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In this work, we introduce a predictive approach for determining fracture nucleation in thermosets
based on shortest paths (SPs) of the network topology. This method enumerates SP sets in net-
works with periodic boundary conditions, with applications to both all-atom and coarse-grained
simulations. We find that network fracture is most likely to nucleate on the first (shortest) SP and
the strain at nucleation is linearly correlated with the topological path length. Subsequent fracture
events are dictated by the instantaneous SP of partially broken networks. We further quantify
the length scale dependence of SP distributions, introducing a means of bridging simulated and
experimental fracture profiles.

Polymer networks are ubiquitous, constituting elas-
tomers, gels, and thermosetting plastics.[1, 2] The mech-
anism of how these networks fracture—critical for appli-
cations ranging from structural engineering to biomedi-
cal devices and stretchable electronics—continues to be
a subject of intense research.[3–9] While crack propaga-
tion has been extensively studied,[10–15] the initiation
process of fracture through bond scission within these
amorphous networks is fundamental to the performance
and longevity of polymeric materials, but remains poorly
understood.[16, 17] Central to this fact is the need to
identify the primary triggers for bond scission within
amorphous networks; is fracture nucleated from local-
ized defects, such as dangling bonds and short loops,
or does the global network topology play a role?[18–
22] Clarifying this mechanism is essential to tailor ma-
terial design, enabling the development of polymer net-
works with optimized failure resistance, durability, and
degradability.[23, 24]

To discern whether fracture nucleation originates from
global topology or local defects, we perform thermoset
fracture simulations using the Machine Learning-based
Adaptable Bonding Topology (MLABT) method, which
achieves quantum chemically accurate bond scission at a
computational cost near that of classical molecular dy-
namics (MD) simulations.[25, 26] Details of the com-
putational methods are provided in Sec. S1B of the
Supplementary Material.[27–32] The local stress distri-
butions indicated by the bond stretching energy visual-
ization are investigated during uniaxial tensile deforma-
tion, as shown in Fig. 1. Each colored point represents
a stressed bond, with black line segments indicating the
proximity of two stressed bonds within a 6 Å distance,
thereby marking a region of concentrated stress. Prior to
deformation, these regions are scattered throughout the
system, but as the network is deformed near the frac-
ture nucleation (first bond breakage), a pattern emerges:
stressed regions align to form a nearly linear connected
path across the material in the direction of extension.
This stress pathway vanishes immediately following bond
breakage, and only reappears immediately prior to sub-
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FIG. 1. Local stress distributions in all-atom MLABT simu-
lations at various strains (top view of 3D visualization). The
colored points are highly stretched bonds (bond energy>2
kcal/mol) with color representing the bond stretching energy.
Line segments are drawn if two highly stretched bonds are
proximate (<6 Å, about half the length of a monomer), to in-
dicate stressed local regions. Initially, these regions are scat-
tered throughout the system. As the system is deformed,
the stressed regions form a nearly linear connected pathway
across the simulation box along the direction of deformation
before a bond breakage occurs. The pathway disappears im-
mediately following bond scission due to stress release.

sequent bond breakages (shown in Fig. S14). These
qualitative observations are robust across MLABT MD
trajectories we analyze. The emergence of these linear
pathways prior to fracture suggests that the entire poly-
mer path is taut and under maximum stress, pointing
to nonlocal effects, in alignment with speculation from
recent experimental measurements of fracture toughness
in crack growth.[14] Therefore, our molecular simulations
suggest that fracture nucleation at the molecular level is
dictated primarily by global topological paths, specifi-
cally the shortest paths, and not by local defects.

The shortest path (SP) concept, rooted in graph the-
ory, has played a critical role in many fields ranging
from matter and energy transportation to information
communication.[33] In the context of polymer networks,
SPs are instrumental in identifying the most efficient
pathways for stress transfer, offering fundamental in-
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sights into material properties through computational
studies. For instance, Stevens applied SP analysis (re-
ferred to as minimal paths in his study) between two fixed
walls to examine interfacial fracture in highly crosslinked
coarse-grained (CG) polymer networks.[29] Furthermore,
primitive path analysis, which builds on SPs under con-
straints of surrounding chains is useful to elucidate the
rheology of entangled polymer liquids.[34] More recently,
Cai and colleagues have demonstrated the significance
of global SP lengths in understanding bond breaking
and self-healing capabilities in elastomers.[35, 36] Despite
these advances, there is a lack of an explicit definition
of SPs for networked materials in periodic simulations.
Such a definition is crucial for establishing correlations
with the molecular-level fracture properties, especially in
thermosetting networks characterized by physically short
strands (edges) and slow thermal relaxation of structures.

In this work, we propose a novel approach to de-
fine and investigate the SP set in polymer networks,
especially within theoretical frameworks employing pe-
riodic boundary conditions (PBC). The use of PBC in
amorphous polymer structures ensures consistent phys-
ical constraints, even when the material undergoes de-
formation. Our methodology specifically targets the SPs
that connect identical atoms across different periodic im-
ages, thereby resulting in a set of SPs instead of a single
SP. The process for identifying the SP set comprises three
steps. 1) Generation of multi-image networks. A series
of graphs containing multiple periodic images along the
direction of extension are generated {Gp|p = 1, 2, ...},
where p is the total number of images minus 1. p > 1
is necessary because SPs can have a wavelength of more
than one image, as illustrated in Fig. S1A. 2) Search-
ing SPs using Dijkstra’s algorithm between pairs of iden-
tical particles from the most distant images,[37], i.e.
SP (u0

i , u
p
i ;Gp), where u0

i is a particle (node) in the 0th
periodic image, and up

i the same particle in the pth image
in Gp. This step is repeated for every particle and every
multi-image network, aggregating all potential SPs into
the collection {SP (u0

i , u
p
i ;Gp)|i = 1, 2, ...N, p = 1, 2, ...},

where N = |u| is the total number of particles. 3) Elim-
ination of redundant SPs, such as duplicate paths that
differ only by starting particles and SPs at larger p that
repeat those found at small p. This step is critical for
establishing a finite p value, ensuring no unique SPs are
overlooked in networks with large p. We detailed the
complete methodology in the Supplementary Material
Sec. S1, including the normalization of SP length, Dg,
(topological length or geometric distance) by p for paths
spanning multiple images.

Our investigation applies this SP identification strat-
egy to three molecular models: an all-atom model simu-
lated with the MLABTmethod, a traditional bead-spring
CG model, and a simple network model. As the target of
the work is molecular scale fracture nulceation, we focus
on results from the all-atom model, while results from
the other models are provided in the Supplementary Ma-
terial. To streamline network analyses in the all-atom

FIG. 2. (a) A shortest path (SP) in the initial state from the
MLABT simulation trajectory. (b) The SP is stretched taut
under deformation immediately before breakage. (c) Distribu-
tions of SP lengths, Dg, at 3 different degrees of crosslinking
in the all-atom model. (d) Contour length (the product of Dg

and average edge length l̄) evolution of SPs under deforma-
tion. The dashed line represents a state of SP straightness,
i.e. the contour length and the system length in the deformed
direction L are equal. Each line represents one SP in the set
with color representing its ordering sorted by Dg.

model, we treat crosslinkers as nodes, with edges repre-
senting direct connections between crosslinkers without
intermediate nodes. This approach provides a framework
for studying SPs in polymer networks, offering insights
into their structural and mechanical properties.

We begin our investigation by examining the inherent
characteristics of SPs in thermosetting networks. Fig. 2A
and 2B illustrates two snapshots of the all-atom system
with a SP highlighted. Initially, the SP appears slack,
since its length is well beyond the system size. How-
ever, as deformation occurs, the SP gradually tightens
and eventually fractures upon reaching a state of taut-
ness. This observation aligns with identified global stress
pathways in Fig. 1. Furthermore, Figure 2C presents the
SP length distribution in systems with varying crosslink-
ing degrees. Notably, as the network becomes more con-
nected (highly crosslinked), the SP length distribution
shifts towards shorter lengths, due to the increased avail-
ability of pathways. To analyze the evolution of the SP
set under deformation, we present their contour lengths
relative to the system length (in the extended direc-
tion), as shown in Fig. 2D. The dashed line represents
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states where the contour length and the system length are
equal, signifying a fully straightened SP. It can be seen
that SPs tend to fracture upon nearing this limit. Excep-
tions occur where some SPs fracture prematurely, sharing
edges with other SPs already stretched to near tautness.
Additionally, the generally consistent slope of contour
lengths vs. system size for the SPs in Fig. 2D implies
that the shortest SP, noted as the first SP hereinafter,
is more likely to first approach the dashed line, thereby
indicating that fracture nucleation predominantly occurs
on the first SP.

To statistically assess the prevalence of fracture nu-
cleation occurring on the first SP, we investigate both
the all-atom and the CG models under a variety of con-
ditions. As shown in Fig. 3A, the lengths of the SPs
where fracture nucleation occurs, Dg

n, are generally con-
sistent with the length of the first SP (or the minimum
SP length, denoted as Dg

min). The simulation conditions
examined are provided in Table S1, covering variations
in degrees of crosslinking, temperatures, strain rates, and
strand lengths, reinforcing the hypothesis that fracture
predominantly nucleates along the shortest SP. An ensu-
ing question pertains to the precise nucleation location
on a given shortest SP. To address this, we conduct 100
independent CGMD runs, incorporating cooling and de-
formation processes, on a network with a fixed topology.
These simulations revealed a non-uniform probability dis-
tribution for bond scission along the first SP, as detailed
in Sec. S3. Typically, bonds whose rupture would re-
sult in the greatest stress relief are favored, as indicated
by SP betweenness centrality or by the increase in Dg

min
should that bond break, in agreement with recent com-
putational studies.[22] This finding underscores the pos-
sibility of predicting the fracture nucleation site at the
molecular level through detailed SP analysis.

Beyond pinpointing the location of bond scission, the
SP analysis also predicts the onset strain for fracture nu-
cleation. As illustrated in Fig. 2B and 2D, the initial
bond breakage is expected as the first SP straightens,
i.e., its contour length approximately matches the sys-
tem length in the elongated direction Ln,

Ln ≃ α ·Dg
min · l̄ (1)

where l̄ is the average bond (or edge) length within the
SP at the point of fracture nucleation and 0 < α ≤ 1 is a
geometric factor that accounts for premature breakage of
the SP before complete straightness (e.g., due to inher-
ent structural constraints). Given Ln = (εn + 1)L0 and
l̄ ≃ λl0, where L0 is the original system length, l0 is the
equilibrium bond length, and λ the average bond stretch-
ing factor at breakage, the fracture nucleation strain εn
can be approximated as

εn ≃ αλl0
Dg

min

L0
− 1 (2)

Hence, εn is expected to have a linear relationship with
Dg

min/L0, illustrating its dependence on a global topolog-
ical characteristic.

FIG. 3. (a) Lengths of SPs on which fracture nucleation oc-
curs, Dg

n, are consistent with minimum SP lengths Dg
min in

both the all-atom and CG models under diverse conditions.
The conditions examined are detailed in Table S1. (b) Linear
correlation between the strain of fracture nucleation and the
normalized minimum SP length in the CG models and the
all-atom models (inset). The fits are based on Equation 2.

This fact is supported by a linear correlation between
the normalized minimum SP length Dg

min/L0 and the
fracture nucleation strain observed in both the all-atom
models and CG models under a variety of simulation
conditions, as shown in Fig. 3B. By setting α = 1
(and λ ∼1.25 in the CG model), an upper limit of
εn ≤ λl0D

g
min/L0 − 1 can be derived, represented by the

black line in Fig. 3B. Notably, all data points from the
CG models fall below this upper limit. Moreover, they
can be described by a united fitting based on Equation
2. With λ and l0 held constant, α is calculated to be
0.86, corresponding to a tilt angle of 17◦ for the first
SP deviating from complete straightness at the moment
of breakage. Based on this linear relationship, one can
predict the fracture nucleation strain by computing the
minimum SP length directly from the initial thermoset
topology without resorting to MD simulations.

Fracture events following nucleation can also be ana-
lyzed through the lens of SPs in dynamically evolving
networks. When the strain rate is sufficiently low to al-
low for stress redistribution, subsequent bond breakages
behave similarly to initial nucleation events within the
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FIG. 4. (a) Strains of sequential bond breaking events after
nucleation are approximately linearly correlated with the in-
stantaneous minimum SP length in the all-atom model. The
inset shows that lengths of SPs where the bonds break are con-
sistent with the minimum SP lengths, suggesting that most
bond breakages happen on the instantaneous first SP. (b)
Fracture occurs at smaller strains when the system size is
increased in the CG model. The fracture progression is de-
fined as the number of broken bonds divided by the number
of final broken bonds at complete network rupture. (c) Cor-
relation of the averaged fracture nucleation strains with the
averaged minimum SP length as well as the averaged effective
SP length at various system sizes. The shadow regions in (b)
and the error bars in (c) represent the standard deviations
derived from at least 10 independent replicas.

partially fractured networks. As shown in the inset of
Fig. 4A, the lengths of SPs where the sequential bond
breakages occur generally align with the length of the
first SP in the updated network, suggesting a propensity
for fracture to continue along the instantaneous first SP.
Moreover, the established linear relationship between the
strain at bond breakage and the minimum length of the
instantaneous SP is adequately maintained in both the
all-atom model (Fig. 4A) and the CG model (Fig. S6B).
However, at higher strain rates (such as 1011/s in the
all-atom model), redundant bond breakages may occur
along previously fractured SPs due to local stress con-

centration. This phenomenon becomes more pronounced
in larger systems, as evidenced by the increased rate of
bond breakage (Fig. 4B), because the timescale required
for stress relaxation scales with the structural length-
scale. Thus, while SP analysis remains a powerful tool for
understanding molecular-level fracture nucleation, at the
mesoscale, crack propagation driven by localized stress
concentrations becomes increasingly significant.[11, 38]
Despite the complexity of fracture growth dynamics, the
SP framework consistently provides predictive insights
into fracture nucleation across scales and conditions.
Importantly, we observe considerable finite size effects

in fracture nucleation governed by SPs. As demonstrated
in Fig. 4B, with increasing system sizes in the CG model,
fracture occurs at smaller strains, a trend that includes
fracture nucleation. This trend qualitatively agrees with
that when varying sample sizes in experiments.[39] More
details, including the stress-strain curves, are provided
in Sec. S5 of the Supplementary Material. The ob-
served shift in nucleation strains implies a lengthscale de-
pendency of SP characteristics. However, the minimum
SP length tends to converge (also shown in the network
model in Sec. S5D) after some initial decline and can-
not explain the continual decrease of nucleation strains
with increasing system size. The reason lies in larger
systems hosting a greater number of SPs with lengths
closely matching the minimum SP length, as indicated
by narrower SP length distribution and a continuous de-
crease of average SP length toward the minimum length
(Fig. S7). To account for the prevalence of nearly degen-
erate SP lengths in large systems, we introduce an effec-

tive SP length, Dg
eff =

∑
i 1∑

i(L0/D
g
i )
, where the summation

is operated over the SP set, see Sec. S5E. Despite the
convergence of the minimum SP length, the effective SP
length maintains a linear relationship with fracture nu-
cleation strain across system sizes, as illustrated in Fig.
4C. This correlation is valid across all CG models eval-
uated, irrespective of the force fields applied (see Sec.
S5). Therefore, the tendency for earlier fracture nucle-
ation in larger systems can be attributed to a shift in the
SP distribution towards shorter lengths.
This lengthscale dependence of SPs sheds light on the

significant discrepancy between brittle fractures observed
in experiments (strain<0.1) and ductile fractures pre-
dicted in molecular simulations (typically strain>1).[40–
42] This disparity can be at least partially addressed
without the need to invoke defect structures. The SP
picture suggests that expanding the size of amorphous
networks, which comprise similar local structures, will
naturally accelerate fracture nucleation. Moreover, in
larger systems, fracture propagation is likely expedited
as crack growth becomes increasingly significant. By ex-
trapolating the effective SP length and following the lin-
ear relationship with nucleation strain, it may be possi-
ble to bridge molecular simulation results to experiments,
despite the current absence of all-atom simulation data
across varying lengths.
In summary, we introduce a definition of the SP con-
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cept within polymer networks, establishing its direct cor-
relation with fracture nucleation. This approach allows
us to predict the location and strain at fracture nucle-
ation, using only the network’s initial topology. Further-
more, SP analysis offers a coherent framework for in-
terpreting previous simulation results.[26] Temperature,
thermal fluctuations, and cooling rates have minimal
impact on fracture behaviors since they are unrelated
to network topology and SP. Conversely, the degree of
crosslinking significantly influences fracture dynamics by
altering the SP length distribution (see Fig. 2B). Al-
though strain rate does not affect the initial topology, it
alters the subsequent network topology. At high strain
rates, additional bonds break along previously broken
SPs, increasing bond breakage rates but not affecting the
strain at fracture nucleation.

The analysis of lengthscale dependence through SPs
holds additional promise for bridging the gap between
experimental observations and simulation predictions of
thermoset fractures. By modifying the network for-
mation process, chemical composition, and polymeriza-
tion degree, we can substantially alter SP characteristics

and, consequently, the fracture behaviors of polymer net-
works. This SP-centric analysis not only sheds light on
the microscopic mechanisms underlying fracture in poly-
mer networks but also opens new pathways for designing
thermosets with customized fracture properties, signify-
ing a shift towards more predictive and tailored material
engineering.
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S1. METHODS

A. Searching shortest paths in networks with periodic boundary conditions

In a graph G(V,E), where V denotes nodes and E denotes edges, a path is defined as any sequence of nodes such
that every consecutive pair of vertices in the sequence is connected by an edge in the network.[1] The length of a path
is the number (or sum of weights) of edges along the path. A shortest path (SP), also called a geodesic path, is a
path between two nodes such that no shorter path exists. The length of a SP, i.e., geodesic distance, between nodes
ui and uj in an unweighted network can be computed by Dg(ui, uj) = argmaxr[A

r]Vi,Vj > 0. In large sparse networks
with non-negative weighted edges, geodesic distances between any nodes can be efficiently computed using Dijkstra’s
algorithm in time complexity of O(n log n).

The key question is how to define G given the material system and select node pairs between which the SP will
potentially sustain maximum stress under deformation. Intuitively, the nodes {ui|i = 1, 2..., N} represent the particles
(atoms, molecules, coarse-grained beads, etc.), where N = |u| denotes the total number of particles, and the edges
represent the direct covalent bonds or a sequence of covalent bonds without intermediary nodes. Considering the bulk
network materials with the periodic boundary condition (PBC) in the simulation context, three steps are designed to
completely search all shortest paths without human intervention.

i. Create a series of multi-image networks, G1,G2,..., where Gp is a network containing p+1 periodic images. This
consideration is made because SPs in periodic systems can have wavelengths of more than one image, as illustrated
in Fig. S1. For each multi-image graph, edges can be formed across the inner periodic boundaries but not across the
outer boundaries to ensure all SPs pass through all the images.

∗ jacksonn@illinois.edu
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ii. Select pairs of identical particles ui from the farthest images and compute the SP using Dijkstra’s algorithm
SP (u0

i , u
p
i ;Gp), where up

i denotes the particle ui in the pth periodic image. By iterating over p, a sufficiently large
number of images, and over i, all particles in the system, we can obtain a complete set of SPs, {SP (u0

i , u
p
i ;Gp)|p =

1, 2, ...,M ; i = 1, 2, ...N}, where M is a large number determined by testing in practice.
The length of SP from multi-image networks is normalized by the number of images,

Dg(u0
i , u

p
i ;Gp) =

1

p
ShortestPathLength(u0

i , u
p
i ;Gp) (1)

where ShortestPathLength denotes the reported length of SP directly from the Dijkstra’s algorithm. This normaliza-
tion step is particularly important because the length needs to be compared with the system size for prediction.

iii. Delete redundant shortest paths. There are three cases that might be deleted, as illustrated in Fig. S1d. 1)
Identical SPs that start at different nodes. 2) SPs with larger p but repeat those with smaller p. This will result in the
convergence of searching at a finite p value. 3) Among SPs between identical nodes {SP(u0

i , u
p
i ;Gp)|p = 1, 2, ...,M},

only the one with the shortest length is remained and others are deleted.
In practice, a relatively large M (e.g., 6-8 in our models) is sufficient for p, because in networks with too large

p, there are no more unique SPs and all SPs are repeated patterns of those with smaller p. In addition, we might
select a slice parallel to the direction of applied strain and only search for nodes in the slice. This will reduce the
computational cost, especially when the system is large.

FIG. S1. (a) Illustration of shortest paths involving multiple periodic images. (b) An example of a shortest path with p = 1
from the all-atom model. (c) An example of a shortest path with p = 3 from the all-atom model. Note that the three path
segments in one image are connected to each other at periodic boundaries. (d) Three cases of redundant shortest paths that
need to be deleted after searching.

B. Computational models of thermoset networks

In this work, three different models have been investigated to understand the comprehensive features of the SP
mechanism. The three models are illustrated in Fig. S2 and detailed as follows.

All-atom models. We employ an archetypal epoxy polymer system, diglycidyl ether of bisphenol A (DGEBA)
cured by methylene dianiline (MDA), as investigated in our previous studies.[2] We apply the machine learning-based
adaptable bonding topology (MLABT) method for simulating the molecular fracture process, a machine learning
(ML) method incorporated on-the-fly with classical MD to accurately describe quantum-chemically accurate bond
breaking at dramatically reduced cost. The ML model has been trained with an active learning strategy using data
collected from density functional theory (DFT) calculations.[3, 4]

Specifically, the all-atom model contains 432 DGEBA and 216 MDA molecules (27,432 atoms in total) in a cubic box
with periodic boundary conditions in three dimensions. Bonding topologies of networks are generated dynamically
by simulating curing reactions in MD, resulting in degrees of cross-linking ranging from 77% to 98%. Structures are
melted at 800 K for 200 ps and then quenched to 300 K with a constant cooling rate ranging from 0.1 to 100 K/ps. The
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obtained glassy structures are then used as the initial conditions for MLABT deformation simulations. Only uniaxial
deformations are considered in this work. During deformations, the simulation box is deformed uniaxially (e.g., along
the x-axis) every 0.025 ps at a strain rate of 1 × 109/s, and the atomic coordinates are remapped accordingly. The
two transverse directions are allowed to relax under P = 1 atm to avoid the accumulation of artificial stress. We apply
the optimized potentials for liquid simulations all atoms (OPLS-AA) force-field with the large-scale atomic/molecular
massively parallel simulator (LAMMPS) in all MD simulations.[5, 6] The simulations are carried out on the Bridges-
2 cluster, which is provided by the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support
(ACCESS).[7]

FIG. S2. Three computational models are investigated in this work.

Coarse-grained models. The non-bonded interaction is set as the Lennard-Jones interaction, i.e., VLJ =
4ϵ[(σr )

12 − (σr )
6], where ϵ = 1 and σ = 1, and the cutoff distance is 2.5. Two types of bonded interactions are

tested, separately. One is quartic bonds,[8]

Vq = K(r −Rc)
2(r −Rc −B1)(r −Rc −B2) + V0 (2)

where K = 1200, B1 = −0.55, B2 = 0.25, Rc = 1.3, and V0 = 34.6878 in order to mimic the finite extensible nonlinear
elastic (FENE) potential.[9] When the bond length is above Rc, there is no interaction between the two associated
beads and the bond is effectively broken. We also apply the harmonic bonds (as applied in the all-atom models), i.e.,
Vh = K(r − R0)

2, where K = 100 and R0 = 0.8. A cubic box with PBC in the three dimensions is used, containing
beads with numbers ranging from 50 to 1 million. Two types of beads are used, A as monomers and B as crosslinkers.
For simplicity, A and B are simulated with the same force field parameters. The polymer chains formed by A have
lengths of 2/4/6 beads in different systems. The functionality of B is set to 3 and that of A is 2.

The CG network is formed dynamically, similar to that in the all-atom models. Below list the specific steps employed
for generating stable network structures.

• Prepare initial polymer chains and crosslinkers in a simulation box. For simplicity, the polymer chains are
generated on lattice with the crosslinkers randomly located around them, ensuring that no beads are located
within 0.8 of another bead to prevent simulation instability.

• Relax initial structures in the isobaric-isothermal ensemble (NPT) at high temperatures. This helps to prepare
amorphous structures for the subsequent curing step.

• Link polymers and crosslinkers by simulating the curing reactions. This step is done during annealing simulations
at high temperatures. Once a crosslinker and a polymer bead get close to each other within some cutoff distance,
a bond is immediately formed between the two and the simulation is resumed. Note that if the degree of a bead
reaches its functionality, the bead cannot participate in reactions anymore. This step stops when the desired
degree of crosslinking is achieved, which is defined as the number of formed bonds divided by the number of
crosslinkers times the functionality.

• Melt and then quench the system to obtain stable structures. This is a routine step for glass simulations. It
usually requires a relatively small cooling rate (1e-5/timestep is used) but actually the cooling rate has been
reported not critical to fracture mechanics.[3]
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• Perform deformation simulations on the structures. The simulation box is stretched uni-axially (e.g., the x
direction) at a constant true strain rate (0.005/timestep is used unless otherwise stated), and the sizes of the
other two dimensions are kept fixed.

All the simulations are performed with LAMMPS and a constant timestep of 0.002 is used.[6] In addition, we
find that the cutoff distance used for the crosslinking reactions significantly influences the generated topology and
corresponding fracture properties. For instance, a too large cutoff, such as twice of the equilibrium bond length, may
lead to concentrated defects and early fracture nucleation, which can still be captured by the effective SP analyses.

Network models. We also employ 3D network models just for SP analysis. To build the model, first nodes
are randomly distributed in a cubic box with PBC in all directions. Second, a structure relaxation with the Morse
potential is applied to make sure the node distribution is reasonable compared to those in physical systems. Finally,
edges are formed between nodes based on a Gaussian probability, Pui,uj

(rij) = exp(12 (rij/σ)
2)/

∑
k<l exp(

1
2 (rkl/σ)

2),
where rij is the distance between nodes ui and uj , and Pui,uj

is the associated probability of forming an edge. σ is
the standard deviation depending on the system, which could be related to the chain length if an ideal chain behavior
is assumed.

To mimic the all-atom models, we apply the same system settings as in the all-atom models, including the system
size, the density of crosslinkers, the degree of crosslinking, and the functionality. However, because the crosslinking
probability for pair distances is not exactly Gaussian in thermosets, the network models should not be considered an
exact surrogate model of the all-atom models, but some generalized random physical networks.

TABLE S1. Details of the computational models for analysis in Fig. 3 in the main text.

Number of particles degrees of crosslinking Temperature Strand length strain rate
CG1 200 beads 0.9 0.1 2 beads 0.005
CG2 1000 beads 0.9 0.1 2 beads 0.005
CG3 200 beads 0.75 0.1 2 beads 0.005
CG4 200 beads 0.9 0.3 2 beads 0.005
CG5 200 beads 0.9 0.1 2 beads 0.001
CG6 360 beads 0.9 0.1 4 beads 0.005
CG7 520 beads 0.9 0.1 6 beads 0.005
All-atom 27432 atoms (432 crosslinkers) 0.77-0.98 100-500 K 1 monomer 1e9-1e11/s

S2. SHORTEST PATHS IN THE COARSE-GRAINED MODEL

As illustrated in Fig. S3A, SPs provide a clear picture of how fracture nucleation occurs under the constraint of
periodic boundaries. Due to the relaxation capability of structures under deformation, SPs are expected to approach
very close to straightness at breakage, similar to stretching a polymer chain. Therefore, the lengths of SPs are
considered important features, and they vary with degrees of crosslinking. Similar to that in the all-atom model (Fig.
2 in the main text), at more connected networks, the SP length distribution tends to shift towards the shorter lengths
(Fig. S3B), also indicated by the decreasing minimum and mean values in the inset. As depicted in Fig. S3C, different
SPs share similar length evolution behavior under deformation, suggesting that the first SP (the shortest one) will be
the first to approach tautness (indicated by the dashed line) and break. This is consistent with the observation in the
all-atom model presented in Fig. 2D of the main text. Moreover, Fig. 3A of the main text clearly shows that fracture
nucleation mostly occurs on the first SP. To reinforce this argument, we present the probability of fracture nucleation
occurring on the first three SPs in Fig. S3D. The conditions of the models are detailed in Table S1. It can be clearly
seen that the first SP is more probable to nucleate the first bond breakage. Regarding the exceptions, there seems no
universal explanation, but some might be related to bonds shared among multiple near-shortest SPs or bonds under
strong local structural constraints, which warrants further investigation.
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FIG. S3. (a) Illustration of the SP scenario, which is consistent with the observation in the all-atom model in Fig. 2A in the
main text. (b) Distributions of SP lengths in the CG models (harmonic bonds) at three degrees of crosslinking η=75%, 85%,
and 95%. The inset shows the corresponding change in the minimum and average length of SPs. (c) length evolution of SPs
under extension compared to the system length L in the elongated direction. The results are similar to the same figure for the
all-atom model in Fig. 2C of the main text. (d) Probability of fracture nucleation on the first, second, and third SP in different
models.

S3. SPECIFIC BOND BREAKING SITES ON THE SHORTEST PATH

Although we learn that the fracture nucleation mostly occurs on the 1st SP, exactly where on the path remains
a question. To tackle this, we perform statistical analysis by running 100 cooling and deformation simulations on
fixed-topology networks, in which the influence of glassy structures and thermal fluctuation will be reflected in the
distribution of the bond breaking locations. As shown in Fig. S4A as one example, not every bond has equal
probability to break, suggesting that breaking along the SP is different from breaking along a simple polymer chain.
We have two theoretical hypotheses to understand this. One is the increase of minimum SP length, Dg

min, if one
particular bond on the SP is deliberately cut, as shown in Fig. S4B. Since Dg

min for the residual network roughly
predicts the strain of next bond breakage (Fig. 4A), cutting the bond with the largest Dg

min increase tends to maximize
the delay of the next bond breakage, in other words, to maximize the release of current stress.
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FIG. S4. Investigation of the exact bond breaking sites on the first SP in a CG model with a fixed network topology. (a)
Probability of breaking for each bond on the first SP. This is done by cooling and deformation 100 times with different initial
velocities. (b) Increase of minimum SP length if a particular bond is cut, which are computed from all possible residual
networks. (c) SP betweenness centrality of the bond, i.e., the number of SPs passing through the bond.

The other hypothesis concerns the SP betweenness centrality, i.e., the number of SPs passing through a particular
bond. Betweenness centrality is a critical measure in network analysis, especially for flow dynamics and network
disruption. In the problem of thermoset fracture, since stress is more likely distributed on the SP (especially the
shorter ones), counting the SP betweenness centrality will shed insight on the most vulnerable bonds, i.e., bonds
under the most loads, and naturally cutting those bonds will release more stress than cutting others. As shown in
Fig. S4C, the results are similar to the Dg

min increase as in Fig. S4B. They both suggest that bonds with index 0
and 4-8 will have higher probability to break than bonds with index 1-3. But also note that the probability in S4A
shows fluctuation, especially for bond index 0 and 8, not exactly following the two hypotheses, suggesting that there
might be additional influence from local topology as well. In addition, computing the SP betweenness centrality is
more efficient than computing the Dg

min increase, since only one SP search is needed.

Therefore, while site of fracture nucleation is not deterministic nor entirely random, the probability for it to happen
on individual bonds can be predicted from the SP analyses as discussed above.

S4. FRACTURE EVENTS AFTER NUCLEATION

As the network fractures, the connectivity diminishes and the SP lengths generally increase, as shown in Fig. S5.
This aligns with the observations when varying the degree of crosslinking. It also can be seen that the minimum
SP length continuously increases during the fracture, suggesting again that the fracture events are related to the
minimum SP length.
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FIG. S5. Evolution of SP length distribution during the MLABT fracture simulation in the all-atom model. As the network
becomes more broken, the SP lengths increase and the numbers of SPs decrease.

We then compute the minimum SP length for each instantaneous network during deformation as a function of strain,
as shown in Fig. S6A. The presented results include two different model conditions: 1000-bead systems deformed
at a temperature of 0.1 and 200-bead systems deformed at a temperature of 0.3, with each condition containing
10 independent runs with different random initializations. The minimal SP lengths increase at each fracture event
and eventually vanish at the failure point. It can be seen clearly that, despite the different conditions and initial
topologies, the increasing trend of the minimum SP length generally follows the same behavior. This suggests that
the subsequent fracture events after nucleation are still correlated with SPs.

To evaluate this argument more clearly, we plot the strain at each bond breakage versus the minimum SP length
of the instantaneous network before this breakage in Fig. S6B, similar to Fig. 4A but for the CG models. For better
visualization, we only present a few cases in the figure and others not shown have consistent behaviors. Notably, a
linear relationship is observed, which can be fitted based on Equation 2 in the main text. We also note that when
the strain rate is too large, bond breakages would occur at the previously broken SPs due to limited stress relaxation.
This effect will also lead to fracture mechanism transition to the crack propagation as the system size approaches the
mesoscale.

FIG. S6. Instantaneous network SP analyses during deformation in the CG model. (a) Normalized minimum SP length as a
function of true strain. The solid lines (with circles) are results of the model with 1000 beads at a temperature of 0.1, and the
dashed lines (with squares) are those with 200 beads at temperature of 0.3. Colors represent different individual replicas. It
can be seen that the evolution of instantaneous SP length is generally consistent, especially for the relatively large model. (b)
The strain for the next bond breaking is approximately linear in the instantaneous minimum length of SPs, consistent with the
observation in the all-atom model shown in Fig. 4A in the main text.
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S5. LENGTHSCALE DEPENDENCE OF SHORTEST PATH LENGTHS

In the main text, we discussed how the SP length distribution depends on the system size (lengthscale) and
consequently influences the fracture nucleation in the molecular simulation models. Because of the computational
difficulty to obtain results of the all-atom model at vary large lengthscales, we focus on three CG models and a
network model in this section, aiming to present a clear picture of the lengthscale dependence.

A. CG models with less stiff harmonic bonds (longer bonds, presented in the main text)

The first model we studied is the one presented in the main text Fig. 4. It employs harmonic bonds with the
equilibrium bond length l0 = 1.2, the bond strength K = 100, and the breakage length criterion lc = 1.5. Details on
generating the CG network can be found in Sec. S1B. It can be seen clearly in Fig. S7A and S7B, with increasing
system sizes and all other parameters kept fixed, the fracture of the CG model occurs at smaller strains, while the
elastic behaviors are minimally affected. This suggests that the lengthscale effect is more pronounced on fracture
than on elastic properties, in agreement with previous MD studies.[10] The fracture nucleation strains decrease with
increasing size, as shown in Fig. S7f.

FIG. S7. Dependence of fracture and SP lengths on the lengthscale. The parameters of the harmonic bonds in the CG model are
the equilibrium bond length l0 = 1.2, the bond strength K = 100, and the breakage length criterion lc = 1.5. (a) Stress-strain
curves of the CG model with harmonic bonds at various system sizes. (b) The fracture progression, which is defined as the
number of broken bonds divided by the total number of broken bonds at complete failure, as a function of true strain. It is
clear that the fracture is more brittle, i.e., occurring earlier, in larger systems. (c) Number and (d) density distribution of SP
lengths in systems with various sizes. It is clear that the distribution becomes narrower in larger systems. (e) Minimum, mean,
and effective length of SPs when the length is increased. (f) Strain at fracture nucleation continuously decreases as the system
becomes larger.

This size effect can be understood from the SPs. Figure S7C and S7D show the SP length distributions at varying
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system sizes. Even after normalization by the SP number, the distribution tends to narrow towards smaller lengths,
showing a sharper asymmetric peak in larger systems. This suggests that in larger systems, there is an increased
fraction of SPs having lengths close to that of the shortest SP, and this may expedite fracture nucleation statistically.

To account for this effect, we introduce the effective SP length computed from the whole SP set, Dg
eff =

∑
i 1∑

i(L0/Di)
,

where L0 is the original system length and Di is the length of each SP. This form is similar to the resistance of parallel
circuits but the numerator is

∑
i 1 instead of 1 to incorporate the change in the number of SPs (also resulting in the

effective length larger than the normalized minimum length Dg
min/L0). An explanation of this form is provided in

Sec. S5E. Figure S7E presents the minimum, mean, and effective lengths of SPs as a function of system sizes. The
minimum SP length decreases at first but converges around a size of 6, corresponding to the kink position in Fig.
S7F. Instead, the effective and mean lengths are very similar and decrease continuously with increasing system sizes.
Figure 4C in the main text shows clearly that the effective length has a better linear correlation with the fracture
nucleation strain than the minimum length across varying system sizes. This is also true in all the other models we
investigated.

B. CG models with less stiff harmonic bonds (shorter bonds)

The second model we studied is similar to the one in Sec. S5A but with a shorter bond length. It employs
harmonic bonds with the equilibrium bond length l0 = 0.8, the bond strength K = 100, and the breakage length
criterion lc = 1.1. As shown in Fig. S8, the lengthscale dependence of fracture is more pronounced than the one
in Sec. S5A. Notably, in the model with 50,000 beads, the fracture nucleates almost immediately after yielding and
completes before a strain of 0.5, showing better agreement with the experimental observation. Similarly, we analyze
the change of minimum, mean, and effective lengths of SPs as functions of system size, as shown in Fig. S9. And the
fracture nucleation strain shows a clear linear correlation with the effective SP length.

FIG. S8. (a) Stress-strain curves of the CG model with harmonic bonds with increasing system sizes. (b) The fracture
progression as a function of true strain. The parameters of the harmonic bonds in the CG model are the equilibrium bond
length l0 = 0.8, the bond strength K = 100, and the breakage length criterion lc = 1.1.
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FIG. S9. Lengthscale effect of fracture of the CG model in Fig. S8 understood from the SPs. (a) Minimum, mean, and effective
length of SPs when the length is increased. (b) Strain at fracture nucleation continuously decreases as the system becomes
larger. (c) Linear correlation between minimum SP length and fracture nucleation strain. The errorbars represent standard
deviations over at least 10 independent runs (entire procedure). (d) The linear correlation between effective SP length and
fracture nucleation strain. This correlation is stronger than that in (c), due to the necessity of considering all near-shortest
SPs in large systems.

C. CG models with stiffer quartic bonds

FIG. S10. Same as in Fig. S8 but for a different CG model with quartic bonds. The parameters for the bonds are given in Sec.
S1B. The shift of fracture due to increase of lengthscale is less evident in this model, possibly related to the increased bond
stiffness for the quartic bonds.

The third model we studied employs quartic bonds, as detailed in Sec. S1B. As shown in Fig. S8, the lengthscale
dependence of fracture is less pronounced compared to the other two models presented above. We analyze the change



11

of minimum, mean, and effective lengths of SPs as functions of system size, as shown in Fig. S9. The minimum SP
length converges very quickly but the effective length continuously decreases, showing a better linear correlation with
the fracture nucleation strain.

FIG. S11. Lengthscale effect of fracture of the CG model in Fig. S10 understood from the SPs. The plots are similarly
organized as those in Fig. S9. Note that with increasing lengthscale, the minimum SP length does not change evidently in this
case, but the fracture nucleation occurs earlier, which can be explained by the decreasing effective SP length.

D. Network models

FIG. S12. Minimum and mean of SP lengths at various system sizes in the network models for (a) σ = 10 Å and for (b) σ =
15 Å, where σ is the standard deviation in Gaussian probability when linking the network, as introduced in Sec. S1B.

To ensure the lengthscale dependence is broadly applicable to networks generated in different ways, we also evaluate
this in a random network model, which is connected based on a Gaussian probability over fixed node positions instead
of reaction-like crosslinking in the all-atom and CG models, as detailed in Sec. S1B. As shown in Fig. S12A, the
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minimum SP length converges after some initial decline, whereas the mean SP length continues to decreases towards
the minimum length, suggesting a narrower SP length distribution towards shorter lengths. This observation is
consistent with those in the aforementioned CG models. When the standard deviation σ in the Gaussian probability
is increased, the size at convergence increases as well, about five times of the σ value. This suggests that the polymer
strand length, which is related to the σ value, can also influence the fracture properties through SP characteristics.

In general, these observations in different models are in qualitative agreement with each other, suggesting a po-
tentially universal trend for lengthscale dependence of SP lengths in thermosetting networks regardless of simulation
details.

E. Intuition for the effective lengths of shortest paths

In this subsection, we will explain why the SP effective length has the form of
∑

i 1∑
i(L0/Di)

, similar to but slightly

different from the the form of resistivity in parallel circuits.
Suppose we have multiple paths that are all near-shortest, they are all taut under strain close to fracture nucleation.

If we let topological lengths be Di for the ith SP, the average length of each bond on the SP would be

di = L/Di (3)

where L = (ϵ+ 1) · L0 is the system length in the deformed direction and L0 is the initial equilibrium length.
We assume that the probability of bond breaking on a SP depending on the averaged bond length di follows a

Boltzmann distribution,

P (di) ∼ exp(
E − Ed

kBT
) ∼ exp(

1/2K(di − d0)
2 − Ed

kBT
) (4)

where d0 is the equilibrium bond length, K is the bond spring constant, Ed is the bond dissociation energy, T is the
temperature, and kB is the Boltzmann constant. Since in reality bond breakage only occurs within a small range
of length variation and if we assume it starts from d′, the probability above can be approximated using the Taylor
expansion,

P (di) ∼ P (d′) + P (d′)K(di − d0)(di − d′) ∼ P (d′) + P (d′)K(d′ − d0)(di − d′) (5)

As we can see, this probability is more like a quadratic function of di but in a very narrow range it can be roughly
treated as a linear function of di. For simplicity, let P (di) ≈ αdi + c, where α and c are fixed parameters depending
on the system.

In total, the probability of the system having at least one broken bond is

Pt = 1−
∏

i

(1− P (di)) (6)

where i is still the index of SP. Note that Pt at fracture nucleation is a small value because the attempted frequency
(inverse to Pt) related to the frequency of vibrations is large. In this sense,

Pt ≈
∑

i

P (di) =
∑

i

[α · (L/Di) + c] = α
∑

i

(εn + 1)L0

Di
+ cNSP (7)

where NSP =
∑

i 1 is the number of near-shortest SPs and εn is the strain at fracture nucleation. Reorganizing this
leads to

εn ≈ Pt

α

1∑
i(L0/Di)

− c

α

∑
i 1∑

i(L0/Di)
− 1 (8)

Because Pt is small and
∑

i 1 ≫ 1, the second term will be dominant in fracture nucleation, and thus Dg
eff =

∑
i 1∑

i(L0/Di)

works like the effective length of SPs. We should note that this effective treatment ideally only works for those near-
shortest SPs in larger systems but it is not easy to identify exactly which of SPs belong to the “near-shortest”,
therefore, we compute Dg

eff based on the entire set of SPs and study the correlation between this approximated
feature and fracture nucleation. The results are as discussed above, which satisfactorily explains the dependence on
the lengthsacle.
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S6. LOCAL STRESS DISTRIBUTION IN THE ALL-ATOM MODEL

As described in the main text, regions under high stress align to form a linear pathway across the material in the
direction of extension, immediately before the moment of fracture nucleation. This phenomenon can also be observed
clearly from the 3D visualization presented in Fig. S13. In addition, to ensure that the observed linear pathway is a
genuine feature, instead of an artifact of the visualization settings, we present another plot (Fig. S14) akin to Fig.
1 in the main text yet employing a reduced distance cutoff for indicating the local stressed region. The pathway is
distinctly visible and this observation holds true for the second bond breakage as well.

FIG. S13. Local stress distribution in 3D corresponding to Fig. 1 in the main text.

FIG. S14. Local stress distribution around the first and second bond breakages in the MLABT simulation, respectively. Note
that this is the same plot (for the first bond breakage) as in Fig. 1 but uses a smaller cutoff distance (4 Å here) for connecting
bonds by black line segments. The orange rectangles highlight the connected local stress pathways formed before bond breakage.
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