transform by L2 gives the
Fourier transform the same dimension as well as the same
scaling properties as the velocity, which is convenient for
the scaling analysis.
We first consider the internal turbulent boundary layer

induced by the largest attached eddies with a scale of δ.
The equation for û1(k) can be written as [20]

∂û1(k)

∂t
+ L2

∫

û3(k
′)
∂û1(k − k

′)

∂x3
dk′ + L2

∫

û1ik
′

1û1dk
′

= −ik1p̂+ ν
∂2û1(k)

∂x2
3

.

(2)
In the inner layer of the internal boundary layer, the
viscous stress divergence is important. For k ∼ 1/δi, the
dominant terms are the production term (the second on
term on the LHS in (2)) and the viscous term, where
δi is the viscous length of the internal boundary layer.
The production term has the contributions mostly from
k′ ∼ 1/δi and |k − k

′| ∼ 1/δ, with the latter playing the
role of the “mean” velocity. These terms scale as

u∗

û1(1/δ)

δi
∼ ν

û1(1/δi)

δ2i
. (3)

Here the fluctuations of the attached eddies û1(k −

k
′) interact with the wall-normal fluctuations of scale

δi, û3(k
′), which are due to the usual mean-shear

production/pressure-strain-rate interaction and scale
with u∗, and are part of the “background” turbulence
in which the internal boundary layer develops.
For k ∼ 1/δ in the inner layer, the dominant terms in

(2) are the induced shear stress term (the second on term
on the LHS in (2)) and the viscous term. The former has
the contributions mostly from k′ ∼ |k − k

′| ∼ 1/δi, and
has the same scaling as the viscous term

u∗

û1(1/δi)

δi
∼ ν

û1(1/δ)

δ2i
. (4)

Here the viscous term is the “mean” viscous stress
derivative. From the scaling in (3) and (4), we ob-
tain û1(1/δi) ∼ û1(1/δ), which we denote as v∗, and
δi ∼ ν/u∗ = δν . Therefore, the induced shear stress
scales as u∗v∗. The “mean” velocity derivative in the
inner layer has the form

∂û1(1/δ)

∂y
=

v∗
δν

f(
y

δν
). (5)

Note that the internal boundary layer is a stochastic pro-
cess; therefore, (5) and similar relations are valid in an
average sense.

In the outer layer of the induced boundary layer, the
induced-stress and advection terms (the second and third
terms on the LHS in (2)) are important. They scale as

u∗

v∗
δo

∼
u2
∗

δ
, (6)

where δo is the thickness of the internal boundary layer.
Note again that the “free-stream” velocity of the inter-
nal boundary layer scales as u∗. In the outer layer u1 is
dominated by k ∼ 1/δ. The induced-stress term is dom-
inated by k′ ∼ |k − k

′| ∼ 1/δo, whereas the advection
term (the third term on the LHS in (2)) is dominated by
contributions from k′ ∼ |k − k

′| ∼ 1/δ.
From (6) we obtain u∗/v∗ ∼ δ/δo. The “mean” veloc-

ity derivative in the outer layer has the form

∂û1(1/δ)

∂y
=

v∗
δo

F (
y

δo
). (7)

Asymptotically matching (5) and (7) we obtain a log
law and a logarithmic friction law,

û1(1/δ)

v∗
=

1

κ
ln

y

δν
+B,

û1(1/δ)− u∗

v∗
=

1

κ
ln

y

δo
+ C,

(8)

u∗

v∗
=

1

κ
ln

δo
δν

+B − C = α
δ

δo
, (9)

where α is a non-dimensional coefficient of order one.
Again, these relations are valid in an average sense. A
similar analysis can also be carried out for smaller at-
tached eddies with k > 1/δ. For such eddies δo(k) and
v∗(k) are functions of k.

Velocity variance - outer peak

Based on the above analysis, it is clear from (9) that
δo(k) < δo(1/δ). Therefore, the contribution to the ve-
locity variance from these eddies is u2

∗ ∼ φu(k)k for
1/k > y > δo(1/δ), where φu(k) is the spectrum of u1.
Integrating φu(k) from 1/δ to 1/y results in the variance

u2+
1 =

u2
1

u2
∗

= Av ln
δ

y
+Bv, (10)

the same as given in [? ], where Av and Bv are non-
dimensional coefficients. Because û1(1/δ) decreases with
y for y < δo(1/δ), the variance will peak at yp ∼ δo(1/δ),
with a peak value of

u2+
1p = Av ln

δ

δo
+B′

v, (11)

where B′
v is another non-dimensional constant. Equation

(9) can be rewritten as

u∗

v∗
= α

δ

δo
=

1

κ
(ln

δo
δ

+ lnRe∗) +D, (12)
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which can be further written as

δ

δo
eακδ/δo = eκDRe∗. (13)

We set α = 1 as it can be absorbed into δ/δo and D
by redefine δ/δo. We recognize δ/δo as the Lambert W
function (with eκDRe∗ as the independent variable). The

dependence of u2+
1p on Re∗ can be obtained from (11) and

(12) as

u2+
1p = Av lnW (eκDRe∗) +B′

v, (14)

and shows that the ratio δ/δo and the peak value u2+
1p

grows unbounded as Re∗ → ∞. The unboundedness of
δ/δo indicates that the peak location the peak occurs
deeper into the log layer as Re∗ increases. On the other
hand, since δ/δo increases slower than Re∗ = δ/δν , the
viscous-scaled peak location y+p ∼ δo/δν → ∞ as Re∗ →
∞, i.e., y+p moves further away from the viscous layer as
Re∗ increases.
We now use experimental data of [17] to evaluate the

model. Using the values of u2+
1p at two different Re∗, from

(11) we can obtain

u2+
1p 2

− u2+
1p 1

= Av ln
(δ/δo)2
(δ/δo)1

, (15)

where Av = 1.24 for the data ([17]). From (12) we obtain

(
δ

δo
)2 − (

δ

δo
)1 = −

1

κ
ln

(δ/δo)2
(δ/δo)1

+
1

κ
ln

Re∗2
Re∗1

, (16)

From these equations we obtain the values of (
δ

δo
)1 and

(
δ

δo
)2. Then from (11) and (12) we obtain the values

B′
v = 5.9 and D = −21.4 respectively. Figure 1 shows

the dependence of u2+
1p on Re∗ given by (14). The model

describes the experimental data well for the Re∗ range
≈ 2000− 100, 000, supporting the model hypothesis that
the attached eddies induce internal turbulent boundary

layers to affect the behaviors of u2+
1 .

The Re∗ dependence of u2+
1p highlights the limitations

of the law of the wall, which was proposed for the mean
velocity and is a mean field theory. The velocity variances
are fluctuation statistics. In general, there is no reason
for them to follow a mean field theory, even in wall flows
with a single velocity scale (u∗). Failures of mean field
theories when applied to fluctuations occur more often
in flows with multiple velocity scales, such as in the at-
mospheric boundary layer, where two velocity scales are
present, one due to mean shear (u∗) and the other due
to buoyancy. The Monin-Obukhov similarity theory [21],
developed as a mean field theory, is successful in scaling
the mean velocity in the surface layer of the atmospheric
boundary layer, but fails to scale the wall-parallel veloc-
ity variances and spectra. Since fluctuating velocities can
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FIG. 1. Outer peak value of non-dimensional velocity variance
as a function of Re∗. Circles: experimental data of pipe flows
shown in [18]; Solid line: Theoretical prediction of equation
(14).

have contributions from a wide range of scales, to account
for these contributions, a multipoint (minimum of two-
point) theory is needed. [20, 22] developed the multipoint
Monin-Obukhov similarity theory, successfully overcom-
ing the limitations of the original theory. The analysis
of the streamwise velocity fluctuations in Fourier space
(Eq. 2) in the present work is essentially a two-point the-
ory, and therefore is capable of successfully explaining
the outer peak of the streamwise velocity variance.

Velocity variance near viscous layer

Since its outer peak location scales as yp ∼ δo, the total

contribution to u2+
1 from the attached eddies begins to

decrease when moving closer towards the wall. We now

estimate u2+
1 for y ∼ δν . In this layer, the horizontal

velocity scale for the attached eddies of scale δ(k) is v∗(k).
For the attached eddies of scale 1/k < δ, it is given by

v∗(k) = u∗

δo(k)

1/k
= u∗δo(k)k. (17)

The friction law is

u∗

v∗(k)
=

1

kδo
=

1

κ

{

ln(kδo(k)) + lnRek

}

+D, (18)

where Rek = u∗/(kν). The contribution to u2
1 is v2∗(k) =

φu(k)k. Therefore, φu(k) = v2∗(k)/k. Integrating it from
1/δ to 1/(βδν), where β > 1 is a non-dimensional con-
stant such that an internal boundary layer exists for at-
tached eddies of scale βδν or larger, we have

u2
1 ∼

∫ 1/(βδν)

1/δ

v2∗(k)

k
dk = u2

∗

∫ 1/(βδν)

1/δ

δ2o(κ)

k(1/k)2
dk. (19)

It is unclear how to proceed with direct integration. In-
stead we define W (k) = 1/(kδ0). Equation (18) can be
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written as

W (k) =
1

κ

{

− lnW (k) + lnRek

}

+D. (20)

The differential of the this expression is

dW (k) =
1

κ

{

− d lnW (k)− d ln k
}

. (21)

The integral in (18) can be written as

∫ 1/(βδν)

1/δ

d ln k

W 2
=

∫ βδν/δ0(1/βδν)

δ/δ0(1/δ)

−(κdW + d lnW )

W 2

=
κ

W

∣

∣

∣

∣

∣

βδν/δ0(1/βδν)

δ/δ0(1/δ)

+
1

W 2

∣

∣

∣

∣

∣

βδν/δ0(1/βδν)

δ/δ0(1/δ)

=
κ

βδν
δ0(1/βδν)

−
κ

βδ

δo(1/δ)

+
1

2β2δ2ν
δ2o(1/βδν)

−
1

2β2δ2

δ2o(1/δ)

, (22)

which remains finite as δ/δo(1/δ) → ∞ (Re∗ → ∞). This

result indicates that the contributions to u2
1 from the at-

tached eddies scale as u2
∗ for y ∼ δν , and do not lead to

an unbounded peak near the viscous layer at asymptot-
ically large Re∗. Our model therefore suggests that the

asymptotic value of the inner peak of u2+
1 as Re∗ → ∞

is determined by the local turbulence dynamics among
production, dissipation, and transport, which is argued

to result in a finite inner peak value u2+
1p because the

viscous scaled production has a maximum of 1/4 [12].

Conclusions

We proposed a model for the contributions from the at-
tached eddies to the streamwise velocity variance based
on the internal boundary layers induced by the attached
eddies. A spectral analysis shows that the viscous length
of these boundary layers is the usual viscous length
δν = ν/u∗. The momentum balance in the outer layer
of each internal boundary layer is between the advection
and wall-normal shear-stress derivative. A logarithmic
friction law with the “free-stream” velocity as u∗ is ob-
tained, which gives the “mean” velocity scales of the in-
ternal boundary layers. A peak in the scaled streamwise

velocity variance u2+
1 is predicted, which is unbounded

as Re∗ → ∞. The peak location moves deeper into the
log layer as Re∗ increases. In the mean time it moves
to larger y+, further away from the viscous layer. The
model is able to explain the experimental data of pipe
flows [17] well.
The model also predicts that the total contribution

from the attached eddies to the streamwise velocity vari-
ance near the viscous layer scales with the square of the
friction velocity. This result combined with the finite
contributions from the local turbulence dynamics among

production, dissipation, and transport [12] suggests that
that the peak near y+ = 15 is finite as Re∗ → ∞.
The results in the present study also have implications

for the second- and higher-order mean velocity profile in
turbulent boundary layers.
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