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Abstract

We consider a certain left action by the monoid SL2(N0) on the set
of divisor pairs Df := {(m,n) ∈ N0 ×N0 : m|f(n)} where f ∈ Z[x] is a
polynomial with integer coefficients. We classify all polynomials in Z[x]
for which this action extends to an invertible map F̂f : SL2(N0) → Df

(Sections 2 and 3). We call such polynomials enumerable. One of these
polynomials happens to be f(n) = n2 + 1. It is a well-known conjecture
that there exist infinitely many primes of the form p = n2 + 1 (Conjec-
ture 1). In Section 5, we construct a sequence S on the naturals defined
by the recursions



















S(4k) = 2S(2k)− S(k)

S(4k + 1) = 2S(2k) + S(2k + 1)

S(4k + 2) = 2S(2k + 1) + S(2k)

S(4k + 3) = 2S(2k + 1) − S(k)

with initial conditions S(1) = 0, S(2) = 1, S(3) = 1.

{S(k)}k∈N = {0, 1, 1, 2, 3, 3, 2, 3, 7, 8, 5, 5, 8, 7, 3, · · · }

S is shown to have the properties

1. For all n ∈ N0, we have S(2n) = S(2n+1 − 1) = n.

2. For all n ∈ N0, the size of the fiber of n under S satisfies |S−1({n})| =
τ (n2 + 1) where τ is the divisor counting function.

3. For all n ∈ N0, the integer n
2+1 is prime if and only if S−1({n}) =

{2n, 2n+1 − 1}.

4. S(k) is a 2-regular sequence (as introduced in [5]).

Sequences with analogous properties are given for all enumerable poly-
nomials in Section 6. Informally, these sequences encode the divisor struc-
ture of their respective polynomials. Property (3) makes S amenable to
the asymptotic analysis of k-regular sequences, an area which has under-
gone significant development in recent years.
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1 Introduction

The set of nonnegative integer matrices with determinant 1, denoted SL2(N0),
satisfies the axioms for a monoid : it contains the usual identity matrix I and
is closed under the associative operation of matrix multiplication. We will see
that for a small set of polynomials f ∈ Z[x], the monoid SL2(N0) intimately
describes the divisors of f , namely the set of positive integers d such that d|f(n)
for some n ∈ N.

An algebraic identity, first studied by Diophantus of Alexandria (c. 200 - c.
298) and which we will refer to as Diophantus’ identity is given by

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2
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Diophantus’ identity holds in any commutative ring, in particular, the inte-
gers Z. It can be taken to mean that the set of sums of two squares of integers
is closed under multiplication. Throughout history, it has found many fruit-
ful generalizations. This includes Brahmagupta’s Identity, Lagrange’s identity,
Euler’s four-square identity, and Gauss’s composition laws for binary quadratic
forms.

In this paper, we consider Diophantus’ identity in the context of the monoid
SL2(N0). Taking this view, we can write

(a2 + b2)(c2 + d2) = (ac+ bd)2 + det

(

a b
c d

)2

Assuming,

(

a b
c d

)

∈ SL2(N0)

yields the factorization

(ac+ bd)2 + 1 = (a2 + b2)(c2 + d2) (1)

which is apparently a factorization identity for integers of the form n2 + 1,
with n = ac+ bd.

There are still unanswered questions about the divisor structure of n2 + 1
form numbers. Probably the best-known of these is

Conjecture 1. (Landau’s 4th Problem) There are infinitely many primes of
the form p = n2 + 1

Conjecture 1 is a special case of what’s known as the Bunyakovsky conjec-
ture.

Conjecture 2. (Bunyakovsky Conjecture) Let f ∈ Z[x] satisfy:

• f is irreducible in Z[x]

• f has a positive leading coefficient

• gcd(f(0), f(1), f(2), · · · ) = 1

Then there exist infinitely many primes of the form p = f(n).

Identity 1 motivates us to consider the correspondence between factorizations
of integers of the form n2 + 1 and the monoid SL2(N0).

A well-known property of SL2(N0) is that it is freely generated by the
matrices

S :=

(

1 0
1 1

)
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T :=

(

1 1
0 1

)

Hence, SL2(N0) is a free monoid of rank 2 ([2], Corollary 1).

Remark 1.1. S and T are infinite order matrices in SL2(N0) and their powers
are given by

Sα =

(

1 0
α 1

)

and Tα =

(

1 α
0 1

)

for all α ∈ N0.

This allows for a binary tree enumeration of SL2(N0) via multiplication by
S (left child) and T (right child) beginning with the 2 × 2 identity matrix, I.
The first 4 rows will be

I

S

S2

S3 TS2

TS

STS T 2S

T

ST

S2T TST

T 2

ST 2 T 3

We compute the explicit matrix products with the usual convention that
matrix multiplication is done right to left.

(

1 0
0 1

)

(

1 0
1 1

)

(

1 0
2 1

)

(

1 0
3 1

) (

3 1
2 1

)

(

2 1
1 1

)

(

2 1
3 2

) (

3 2
1 1

)

(

1 1
0 1

)

(

1 1
1 2

)

(

1 1
2 3

) (

2 3
1 2

)

(

1 2
0 1

)

(

1 2
1 3

) (

1 3
0 1

)
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Remark 1.2. The set of matrices which are on the ”interior” of the tree, i.e.
matrices with all nonzero components, is precisely the semigroup SL2(N).

If we apply the mapping SL2(N0) ∋ A → (a2 + b2, ac + bd) to this matrix
tree we get the tree of nonnegative integer pairs

(1, 0)

(1, 1)

(1, 2)

(1, 3) (10, 7)

(5, 3)

(5, 8) (13, 5)

(2, 1)

(2, 3)

(2, 5) (13, 8)

(5, 2)

(5, 7) (10, 3)

As a result of the identity (ac+ bd)2+1 = (a2+ b2)(c2+d2), we see that the
first pair component a2+b2 corresponds to a divisor of n2+1 where n = ac+bd,
or the second component of the pair (a2 + b2, ac+ bd). In Section 2, we clarify
this connection and discuss which polynomials in Z[x], besides n2+1, have this
relationship to SL2(N0).

We will prove in Section 3 that the mappingA→ (a2+b2, ac+bd) is invertible
with the codomain taken to be all pairs of nonnegative integers (m,n) such that
m|(n2+1) (recall that a|b is the relation ”a divides b”). We will also prove that
analogous mappings arising from other polynomials are invertible.

In Section 4, we look at several clarifying examples and discuss a few prop-
erties of divisor pair trees.

In Section 5 we specifically study the divisor pair tree given above and derive
an integer sequence S which is shown to generate this tree.

In Section 6, we summarize our findings.

2 Statement of classification theorem

We state the following generalizations of Diophantus’ identity. Let β ∈ Z.

(a2+βab+b2)(c2+βcd+d2) = (ac+βbc+bd)2+β(ac+βbc+bd)(ad−bc)+(ad−bc)2

(a2+βab−b2)(c2+βcd−d2) = (ac+βbc−bd)2+β(ac+βbc−bd)(ad−bc)−(ad−bc)2
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Just as in the case of Diophantus’ identity, we can take this to mean that
the sets {a2+βab+ b2 : a, b ∈ Z} and {a2+βab− b2 : a, b ∈ Z} are closed under
multiplication for all β ∈ Z. We recover Diophantus’ identity by setting β = 0
in the former identity. We again impose a restriction on the integers a, b, c, and
d by assuming the matrix

(

a b
c d

)

∈ SL2(N0)

Since we know the determinant ad− bc = 1 we get

(a2 + βab+ b2)(c2 + βcd+ d2) = (ac+ βbc+ bd)2 + β(ac+ βbc+ bd) + 1

(a2 + βab− b2)(c2 + βcd− d2) = (ac+ βbc− bd)2 + β(ac+ βbc− bd)− 1

These are now factorization identities for polynomials of the form

Definition 2.1. φβ(n) := n2 + βn+ 1, ψβ(n) := n2 + βn− 1.

Definition 2.2. Let f ∈ Z[x]. We define the divisor pair set of f to be Df :=
{(m,n) ∈ N0 ×N0 : m|f(n)}.
Definition 2.3. Define the family of functions Φ = (Φβ)β∈N0 indexed by β
such that each Φβ : SL2(N0) → Dφβ(n) is given by

Φβ

(

a b
c d

)

= (a2 + βab+ b2, ac+ βbc+ bd)

Each Φβ is a well-defined function since (a2+βab+b2, ac+βbc+bd) ∈ N0×N0

and we saw that

(a2 + βab+ b2) | φβ(ac+ βbc+ bd)

Divisor pair sets allow us to investigate the matrix-factorization correspon-
dence suggested by Diophantus’ identity. For a given β ∈ N0, we ask: is Φβ
one-to-one? Is it onto?

Note that the mapping we discussed at the end of Section 1, namely SL2(N0) ∋
A→ (a2 + b2, ac+ bd), is the function Φ0 with the codomain Dφ0 .

Before proceeding, we also define a family of functions for polynomials of
the form ψβ(n).

Definition 2.4. We define the family of functions Ψ = (Ψβ)β∈N0 indexed by β
such that each Ψβ : SL2(N0) → Dψβ(n) is given by

Ψβ

(

a b
c d

)

= (max{a, b}2+βab−min{a, b}2, max{ac, bd}+βbc−min{ac, bd})

6



We show that the functions in this family are well-defined.

Proof. Clearly, both pair components are nonnegative at all matrices A ∈
SL2(N0). It remains to check that max{a, b}2 + βab − min{a, b}2 divides
ψβ(max{ac, bd}+ βbc−min{ac, bd}).

Since we’re working in SL2(N0), the determinant ad− bc = 1 which means
a ≥ b if and only if c ≥ d, for all matrices except I (this can easily be checked
by assuming the contrary). Suppose a = max{a, b}. Then, ac = max{ac, bd}
and the conclusion follows from

(a2 + βab− b2)(c2 + βcd− d2) = (ac+ βbc− bd)2 + β(ac+ βbc− bd)− 1

Otherwise, suppose b = max{a, b}. Then, bd = max{ac, bd}. The conclusion
follows from the same identity with the variables renamed

(b2+βab−a2)(d2+βcd−c2) = (bd+βbc−ac)2+2(bd+βbc−ac)(ad−bc)−(ad−bc)2

Definition 2.5. Let c : SL2(N0) → SL2(N0) be an involution on SL2(N0)
given by

c :

(

a b
c d

)

→
(

d c
b a

)

We call c(A) the complement of A ∈ SL2(N0).

Remark 2.6. c(A) can also be written as an outer automorphism on SL2(N0)

(

0 1
1 0

)(

a b
c d

)(

0 1
1 0

)

=

(

d c
b a

)

where

(

0 1
1 0

)

has determinant −1.

Proposition 2.7. Suppose A = SαkTαk−1 · · ·Tα1Sα0 ∈ SL2(N0) with each
αi ∈ N0. Then c(A) = TαkSαk−1 · · ·Sα1Tα0.

Proof. First, note that c(S) = T and c(T ) = S. One can then manually verify
that for any matrices A and B, we have c(AB) = c(A)c(B).

Note that Proposition 2.7 can be interpreted as saying that c is a reflection
across the SL2(N0) enumeration tree since the left child matrix, S is swapped
with the right child matrix, T .

Proposition 2.8. For all A ∈ SL2(N0), we have TA = c(S(c(A)))
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Proof.
TA = c(c(TA)) = c(c(T )c(A)) = c(Sc(A))

One may also grasp this fact geometrically by viewing c as a reflection across
the matrix tree generated by S and T .

I

S

S2

S3 TS2

TS

STS T 2S

T

ST

S2T TST

T 2

ST 2 T 3

Proposition 2.9. For all A ∈ SL2(N0), if A 6= I then exactly one of the
following conditions holds:

• A = SB for some B ∈ SL2(N0)

• c(A) = SB for some B ∈ SL2(N0).

Proof. By Proposition 2.7 exactly one of A or c(A) begins with S (the other
one has to begin with T ).

Definition 2.10. For a polynomial f ∈ Z[x], we define the involution c̄f (m,n) :=

( |f(n)|
m

, n). We call c̄f the complement on Df since it sends m to its comple-
mentary factor. Note that c̄f (m,n) is well-defined whenever m 6= 0.

Definition 2.11. For a polynomial f ∈ Z[x], we define the left monoid action
(·) : SL2(N0)×Df → Df satisfying

S · (m,n) = (m,m+ n)

T · (m,n) = c̄f (S · c̄f (m,n))

Definition 2.12. We say F : SL2(N0) → Df is equivariant if for all A ∈
SL2(N0) we have

F (SA) = S · F (A)
F (TA) = T · F (A)

We will use the shorthand notations S̄(m,n) := S · (m,n) and T̄ (m,n) :=
T · (m,n).
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Throughout this paper, we use bar ¯ to distinguish between functions on
matrices and functions on pairs. A bar indicates that we are talking about
functions on pairs. We will also write T̄f when we wish to specify the polynomial
f from which c̄f and therefore T̄f is derived.

Proposition 2.13. For all f ∈ Z[x] the set Df is mapped to itself by the
functions S̄, c̄f , and T̄ meaning that if (m,n) ∈ Df then S̄(m,n) ∈ Df ,
c̄f (m,n) ∈ Df , and T̄ (m,n) ∈ Df .

We omit the proof of Proposition 2.13 as it involves little more than writing
out definitions.

To summarize, S̄ doesn’t depend on f , has infinite order, and preserves the
first pair component m. The complement c̄f has order 2, depends on f , and
preserves the second pair component n. T̄ depends on f , has infinite order, and
doesn’t preserve either pair component.

Proposition 2.14. Let F : SL2(N0) → Df be a mapping satisfying

F (SA) = S̄ (F (A))

F (c(A)) = c̄f (F (A))

for all A ∈ SL2(N0). Then F is equivariant.

Proof. Since T̄ (m,n) = c̄f
(

S̄ (c̄f (m,n))
)

.

It is easier to use Proposition 2.14 to check that a map F is equivariant than
to proceed straight from the definition.

Proposition 2.15. Each function in the families Φ = (Φβ)β∈N0 and Ψ =
(Ψβ)β∈N0 is equivariant.

Proof. We prove the result for the family Φ. The proof for the family Ψ is
largely identical.

For,

A =

(

a b
c d

)

∈ SL2(N0)

we check that, Φβ(SA) = S̄(Φβ(A)) and Φβ (c(A)) = c̄f (Φβ(A)) and then
use Proposition 2.14 to conclude that Φβ is equivariant.

Φβ(SA) = Φβ

[(

1 0
1 1

)(

a b
c d

)]

= Φβ

(

a b
a+ c b+ d

)

= (a2 + βab+ b2, a(a+ c) + βb(a+ c) + b(b+ d)

= (a2 + βab+ b2, (ac+ βbc+ bd) + (a2 + βab+ b2))

= S̄(Φβ(A))

9



Φβ(c(A)) = Φβ

(

d c
b a

)

= (d2 + βdc+ c2, db+ βcb+ ca)

= (
φβ(ac+ βbc+ bd)

a2 + βab + b2
, ac+ βbc+ bd)

= c̄f (Φβ(A))

We now define enumerable polynomials.

Definition 2.16. For a given f ∈ Z[x], we say Df can be enumerated by
SL2(N0) if there exists an invertible, equivariant map F : SL2(N0) → Df . If
Df can be enumerated by SL2(N0), we say the polynomial f is enumerable.

For Lemmas 2.17 and 2.19 as well as Corollary 2.18, we assume that F :
SL2(N0) → Df is an invertible, equivariant map for some enumerable polyno-
mial f ∈ Z[x].

Lemma 2.17. The pair (0, n) /∈ Df for all n ∈ N0.

Proof. Since F is assumed to be invertible, it must be onto and so Im(F ) =
Df where Im(F ) denotes the image of F . Suppose towards a contradicition
that (0, n) ∈ Im(F ) i.e. that there exists a matrix A ∈ SL2(N0) such that
F (A) = (0, n). Then F (SA) = S̄(F (A)) = (0, n+ 0) = F (A) contradicting the
one-to-one assumption on F .

Corollary 2.18. The polynomial f is nonvanishing on N0, i.e. f(n) 6= 0 for
all n ∈ N0.

Proof. Otherwise, there is an integer n such that 0 = f(n) and so 0|f(n) which
means (0, n) ∈ Df , contradicting the previous lemma.

Lemma 2.19. F sends the identity matrix I to the pair (1, 0).

Proof. The pair (|f(0)|, 0) ∈ Df = Im(F ). Then there exists a matrix A ∈
SL2(N0) such that F (A) = (|f(0)|, 0). We will show that A = I and |f(0)| = 1.

Suppose A = SB for some B ∈ SL2(N0). Then, F (A) = F (SB) =
S̄(F (B)) = (|f(0)|, 0). We rewrite F (B) := (m,n) ∈ Df . Then S̄(F (B)) =
(m,n + m) = (|f(0)|, 0) =⇒ n < 0 (since f being nonvanishing implies
|f(0)| > 0) but this is a contradiction since n ∈ N0.

Suppose instead that c(A) = SB for some B ∈ SL2(N0). Then we have

F (c(A)) = c̄f (F (A)) = ( |f(0)||f(0)| , 0) = (1, 0). So, F (SB) = (1, 0). Write F (B) :=

(m,n) ∈ Df . Then, F (SB) = S̄(F (B)) = (m,m + n) = (1, 0) =⇒ n = −1, a
contradiction.
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It follows from Proposition 2.9 that A = I and therefore that F (I) =
(|f(0)|, 0). We also have F (c(I)) = c̄f (F (I)), and since c(I) = I, we get
F (I) = c̄f (F (I)). Finally we can write F (I) = (|f(0)|, 0) = c̄f (|f(0)|, 0)) =

( |f(0)||f(0)| , 0) = (1, 0).

We can now prove the uniqueness of invertible, equivariant maps.

Proposition 2.20. Suppose F and F ′ are both invertible, equivariant maps
into the set Df derived from the same polynomial f ∈ Z[x]. Then F = F ′.

Proof. Since the matrices S and T freely generate the monoid SL2(N0), we see
that an equivariant map F is uniquely determined by where it sends the identity
matrix. However, we proved that an invertible, equivariant map F necessarily
sends the identity matrix I to the pair (1, 0). The conclusion follows.

The uniqueness of invertible, equivariant maps motivates the following defi-
nition

Definition 2.21. For a polynomial f ∈ Z[x] we let F̂f : SL2(N0) → Df denote

the equivariant map satisfying F̂f (I) = (1, 0).

Note that we do not require F̂f to be invertible. Whenever a polynomial

f is enumerable, F̂f is automatically forced to be invertible by the unique-

ness of equivariant, invertible maps. However, it is not hard to see that F̂f :
SL2(N0) → Df will more generally be well-defined for polynomials f ∈ Z[x]
that are nonvanishing on N0.

We can write down the first few rows of the general binary tree generated
by F̂f through applying S̄ as the left child and T̄f as the right child

(1, 0)

S̄(1, 0)

S̄2(1, 0) S̄T̄f (1, 0)

T̄f(1, 0)

T̄f S̄(1, 0) T̄ 2
f (1, 0)

We can evaluate each composition and write each pair in terms of f .

11



(1, 0)

(1, 1)

(1, 2)
(

|f(1+|f(1)|)
|f(1)| , 1 + |f(1)|

)

(|f(1)|, 1)

(|f(1)|, 1 + |f(1)|) (|f(2)|, 2)

Notice that the ”boundary” of the binary tree enumerating F̂f will be (1, n)
on the left and (|f(n)|, n) on the right. This corresponds to the trivial factor-
izations of Df , namely those of the form |f(n)| = 1 × |f(n)|. The interior of
the tree (i.e. all the pairs not in the boundary) correspond to the nontrivial

factorizations of the tree (i.e. where neither m nor |f(n)|
m

equals 1). We have
previously remarked that the interior of the S, T tree enumeration for SL2(N0)
will be the semigroup SL2(N). Thus, nontrivial factorizations of f(n) for f
enumerable and n ∈ N0 will correspond to matrices in SL2(N).

Lemma 2.22. Suppose that f ∈ Z[x] is enumerable. Then |f(1)|, |f(2)|, and
|f(|f(1)|)| are prime.

Proof. We show that |f(1)|, |f(2)|, and |f(|f(1)|)| do not appear in the interior
of the tree for F̂f . From the definition of c̄f we see that the F̂f generalized divisor
pair tree will be symmetric in the second component. From the definition of
S̄ and f being nonvanishing, we have that children pairs must have a strictly
larger second component than their parent. As a result, 1+ |f(1)| is the smallest
second component on the interior of the tree, and since 1 < 1 + |f(1)|, we
have that |f(1)| only has a nontrivial factorization on the tree. Since f is
enumerable, which of course means that F̂f is invertible, we have that |f(1)|
has no nontrivial factorizations in general, and so it must be prime. Similarly,
since |f(1)| < 1 + |f(1)|, we find that |f(|f(1)|)| is prime. Since F̂f is one-
to-one, 1 < |f(1)| (otherwise (1, 1) appears twice on the second row). Then,
2 < 1 + |f(1)|. Thus, |f(2)| must also be prime.

Lemma 2.23. Let f ∈ Z[x] be nonvanishing on N0 so that F̂f is well-defined.

Then F̂f (A) = F̂(−f)(A) for all matrices A ∈ SL2(N0).

Proof. F̂f is determined by S̄ (which is independent of f) and c̄f (m,n) =

( |f(n)|
m

, n) = ( |−f(n)|
m

, n) = c̄(−f)(m,n). Since F̂f (I) = (1, 0), the two functions
must be the same at every matrix.

Lemma 2.23 allows us to consider f ∈ Z[x] up to multiples of {±1}. Note
that one of f or −f must have a positive leading coefficient and so we may
restrict our focus to polynomials f ∈ Z[x] with positive leading coefficients
throughout the classification.
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We can finally state the classification result which will be proved in the
following section. Recall that we defined φβ(n) = n2 + βn + 1 and ψβ(n) =
n2 + βn− 1.

Theorem 2.24. Suppose that f ∈ Z[x] is enumerable and, without loss of
generality, that f has a positive leading coefficient. Then

f ∈ {φ0, φ1, ψ2, φ3}
with F̂φ0 = Φ0, F̂φ1 = Φ1, F̂ψ2 = Ψ2, and F̂φ3 = Φ3.

3 Proof of classification theorem

Remark 3.1. The inverses of S̄ and c̄f are given by, S̄−1(m,n) = (m,n−m),
and c̄−1

f (m,n) = c̄f (m,n).

Proposition 3.2. Let f ∈ Z[x] be nonvanishing on N0. Then f is enumerable
if and only if for all (m,n) ∈ Df \ {(1, 0)}

min{m, |f(n)|
m

} ≤ n < max{m, |f(n)|
m

}

Proof. ( =⇒ :) Suppose f is enumerable. Then there exists an invertible,
equivariant map F : SL2(N0) → Df . Consider (m,n) ∈ Df \ {(1, 0)}. Since F
is onto, there exists A ∈ SL2(N0) such that (m,n) = F (A). By Proposition 2.9
and F being invertible exactly one of the following conditions hold

1. F (A) = F (SB) = S̄(F (B)) for some B ∈ SL2(N0)

2. F (c(A)) = F (SB) = S̄(F (B)) for some B ∈ SL2(N0)

Note that

(1) ⇐⇒ F (B) = S̄−1(F (A)) = S̄−1(m,n) = (m,n−m) ∈ Df .

(2) ⇐⇒ F (B) = S̄−1(c̄f (F (A))) = S̄−1( |f(n)|
m

, n) = ( |f(n)|
m

, n − |f(n)|
m

) ∈
Df .

Of course, if m|f(n) then

m|f(n−m)

and,

|f(n)|
m

| f(n− |f(n)|
m

)
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meaning the only way (1) or (2) could fail is if n−m < 0 or n− |f(n)|
m

< 0,
respectively (as that would mean leaving N0 ×N0). Thus, exactly one of these
two inequalities holds. This is equivalent to the conclusion of this direction.

( ⇐= :) We will assume that for all (m,n) ∈ Df \ {(1, 0)}

min{m, |f(n)|
m

} ≤ n < max{m, |f(n)|
m

}

and prove that F̂f : SL2(N0) → Df is invertible. Since f is nonvanishing on

N0, F̂f is well-defined. By definition, F̂f (I) = (1, 0). By the previous direction,
we know our assumption is equivalent to saying that for all (m,n) ∈ Df \{(1, 0)},
exactly one of the following holds: n−m ≥ 0 or n− |f(n)|

m
≥ 0. This means that

exactly one of the following holds: S̄−1(m,n) ∈ Df or S̄−1(c̄f (m,n)) ∈ Df .

If we start with a given (m,n) ∈ Df and iterate the process of ”factoring
out” an S̄−1 or c̄f , depending on which one keeps us in Df , we are guaranteed
by our assumption to get an expression of the form

S̄−αk c̄f S̄
−αk−1 c̄f · · · c̄f S̄−α1 c̄f S̄

−α0(m,n) = (1, 0)

where each αi ≥ 0. Then simply ”unwrap” the expression by undoing the
inverses to find F̂−1

f (m,n) ∈ SL2(N0).

In fact, one can infer from this argument that

Remark 3.3.

• F̂f is one-to-one ⇐⇒ n < max{m, |f(n)|
m

} for all (m,n) ∈ Im(F̂f )

• F̂f is onto ⇐⇒ min{m, |f(n)|
m

} ≤ n for all (m,n) ∈ Df \ {(1, 0)}

Note that the first inequality in Propositon 3.2 is (=) precisely when (m,n) =
(1, 1) since we showed |f(0)| = 1 and so gcd(n, f(n)) = 1 for all n ∈ N0. Hence,
if m|f(n) and m = n we must have (m,n) = (1, 1).

We will use the condition in Proposition 3.2 to prove Theorem 2.24.

Lemma 3.4. Suppose that f ∈ Z[x] is enumerable. Then deg(f) ≥ 2.

Proof. Suppose, towards a contradiction, that there exists an invertible, equiv-
ariant map F : SL2(N0) → Df for some f with deg(f) ≤ 1.

14



We first address the case deg(f) = 0. We know |f(0)| = 1 so the only two
possibilities for enumerable polynomials are the constant functions ±1. In either
case, we have F (S) = F (SI) = S̄(1, 0) = (1, 1) and F (T ) = F (TI) = T̄f (1, 0) =
(c̄f ◦ S̄ ◦ c̄f)(1, 0) = (1, 1), contradicting that F is one-to-one.

We now address the case deg(f) = 1. Since |f(0)| = 1, we can write
f(n) = an ± 1 for some a ∈ N (we’re allowed to make the restriction to N

by Lemma 2.23). We find (m,n) ∈ Df such that the inequalities in Proposi-
tion 3.2 fail.

For f(n) = an+1, take n = a+2. Then f(a+2) = (a+1)2 =⇒ (m,n) :=

(a + 1, a + 2) ∈ Df . Then, max{m, |f(n)|
m

} = a + 1 < a + 2, contradicting the
right inequality in Proposition 3.2.

For f(n) = an− 1, take n = a3. Then f(a3) = a4− 1 = (a2− 1)(a2+1) =⇒
(a2 + 1, a3) ∈ Df . max{a2 − 1, a2 + 1} = a2 + 1 < a3 for all a ≥ 2. Hence, it
remains to check a = 1 (i.e. f(n) = n−1). But then f(1) = 0 which contradicts
f being nonvanishing on N0.

Lemma 3.5. Suppose f is monic and deg(f) = 2. Then f is enumerable if and
only if f ∈ {φ0, φ1, ψ2, φ3}

Proof. ( =⇒ :) Write f(n) = n2±bn±1 with b > 0. Then we have the following
forms to consider

1. f(n) = n2 + bn+ 1

2. f(n) = n2 + bn− 1

3. f(n) = n2 − bn+ 1

4. f(n) = n2 − bn− 1

(3) and (4) can be eliminated by remarking that for both forms |f(b)| = 1
and so (1, b) = (|f(b)|, b) = c̄f (1, b) which contradicts F being one-to-one.

For form (1), if b is even, we have that f(1) = b + 2 is also even, and since
|f(1)| must be prime (Lemma 2.22), we get |b+ 2| = 2 and so b = 0 is the only
admissible even value of b. For the case where b is odd, we can check that

f(n0) = n2
0 + bn0 + 1 = (n0 +

b− 1

2
)2

where n0 := ( b−1
2 )2 − 1. If b > 3 and odd we have that n0 > 0 and so

c̄f (n0 +
b− 1

2
, n0) = (n0 +

b− 1

2
, n0)

implies f(n) = n2 + bn + 1 is not enumerable for b > 3 and odd. Thus for
form (1) we have narrowed the possibilities down to φ0, φ1 and φ3.
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For form (2), set n = b − 1. Then, f(b − 1) = b(2b − 3) meaning the first
inequality of proposition 3.2 fails for all b > 2 since we have

min{b, 2b− 3} > b− 1

Thus, it remains to check b = 1 for form (2), or whether f(n) = n2+n− 1 is
enumerable. However, f(1) = 1, which contradicts F̂f being one-to-one. Thus,
we have narrowed the possibilities down to ψ2.

( ⇐= :) We now apply Proposition 3.2 to prove that each of the polynomials
f ∈ {φ0, φ1, ψ2, φ3} is enumerable by showing that all pairs (m,n) ∈ Df \{(1, 0)}
satisfy the bounds

min{m, |f(n)|
m

} ≤ n < max{m, |f(n)|
m

}

(φ0 :) Consider (m,n) ∈ Dφ0 \ {(1, 0)}. If the right-side inequality fails, i.e.

n ≥ m and n ≥ |φ0(n)|
m

|φ0(n)| = |n2 + 1| = m
|φ0(n)|
m

≤ n · n = n2

Which is false for all n ∈ N0.

If the left-side inequality fails, i.e. m ≥ n+ 1 and |φ0(n)|
m

≥ n+ 1

|φ0(n)| = |n2 + 1| = m
|φ0(n)|
m

≥ (n+ 1)2

which is always false on N0, except at n = 0 which corresponds to the pair
(1, 0). Thus, by Proposition 3.2, φ0 is enumerable.

(φ1 :) Consider (m,n) ∈ Dφ1 \ {(1, 0)}. If for some pair (m,n) ∈ Df the
right-side inequality fails, we get the same contradiction as for φ0.

If the right-side inequality fails i.e. m ≥ n+ 1 and |φ1(n)|
m

≥ n+ 1

|φ1(n)| = |n2 + n+ 1| = m
|φ1(n)|
m

≥ (n+ 1)2

which is always false on N0, except at n = 0 which corresponds to the pair
(1, 0). Thus, by Proposition 3.2, φ1 is enumerable.
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(ψ2 :) Consider (m,n) ∈ Dψ2 \ {(1, 0)}. If the right-side inequality fails

|ψ2(n)| = |n2 + 2n− 1| = m
|ψ2(n)|
m

≤ n · n = n2

which is false for all n ∈ N0 except n = 0, which corresponds to the pair
(1, 0).

If the left-side inequality fails, i.e. m ≥ n+ 1 and |ψ2(n)|
m

≥ n+ 1

|ψ2(n)| = |n2 + 2n− 1| = m
|ψ2(n)|
m

≥ (n+ 1)2

which is false for all n ∈ N0. Thus, by Proposition 3.2, ψ2 is enumerable.

(φ3 :) Consider (m,n) ∈ Dφ3 \ {(1, 0)}. If the right-side inequality fails, we
get the same contradiction as for φ0 and φ1.

If the left-side inequality fails i.e. m ≥ n + 1 and |φ3(n)|
m

≥ n + 1, we have
n2+3n+1 ≥ (n+1)2. This will be true in general on N0. However, it will also
be true that

n2 + 3n+ 2 = (n+ 1)(n+ 2) > |n2 + 3n+ 1| ≥ (n+ 1)2

Thus, we get

(n+ 1)(n+ 2) > m
|φ3(n)|
m

≥ (n+ 1)2

and since m and f(n)
m

are necessarily integers, both ≥ n + 1, we have that

m = |φ3(n)|
m

= n+1 =⇒ (n+1)2 = |n2 +3n+1| =⇒ n = 0. Once again, this
corresponds to the pair (1, 0). Thus, by Proposition 3.2, φ3 is enumerable.

Lemma 3.6. Suppose f ∈ Z[x] is enumerable . Then deg(f) ≤ 2 and if
deg(f) = 2 then f has leading coefficient ±1.

Proof. First, we’ll use Lemma 2.23 to narrow our attention to f with positive
leading coefficients.

We will show that if f ∈ Z[x] with either deg(f) ≥ 3 or deg(f) = 2 and
leading coefficient at least 2, then there exists n0 ∈ N such that f(n0) =
(n0 + a)(n0 + b) for a, b ∈ N. From this, it follows that no such f can be
enumerable, since the left-side inequality is violated

min{n+ a, n+ b} > n

The following argument is due to Carl Schildkraut [3]
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Pick a positive integer a, large enough so that

1. |f(−a)| > 3a, and

2. f(n) > 3
2n

2 for all n > 2a.

We can choose such an integer a since f grows at least on the order of 2|n|2
as |n| → ∞.

We choose n0 := |f(−a)| − a. Note that n0 > 2a by (1). In particular,
n0 > 0. We find

f(n0) = f(|f(−a)| − a) ≡ f(−a) ≡ 0 (mod |f(−a)|)
As a result, we can write

f(n0) = |f(−a)|(n0 + b) = (n0 + a)(n0 + b)

for some b ∈ Z. We want to show b > 0. Indeed, we have

f(n0) >
3

2
n2
0 > n0(n0 + a)

by (2) and then (1). Therefore b > 0 and the conclusion follows.

4 Some examples

Theorem 4.1. Let τ(n) denote the divisor counting function. Then for n ∈ N0

#

{(

a b
c d

)

∈ SL2(N0) : ac+ bd = n

}

= τ(n2 + 1)

#

{(

a b
c d

)

∈ SL2(N0) : ac+ bc+ bd = n

}

= τ(n2 + n+ 1)

#

{(

a b
c d

)

∈ SL2(N0) : ac+ 3bc+ bd = n

}

= τ(n2 + 3n+ 1)

#

{(

a b
c d

)

∈ SL2(N0) : max{ac, bd}+ 2bc−min{ac, bd} = n

}

= τ(n2 + 2n− 1)

Proof. This follows immediately from our proof that every f ∈ {φ0, φ1, ψ2, φ3}
is enumerated by its corresponding function in the families Φ or Ψ.
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Restricting to the interior of SL2(N0), namely to the set SL2(N) (which
corresponds to nontrivial factorization pairs) we show

Corollary 4.2.

φ0(n) = n2 + 1 is prime ⇐⇒ ∄

(

a b
c d

)

∈ SL2(N) such that ac+ bd = n

φ1(n) = n2+n+1 is prime ⇐⇒ ∄

(

a b
c d

)

∈ SL2(N) such that ac+bc+bd = n

ψ2(n) = n2+2n−1 is prime ⇐⇒ ∄

(

a b
c d

)

∈ SL2(N) such that max{ac, bd}+
2bc−min{ac, bd} = n

φ3(n) = n2+3n+1 is prime ⇐⇒ ∄

(

a b
c d

)

∈ SL2(N) such that ac+3bc+bd =

n

For a given (m,n) ∈ Df , we describe the procedure for computing F̂−1
f (m,n) ∈

SL2(N0).

Algorithm 4.3. Let f ∈ Z[x] be enumerable and let (m,n) ∈ Df . To find

F̂−1
f (m,n) ∈ SL2(N0) apply the following steps

1. While (m,n) 6= (1, 0) do: (m,n) → c̄f S̄
−⌊ n

m
⌋(m,n).

2. Record the steps −⌊ n
m
⌋ to find the unique sequence of S̄, c̄f that generates

(m,n).

3. Convert this into a sequence of S and Tf using the relation T̄f = c̄f ◦S̄◦ c̄f .
If necessary, change (1, 0) to c̄f (1, 0).

4. Convert this into a sequence of S and T .

5. Multiply the matrices.

Example 4.4.

As a demonstration of Algorithm 4.3, we do an inverse calculation.

We take one of the enumerable polynomials, say φ1(n) = n2 + n+ 1. Then
φ1(100) = 10101. One can check that 37 | 10101 and so, (37, 100) ∈ Dφ1 . We

know from the uniqueness of invertible, equivariant maps, that F̂φ1 = Φ1. Let
us compute Φ−1

1 (37, 100).

The first step is to reduce (37, 100) to the root pair (1, 0) via the operations
S̄−1 and c̄f . We record the intermediate steps.
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S̄−2(37, 100) = (37, 100− 2× 37) = (37, 26)

c̄f (37, 26) = (26
2+26+1
37 , 26) = (19, 26).

S̄−1(19, 26) = (19, 7).

c̄f (19, 7) = (3, 7)

S̄−2(3, 7) = (3, 1)

c̄f (3, 1) = (1, 1)

S̄−1(1, 1) = (1, 0)

and we are done. Note that each pair we went through along the way belongs
to the set Dφ1 (by Proposition 2.13). Now, since we found that

(1, 0) = S̄−1c̄f S̄
−2c̄f S̄

−1c̄f S̄
−2(37, 100)

we apply S̄ and c̄f on the right i.e. undo the inverses to get

(37, 100) = S̄2c̄f S̄c̄f S̄
2c̄f S̄(1, 0) = S̄2c̄f S̄c̄f S̄

2c̄f S̄c̄f (1, 0)

Note we added an extra c̄f on the far-right, which is allowed since c̄f (1, 0) =
(1, 0).

(37, 100) = S̄2T̄f S̄
2T̄f (1, 0)

We can now find the corresponding matrix in SL2(N0)

Φ−1
1 (37, 100) = Φ−1

1 (S̄2T̄f S̄
2T̄f (1, 0)) = S2TS2T (I)

Now compute the matrix product.

S2TS2T =

(

3 4
8 11

)

∈ SL2(N0)

Indeed, (a2 + ab+ b2, ac+ bc+ bd) = (37, 100).

We can also find the Φ and Ψ family ”relatives” of the pair (37, 100) ∈ Dφ1

which all correspond to the same matrix in SL2(N0).

Φ0

(

3 4
8 11

)

= (25, 68)
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Ψ2

(

3 4
8 11

)

= (31, 84)

Φ3

(

3 4
8 11

)

= (61, 164)

Indeed, as a sanity check we find φ0(68) = 25× 185, ψ2(84) = 31× 233, and
φ3(164) = 61×449. Note that in each of these factorizations, the second (”com-
plementary”) factor corresponds to the first component when the respective
function is applied to the complement matrix

c

(

3 4
8 11

)

=

(

11 8
4 3

)

Deriving pairs from the same matrix defines a one-to-one correspondence
between each of the sets Dφ0 , Dφ1 , Dψ2 , and Dφ3 . At the risk of sounding
overly poetic, one could say that SL2(N0) serves as a ”highway” for divisibility
facts about enumerable polynomials.

We give one more application. Denote by P the set of positive integer primes.

Definition 4.5. Let P(f) = {p ∈ P : p|f(n) for some n ∈ N0}.

It is well-known and easy to check that P(φ0(n)) = {p ∈ P : p ≡ 1 mod 4}∪
{2}.

Consider S̄αk c̄f · · · c̄f S̄α1 c̄f S̄
α0(1, 0). What can we say about the sequence

of first pair components (mi)
k
i=0 induced by the sequence (αi)

k
i=0?

We consider the sequence defined by (mk, nk) = c̄f S̄
αk(mk−1, nk−1) with

(m0, n0) := (1, 0). Then we have

nk = nk−1 + αkmk−1

mk =
|f(nk)|
mk−1

Proposition 4.6.

mk =
k
∏

i=0

|f(nk−i)|(−1)i

Proof. We know that mk = |f(nk)|
mk−1

. Then, recursively, mk+1 = |f(nk)|
|f(nk−1)|

mk−2

=

|f(nk)|mk−2

|f(nk−1)|
. Continuing in this manner, the proposition follows.
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Proposition 4.7. Let f ∈ Z[x] be enumerable. Then for all p ∈ P(f) There
exist natural numbers n0 < n1 < · · · < nk < p such that

p =

k
∏

i=0

|f(nk−i)|(−1)i

In particular, for all p ≡ 1 mod 4, there exist natural numbers n0 < n1 <
· · · < nk < p such that

p =

k
∏

i=0

(n2
k−i + 1)(−1)i

Proof. Recall that F̂f : SL2(N0) → Df is an invertible, equivariant map. Then,
p ∈ P(f) and so p|f(n) for some n ∈ N0 meaning (p, n) ∈ Df . We know (p, n) =
F (A) for some A ∈ SL2(N0). Then, F (A) = S̄αk c̄f · · · c̄f S̄α1 c̄f S̄

α0(1, 0) =
(p, n). The existence of such naturals then follows from Proposition 4.6. The
upper bound of p will become obvious when we consider Example 4.8.

Example 4.8.

We compute two such representations of a prime p ≡ 1 mod 4. We take
p := 113.

Consider the congruence n2 + 1 = 0 mod 113

This congruence has two solutions, n = 15, 98 mod 113. Then, we know
(113, 15) ∈ Dφ0 and (113, 98) ∈ Dφ0 .

Apply the first part of Algorithm 4.3 to (113, 15), saving the intermediate
pairs

(113, 15)

(2, 15)

(2, 1)

(1, 1)

(1, 0)

Then varying the placement of the n components between the numerator
and denominator in the above steps we find

113 =
(152 + 1)

(12 + 1)

Now do the same for (113, 98).

(113, 98)
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(85, 98)

(85, 13)

(2, 13)

(2, 1)

(1, 1)

(1, 0)

Varying the n components in the above steps we find

113 =
(982 + 1)(12 + 1)

(132 + 1)

5 Recursions for the Φ0 tree and its S-sequence
We give the first 4 rows of the Φ0 tree enumeration of SL2(N0), which is ob-
tained either by starting with (1, 0) and applying S̄ on the right and T̄φ0 on the
left, or by directly applying the function Φ0 : SL2(N0) → Dφ0 to the matrix
tree of SL2(N0) generated by the matrices S and T .

(1, 0)

(1, 1)

(1, 2)

(1, 3) (10, 7)

(5, 3)

(5, 8) (13, 5)

(2, 1)

(2, 3)

(2, 5) (13, 8)

(5, 2)

(5, 7) (10, 3)

Remark 5.1. Proving that there are infinitely many primes of the form p = n2+
1 (Conjecture 1), equates to showing that infinitely many n ∈ N never appear as
the second component of a pair on the interior of the Φ0 tree. This equivalence
follows immediately from Theorem 2.24 and the surrounding discussion.

We study the properties of the Φ0 tree. Many of the properties we con-
sider extend easily to Φ1,Ψ2, and Φ3 and can be proved using similar methods.
Analogous properties for those trees are given in Section 6.

We prove several recursions for the row sums and means of Φ0. Note that
we begin indexing rows at k = 0.
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Definition 5.2. We define,

Mk(Φ0) :=
∑

(m,n)∈row
k
(Φ0)

m

namely the row sum of the first components

Nk(Φ0) :=
∑

(m,n)∈row
k
(Φ0)

n

namely the row sum of the second components

Rk(Φ0) :=
∑

(m,n)∈row
k
(Φ0)

n

m

namely the ratio sum of the two components.

In the following theorem we simply writeMk, Nk, and Rk instead ofMk(Φ0),
Nk(Φ0) and Rk(Φ0).

Theorem 5.3. The following recursions are satisfied

• Mk = 5Mk−1 − 2Mk−2 with initial conditions M0 = 1, M1 = 3.

• Nk = 5Nk−1 − 2Nk−2 with initial conditions N0 = 0, N1 = 2.

• Rk = Rk−1 + 3(2k−2) with initial condition R0 = 0.

Proof. We will prove that Rk = Rk−1 + 3(2k−2) with initial condition R0 = 0.
The other two recursions are proved in a similar fashion. The initial condition
is simply the ratio sum over row k = 0. Now, let r(m,n) := n

m
. Then we can

write
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Rk =
∑

(m,n)∈row
k
(Φ0)

n

m

=
2k
∑

i=1
(m,n)∈row

k
(Φ0)

r(mi, ni)

=

2k−1
∑

i=1
(m,n)∈row

k
(Φ0)

r(mi, ni) + r (c̄f (mi, ni))

=

2k−2
∑

i=1
(m,n)∈row

k−1
(Φ0)

r
(

S̄(mi, ni)
)

+ r
(

T̄f (m,n)
)

+ r
(

S̄(c̄f (mi, ni))
)

+ r
(

T̄f (c̄f (mi, ni))
)

=
2k−2
∑

i=1
(m,n)∈row

k−1
(Φ0)

mi + ni
mi

+
ni +

n2
i+1
mi

mi + 2ni +
n2
i
+1

mi

+
ni +

n2
i+1
mi

n2
i
+1

mi

+
ni +mi

n2
i
+1

mi
+ 2ni +mi

=

2k−2
∑

i=1
(m,n)∈row

k−1
(Φ0)

mi + ni
mi

+
ni +

n2
i+1
mi

n2
i
+1

mi

+ 1

=

2k−2
∑

i=1
(m,n)∈row

k−1
(Φ0)

1 +
ni
mi

+
ni
n2
i
+1

mi

+ 1 + 1

=

2k−2
∑

i=1
(m,n)∈row

k−1
(Φ0)

3 + r(mi, ni) + r(c̄f (mi, ni))

= 3(2k−2) +

2k−1
∑

i=1
(m,n)∈row

k−1
(Φ0)

r(mi, ni)

= 3(2k−2) +Rk−1

Using matrix diagonalization on the first two recursions and induction on
the third, we find the following closed forms

Corollary 5.4.

Mk(Φ0) =
1

34

(

−
(

1

2

(

5−
√
17
)

)k
(

−17 +
√
17
)

+

(

1

2

(

5 +
√
17
)

)k
(

17 +
√
17
)

)
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Nk(Φ0) =
21−k

(

−
(

5−
√
17
)k

+
(

5 +
√
17
)k
)

√
17

Rk(Φ0) =
3

2

(

2k − 1
)

Corollary 5.5. The limit of the ratio average over the rows of Φ0

lim
k→∞

Rk(Φ0)

2k
=

3

2

Let us now define the Calkin-Wilf tree.

Definition 5.6. The Calkin-Wilf Tree, as introduced in [1], is generated by the
pair maps L̄ : (a, b) → (a, a+b) (left child map) and R̄ : (a, b) → (a+b, b) (right
child map), beginning with the pair (1, 1)

(1, 1)

(1, 2)

(1, 3)

(1, 4) (4, 3)

(3, 2)

(3, 5) (5, 2)

(2, 1)

(2, 3)

(2, 5) (5, 3)

(3, 1)

(3, 4) (4, 1)

We denote the Calkin-Wilf Tree as CW.

Remark 5.7. The Calkin-Wilf tree has the same limiting ratio average over
rows as Φ0 ([4], Theorem 1)

lim
k→∞

Rk(Φ0)

2k
= lim

k→∞

Rk(CW)

2k
=

3

2

Remark 5.8. If we view the pairs (a, b) on CW as fractions a
b
, then the Calkin-

Wilf tree read-off left to right, row by row, enumerates the positive rationals Q>0,
meaning each q ∈ Q>0 appears exactly once in the sequence

{

1

1
,
1

2
,
2

1
,
1

3
,
3

2
,
2

3
, · · ·

}

A simple proof of this fact can be found in [1].
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Calkin and Wilf also proved that the integer sequence of first components
{a(n)}n∈N of CW read off row-by-row is given by the recursion

{

a(2n) = a(n)

a(2n+ 1) = a(n) + a(n+ 1)

with initial conditions a(1) = 0 and a(2) = 1, and with the initial first
component on CW taken to be a(2). The sequence {a(n)}n∈N is known as
Stern’s diatomic sequence (OEIS A002487) and has a number of remarkable
properties, some of which are given in [1]. Moreover, the pairs on CW can be
generated row-by-row by running over the sequence a as

(a(n), a(n+ 1))

Our goal is to find an integer sequence that analogously generates the divisor
pair tree Φ0.

Definition 5.9. Let S(k) denote the integer sequence which results from reading
off the second components of Φ0. From the first 4 rows of the second components

0

1

2

3 7

3

8 5

1

3

5 8

2

7 3

we obtain

{S(k)}k∈N = {0, 1, 1, 2, 3, 3, 2, 3, 7, 8, 5, 5, 8, 7, 3, · · ·}

Remark 5.10. Note that the boundary of the second component tree corresponds
to the S-sequence values S(2n) on the left and S(2n+1 − 1) on the right, for
n ∈ N.

Proposition 5.11. The following ”net” recursively generates the second com-
ponents of Φ0
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a

b

2b− a 2b+ c

c

2c+ b 2c− a

The generation process is as follows: we begin with initial conditions (a, b, c) =
(0, 1, 1). On each row k we apply the net to each node and its two children on
row k + 1 to generate the row k + 2.

Proof. We denote by nS , nT , nS2 , nTS , nST , nT 2 the second components of the
image pairs S̄(m,n), T̄φ0(m,n), S̄

2(m,n), T̄φ0

(

S̄(m,n)
)

, S̄
(

T̄φ0(m,n)
)

, T̄ 2
φ0
(m,n)

respectively. Then, beginning with an arbitrary second component n, we get
that its children and grandchildren will be

n

nS

nS2 nTS

nT

nST nT 2

After computing all of the image pairs,

S̄(m,n), T̄φ0(m,n), S̄
2(m,n), T̄φ0

(

S̄(m,n)
)

, S̄
(

T̄φ0(m,n)
)

, T̄ 2
φ0
(m,n)

and writing out their second components, one can verify that the last row of the
net can be restated in terms of linear combinations of values on the previous
two rows as

n

nS

2nS − n 2nS + nT

nT

2nT + nS 2nT − n

Rewriting n, nS , nT as a, b, c respectively, we get the claim of the propo-
sition.
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To reiterate, the Φ0 tree of divisor pairs has the properties

• Every integer n ∈ N0 appears on the tree exactly τ(n2 + 1) times.

• An integer n ∈ N0 is absent from the interior of the tree if and only if
n2 + 1 is prime.

By using the recursion in Proposition 5.11, we can generate Φ0 using two
linear maps.

We want a matrix L (left-child matrix) that sends





a
b
c



→





b
2b− a
2b+ c





and a matrix R (right-child matrix) that sends





a
b
c



→





c
2c+ b
2c− a





These conditions are satisfied by the matrices

L =





0 1 0
−1 2 0
0 2 1





R =





0 0 1
0 1 2
−1 0 2





Remark 5.12. L,R ∈ SL3(Z) and are mutual conjugates via the matrix





1 0 0
0 0 1
0 1 0





which has determinant −1.

Beginning with the initial condition vector =





0
1
1



 we compose by L on the

left and by R on the right. This yields the vector tree for Φ0 (first 3 rows)
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0
1
1









1
2
3









2
3
7









3
5
8









1
3
2









3
8
5









2
7
3





One sees that the vectors on this tree all have the form





n
nS
nT



 =





n
n+m

n+ n2+1
m





Therefore, one easily recovers the tree Φ0 by sending each vector





a
b
c



→ (b− a, a) ∈ Dφ0

Note that the top component of each vector runs over S(k) when reading off
the sequence of vectors row-by-row. In fact, each vector will have the form

v =





S(k)
S(2k)

S(2k + 1)





while its left and right children will have the forms





S(2k)
S(4k)

S(4k + 1)



 and





S(2k + 1)
S(4k + 2)
S(4k + 3)





respectively. Solving the equations

Lv =





S(2k)
S(4k)

S(4k + 1)



 and Rv =





S(2k + 1)
S(4k + 2)
S(4k + 3)
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yields the set of recursions for S(k)


















S(4k) = 2S(2k)− S(k)
S(4k + 1) = 2S(2k) + S(2k + 1)

S(4k + 2) = 2S(2k + 1) + S(2k)
S(4k + 3) = 2S(2k + 1)− S(k)

with initial conditions S(1) = 0, S(2) = 1, S(3) = 1.

One may also ask about the sequence that results from reading off the first
components from the divisor pair tree Φ0. Since the difference b − a of the
second and first vector components gave us the first divisor pair component m,
and the vectors each had the form

v =





S(k)
S(2k)

S(2k + 1)





we find that the first components are given by the relation S(2k)−S(k) for
all k ∈ N. Thus, reading off the divisor pair tree Φ0 row-by-row the kth pair
will be (S(2k)− S(k),S(k)) for k ∈ N.

We define k-regular sequences, as introduced by Allouche and Shallit [5].
There are many equivalent definitions of k-regular sequences. The one we state
allows us to immediately conclude that S is a 2-regular sequence

Definition 5.13. A sequence s(n) is k-regular if there exists an integer E such
that, for all ej > E and 0 ≤ rj ≤ kej − 1, every subsequence of s of the form
s(kejn+ rj) is expressible as a linear combination

∑

i

cijs(k
fijn+ bij),

where cij is an integer, fij ≤ E, and 0 ≤ bij ≤ kfij − 1.

The asymptotic analysis of k-regular sequences is an area that has undergone
significant development in recent years [6], [7], [8].

6 Summary of enumerable polynomials

The purpose of this section is to record the most important properties of each
enumerable polynomial in a single place. Recall that each polynomial’s divisor
pair tree was initially obtained by applying the equivariant, invertible map F̂f
to the SL2(N0) matrix tree generated by S and T
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(

1 0
0 1

)

(

1 0
1 1

)

(

1 0
2 1

)

(

1 0
3 1

) (

3 1
2 1

)

(

2 1
1 1

)

(

2 1
3 2

) (

3 2
1 1

)

(

1 1
0 1

)

(

1 1
1 2

)

(

1 1
2 3

) (

2 3
1 2

)

(

1 2
0 1

)

(

1 2
1 3

) (

1 3
0 1

)

We reuse the notation S for every sequence generating the corresponding
divisor pair tree. It should be clear from the context which polynomial’s S-
sequence we are referring to. Note that for each f ∈ {φ0, φ1, ψ2, φ3} the S-
sequences have the properties

• S is 2-regular.

• f(n) is prime if and only if S−1({n}) = {2n, 2n+1 − 1}.

• |S−1({n})| = τ (f(n)).

• the kth pair of the divisor pair tree read off row-by-row is given by
(S(2k)− S(k), S(k)) where k ∈ N.

6.1 φ0(n) = n2 + 1

Invertible, equivariant map

Φ0

(

a b
c d

)

= (a2 + b2, ac+ bd)

Divisor pair tree
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(1, 0)

(1, 1)

(1, 2)

(1, 3) (10, 7)

(5, 3)

(5, 8) (13, 5)

(2, 1)

(2, 3)

(2, 5) (13, 8)

(5, 2)

(5, 7) (10, 3)

S-sequence

For k ∈ N,



















S(4k) = 2S(2k)− S(k)
S(4k + 1) = 2S(2k) + S(2k + 1)

S(4k + 2) = 2S(2k + 1) + S(2k)
S(4k + 3) = 2S(2k + 1)− S(k)

with initial conditions S(1) = 0, S(2) = 1, S(3) = 1.

6.2 φ1(n) = n2 + n + 1

Invertible, equivariant map

Φ1

(

a b
c d

)

= (a2 + ab+ b2, ac+ bc+ bd)

Divisor pair tree:
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(1, 0)

(1, 1)

(1, 2)

(1, 3) (13, 9)

(7, 4)

(7, 11) (19, 7)

(3, 1)

(3, 4)

(3, 7) (19, 11)

(7, 2)

(7, 9) (13, 3)

S-sequence

For k ∈ N,



















S(4k) = 2S(2k)− S(k)
S(4k + 1) = 2S(2k) + S(2k + 1) + 1

S(4k + 2) = 2S(2k + 1) + S(2k) + 1

S(4k + 3) = 2S(2k + 1)− S(k)

with initial conditions S(1) = 0, S(2) = 1, S(3) = 1.

6.3 ψ2(n) = n2 + 2n− 1

Invertible, equivariant map

Ψ2

(

a b
c d

)

= (max{a, b}2+2ab−min{a, b}2, max{ac, bd}+2bc−min{ac, bd})

Divisor pair tree:
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(1, 0)

(1, 1)

(1, 2)

(1, 3) (14, 9)

(7, 3)

(7, 10) (17, 5)

(2, 1)

(2, 3)

(2, 5) (17, 10)

(7, 2)

(7, 9) (14, 3)

S-sequence

For k ≥ 2,



















S(4k) = 2S(2k)− S(k)
S(4k + 1) = 2S(2k) + S(2k + 1) + 2

S(4k + 2) = 2S(2k + 1) + S(2k) + 2

S(4k + 3) = 2S(2k + 1)− S(k)

with initial conditions S(1) = 0, S(2) = 1, S(3) = 1, S(4) = 2, S(5) = 3,
S(6) = 3, S(7) = 2.

Remark 6.1. The reason we begin the recursion at k = 2 is that ψ2(0) = −1
instead of 1, which initially alters the net generating the second component tree.

6.4 φ3(n) = n2 + 3n+ 1

Invertible, equivariant map

Φ3

(

a b
c d

)

= (a2 + 3ab+ b2, ac+ 3bc+ bd)

Divisor pair tree:
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(1, 0)

(1, 1)

(1, 2)

(1, 3) (19, 13)

(11, 6)

(11, 17) (31, 11)

(5, 1)

(5, 6)

(5, 11) (31, 17)

(11, 2)

(11, 13) (19, 3)

S-sequence

For k ∈ N,



















S(4k) = 2S(2k)− S(k)
S(4k + 1) = 2S(2k) + S(2k + 1) + 3

S(4k + 2) = 2S(2k + 1) + S(2k) + 3

S(4k + 3) = 2S(2k + 1)− S(k)

with initial conditions S(1) = 0, S(2) = 1, S(3) = 1.
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