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Abstract. One of the key challenges in synthetic biology is devising robust signaling
primitives for engineered microbial consortia. In such systems, a fundamental signal
amplification problem is the majority consensus problem: given a system with two input
species with initial difference of ∆ in population sizes, what is the probability that the
system reaches a state in which only the initial majority species is present?

In this work, we consider a discrete and stochastic version of competitive Lotka–
Volterra dynamics, a standard model of microbial community dynamics. We identify
new threshold properties for majority consensus under different types of interference
competition:

– We show that under so-called self-destructive interference competition between the
two input species, majority consensus can be reached with high probability if the
initial difference satisfies ∆ ∈ Ω(log2 n), where n is the initial population size. This
gives an exponential improvement compared to the previously known bound of
Ω(

√
n log n) by Cho et al. [Distributed Computing, 2021] given for a special case

of the competitive Lotka–Volterra model. In contrast, we show that an initial gap
of ∆ ∈ Ω(

√
log n) is necessary.

– On the other hand, we prove that under non-self-destructive interference competi-
tion, an initial gap of Ω(

√
n) is necessary to succeed with high probability and that

a Ω(
√
n log n) gap is sufficient.

This shows a strong qualitative gap between the performance of self-destructive and
non-self-destructive interference competition. Moreover, we show that if in addition the
populations exhibit interference competition between the individuals of the same species,
then majority consensus cannot always be solved with high probability, no matter what
the difference in the initial population counts.
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1 Introduction

Synthetic biology is a discipline focusing on the rational engineering of biological systems [17, 18].
Early results built basic computational modules, such as memory [36], clocks [25, 32], and sensors [53]
in the bacterium Escherichia coli. Recently, synthetic biologists have started to engineer synthetic
consortia consisting of multiple interacting microbial species that collectively implement distributed
biological circuits [14, 56, 66, 70]. This has lead the bioengineering community to face a fundamental
challenge of distributed systems: the need for robust coordination primitives to coordinate the
activities of all different microbial populations comprising the circuit [5, 14, 44, 56].

Synthetic biologists have recognized that (a) such problems are studied in the field of distributed
computing and that (b) the existing models of distributed computing poorly capture key aspects
of microbial systems [12, 27, 45, 50]. Classical models of distributed computing ignore even the
most elementary ecological processes that take place in microbial consortia, such as the stochastic
reproduction and mortality of individual cells and competition between different species [42, 73].

This limitation holds even for many popular models of distributed computing explicitly motivated
by biological computation, such as the widely studied population protocol model [1, 8, 10, 13, 30].
Unfortunately, these fundamental ecological processes are (1) in general unavoidable in synthetic
microbial consortia, (2) lead to stochastic fluctuations in the community size and composition, which
are key drivers of microbial population dynamics [73], and importantly, (3) dealing with them is one
of the main challenges in engineering microbial consortia [14, 44, 50].

While theoretical foundations of molecular and biological computation have gained increasing
attention in recent years [3, 20, 29, 34, 35, 63, 65], there is scarcely any work focusing on the theory
of distributed computing in microbial consortia, despite the fact that distributed computing has
become a fundamental paradigm in synthetic biology. Here, we initiate the complexity theoretic
study of the computational power of programmable ecological interactions [54] in microbial circuits.

1.1 The problem: majority consensus

Majority consensus is a fundamental problem in distributed computing [2, 8, 22, 23, 30, 31, 33, 61].
In this problem, each node in the system is given a local input bit, and the task is for each node to
output the input bit given to the majority of the nodes.

Majority consensus has also been identified as a useful signaling primitive for engineered microbial
consortia in theory [21] and practice [5]. The goal is to design a genetic circuit, where the (gene
expression) state of each cell is determined by the species which is in the majority [5]. This primitive
can be used as a robust differential signal amplifier [21] when composing complex circuits implemented
by different populations [66]. However, it remains unclear how to efficiently solve this problem in
the microbial setting, where individuals replicate, die, and compete with one another.

The performance of majority consensus protocols is typically studied as a function of the initial
population size n and the initial difference ∆ between the counts of the majority and minority input
species. In exact majority consensus, the goal is to correctly compute the majority with probability 1
for any ∆ > 0, whereas in approximate majority consensus, the protocols are allowed to fail with a
probability that depends on n and ∆. Typically, the aim is to obtain protocols that succeed with high
probability in n for as small as possible ∆. Intuitively, the smaller ∆ a protocol can deal with, the
better the protocol tolerates noise: in the synthetic biology setting, such protocols are instrumental
in amplifying signals produced by noisy (biological) processes, e.g., microbial subcircuits.

For example, in the stochastic population protocol model [7], where a random scheduler picks
pairs of nodes to interact uniformly at random in each time step, both exact [1, 4, 30, 31, 61]
and approximate [8, 24] versions of majority consensus have been studied. There is a simple (but
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challenging to analyze) 3-state protocol [8] that solves approximate majority consensus in O(n log n)
interactions with high probability whenever ∆ ∈ Ω(

√
n · log n). This protocol can in principle

implement a cell cycle switch in cellular populations [19]. In contrast, for exact majority consensus,
it is known that any O(1)-state protocol requires Ω(n2) expected interactions [1], but there is a
O(log n)-state protocol that solves the problem in O(n log n) interactions in expectation [30].

1.2 Our focus: from molecular to microbial computation

The population protocol model captures uncertainty arising from unpredictable interaction patterns,
but it does not capture demographic noise, i.e., the stochastic fluctuations in the community
composition that arise from the chance events of the underlying biomolecular [12, 72] and ecological
processes [42, 52, 73] taking place in microbial systems. For small populations, as in the case of
synthetic microbial consortia, demographic noise is known to have a significant impact on the realized
dynamics.

In this work, we take steps towards developing a theory of microbial computation that investigates
the computational power of ecological interactions. Motivated by the recent experimental [5, 54] and
mathematical modeling work utilizing ecological competitive mechanisms [6, 21, 57] in the design of
distributed majority consensus algorithms in synthetic microbial consortia, we study the following
question at the interface of theoretical computer science and synthetic ecology:

How does (a) demographic noise and (b) the choice of engineered, competitive mechanisms
impact the performance of microbial majority consensus protocols?

We investigate the majority consensus problem in discrete Lotka–Volterra models of well-mixed,
competitive microbial communities. These are standard models used in microbiology that explicitly
model the reproductive and competitive dynamics of microbial species over time [26, 42, 73]. The
analysis of stochastic population models is considered important but highly challenging in the
biomathematics [15, 38, 49] and statistical physics communities [28, 48, 60, 67]. Recently, their
rigorous analysis has started to gain interest also in theoretical computer science [6, 21, 24].

We develop new techniques to analyze the behavior of majority consensus dynamics in stochastic,
competitive Lotka–Volterra models, and show that in principle (1) ecological processes can be
algorithmically exploited to obtain robust majority consensus protocols, and that (2) different
ecological mechanisms can have substantial impact on the performance of microbial protocols.

1.3 The model: stochastic Lotka–Volterra dynamics

We now introduce the stochastic two-species Lotka–Volterra (LV) models of competing microbial
populations. These LV models generalize the models of microbial majority consensus previously
studied in the distributed computing community [6, 21]. Lotka–Volterra dynamics can be derived
mechanistically from several different biological assumptions. Here, we have derived the models
assuming interference competition [43] between the species, as interference competition can be
programmed into synthetic microbial populations using readily available genetic modules [54].

The Lotka–Volterra models. As typical for non-spatial biological population models [15, 72],
our models are formally represented as chemical reaction networks [16, 40], assuming unit volume.
For the sake of brevity, we do not give the full general definition of the chemical reaction network
formalism, as we only work with two basic models. Following the standard reaction kinetics notation,
the Lotka–Volterra model with self-destructive interference competition is given by

Xi
β−→ Xi +Xi Xi

δ−→ ∅ Xi +X1−i
αi−→ ∅ Xi +Xi

γi−→ ∅, (1)
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where Xi denotes an individual of species i ∈ {0, 1}, ∅ denotes the removal of each reactant species
and αi, β, δ, γi ≥ 0 are constant rate parameters. We note that here we treat the reactions with
reactants X0 +X1 and X1 +X0 of different species formally as different reactions unlike typically in
chemical reaction network formalism – this purely for notational convenience.

Our second model is the Lotka–Volterra model with non-self-destructive competition given by

Xi
β−→ Xi +Xi Xi

δ−→ ∅ Xi +X1−i
αi−→ Xi Xi +Xi

γi−→ Xi, (2)

for i ∈ {0, 1}. We often write α = α0+α1 and γ = γ0+γ1. We say that the system is neutral if both
species have identical rate parameters. Unless otherwise specified, we consider neutral communities.
In both models, the reactions have at most two reactants. We call reactions with a single reactant
individual reactions and reactions with two reactants pairwise interactions between individuals.

Biological interpretation. We assume a well-mixed setting as encountered in a bioreactor, with
a growing microbial community consisting of two populations of different species. We primarily
focus on the early stages of the microbial population dynamics, the so-called exponential phase of
microbial growth, where the population size is far from the carrying capacity of the environment
(e.g., growth is not limited by availability of nutrients or space).

Each individual of input species i ∈ {0, 1} reproduces at per-capita rate β ≥ 0 and dies at
per-capita rate δ ≥ 0. In addition to these reproductive dynamics, we assume that interactions
between individuals happen via interference competition: individuals of species i encounter and
individuals of species 1− i at rate αi ≥ 0, and individuals of the same species i encounter and kill
each other at rate γi ≥ 0. Competition between individuals of different species is called interspecific,
whereas competition between individuals of the same species is intraspecific.

When species engage in a competitive interaction, the outcome can be either symmetric (both
individuals die) or asymmetric (only one individual dies). These two cases correspond to the two
different models (1) and (2), and they have biologically very distinct interpretations. The former
scenario corresponds to self-destructive interference (e.g., cells release a bacteriocin via lysis), whereas
the latter scenario corresponds to non-self-destructive interference (e.g., cells secrete a bacteriocin or
puncture the membrane of other cells on physical contact). Both types of competition are exhibited
by bacterial species [43]. Non-self-destructive interference can also be implemented in engineered
populations using, e.g., programmable plasmid conjugation [58], as suggested by Cho et al. [21].

Stochastic kinetics. For both model variants, a configuration is a vector x = (x0, x1) ∈ N2, where
xi gives the count of species i in the configuration. In a configuration (x0, x1), the individual birth
reactions of species i have propensity βxi and individual death reactions have propensity δxi. The
propensity of an interspecific competition reaction is αx0x1 and the propensity of an intraspecific
competition reaction is γxi(xi − 1)/2. The total propensity of the configuration (x0, x1) is given by

φ(x0, x1) =
∑

i∈{0,1}

(αix0x1 + βxi + δxi + γixi(xi − 1)/2) .

Under continuous-time stochastic kinetics, the time until the next reaction in a configuration x is
exponentially distributed with rate φ(x). Given that the current configuration is x, the probability
that R is the next reaction is φR(x)/φ(x), where φR(x) is the propensity of the reaction (as above).

The stochastic trajectory under stochastic kinetics is given by a continuous-time Markov process
X = (Xt)t≥0 on the state space N2, where Q(x,y) gives the propensity of the chain from transitioning
from state x to state y. In this work, we primarily focus on the jump chain S = (St)t≥0 of X, which
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Competition Self-destructive Non-self-destructive Reference

Interspecific only Ω(
√
log n) — O(log2 n) Ω(

√
n) — O(

√
n log n) Sec. 6 and Sec. 7

Both inter- and intraspecific ≥ n− 1 ≥ n− 1 Sec. 8.1
Intraspecific only ∞ ∞ Sec. 8.2

Interspecific and δ = 0 O(
√
n log n) O(

√
n log n) (*) [21] and [6]

No competition (α = γ = 0) n− 1 n− 1 [6]

Table 1: Worst-case majority consensus thresholds for different LV models. The first three rows are
new results, the last two results are from prior work. (*) The model of [6] is not strictly a special
case of the LV model, as it assumes bounded, non-mass-action birth rates.

is the discrete-time Markov chain given by the transition probabilities P (x,y) = Q(x,y)/φ(x) for
φ(x) > 0. If φ(x) = 0, then P (x,x) = 1 and P (x,y) = 0 for y ̸= x. Here, St represents the counts
of both species after t ∈ N reactions have occurred.

Majority consensus. We say that species i ∈ {0, 1} in a state St = (x0, x1) is the majority species
if xi > x1−i holds. In particular, we say that the majority species in the initial configuration S0 is
the initial majority species. The species who is not the initial majority species is the initial minority
species. We say that a configuration (x0, x1) has reached consensus if x0 = 0 or x1 = 0. In such a
configuration, we say that the species i has won if xi > 0 and x1−i = 0. i.e., the species i is the
majority species in the configuration (x0, x1). We define the consensus time of the chain S to be

T (S) = inf{t : St has reached consensus}

the minimum time until (at least) one of the species goes extinct. We say that the chain S reaches
majority consensus if T (S) is finite and the initial majority species has positive count at time T (S).
We define ρ(S) to be the probability that the chain S reaches majority consensus.

Without loss of generality, we assume throughout that the first species is the initial majority
species, i.e., S0 = (a, b) for some a > b > 0. We use n = a+ b to denote the size of the total initial
population. For every time step t ≥ 0, we define ∆t = St,0 − St,1 to be the difference between the
counts of the initial majority and the initial minority species. In particular, ∆0 gives the initial gap
between the initial majority and minority species.

1.4 Our contributions

In this work, we are interested in how the probability ρ(S) of majority consensus behaves as a
function of the initial gap ∆0 under stochastic kinetics. To this end, we say that Ψ(n) ≥ 0 is a
majority consensus threshold for a Lotka–Volterra model if ρ(S) ≥ 1− 1/n if and only if ∆0 ≥ Ψ.
We identify the asymptotic (and sometimes exact) majority consensus thresholds for two-species
competitive Lotka–Volterra systems under different modes of inference competition. Our main results
are summarized in Table 1 and are as follows.

Interspecific competition. In systems with interspecific competition and no intraspecific com-
petition (i.e., the case α > 0 and γ = 0) we show the following results. First, for self-destructive
interference competition, we show that the majority consensus threshold lies in a polylogarithmic
range between Ω

(√
log n

)
and O(log2 n). This is an exponential improvement in the previous upper

bound of O(
√
n log n) for self-destructive competition shown by Cho et al. [21] in the special case
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with δ = 0 (i.e., a model with no individual death reactions). Our result applies to a much larger class
of models: for any choice of β, δ, α > 0, the chain reaches majority consensus with high probability
provided that the gap is Ω(log2 n). In contrast, we show that if the gap is o(

√
log n) the chain fails

to reach majority consensus with constant probability.
Second, for non-self-destructive interference competition, we show that the majority threshold

lies in a polynomial range between Ω(
√
n) and O(

√
n log n). This shows an exponential separation

between competitive Lotka–Volterra models with self-destructive and non-self-destructive interspecific
interference competition in these models.

In comparison, recently Andaur et al. [6] gave an upper bound of O(
√
n log n) for a slightly

different model with resource-consumer dynamics and interference competition. However, their proof
is only for models without individual death reactions (δ = 0), assumes bounded non-mass-action
growth dynamics, and their analysis only guarantees majority consensus with probability 1−O(1/

√
n)

and not with true high probability (i.e., probability 1− 1/nc for any constant c > 0).
Our upper bound holds for any constant α > 0 and β, δ ≥ 0, i.e., our model also allows for

individual death reactions. Moreover, we can show that majority consensus is reached with high
probability provided that the gap is Ω(

√
n log n). Finally, proof technique can also be applied to the

model of Andaur et al. [6] in a straightforward manner, yielding a stronger probability guarantee for
majority consensus also in their model with bounded, non-mass-action growth rates.

For both self-destructive and non-destructive interspecific competition, we show that consensus
is reached within O(n) events both in expectation and with high probability in the absence of
intraspecific competition.

Intraspecific competition. Finally, unlike prior work, we also investigate majority consensus
in systems with intraspecific interference competition, i.e., competition between the individuals of
the same species. We show that systems with intraspecific competition can be have fundamentally
different behavior in terms of majority consensus. Namely, we show that such majority consensus
thresholds do not always exist. The results are given in Appendix 8.

First, if intraspecific and interspecific competition are equally strong (α = γ) for self-destructive
competition, then the probability of majority consensus is equal to the initial proportion of the
majority species. This implies that majority consensus threshold is at n− 1, and that such systems
cannot solve majority consensus with high probability (in the true sense). A similar result holds
for non-self-destructive competition with γ = 2α. Second, we also show that systems with only
intraspecific interference competition have no majority consensus thresholds: given any gap, the
chain fails to reach majority consensus with at least positive constant probability.

1.5 Technical challenges

For the stochastic LV models without intraspecific competition, our analysis uses a new technical
approach for bounding the noise arising from individual reactions and asymmetric outcomes of
non-self-destructive competition. We introduce a new “asynchronous, pseudo-coupling” technique
that can be used to bound the behaviour of the two-species process before it reaches consensus using
what we call “nice” single-species birth-death chains.

On a high-level, this approach is similar in spirit to the recent coupling techniques of Andaur
et al. [6] and Cho et al. [21], which couple a two-species chain with easier to analyze single-species
birth-death chains. However, there are key differences, and our approach is more general.

Limitations of prior coupling approaches. The existing techniques for microbial majority
consensus [6, 21] are closely tailored to specific model variants they consider. When trying to use
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these techniques to the LV models, both of the previously existing coupling techniques critically
break when the process is allowed to have certain stochastic events that may occasionally benefit the
minority species (e.g., individual death reactions of the majority species decreasing the discrepancy).

Cho et al. [21] use elaborate coupling arguments between several different chains to first establish
a bound on the extinction time, and then couple the two-species chain to parallel birth-only Yule
processes to bound the probability of reaching majority consensus using the regularized incomplete
beta function. In addition to the actual coupling argument, the proof critically assumes that no
individual deaths can occur and that competition is self-destructive. Moreover, the bound obtained
with this technique is exponentially far from the real bound, as we show. The submartingale
argument of Andaur et al. [6] allows for non-self-destructive competition at the cost of forbidding
individual death reactions and losing the guarantee of true with high probability majority consensus.

Overview of new techniques. We resolve the limitations of prior techniques by moving from usual
Markovian couplings that update the single-species chain and the two-species chain simultaneously to
a new type of an “asynchronous pseudo-coupling”. That is, our construction is not strictly speaking a
coupling between the two-species and single-species processes, as the coupled chains are not updated
in lock-step. Despite this complication, we can still carefully extract useful information about the
distribution of events in the two-species chain using stopping time arguments.

This is achieved in part by also deriving a much more detailed accounting of the (demographic)
noise arising from birth reactions of the minority species and death reactions of the majority species.
We abstract the properties of the single-species chain required by the pseudo-coupling, and providing
a more fine-grained analysis of the distribution of events in the single-species chain.

Furthermore, our technique makes far fewer assumptions about the structure of the two-species
system and properties of the dominating chains. Therefore, we suspect that our approach can be
further extended to analyze more realistic models beyond Lotka–Volterra dynamics such as models
incorporating general non-bounded resource-consumer dynamics (i.e., exploitative competition) in
addition to interference competition. Indeed, our new techniques give both a simpler analysis and
stronger guarantees of the previously studied microbial majority consensus dynamics [6, 21].

Our approach in a nutshell. Our main conceptual approach is to analyze the probability of
reaching majority consensus ρ(S) by considering the following random-length sum defined by

F (S) =

T (S)∑
t=1

Ft, (3)

where Ft = ∆t−1 −∆t. Note that Ft > 0 if the discrepancy changed in favor of the initial minority
species and Ft < 0 if the discrepancy changed in favor of the initial majority species at time step t.

The random variable F (S) counts how much the initial gap changes in favor of the initial minority
species. This captures the effects of demographic noise on the difference between the initial majority
and minority species before consensus is reached. Provided that T (S) is finite with probability 1, we
have that ρ(S) = Pr[F < ∆0] = 1− Pr[F ≥ ∆0], that is, we can connect the probability of reaching
majority consensus with an given initial gap to the cumulative density function of F . Since the
random variables T (S) and F1, . . . , FT (S) are dependent, getting a handle on the distribution of F
can be non-trivial. Moreover, in general (Ft)t≥0 does not give a (sub)martingale, so it is not clear if
one can easily employ readily available martingale concentration bounds to analyze the process.

To bound F , we observe that the demographic noise F = Find + Fcomp can be divided to two
components, where Find is the noise arising out of reproductive dynamics (i.e., individual birth and
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death reactions) and Fcomp is the noise arising from competition dynamics. This allows us to obtain
a much more refined bound on total noise in the system by studying both components separately,
which previous techniques were unable to do.

Intuitively, under self-destructive competition, there is only noise from the individual events,
which are fairly rare under the mass action dynamics. This noise turns out to be “polylogarithmic”.
On the other hand, under non-self-destructive competition, there is additional noise coming from
the chance outcomes of the competition events. We show there are O(n) competition events before
extinction. The outcomes of the competition events are (intuitively) similar to a random walk on
the line. The key challenge is that the events causing different types of noise are interleaved.

1.6 Open problems and future directions

We suspect that in general the bound of O(log2 n) for self-destructive competition is not tight for all
parameter ranges (e.g., it clearly is not tight in the case β = δ = 0). The natural step is to identify
the tight asymptotic majority consensus threshold in the case α, β, δ > 0. Second, while we focus
on Lotka–Volterra models, we believe our techniques are applicable to a wider variety of stochastic
population models beyond the competitive, two-species Lotka–Volterra model.

We show that in the worst-case, intraspecific competition can badly hinder the probability of
reaching majority consensus. For example, with self-destructive competition, we identify that the
majority consensus threshold is O(log2 n) with α > 0 and γ = 0 and n − 1 when α = γ > 0. An
interesting open problem is to identify at which point does the majority consensus threshold enter a
sublinear or polylogarithmic regime when α > 0 is a fixed constant and γ → 0.

On a conceptual level, our results suggest interesting computational trade-offs in the design of
microbial circuits: majority consensus protocols utilizing self-destructive competition seem to be less
sensitive to demographic noise than protocols based on non-self-destructive competition. However,
the trade-off is that the former is much more costly at the individual level. From a bioengineering
perspective, it would be interesting to investigate if circuits utilizing non-self-destructive interference
are evolutionarily more stable than circuits utilizing self-destructive competition.

Finally, one may surmise that the computational trade-offs implied by this work are solely
theoretical. For example, idealized well-mixed, mass action Lotka–Volterra models do not capture
the full range of microbial dynamics. However, such models have been experimentally observed to
provide reasonable approximations in many situations [26, 42, 47] also in the context of synthetic
microbial consortia [5, 54]. Regardless, future work should further investigate how relaxing the model
assumptions influence the predicted computational trade-offs and experimentally test this. This
requires developing new proof techniques for dealing with non-mass action models and/or explicit
spatial dynamics.

1.7 Limitations and biological assumptions

This paper focuses on new mathematical techniques for the analysis of distributed consensus dynamics
in stochastic interaction models. Like in all biological models, there are several biological assumptions
and restrictions made in the stochastic Lotka–Volterra models we study. Indeed, our work shows how
subtle differences in model assumptions can fundamentally impact the solvability and complexity of
majority consensus in microbial population models.

Markovian, mass action dynamics. As typical for analytical models, we assume memoryless
species and mass action dynamics. We do not model the internal biophysical or metabolic state
of the individual bacteria. In reality, the reproductive dynamics of microbes can depend on their
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internal state and changing environmental conditions [42]. While such models may very well be used
in numerical simulations, their analysis seems to be far beyond the reach of current proof techniques.
Regardless, our technique can still be used to analyze also models with non-mass-action reactions,
such as those in the biological reaction network model of Andaur et al. [6].

Physical aspects and asymptotics. We assume unit volume. This differs from how molecular
systems are analyzed at the so-called thermodynamic limit, where the ratio of volume and initial
population size remains constant as n → ∞. We do not assume such a constant initial population
density.

While the limit of an infinitely dense cell population is clearly non-physical, the asymptotic
analysis here illuminates the impact of different biological mechanisms on the performance of
microbial protocols with increasing initial cell populations (i.e., larger inputs). In a wetlab setting,
the initial population size can typically vary over a large range, from 1mL−1 to about 109 mL−1 for
E. coli. Nevertheless, it remains open to demonstrate that within this range, asymptotic effects are
dominating, as suggested by numerical simulations done in prior work (see, e.g., [21]).

Finally, it is important to note that while our LV models allow for increasing initial density and
there is no explicitly assumption bounding the maximum size of a population, the population size is
regulated by a carrying capacity induced by density-dependent competition. In particular, when
including also intraspecific competition (γ > 0), the stochastic LV models exhibits the full logistic
growth regime usually observed for microbial populations even after competitive exclusion.

1.8 Structure of the paper

We have delegated some of the proofs to the Appendix. In addition, Section 2 further discusses
the background on previous theoretical and empirical work regarding Lotka–Volterra models and
related work on majority consensus in other models of computing. We start with preliminaries in
Section 3. In Section 4, we establish some useful results regarding the behavior of certain single-
species chains, which we then use to bound the behavior of competitive two-species Lotka–Volterra
chains in Section 5. Section 6 and Section 7 give bounds for majority consensus thresholds under
self-destructive and non-self-destructive interference competition. The lower bounds for majority
consensus thresholds in systems with intraspecific competition appear in Section 8.

2 Related work

2.1 Lotka-Volterra models

Named after the pioneering work of Lotka [55] and Volterra [71], Lotka–Volterra (LV) models
have been the cornerstone of theoretical biology and microbial ecology for over one hundred years.
Gause [37] reported the first experimental validations of the two-species Lotka–Volterra equation
using yeast and protozoa microcosms in 1934. Since then, LV models have become widely applied in
microbial ecology [42]. They have been found to predict well even many aspects of complex microbial
communities [26, 47, 69]. Given the abundance of work on LV models, we only give a brief overview,
focusing on competitive LV models in well-mixed populations.

In biology, the competitive Lotka–Volterra ordinary differential equation model has become the
baseline model for ecological community dynamics [46, 59, 62]. The simplicity of numerical simulation
of ODE models has rendered them a popular choice for modelling synthetic microbial consortia
dynamics [54, 57, 74]. These deterministic models are derived under the assumption of (infinitely)
large continuous populations, ignoring the important stochastic effects driving the dynamics of real
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(finite and discrete) populations [15, 52, 73]. Despite their shortcomings, the key reason for the
popularity of the deterministic models is simple: even complex ODE models are easy to simulate
numerically, while even simple stochastic models tend to be difficult to analyse [15, 38, 49].

This challenge has motivated a significant line of research devoted to the analysis of stochastic,
discrete Lotka–Volterra models in well-mixed populations, typically using the tools of statistical
mechanics [28, 48, 60, 67]. These models closely resemble to the models we use, and many papers in
this area also investigate coexistence and extinction probabilities (as a function of time). However,
they do not investigate the probability of majority consensus as a function of n and ∆, nor compare
how different choices of competitive mechanisms impact these probabilities. Furthermore, these
models usually assume only non-self-destructive competition and finite maximum population size.
This subtly differs from our model, where the carrying capacity arises from interference competition.
In the theoretical computer science literature, convergence and thresholds of discrete LV dynamics
have been studied in the population protocol model [24] in bounded populations.

Comparison with deterministic kinetics. We note that for the two stochastic Lotka–Volterra
models we study, the continuous-valued approximations under deterministic mass action kinetics
correspond to the usual deterministic competitive Lotka–Volterra equations [42, 46]. For two-species
in the neutral case, this is given by the non-linear differential equations

dxi
dt

= xi(r − α′x1−i − γ′xi), (4)

where xi is the density of species i ∈ {0, 1}, r = β − δ is the intrinsic growth rate, γ′ = γ0 = γ1 ≥ 0
is the rate of intraspecific competition, and α′ ≥ 0 is the rate of interspecific competition so that for
model (1), we have α′ = α = α0 + α1, and for model (2) we have α′ = α0 = α1. It is easy to see
that in this model, if α′ > γ′, then the species with the higher initial density will deterministically
always win. Thus, this model fails to capture the stochastic effects occuring in finite populations.

2.2 Majority consensus in stochastic interaction models

The majority consensus problem has been studied in many asynchronous, stochastic interaction
models in fully-connected networks (i.e., well-mixed systems). The problem and its extension,
plurality consensus, have also been studied in synchronous, gossip models with static population
size [9, 11, 23, 33, 39]. However, here we primarily focus on stochastic asynchronous models that
most closely resemble our setting.

Majority consensus in stochastic biological population models. The closest to our work
is the recent work by Cho et al. [21] who considered a special case of our discrete, stochastic
Lotka–Volterra model in a two-species chemical reaction network model. They showed that an
initial gap of Ω(

√
n log n) is sufficient under the assumption δ = 0 and self-destructive interspecific

interference competition. In contrast to their results, our results hold also for systems with δ > 0
and show that an exponentially smaller gap of only Ω(log2 n) suffices for any constant rate constants
α0, α1, β, δ > 0.

More recently, Andaur et al. [6] considered a resource-consumer model of biological population
dynamics with non-self-destructive interference competition. Their model is not strictly speaking a
chemical reaction network model, as they allow for non-mass-action reactions. They showed that in
their model Ω(

√
n log n) gap suffices with probability 1−O(1

√
n). However, their model assumes

bounded, non-mass-action growth and no individual death reactions (i.e., δ = 0). With some work,
our new technique can also applied to their model to obtain a bound of Ω(

√
n log n) with high
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probability, i.e., with probability at least 1− 1/nk, for any constant k > 0. This is because their
dominating chain is also a “nice chain” in the sense we define in Section 4.

Chemical reaction networks. Condon et al. [22] consider the majority consensus problem and
multi-valued consensus in general chemical reaction systems that also allow trimolecular reactions
(i.e., a single reaction can involve up to three reactants and products). They gave bi- and trimolecular
reaction networks for which an initial gap of Ω(

√
n log n) is sufficient with high probability.

While this work operates in the same formal model, the protocols are not directly comparable with
protocols in the two-species Lotka–Volterra model. However, interestingly, their “heavy-B” protocol,
in which reactions have two reactants and three products, and bimolecular “double-B” protocol with
two reactants and two products for each rule, resemble our protocols with self-destructive competition.
On the other hand, the rules in the protocol “single-B” resemble non-self-destructive competition.
However, these protocols employ three species. They also give a two-species trimolecular protocol
that uses three reactants and products.

Population protocols. The population protocol model [7] has become a popular model to study
computation in well-mixed chemical solutions. The model is a special case of the chemical reaction
network model, where each rule has exactly two reactants and products, and each reaction has
unit rate. In particular, this implies that the total population size n remains static throughout the
execution of the protocol.

For majority consensus, Angluin et al. [8] considered approximate majority agreement in the
population protocol model. They give a simple 3-state algorithm that succeeds with high probability
when the initial gap is Ω(

√
n · log n) and the number of steps to reach consensus is O(n log n) with

high probability. The same cancellation-idea used by this protocol also appears in protocols in
a variety of other models, including our Lotka–Volterra protocols and other protocols relying on
competition [6, 21], the “single-B” protocol of Condon et al. [22] and the ternary signalling protocol
of Perron et al. [64]. Perron et al. [64] analysed such a cancellation protocol and showed that if the
gap is linear gap the protocol succeeds with very high probability, i.e., fails to converge to the initial
majority value with exponentially small probability.

Draief and Vojnović [31] showed that there exists a 4-state protocol that always reaches majority
consensus with any positive gap in O(n2) expected interactions. The same protocol was also described
and analysed by Mertzios et al. [61]. This variant of majority consensus, where the protocols are
required to succeed with probability 1, is often referred to exact majority in the population protocol
literature. Alistarh et al. [4] showed that using O(log3 n) states, exact majority can be solved in
only n polylog n interactions in expectation and with high probability.

Subsequently, Alistarh et al. [1] showed that any o(log log n)-state protocol for exact majority that
succeeds requires n2/polylog n interactions. They also showed that using O(log2 n) states majority
can be solved in O(n log2 n) interactions. The upper bound result was subsequently improved to
O(log2 n) states and the lower bound strengthened to Ω(log n) for a large class of protocols by
Alistarh et al. [2]. Recently, Doty et al. [30] gave a O(log n)-state protocol that stabilises in Θ(n log n)
expected interactions, matching the lower bounds.

Czyzowicz et al. [24] considered population protocols with discrete Lotka–Volterra -like stochastic
dynamics. Their Lotka–Volterra dynamics are different, as the operate in the population protocol
model, where the total population size remains static. In particular, there are no individual birth
and death reactions. In this setting, they gave a 4-state protocol that solves majority consensus with
high probability provided that the ratio of the initial input counts a and b is a/b = 1 + ε/(1− ε)
for a constant ε > 0, that is, the initial gap is linear. For their analysis, they also use a coupling
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technique with delays, but their technique is different, as they operate in the population protocol
model with a static maximum size for the system.

While the population protocol model is in spirit similar to the stochastic biological population
models we consider, the full range of algorithmic techniques available in the population protocol
model are not easily (or if at all) realizable in synthetic biology setting. For example, one cannot
completely enforce which reactions are active (e.g., by assuming that no birth/death events occur or
that they occur only during certain phases of the protocol), a technique used by cancellation-doubling
protocols for fast exact majority protocols. In particular a key challenge in the synthetic biology
setting is that reproductive and ecological dynamics are interleaved with the engineered biological
circuits, which in combination give rise to the microbial protocol [5, 54].

Finally, we note that Goldwasser et al. [41] studied the impact of changing population composition
in a synchronous variant of the population protocol model, where an adversary is allowed to make a
bounded number of arbitrary insertions and deletions of individuals per round. They showed that
even under such adversarial changes to population structure, a certain population balancing problem
can be solved efficiently with only small number of states. In their setting, the individuals can also
trigger duplication (birth) and self-destruction (death) events. In contrast, in our setting, the birth
and death events are dictated by the underlying stochastic Lotka–Volterra dynamics.

3 Preliminaries

We use N = {0, 1, . . .} to denote the set of nonnegative integers. For any n > 0, we use log n for the
base-2 logarithm of n and lnn for the natural logarithm of n. For any integer n > 0, we write Hn to
denote the nth Harmonic number given by the sum

∑n
i=1 1/i, which is lower-bounded by lnn.

Concentration bounds. We say that a random variable X is a Bernoulli random variable if X
only takes values in {0, 1}. A random variable X is said to be O(f(n)) with high probability if for any
fixed constant k ≥ 0 there exists a constant C(k) such that Pr[X ≥ C(k)f(n)] ≤ 1/nk. To establish
with high probability bounds, we use two standard results on the concentration of random sums.

Lemma 1 (Chernoff bounds). Let X = X1+ · · ·+Xn be the sum of n independent Bernoulli random
variables. Then

(1) Pr[X ≥ (1 + ε) ·E[X]] ≤ exp
(
−E[X] · ε2/(2 + ε)

)
for any ε > 0, and

(2) Pr[X ≤ (1− ε) ·E[X] ≤ exp
(
−E[X] · ε2/2

)
for any 0 < ε < 1.

We will also make use of a special case of Hoeffding’s inequality for random variables restricted
to the range [−1, 1].

Lemma 2 (Hoeffding’s inequality). Let X = X1 + · · ·+Xn be the sum of n independent random
variables, where Xi ∈ [−1, 1]. Then for any t ≥ 0

Pr [|X −E[X]| ≥ t] ≤ 2 · exp
(
−2t2

n

)
.

For our lower bounds, we also make use of the following anti-concentration bound implied by the
Central Limit Theorem.

Lemma 3. Let ε ∈ (0, 1) be a constant and X be the sum of n i.i.d. random variables X1, . . . , Xn

with mean 0 and variance 1. Then there is a constant θ = θ(ε) > 0 such that for any sufficiently
large n, we have Pr[X > θ

√
n] ≥ ε.
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Stochastic domination and couplings. Let X1 and X2 be two non-negative random variables.
If Pr[X2 ≥ x] ≥ Pr[X1 ≥ x] for all x ≥ 0, then we write X1 ⪯ X2 and say that X2 stochastically
dominates X1. The random variable (X̂1, X̂2) is said to be a coupling of X1 and X2 if the distribution
of X̂i is the same as the distribution Xi, that is, Pr[Xi ≥ x] = Pr[X̂i ≥ x] for any x ≥ 0. We make
use of the following simple lemma.

Lemma 4. Let X = X1 + · · ·+Xn be a sum of (not necessarily independent) Bernoulli random
variables and Y = Y1 + · · ·+ Yn be a sum of independent Bernoulli random variables.

(1) If Pr[Xi = 1 | X1, . . . , Xi−1] ≤ Pr[Yi = 1] for each 1 ≤ i ≤ n, then X ⪯ Y .

(2) If Pr[Xi = 1 | X1, . . . , Xi−1] ≥ Pr[Yi = 1] for each 1 ≤ i ≤ n, then Y ⪯ X.

The proofs of Lemma 3 and Lemma 4 are given in Appendix 9.

4 Bounds for nice single-species chains

Let p, q : N → [0, 1] such that p(n) + q(n) ≤ 1 for all n ≥ 0. The birth-death chain defined by p and
q is the discrete-time Markov chain N = (Nt)t∈N on the state space N, where in each step the chain
goes from state n to n+1 with birth probability p(n), to state n− 1 with death probability q(n). The
probability h(n) = 1 − p(n) − q(n) is the holding probability of the chain in state n. A state x is
absorbing if p(x) = q(x) = 0.

We assume that p(n) > 0 and q(n) > 0 for all n > 0 and p(0) = q(0) = 0 so that 0 is the unique
absorbing state. The absorption time or extinction time of a chain N is E(N) = min{t : Nt = 0},
that is, the minimum time until the chain reaches the unique absorbing state. We say the chain is
nice if there exist constants C,D > 0 such that p(n) ≤ C/n and q(n) ≥ D for all n > 0.

Bounds on number of births for nice chains. For any nice chain started, we will bound the
extinction time E(N) of a chain and the number B(N) of birth events that occur before extinction.
We assume throughout that N0 = n, and with a slight abuse of notation, we write E(N) = E(n)
and B(N) = B(n) for such a chain N . We first asymptotically bound the extinction time. The
lower bound follows immediately from the fact that the chain needs to decrement at least n times to
reach state 0. For the upper bound, the result follows from a known result for the absorption time
of discrete-time birth-death processes; see [68, Theorem 3.1] and [6, Lemma 3].

Lemma 5. For any nice chain started in state n, its expected extinction time is E[E(n)] = Θ(n).

Equipped with the above lemma, we can bound the number of birth events before extinction.

Lemma 6. For any nice chain, the expected number of births satisfies E[B(n)] ∈ O(log n).

Proof. By Lemma 5 and the law of total expectation, for any non-negative integer-valued random
variable X we have the bound

E[E(X)] =
∞∑
k=0

Pr[X = k] ·E[E(k)] ≤ C ′
∞∑
k=0

Pr[X = k] · k = C ′E[X],

where C ′ is the constant of the upper bound from Lemma 5.
We say that a time step t is a holding step if the chain stays in the same state (i.e., neither a

birth or death happen). Let R = R(n) be the minimum time until exactly n non-holding steps have

12



occurred after starting the chain in state n. Clearly, n ≤ R(n) ≤ E(n), since the chain needs to
decrement at least n times before going extinct. Moreover, R(n) is finite with probability 1, as E(n)
is finite with probability 1. Let Bt denote the number of birth events and Dt denote the number of
death events that have occurred by step t ≥ 0. Observe that DR +BR = n, as at time step R, there
have been exactly n non-holding steps. Thus, at time R the chain is in state

NR = n−DR +BR = n− (n−BR) +BR = 2BR.

Moreover, note that
B(n) ≤ BR + E(NR) = BR + E(2BR),

since the number of birth events after step R is upper bounded by the extinction time of the chain
started in state NR. Thus, by linearity of expectation and the above, we get that

E[B(n)] ≤ E[BR] +E[E(2BR)] = (2C ′ + 1) ·E[BR].

We next show that E[BR] ∈ O(log n), which implies the claim of the lemma.
Let us consider the value of BR. Since R ≥ n is the minimum time until exactly n non-holding

steps have happened, we have

BR =

n∑
i=1

Xi,

where Xi is the indicator variable whether the ith non-holding step is a birth event or not. Note that
E[Xi] ≤ C/(n− i+ 1), as the chain is in state at least n− i+ 1 after i non-holding steps. Therefore,
the expectation of BR satisfies

E[BR] = E[X] = E

[
n∑

i=1

Xi

]
≤ C

n∑
i=1

1

n− i+ 1
= C

n∑
i=1

1

i
= CHn,

where Hn is the nth Harmonic number. This proves the claim.

With the bound on expected number of births, some calculations and the application of Markov’s
inequality and Chernoff bounds yield the following claims for all sufficiently large n.

Lemma 7. Let k > 0. For any nice chain, there exists a C(k) such that Pr[B(n) ≥ C(k) · log2 n] ≤
1/nk.

Proof. Let c > 0 such that E[B(n)] ≤ c log n for any n > 0; by Lemma 6 such a constant exists.
Set L = ⌈2c log n⌉, K = ⌈k log n⌉, and M = n + LK. We will assume that n is sufficiently large
so that M ≤ n2 holds. We will make K trials, where in each trial 1 ≤ i ≤ K, we run the chain
until either L birth events occur or the chain hits state 0. After the ith trial, the chain is in
some state ni ≤ n + iL ≤ n + kL ≤ M ≤ n2. We say that the ith trial is successful if the chain
hits the state 0, and otherwise, it fails. Note that B(ni) ⪯ B(n2) for each 1 ≤ i ≤ K and that
E[B(n2)] ≤ c log n2 = 2c log n ≤ L. Since the chain is Markovian and by Markov’s inequality, the
probability that the ith experiment fails is at most

Pr[B(nk) ≥ L] ≤ Pr[B(n2) ≥ L] ≤ Pr[B(n2) ≥ 2 ·E[B(n2)]] ≤ 1

2
.

The probability that all K experiments fail is thus at most 1/2K ≤ 1/nk. After the K experiments,
there have been at most KL ∈ O(log2 n) birth events. Hence the claim follows.
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Lemma 8. Let k > 0. For any nice chain, there exists a θ(k) such that Pr[E(n) ≥ θ(k) · n] ≤ 1/nk.

Proof. Since the chain is nice, there exists a constant D ∈ (0, 1) such that q(m) ≥ D for all m > 0.
Set R = ⌈6n/D⌉. We first bound the number X of holding steps in non-absorbing states (i.e., states
other than 0) that occur during the first R steps. Let Xt be the indicator variable denoting whether
a holding step in a non-absorbing state occurs at step t ≥ 1. Clearly, Nt = 0 =⇒ Xt = 0. For any
n > 0, the probability of such a holding step in state n is at most 1 − p(n) − q(n) ≤ 1 −D, i.e.,
Pr[Xt = 1 | X1, . . . , Xt−1] ≤ 1−D. Let Y1, . . . , YR be a sequence of independent Bernoulli random
variables with Pr[Yt = 1] = 1−D. By Lemma 4, we have that

X =

R∑
t=1

Xt ⪯
R∑
t=1

Yt = Y.

Note that E[Y ] = (1−D)R ∈ Θ(n) and set ε =
√
3(k + 1) lnn/E[Y ]. Since E[Y ] ∈ Θ(n), we have

ε ∈ o(1). Applying the Chernoff bound from Lemma 1 with ε yields

Pr[X ≥ (1 + ε)E[Y ]] ≤ Pr[Y ≥ (1 + ε)E[Y ]] ≤ exp

(
−ε2

3
·E[Y ]

)
≤ 1/nk+1.

Moreover, by Lemma 7 we get that with probability at most 1/nk+1 there are more than C(k+1) log2 n
birth events before the chain goes extinct. Thus for sufficiently large n, with probability 1− 2/nk,
by time R there are at most

K = (1 + ε)E[Y ] + C(k) log2 n

birth events or holding steps in non-absorbing states. For large enough n, we have that ε < D/2
and C(k) log2 n ≤ n. Now

R−K = R− (1 + ε)E[Y ]− C(k) log2 n

≥ R−
(
1 +

D

2

)
(1−D)R− n ≥ R−

(
1− D

2
− D2

2

)
R− n

= R

(
D

2
+

D2

2

)
− n >

DR

2
− n ≥ 6n

2
− n = 2n.

Therefore, out of the R steps, there are at least R−K > 2n steps that are either holding steps in
state 0 or death events. As the chain never reaches a state higher than n + O(log2 n) with high
probability, we get that the chain hits the state 0 in R steps with probability at least 1− 2/nk for
all sufficiently large n, as n+ C(k + 1) log2 n < 2n.

5 Dominating chains for Lotka–Volterra systems

We now introduce a “pseudo-coupling” of single-species birth death chains and two-species Lotka–
Volterra chains that can be used to over-approximate the consensus time and the number of “bad”
individual events that can decrease the gap. Unlike previous “dominating chain” approaches [6,
21], which consider restricted choices of rate parameters, our approach works with any choice of
β, δ, α0, α1 > 0. In particular, we allow individual death reactions with δ > 0 and do not assume
symmetric interference competition, i.e., α0 ̸= α1 is possible. The condition for the dominating chain
is also simpler; this comes with the cost that we do not get a coupling in the strict sense.
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5.1 The chain domination lemma

Let S = (St)t≥0 be a two-species chain. We say that an event at time step t is bad if it decreases the
gap between the minimum and maximum species, i.e., if ∆t+1 = ∆t−1 holds conditioned on that the
minimum species has positive count. Let P (a, b) be the probability that the chain S in state (a, b)
has a bad non-competitive reaction. We say that an event at time step t is good if the species with
the smaller count decreases in count. Let Q(a, b) be the probability that the chain S in state (a, b)
has a good reaction. Note that the probability of bad competitive events is 1− P (a, b)−Q(a, b).

Let N = (Nt)t≥0 be a single-species birth-death chain defined by birth function p and death
function q. We say that N is a dominating chain for S if for any a, b ≥ 0 we have

(D1) P (a, b) ≤ p(min{a, b}), and
(D2) Q(a, b) ≥ q(min{a, b}).

Lemma 9 (Chain domination lemma). Suppose the single-species chain N = (Nt)t≥0 is a dominating
chain for the two-species chain S = (St)t≥0. If N0 ≥ minS0, then

(a) T (S) ⪯ E(N), and
(b) J(S) ⪯ B(N),

where T (S) is the consensus time of S, J(S) the number of bad non-competitive reactions in the
chain S, E(N) is the extinction time of N , and B(N) the total number of births in the chain N .

To prove the lemma, we construct a Markov chain (Ŝ, N̂) on the state space N2 × N. Strictly
speaking, this will not be a coupling of S and N , as only the marginal distribution of N̂ will equal
the distribution of N . However, for each t ≥ 0, we show how to extract random variables from Ŝ
whose marginal distribution equals that of St almost surely (i.e., with probability 1) for every t ≥ 0.

The pseudo-coupling. We construct the Markov chain (Ŝ, N̂) as follows. We set Ŝ0 = S0 and
N̂0 = N0 ≥ minS0. Let (ξt)t≥0 be a sequence of i.i.d. random variables distributed uniformly at
random in the unit interval [0, 1). We determine the state of the chain for step t+ 1 inductively:

(1) Let N̂t = m. We set N̂t+1 as follows:

(a) If ξt ∈ [0, p(m)), then set N̂t+1 = N̂t + 1 = m+ 1.

(b) If ξt ∈ [1− q(m), 1), then set N̂t+1 = N̂t − 1 = m− 1.

(c) Otherwise, set N̂t+1 = N̂t. (A holding step occurs.)

(2) Let St = (a, b). If min Ŝt ̸= N̂t, we set Ŝt+1 = Ŝt. Otherwise, we set Ŝt+1 as follows:

(a) If ξt ∈ [0, P (a, b)), then sample Ŝt+1 conditioned on the event that Ŝt = (a, b) and
the tth event is a bad non-competitive event.

(b) If ξt ∈ [1−Q(a, b), 1), then sample St+1 conditioned on the event that St = (a, b)
and that the tth event is a good competitive interaction.

(c) Otherwise, if ξt ∈ [P (a, b), 1−Q(a, b)), then sample St+1 conditioned on the event
that St = (a, b) and that the tth event is not a good competitive interaction or a
bad non-competitive event.
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One easily checks that, by construction, the marginal distribution of N̂t is equal to the distribu-
tion Nt. Moreover, Ŝt+1 ̸= Ŝt+1 can hold only for steps, where Ŝt = N̂t. So Ŝt does not necessarily
have the same marginal distribution as St. For any t ≥ 0, define Jt(Ŝ) to be the number of bad
non-competitive events that have occurred in Ŝ by time t and Bt(N̂) to be the number of birth
events that have occurred in N̂ by time t.

We say that an event occurs almost surely if it happens with probability 1. For example, we say
that N goes extinct almost surely if the extinction time of N is finite with probability 1.

Lemma 10. If min Ŝ0 = N̂0, then min Ŝt ≤ N̂t and Jt(Ŝ) ≤ Bt(N̂) almost surely for all t ≥ 0.

Proof. We proceed by induction on t ≥ 0. The base case t = 0 is trivial. For the induction step,
suppose min Ŝt ≤ N̂t and Jt(Ŝ) ≤ Bt(N̂) almost surely. By the law of total probability, we have

Pr[min Ŝt+1 ≤ N̂t+1] =

Pr[min Ŝt+1 ≤ N̂t+1 | min Ŝt = N̂t] · Pr[min Ŝt = N̂t]+

Pr[min Ŝt+1 ≤ N̂t+1 | min Ŝt < N̂t] · Pr[min Ŝt < N̂t].

The condition min Ŝt < N̂t implies min Ŝt+1 ≤ N̂t+1 since Ŝt+1 = Ŝt and N̂t+1 ≤ N̂t − 1 by the
transition probabilities of (Ŝ, N̂), as given by rules (1) and (2). For min Ŝt = N̂t, writing N̂t = m
and Ŝt = (a, b), we distinguish three cases via the law of total probability:

(1) ξt ∈ [0, P (a, b))
(2) ξt ∈ [1− q(m), 1)
(3) ξt ∈ [P (a, b), 1− q(m)).

In case (1), by property (D1) of dominating chains, we have ξt ≤ P (a, b) ≤ p(m). Therefore,
by rule (1a) we have N̂t+1 = N̂t + 1 and min Ŝt+1 ≤ min Ŝt + 1 by rule (2a). Combining these
inequalities implies min Ŝt+1 ≤ N̂t+1. In case (2), since ξt ≥ 1 − q(m) ≥ 1 − Q(a, b) by (D2), we
have N̂t+1 = N̂t − 1 by rule (1b) and min Ŝt+1 = min Ŝt − 1 by rule (2b). In case (3), we have
ξt ∈ [P (a, b), 1− q(m)) ⊆ [p(m), 1−Q(a, b)). Thus N̂t+1 ≥ N̂t and min Ŝt+1 ≤ min Ŝt. Therefore,
in all cases, the probability of min Ŝt+1 ≤ N̂t+1 is equal to 1. This shows the first inequality.

For the second inequality, we proceed in a similar manner and note that a bad non-competitive
event can occur in Ŝ only in the case (1). But then by rule (1a) and (2a) we get that Jt+1(Ŝ) =
Jt(Ŝ) + 1 ≤ Bt(N̂) + 1 = Bt+1(N̂). This completes the induction.

For every positive integer k, define the random time τ(k) as the kth smallest time t such that
min Ŝt = N̂t. This is a stopping time of the Markov chain (Ŝ, N̂) [16, Chapter 2, Definition 7.1].

Lemma 11. Suppose Ŝ0 = S0 and min Ŝ0 = N̂0. If N goes extinct almost surely, then τ(k+1) < ∞
almost surely and the marginal distribution of Ŝτ(k+1) equals the distribution of Sk for every k ≥ 0.

Proof. We proceed by induction on k. For the base case, by the hypothesis on the initial states, we
have τ(1) = 0 < ∞ and Ŝτ(1) = Ŝ0 = S0. This proves the base case.

For the induction step, assume that k ≥ 1 and that Ŝτ(k) and Sk−1 are equally distributed.
By the strong Markov property [16, Chapter 2, Theorem 7.1], the process (Ŝτ(k)+t, N̂τ(k)+t)t≥0 is
a Markov chain with the same transition probabilities as (Ŝ, N̂). By definition of τ(k), we have
min Ŝτ(k) = N̂τ(k). By the definition of the transition probabilities of (Ŝ, N̂) for this case, the
states Ŝτ(k)+1 and Sk+1 are equally distributed. We have that

Ŝτ(k)+t = Ŝτ(k)+1 for all 1 ≤ t < τ(k + 1)− τ(k) + 1 (5)
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almost surely by the definition of τ(k + 1) and the transition probabilities of (Ŝ, N̂). In particular,
if τ(k + 1) < ∞, we deduce that Ŝτ(k+1) has the same distribution as Ŝτ(k)+1, which, in turn, has
the same distribution as Sk. It remains to prove that τ(k + 1) < ∞ almost surely. By Lemma 10
and (5),

min Ŝτ(k)+1 < N̂τ(k)+t for all 1 ≤ t < τ(k + 1)− τ(k) + 1. (6)

Since N goes extinct almost surely, we have Nt → 0 almost surely. Since N̂t and Nt are equally
distributed, limt→∞ N̂τ(k)+t = 0 almost surely. Thus, there exists some t ≥ 1 such that min Ŝτ(k)+1 ≥
N̂τ(k)+t almost surely, as min Ŝτ(k)+1 ≥ 0. This contradicts Pr[τ(k+1) = ∞] > 0, so this probability
is hence zero and so Pr[τ(k + 1) < ∞] = 1.

Proof of the chain domination lemma (Lemma 9). We are now ready to give the proof of the
chain domination lemma. For the first claim, observe that by Lemma 11, the marginal distribution
of (Ŝτ(k+1))k≥0 has equal distribution with the chain (Sk)k≥0 almost surely. In particular, since
τ(k + 1) ≥ k always and the minimum cannot increase after hitting 0, we have that

Pr[minSk > 0] = Pr[min Ŝτ(k+1)+1 > 0]

≤ Pr[min Ŝk > 0] ≤ Pr[N̂k > 0],

as by Lemma 10 the event min Ŝk ≤ N̂k holds almost surely. This implies that T (Ŝ) ≤ E(N̂) almost
surely. Therefore, for the consensus time, we get that T (S) is stochastically dominated by E(N), as

Pr[T (S) > k] ≤ Pr[T (Ŝ) > k] = Pr[E(N̂) ≥ T (Ŝ) > k]

≤ Pr[E(N̂) > k] = Pr[E(N) > k].

This establishes the first claim (a) that T (S) ⪯ E(N).
The next step is to show the second claim, i.e., J(S) ⪯ B(N), where J(S) is the number of bad

non-competitive reactions that occur in S and B(N) is the number of births that occur in chain N .
By Lemma 10 and Lemma 11, we have for any k, x ≥ 0 that

Pr[Jk(S) > x] = Pr[Jτ(k+1)(Ŝ) > x]

≤ Pr[Bτ(k+1)(N̂) ≥ Jτ(k+1)(Ŝ) > x]

≤ Pr[τ(k+1)(N̂) > x] ≤ Pr[B(N̂) > x]

= Pr[B(N) > x].

That is, for any k ≥ 0, we have Jk(S) ⪯ B(N) and so J(S) = sup{Jk(S) : k ≥ 0} ⪯ B(N).

5.2 Constructing a dominating chain for competitive Lotka–Volterra systems

Let be a two-species Lotka–Volterra chain S with γ = 0 and αmin = min{α0, α1} > 0. We will now
define a nice birth-death chain N that is a dominating chain for S. By the chain domination lemma
and results for nice chains given in Section 4, this implies that the consensus time of S is O(n) in
expectation and with high probability and that the number of bad non-competitive events is O(log n)
in expectation and O(log2 n) with high probability. Let ϑ = β + δ, α = α0 + α1. Define the birth
probability function p and death probability function q as

p(m) =
ϑ

αm+ ϑ
and q(m) =

αmin

α+ 2ϑ
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for all m > 0 and p(0) = q(0) = 0. Since p attains its maximum at p(1), we have that p(m)+ q(m) ≤
p(1) + q(m) ≤ 1 for all m ≥ 0. Let (Nt)t≥0 be the birth-death chain defined by p and q and fix
N0 ≥ minS0. Since p ∈ O(1/m) and q(m) is a positive constant for m > 0, the chain is nice.

Lemma 12. The nice birth-death chain N defined by p and q is a dominating chain for S.

Proof. Let a, b ≥ 1. We need to show that the following conditions hold:

(D1) P (a, b) ≤ p(min{a, b}), and
(D2) Q(a, b) ≥ q(min{a, b}).

Without loss of generality, assume a ≥ b ≥ 1. For the first condition (D1), note that

P (a, b) =
δa+ βb

αab+ ϑ(a+ b)
≤ ϑa

αab+ ϑa+ ϑb
≤ ϑ

αb+ ϑ+ ϑb/a
≤ ϑ

αb+ ϑ
= p(b).

For the second condition (D2), note that the probability of a good competitive interaction is at least

Q(a, b) ≥ αmin · ab
αab+ ϑ(a+ b)

=
αmin

α+ ϑ(1/b+ 1/a)
≥ αmin

α+ 2ϑ
= q(b).

The following is a straightforward consequence of the chain domination lemma (Lemma 9),
Lemma 12, and the results given in Section 4.

Theorem 13. Let S be a Lotka–Volterra system with αmin > 0 and γ = 0 and an initial population
of size n > 0. The consensus time T (S) and the number J(S) of bad non-competitive events satisfy

(a) E[T (S)] ∈ O(n) and T (S) ∈ O(n) with high probability, and
(b) E[J(S)] ∈ O(log n) and J(S) ∈ O(log2 n) with high probability.

Proof. By construction, N is a nice birth-death chain and a dominating chain for the two-species
chain S. Set N0 = n. By Lemma 9, we have that T (S) ⪯ E(N) and J(S) ⪯ B(N). The claim (a)
follows now from the fact that E(N) ∈ Θ(n) in expectation and with high probability by Lemma 5
and Lemma 8. The claim (b) follows from Lemma 6 and Lemma 7.

6 Lotka–Volterra systems with self-destructive competition

In this section, we show that the threshold for high probability majority consensus lies between
Ω(

√
log n) and O(log2 n) for neutral Lotka–Volterra systems with self-destructive interspecific com-

petition and no intraspecific competition as given by Eq. (1) with α > 0, β, δ ≥ 0 and γ = 0.

Demographic noise under self-destructive competition. Under self-destructive competition,
competitive events cannot change the difference between the two species. Thus, only demographic
noise from the individual birth and death reactions play a role. Let I(S) denote the total number
of such events before the chain reaches consensus by time T (S). Let Ft = ∆t−1 −∆t. Recall from
Eq. (3) that the probability of reaching majority consensus is given by ρ(S) = 1−Pr[F ≤ ∆0], where

F =

T (S)∑
t=1

Ft =

I(S)∑
k=1

Ft(k) (7)

and t(k) is the time when the kth non-competitive event occurs. The equality follows from the fact
that competitive reactions cannot change the gap under self-destructive competition and for any
time step t for which a competitive interaction occurs we have Ft = 0.
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6.1 Upper bound for self-destructive competition

Theorem 14. Let k ≥ 0 be a constant. Suppose S is a Lotka–Volterra system with self-destructive
competition and n = S0 + S1. There is a constant C(k) such that if ∆0 > C(k) log2 n, then

ρ(S) ≥ 1− 1/nk.

Proof. By Theorem 13, the consensus time T (S) is finite with probability one. From Eq. (7) we
have that the probability of reaching majority consensus is given by ρ(S) = 1− Pr[F ≤ ∆0]. Now

1− ρ(S) = Pr[F ≥ ∆0] ≤ Pr[J(S) ≥ ∆0] ≤ 1/nk,

whenever ∆0 ≥ C(k) log2 n, where C(k) is the constant given by Theorem 13. This is because the
J(S) non-competitive reactions that reduce the gap between (current) minority and majority species
will not exceed ∆0 with high probability.

6.2 Lower bound for self-destructive competition

We now show that with self-destructive competition, a Lotka–Volterra system S can fail to reach
majority consensus with constant probability if the initial gap is o(

√
log n). The idea is to show that

when the gap is this small, with at least constant probability, the noise from the individual events
will bring the chain into a state (a, a), for some a > 0, where both species have equal counts. From
such a state, a system with identical species (i.e., equal rate parameters), both species have equal
probability of winning majority consensus (i.e., going extinct last). The next lemma expresses this
observation more formally.

Lemma 15. For a Lotka–Volterra system S with identical species,

1− ρ(S) ≥ 1

2
· Pr[∆t = 0 for some t < T (S)].

The next lemma applies to Lotka–Volterra systems with self-destructive and non-self-destructive
competition and establishes a lower bound on the number I(S) of individual events.

Lemma 16. Let ϑ = β + δ, α > 0 and γ = 0. If ϑ > 0, then there exist constants f, g > 0 such
that I(S) ≥ f logm with probability at least 1− 1/mg, where m is the initial count of the minority
species.

Proof. Define Mt = minSt for every t ≥ 0. Note that M0 = m. For every 0 ≤ k ≤ m, define the
stopping time t(k) = min{t : Mt = k} to be the first time the chain reaches a state where the
(current) minority species has count k. Note that t(k) ≤ T (S) and T (S) is finite with probability 1
by Theorem 13. Let Xt be the indicator variable denoting if a non-competitive event occurs at time
step t ≥ 0. Since the minimum species count can decrease by at most one in each step, the sequence
(Mt)0≤t<T (S) has to visit every state m,m− 1 . . . , 1 at some point before time T (S). Therefore,

I(S) =

T (S)∑
t=1

Xt ≥
m∑
k=1

Xt(k) = X,

where X = Xt(1) + · · ·+Xt(m). Thus, to show the claim of the lemma, it suffices to establish that
X ∈ Ω(logm) holds with probability 1− 1/m. Define p(k) = ϑ/(αk + 2ϑ) and observe that when
the chain is in state (a, k) or (k, a), where a ≥ k ≥ 1, the probability a non-competitive event is

ϑ(a+ k)

αak + ϑ(a+ k)
=

ϑ(1 + k/a)

αk + ϑ(1 + k/a)
≥ ϑ

αk + 2ϑ
= p(k).
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In particular, this implies that for every 0 < k ≤ m, we have Pr[Xt(k) = 1 | Xt(1), . . . , Xt(k−1)] ≥ p(k).
Define Y = Y1+· · ·+Ym as the sum of independent Bernoulli random variables with Pr[Yk = 1] = p(k).
By Lemma 4, we get that Y ⪯ X and so Y ⪯ X ⪯ I(S). Since p(k) ∈ Ω(1/k), there is some constant
0 < c < 1 such that p(k) ≥ c/k for all k. Therefore, by linearity of expectation,

E[Y ] =
m∑
k=1

E[Yk] ≥ c
m∑
k=1

1

k
= cHm ≥ c lnm.

Since Y ⪯ X ⪯ I(S), applying the Chernoff bound (Lemma 1) with ε = 1/2, yields

Pr[I(S) <
c

2
lnm] ≤ Pr[I(S) ≤ (1− ε)c lnm] ≤ Pr[X ≤ (1− ε)c lnm]

≤ Pr[Y ≤ (1− ε) ·E[Y ]] ≤ exp

(
−ε2 ·E[Y ]

2

)
≤ 1/mc/8.

Setting f = c/2 and g = c/8 now concludes the proof.

We are now ready to prove that if the initial gap ∆0 ∈ o(
√
log n), then Lotka–Volterra systems

with self-destructive interspecific competition can fail to reach majority consensus with constant
positive probability.

Theorem 17. Suppose S is a neutral Lotka–Volterra system with β = δ, self-destructive competition
α > 0, and γ = 0. Let ε > 0 be a constant. Then there exists a constant ϕ > 0 such that if
∆0 ≤ ϕ

√
log n, then ρ(S) ≤ 1/2 + ε for all sufficiently large n.

Proof. Let S0 = (m′,m) be the initial state of the Lotka–Volterra chain, where m′ ≥ m > 0 and
m′ ≤ m+ϕ

√
log n so that the initial gap is ∆0 ≤ ϕ

√
logm. By Lemma 16, there is a constant f > 0

such that there are I(S) ≥ K = f lnm individual events before the chain reaches consensus with
probability at least 1− 1/mg. Let t(k) be the time exactly k > 0 individual events have happened.
As before, the probability of reaching majority consensus is given by ρ(S) = 1− Pr[F ≥ ∆0], where

F =

T (S)∑
t=1

Ft =

I(S)∑
k=1

Ft(k),

as competitive reactions cannot change the gap under self-destructive competition. For 1 ≤ k ≤ K,
let Xk = Ft(k) conditioned on the event that I(S) ≥ K. By assumption β = δ, so we have

Pr[Xk = 1 | St(k) = (a, b)] =
δa+ βb

(β + δ)(a+ b)
=

1

2

=
βa+ δb

(β + δ)(a+ b)

= Pr[Xk = −1 | St(k) = (a, b)].

Thus, conditioned on I(S) ≥ K, the random variables X1, . . . , XK are (conditionally) independent.
Moreover, they have mean E[Xk] = 0 and variance Var[Xk] = 1. Let X = X1 + · · · + XK . By
Lemma 3, for any constant ε > 0, we can choose a constant θ > 0 such that

Pr[X > θ
√
K | I(S) ≥ K] ≥ 1− ε/2

for all sufficiently large K. Set ϕ = 3θ
√
f . For large enough n, we have n ≤ 3m and hence

ϕ
√
log n ≤ θ

√
K. Conditioned on the event I(S) ≥ K, we have that with probability 1− ε/2 the
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two-species chain reaches some state (a, a), where a > 0. From this point onward, by Lemma 15, the
probability that the majority species not winning is at least 1/2, as the system is neutral. Therefore,
when n, and thus m, is sufficiently large, the probability to reach majority consensus is at most

ρ(S) ≤ Pr[I(S) < K] + Pr[X ≤ θ
√
K | I(S) ≥ K] + 1/2

≤ 1/mg + ε/2 + 1/2 ≤ 1/2 + ε.

7 Lotka–Volterra systems with non-self-destructive competition

In this section, we show that the threshold for high probability majority consensus lies between Ω(
√
n)

and O(
√
n log n) for Lotka–Volterra systems with non-self-destructive interspecific competition and

no intraspecific competition. That is, we consider the model given by the reactions

Xi
β−→ Xi +Xi Xi

δ−→ ∅ Xi +X1−i
αi−→ Xi,

where αi, > 0, β, δ ≥ 0 and i ∈ {0, 1}. For the upper bound, we allow for non-symmetric competition
α0 ̸= α1. That is, the minority species can be a better competitor than the majority species.

Unlike in the previous section with self-destructive competition, when we have non-self-destructive
competition, also the competition events give arise to noise which influences the gap between the
two species. In particular, there will be Θ(m) competition events in a system with initial minority
of size m, so the noise term F will essentially be Ω(

√
m) and at most O(

√
m logm) as we will see.

7.1 Upper bound

Theorem 18. Suppose S is a Lotka–Volterra system with non-self-destructive interspecific competi-
tion and S0+S1 = n. For any constant k ≥ 0, there is a constant θ(k) such that if ∆0 > θ(k)·

√
n log n,

then ρ(S) ≥ 1− 1/nk.

Proof. Let I(S) be the number of individual events before the chain reaches consensus and K(S) be
the number of competitive events before the chain reaches consensus. Clearly, T (S) = I(S) +K(S).
Now

F =

T (S)∑
t=1

Ft = X + Y, where X =

I(S)∑
i=1

Xi and Y =

K(S)∑
i=1

Yi,

where F and Ft are defined as before in Eq. (3), and Xi is the outcome of the ith non-competitive
event and Yi the outcome of the ith competitive event. That is, Xi = 1 if the gap between the
initial minority and majority species decreases during the ith non-competitive event before the chain
reaches consensus, and Xi = −1 otherwise. Similarly, Yi = 1 if the gap between the initial minority
and majority species decreases during the ith competitive event before the chain reaches consensus,
and Yi = −1 otherwise.

Recall that, as before, the probability of majority consensus is ρ(S) = Pr[F < ∆0]. By
Theorem 13(b), we have that Pr[J(S) > θ

√
n log n] ≤ Pr[J(S) > θ log2 n] ≤ 1/nk+1 for some

constant θ > 0. That is, there are with high probability O(log2 n) events that decrease the gap
between the (current) majority and minority species before the chain reaches consensus.

We now show that Y is O(
√
n log n) with high probability. By Theorem 13(a), we have that

Pr[K(S) ≥ cn] ≤ Pr[T (S) ≥ cn] ≤ 1/nk+1 for some constant c > 0 and all sufficiently large n.
Conditioned on the event K(S) = ℓ, the sum Y is a sum of ℓ (conditionally) independent random
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variables taking values between [−1, 1]. Thus, by the law of total probability and applying Hoeffding’s
inequality with t =

√
(k + 1)cn lnn, we get

Pr[Y ≥ t] =
∞∑
ℓ=0

Pr[K(S) = ℓ] · Pr[Y ≥ t | K(S) = ℓ]

≤
cn∑
ℓ=t

Pr[K(S) = ℓ] · Pr[Y ≥ t | K(S) = ℓ] +
∑
ℓ>cn

Pr[K(S) = ℓ]

≤ 2 ·
cn∑
ℓ=t

Pr[K(S) = ℓ] · exp
(
−2t2

ℓ

)
+ Pr[K(S) > cn]

≤ 2cn · exp
(
−2t2

cn

)
+ 1/nk+1 ≤ 2c

n2k+1
+ 1/nk+1 ≤ 2/nk+1

for all sufficiently large n. Note that t+ θ
√
n log n ≤ θ(k) ·

√
n log n holds for some sufficiently large

constant θ(k) ≥ θ′ depending only on k. Therefore, if ∆0 ≥ θ(k)
√
n log n, then

1− ρ(S) = Pr[F ≥ ∆0] ≤ Pr[J(S) + Y ≥ ∆0]

≤ Pr[J(S) ≥ θ ·
√

n log n] + Pr[Y ≥ t] ≤ 3/nk+1 ≤ 1/nk

for all sufficiently large n, proving the claim.

7.2 Lower bound

Theorem 19. Let ε > 0 be a constant. Suppose S is a neutral Lotka–Volterra system with β = δ,
non-self-destructive competition and γ = 0. Then there exists a constant ϕ > 0 such that if ∆0 ≤ ϕ

√
n,

then then ρ(S) ≤ 1/2 + ε for all sufficiently large n > 0.

Proof. Suppose S0 = (m+∆0,m) is the initial state of the chain S with m > 0 and ∆0 ≤ ϕ
√
m,

where ϕ > 0 is a constant we fix later. Now the total initial population size is n = 2m+∆0 ∈ Θ(m)
and the initial gap is ∆0 ∈ O(

√
n).

Let X1, . . . , Xm denote the outcomes of the first m events, where Xi = −1 if ∆i decreases in the
event and Xi = 1 otherwise. By definition, the random variables are independent and identically
distributed: Pr[Xi = 1] = 1/2 = Pr[Xi = −1] since the competition rates satisfy α0 = α1 > 0, as
the system is neutral (i.e., the species have identical rate parameters) and β = δ. Thus, for each
1 ≤ i ≤ m, we have E[Xi] = 0 and Var[Xi] = 1. Letting X = X1+ · · ·+Xm and applying Lemma 3,
we get

Pr[X ≥ ∆0] = Pr[X ≥ θ
√
m] ≥ 1− ε

Thus, before reaching consensus, the chain reaches some state (a, a), where a > 0, with probability
at least 1 − ε. From this point onward, by Lemma 15, the probability that the majority species
losing is at least 1/2, as the species have identical birth, death and competition rates. Therefore,
when m is sufficiently large, the probability to reach majority consensus is at most

ρ(S) ≤ Pr[X < θ
√
m] + 1/2 ≤ 1/2 + ε.

8 Lower bounds for systems with intraspecific competition

In contrast to our earlier results for systems without intraspecific competition, we now show that
Lotka–Volterra systems with intraspecific competition (i.e., γ > 0) can be much worse signal
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amplifiers than systems with only interspecific competition. Namely, the probability of reaching
majority consensus can be very small.

We show that when the system has both intraspecific and interspecific competition, that is,
α, γ > 0 holds, then the threshold for majority consensus can be Ω(n). In systems with only
intraspecific competition, that is, γ > α = 0, we show that no such threshold exists.

The models with intra- and interspecific competition. In this section, we consider the
neutral model with self-destructive interspecific and intraspecific competition given by the reactions

Xi
β−→ 2Xi Xi

δ−→ ∅ Xi +X1−i
α−→ ∅ Xi +Xi

γ−→ ∅,

where i ∈ {0, 1} and α, γ, β, δ ≥ 0.

8.1 Systems with both intra- and interspecific competition

Self-destructive competition. We consider first the case of self-destructive competition. We
now establish the following result.

Theorem 20. Let S be a Lotka–Volterra chain with self-destructive competition and initial configu-
ration S0 = (a, b), where a ≥ b > 0, α = γ ≥ 0 and β, δ ≥ 0. If the chain reaches consensus with
probability 1, then

ρ(S) =
a

a+ b
.

The above immediately implies that the ∆0 = n− 1 is the only positive gap that can guarantee
majority consensus under self-destructive competition with probability at least 1 − 1/n if γ = α
holds. The above result is a generalization of a similar result by Andaur et al. [6], who established
the same bound for the case α = γ = 0 two independent, non-competing species, to systems with
two competing non-independent species. Let us write ρ(a, b) = ρ(S) and T (a, b) = T (S) for a chain
S with initial state (a, b). Let P be the transition probability matrix of the chain S. By the law of
total probability and the fact that the chain is Markovian, we have that ρ satisfies the recurrence

ρ(a, b) =
∑
x,y≥0

P ((a, b), (x, y)) · ρ(x, y). (8)

with boundary conditions ρ(a, 0) = 1 for all a > 0 and ρ(0, b) = 0 for all b ≥ 0. A straightforward
but tedious calculation shows if α = γ, then ρ(a, b) = a/(a + b) is a solution for the recurrence.
Furthermore, assuming that the chain reaches consensus with probability 1, we can show that the
solution is unique.

Lemma 21. The function a/(a+ b) is a solution for the recurrence given in Eq (8).

Proof. We now give the proof in the case of self-destructive competitive interactions, i.e., a competitive
interaction removes both participating individuals from the system. There are in total seven types
of events: for both species, there are individual birth and death events, which change the population
count by one, and intraspecific competitive events, where two individuals of the same species interact
and are removed. Finally, there are the interspecific competition events that remove one individual
of both species. With this in mind, we can rewrite the recurrence as

ρ(a, b) =
∑

(j,k)∈T1∪T2

P ((a, b), (a+ j, b+ k)) · ρ(a+ j, b+ k),

23



where
T1 = {(1, 0), (0, 1), (−1, 0), (0,−1)} and T2 = {(−2, 0), (0,−2), (−1,−1)}.

Let ri(a, b) be the conditional probability that the first species wins when starting from state (a, b)
conditioned on the event that the next step involves i individuals. Let F denote the event that the
next step involves exactly one individual and observe that

ρ(a, b) = Pr[F ] · r1(a, b) + (1− Pr[F ]) · r2(a, b).

We now show that ri(a, b) = a/(a+ b) for both i ∈ {1, 2}, which then implies that a/(a+ b) is a
solution for the recurrence. First, a simple calculation shows that

r1(a, b) =
βa · ρ(a+ 1, b) + δa · ρ(a− 1, b) + βb · ρ(a, b+ 1) + δb · ρ(a, b− 1)

(β + δ)(a+ b)

Plugging in ρ(a, b) = a/(a+ b) yields

r1(a, b) =
1

(β + δ)(a+ b)

(
βa · a+ 1

a+ b+ 1
+ δa · a− 1

a+ b− 1
+ βb · a

a+ b+ 1
+ δb · a

a+ b− 1

)
=

a

a+ b
.

On the other hand, we have

r2(a, b) =
αab · ρ(a− 1, b− 1) + γa(a− 1)/2 · ρ(a− 2, b) + γb(b− 1)/2 · ρ(a, b− 2)

αab+ γa(a− 1)/2 + γb(b− 1)/2

=
2ab · ρ(a− 1, b− 1) + a(a− 1) · ρ(a− 2, b) + b(b− 1) · ρ(a, b− 2)

2ab+ a(a− 1) + b(b− 1)

using the assumption α = γ. Using the identity (a+ b)(a+ b− 1) = 2ab+ a(a− 1) + b(b− 1) twice,
and plugging in ρ(a, b) = a/(a+ b) we get that

r2(a, b) =
a

(a+ b)(a+ b− 1)
· 2(a− 1)b+ (a− 1)(a− 2) + b(b− 1)

(a+ b− 2)
=

a

a+ b
.

Lemma 22. If the chain reaches consensus with probability one, then the recurrence given by Eq. (8)
has a unique solution.

Proof. Define d(a, b) = f(a, b)− g(a, b), where f and g are two solutions for the recurrence. We will
prove the claim by showing that |d(a, b)| < ε for any ε > 0. Under the assumption that the chain
reaches consensus with probability 1, we have that the consensus time T (a, b) satisfies

lim
k→∞

Pr[T (a, b) > k] = 0.

Therefore, for any ε > 0, there exists k such that Pr[T (S) > k] < ε. Now for any k > 0, d(a, b)
satisfies the recurrence

d(a, b) =
∑
x,y≥0

P k((a, b), (x, y)) · d(x, y) =
∑
x,y>0

P k((a, b), (x, y)) · d(x, y),

where the last equality follows fact that d(0, x) = d(x, 0) = 0 for any x ≥ 0 due to the boundary
conditions of the recurrence for ρ. Since |d(x, y)| ≤ 1, we have that

|d(a, b)| ≤
∑
x,y>0

P k((a, b), (x, y)) · |d(x, y)| ≤ Pr[T (a, b) > k] < ε.

Now the two lemmas imply Theorem 20.
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Non-self-destructive competition. We next consider the case of non-self-destructive competition.
The model with non-self-destructive competition is given by

Xi
β−→ 2Xi Xi

δ−→ ∅ Xi +X1−i
αi−→ Xi Xi +Xi

γi−→ Xi,

where we assume that α = α0 + α1 = 2α0 and γ = γ0 + γ1 = 2γ0, i.e., that both species have equal
rate parameters.

Theorem 23. Let S be a neutral Lotka–Volterra system with non-self-destructive competition and
S0 = (a, b), where a ≥ b > 0, and γ = 2α. If the chain reaches consensus with probability 1, then

ρ(S) =
a

a+ b
.

Proof. With non-self-destructive competition, the recurrence for ρ simplifies to

ρ(a, b) =
∑

(j,k)∈T

P ((a, b), (a+ j, b+ k)) · ρ(a+ j, b+ k),

where T = {(1, 0), (0, 1), (−1, 0), (0,−1)}, as the counts of species can change by at most one under
non-self-destructive competition. We now show that a/(a+ b) is a solution for the recurrence ρ(a, b)
also under non-self-destructive competition. We proceed as in the proof of Lemma 21 and compute
the conditional probabilities ri for i ∈ {0, 1}. The analysis for the function r1(a, b) = a/(a+ b) is
identical as in Lemma 21. The case for the function r2(a, b) is different. If the chain is in state (a, b),
conditioned on the event that the next step has a competitive interaction, the probability that the
first species with count a decreases is

α0ab+ γ0a(a− 1)/2

αab+ γ0a(a− 1)/2 + γ1b(b− 1)/2
=

ab+ a(a− 1)

2ab+ a(a− 1) + b(b− 1)
=

a(a+ b− 1)

(a+ b)(a+ b− 1)
=

a

a+ b
.

Thus, we get that

r2(a, b) =
a

a+ b
· ρ(a− 1, b) +

(
1− a

a+ b

)
· ρ(a, b− 1)

=
a

a+ b
· a− 1

a+ b− 1
+

b

a+ b
· a

a+ b− 1
=

a

a+ b
· a+ b− 1

a+ b− 1
=

a

a+ b
.

This implies that ρ(a, b) = a/(a+ b) is a solution for the recurrence ρ. By Lemma 22, the solution is
unique under the assumption that the chain reaches consensus with probability 1.

8.2 Systems with intraspecific competition only

Finally, to complete the picture, we consider the limiting case with intraspecific competition only
(γ > 0 and α = 0). As expected, this case is even worse: for any initial configuration, where both
species are present, the system fails to reach majority consensus with constant probability.

In the case α = 0, it is convenient to consider the continuous-time version of the Lotka–Volterra
chain, as in this case the two chains for the individual species are independent, continuous-time
single-species processes. We first introduce the following lemma, which readily follows from standard
absorption time results on continuous-time birth-death chains [51]. For example, the next result can
be proven using a straightforward adaption of the proof of given by Andaur et al. [21, Lemma 6].
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Lemma 24. Let M be a continuous-time birth-death chain with 0 as the unique absorbing state.
If the birth rate κ(n) and death rate µ(n) satisfy κ(n) ∈ Θ(n) and µ(n) ∈ Θ(n2), then the mean
absorption time from any state m is O(1).

Theorem 25. Let S be a Lotka–Volterra chain with intraspecific competition and without interspecific
competition, i.e., α = 0 and γ > 0. Then S fails to reach majority consensus with at least constant
probability from any starting state S0 = (a, b), with a ≥ b > 0.

Proof. For the proof of this result, it is convenient to consider the continuous-time version X =
(X0, X1) of the Lotka–Volterra chain instead of the discrete-time jump chain S. Since α = 0, the
two continuous-time chains X0 and X1 are independent. Let Ti denote the time until the species
i ∈ {0, 1} goes extinct, i.e., the absorption time of the chain Xi. First, note that E[Ti] ∈ O(1). For
non-self-destructive competition, this follows from Lemma 24, as the birth and death rates for the
chains Xi satisfy κ(n) = βn and µ(n) = δn+ γin(n − 1)/2. For self-destructive competition, the
extinction time is also O(1), as death events under self-destructive competition also always decrease
the population count by at least one.

Let Y (λ) denote the exponentially distributed random variable with mean 1/λ. Observe that for
the species i to go extinct, its chain transitions to state 0 via either

(1) state 1, i.e., the last event before extinction is an individual death event, which happens at
rate δ so the time between the second last and last transition is Y (δ), and

(2) state 2, i.e., the last event before extinction is a (self-destructive) competitive interaction,
which happens at rate γ so the time between the second last and last transition is Y (γ).

Note that if the system does not have self-destructive competition, then the second case cannot occur.
Let X be an indicator random variable for whether the first case occurs and set λ = max{α, δ}. Now

Pr[Ti ≥ x] = Pr[X = 1] · Pr[Ti ≥ x | X = 1] + Pr[X = 0] · Pr[Ti ≥ x | X = 0]

≥ Pr[X = 1] · Pr[Y (δ) ≥ x] + Pr[X = 0] · Pr[Y (γ) ≥ x]

≥ Pr[Y (λ) ≥ x] = exp(−λx),

where the last equality is given by the CDF of the exponential distribution. By Markov’s inequality,

Pr[T0 < 2 ·E[T0]] ≥ 1− Pr[T0 ≥ 2 ·E[T0] ≥ 1/2.

Since T0 and T1 are independent random variables, we have

Pr[T0 < T1] ≥ Pr[T0 < 2 ·E[T0]] · Pr[T1 ≥ 2 ·E[T0]] ≥
1

2
· exp(−2λ ·E[T0]),

where the last term is lower bounded by some positive constant θ > 0 since λ,E[T0] ∈ O(1). That is,
the minority species survives longer with probability at least θ.
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9 Omitted proofs

9.1 Proof of Lemma 3

Proof. By the Central Limit Theorem, we have that the random variable X/
√
n converges in

distribution to the standard normal distribution, i.e., for any x ∈ R, we have

lim
n→∞

Pr

[
X√
n
≤ x

]
= Φ(x),

where Φ is the CDF of the standard normal distribution. In particular, for any κ > 0 and θ > 0,
there exists some n0 > 0 such that

Pr
[
X > θ

√
n
]
= 1− Φ(θ)− κ ≥ 1− e−θ2/2

√
2π(θ + 1)

− κ ≥ ε

for all n ≥ n0, where in the second inequality we used the bound Φ(θ) ≤ e−θ2/2
√
2π(1+θ)

for θ > 0. The
claim now follows by choosing θ and κ to be sufficiently small constants and n sufficiently large.

9.2 Proof of Lemma 4

Proof. For the case (a), we construct a coupling (X̂, Ŷ ) of X and Y such that X̂ ≤ Ŷ . Let ξ1, . . . , ξn
be i.i.d. random variables sampled uniformly from the unit range [0, 1). We construct the coupling
inductively. For each step 1 ≤ i ≤ n, the coupling uses the following rules:

(1) Let pi = Pr[Yi]. If ξi ∈ [0, pi), then set Ŷi = 1. Otherwise, set Ŷi = 0.

(2) Let Pi = Pr[Xi | X1 = X̂1, . . . , Xi−1 = X̂i−1]. If ξi ∈ [0, Pi), then set X̂i = 1. Otherwise, set
X̂i = 0.

By construction, the distribution of X̂ = X̂1 + · · ·+ X̂n is the same as the distribution of X and
Ŷ = Ŷ1 + · · ·+ Ŷn has the same distribution as Y . Moreover, X̂i ≤ Ŷi, as by assumption we have
[0, Pi) ⊆ [0, pi) for all 1 ≤ i ≤ n. In particular, Pr[X̂i ≥ x] ≤ Pr[Ŷi ≥ x], so we get that

Pr[Y ≥ x] = Pr[Ŷ ≥ x] ≥ Pr[X̂ ≥ x] = Pr[X ≥ x],

so X ⪯ Y . The proof for the case (b) is symmetric and follows analogously by observing that
[0, pi) ⊆ [0, Pi) implies that Ŷi ≤ X̂i for each 1 ≤ i ≤ n.
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