
CONNECTING ESSENTIAL TRIANGULATIONS I:
VIA 2-3 AND 0-2 MOVES

TEJAS KALELKAR, SAUL SCHLEIMER, AND HENRY SEGERMAN

Abstract. Suppose that M is a compact, connected three-manifold
with boundary. We show that if the universal cover has infinitely
many boundary components then M has an ideal triangulation
which is essential: no edge can be homotoped into the bound-
ary. Under the same hypotheses, we show that the set of essential
triangulations of M is connected via 2-3, 3-2, 0-2, and 2-0 moves.

The above results are special cases of our general theory. We
introduce L–essential triangulations: boundary components of the
universal cover receive labels and no edge has the same label at
both ends. As an application, under mild conditions on a represen-
tation, we construct an ideal triangulation for which a solution to
Thurston’s gluing equations recovers the given representation.

Our results also imply that such triangulations are connected via
2-3, 3-2, 0-2, and 2-0 moves. Together with results of Pandey and
Wong, this proves that Dimofte and Garoufalidis’ 1-loop invariant
is independent of the choice of essential triangulation.

1. Introduction

Paths of triangulations. The study of combinatorial triangulations,
and equivalences between them, dates back to at least the 1920’s. We
refer to Lickorish [23] for an overview of the history. Matveev [28,
Theorem 1.2.5] and Piergallini [33, Theorem 1.2] independently proved
the following: see Section 2.39.1 for definitions.

Theorem 1.1. Suppose that M is a closed three-manifold. Suppose
that T and T ′ are triangulations of M each with exactly one vertex and
at least two tetrahedra. Then T and T ′ are connected by a sequence of
2-3 and 3-2 moves.

Amendola [1, Theorem 2.1] improves this to deal with ideal triangu-
lations of three-manifolds with boundary. (Here we allow two-sphere
boundary components.) Together, the above results show that the
set of triangulations of M (having a fixed number of material vertices
and with at least two tetrahedra) is connected via 2-3 and 3-2 moves.

Date: May 7, 2024.
1

ar
X

iv
:2

40
5.

03
53

9v
1 

 [
m

at
h.

G
T

] 
 6

 M
ay

 2
02

4



2 TEJAS KALELKAR, SAUL SCHLEIMER, AND HENRY SEGERMAN

This implies that the Turaev-Viro invariant [42] is independent of the
triangulation appearing in its definition. See also [2].

Other three-manifold invariants require more: for example, the 1-
loop invariant of Dimofte and Garoufalidis [10, Definition 1.2] requires
its defining ideal triangulation admit a solution to Thurston’s gluing
equations [40, Chapter 4] corresponding to the complete hyperbolic
structure. Such a solution exists if and only if the triangulation is
essential [38, Theorem 1]. Our Theorem 6.1 implies the following.

Corollary 1.2. Suppose that M is a compact, connected three-manifold
with boundary. Suppose that the universal cover M̃ has infinitely many
boundary components. Then the set of essential ideal triangulations of
M is connected via 2-3, 3-2, 0-2, and 2-0 moves. □

Dimofte and Garoufalidis [10, Theorem 1.4] check that the 1-loop
invariant is unchanged by 2-3 moves between essential triangulations;
Pandey and Wong [32, Proposition 5.1] check that it is unchanged by
0-2 moves between essential triangulations. Thus we have the following,
answering Question 1.6 of [10] in the affirmative.

Corollary 1.3. The 1-loop invariant (for a discrete and faithful repre-
sentation) is independent of the choice of essential triangulation. □

Corollary 1.2 also gives a direct, geometric proof that the Bloch
invariant is independent of its defining triangulation, reproving [30,
Theorem 1.1].

Suppose that T is an essential triangulation of a hyperbolic manifold
M . Let S(T ) be the variety of solutions to Thurston’s gluing equations
on T ; let S0(T ) be the component containing the complete hyperbolic
structure. Another consequence of Corollary 1.2 is that if T and T ′ are
two such essential triangulations then S0(T ) and S0(T ′) are birationally
equivalent [32, Proposition 2.22]. Furthermore, each has a smooth
point at (the shapes giving) the complete hyperbolic structure [32,
Proposition 2.23].

Essential triangulations. Here is another purely combinatorial con-
sequence of our work.

Corollary 1.4. Suppose that M is a compact, connected three-manifold
with boundary. Suppose that π1(M) is infinite. Then the universal cover
of M has infinitely many boundary components if and only if M admits
an essential triangulation.

Proof. The forward direction is a special case of Theorem 3.1 (with L
the identity labelling, as in Example 2.11). The backwards direction is
a special case of Corollary 2.22. □
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Hodgson, Rubinstein, Tillmann, and the third author [18, page 1105]
construct essential triangulations given various hypotheses. Corol-
lary 1.4 recovers their second, third, and fourth constructions. However,
our result is more general; for example, we also deal with various
reducible manifolds and the complements of almost all links.

L-essential triangulations. Our results also apply more generally.
Suppose that M is a compact, connected three-manifold with bound-
ary. Let M̃ be the universal cover of M . Suppose that T is an ideal
triangulation of M . Let T̃ be the induced triangulation of M̃ .

Let ∆M be the set of boundary components of M̃ . Given any set
of labels L, equipped with an action of π1(M), we say that a labelling
is a π1(M)–equivariant function L from ∆M to L. We say that T is
L–essential if no edge of T̃ has the same label at both ends. With the
above notation, our main results are as follows.

Theorem 3.1. Suppose that L is a labelling of ∆M with infinite image.
Then there is an L–essential ideal triangulation of M .

Theorem 6.1. Suppose that L is a labelling of ∆M with infinite image.
Then the set of L–essential ideal triangulations of M is connected via
2-3, 3-2, 0-2, and 2-0 moves.

If we take L = ∆M and choose L to be the identity function, then a
triangulation is L–essential if and only if it is essential.

Coset spaces for π1(M) give more examples of labellings. Applying
Theorem 3.1 to these yields a triangulation with no edges in the given
subgroup (see Corollary 3.8). For example, we construct triangulations
with no null-homologous edges (Corollary 3.9) and triangulations of
Seifert fibred spaces with no edges lying in the fibration (Corollary 3.10).
Furthermore, by Theorem 6.1, such sets of triangulations are connected
via 2-3, 3-2, 0-2, and 2-0 moves.

Suppose that ρ : π1(M) → PSL(2,C) is a representation. A labelling
with L = ∂∞H3, and equivariant with respect to ρ, is called an anchoring
of ρ (Definition 2.15). Anchorings relate to Thurston’s gluing equations
as follows.

Lemma 2.24. Suppose that ρ is a representation and T is an ideal
triangulation. Then T is L–essential for some anchoring L if and only if
T is ρ–regular in the sense of [10, Definition 4.2]. (That is, Thurston’s
gluing equations, over T , admit solutions. Moreover, one of these has
holonomy representation conjugate to ρ.)

Not every representation ρ has an anchoring L which admits an
L–essential triangulation. However, this is the case under a mild side
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hypothesis, namely that ρ is infinitely anchorable: see Definitions 2.14
and 3.4 and Corollary 3.5. In Theorem A.1 we prove that representations
sufficiently close to a discrete and faithful representation are infinitely
anchorable. Our main results give the following.

Corollary 1.5. Suppose that M is a compact, connected three-manifold
with boundary. Suppose that ρ : π1(M) → PSL(2,C) is an infinitely
anchorable representation. Then there is an anchoring L of ρ such that
the set of L–essential ideal triangulations of M is non-empty and is
connected via 2-3, 3-2, 0-2, and 2-0 moves. □

This allows us to generalise Corollary 1.3 to representations ρ which
are not discrete and faithful. Suppose that L is an anchoring of ρ.
(Near, but not at, a discrete and faithful representation, this requires
choosing one of the two fixed points of each peripheral group as our
“anchor”. Dunfield discusses this in the special case of a once-cusped
manifold [4, Section 10.1].)

We now restrict attention to L–essential triangulations: Dimofte
and Garoufalidis [10, Theorem 4.1] prove that the 1-loop invariant
is unchanged by 2-3 moves; Pandey and Wong [32, Proposition 5.1]
prove that it is unchanged by 0-2 moves. Corollary 1.5 then gives the
following.

Corollary 1.6. Suppose that ρ is an infinitely anchorable representation.
Then there is an anchoring L of ρ such that the 1-loop invariant for ρ
and L is independent of the choice of L–essential triangulation appearing
in its definition. □

In Proposition B.1 we follow [19] and use our techniques to build an L–
essential triangulation suitable for Dehn filling. Pandey and Wong use
this and Theorem A.1 in their proof of the following [32, Corollary 1.16].

Theorem 1.7 (Pandey-Wong). The 1-loop invariant is equal to the
adjoint twisted Reidemeister torsion for all hyperbolic three-manifolds
obtained by doing sufficiently long Dehn-fillings on the boundary compo-
nents of any fundamental shadow link complement.

The 1-loop conjecture [10, Equation 1-4] states that the conclusion
holds for all complete non-compact hyperbolic three-manifolds. Theo-
rem 1.7 verifies the conjecture for a large new class of manifolds.

Future directions. Theorem 1.1 only requires 2-3 and 3-2 moves to
connect triangulations together. Our Theorem 6.1 also requires the use
of 0-2 and 2-0 moves. In the second paper in this series [20], we will
give the side-hypotheses needed to connect L–essential triangulations
together using only 2-3 and 3-2 moves.
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In future work, the second two authors will apply this connectivity
result to prove the following.

Theorem 1.8. The figure-eight knot complement admits a unique
veering triangulation.

In previous work [13, Theorem 5.1] we show that a veering trian-
gulation induces a unique “compatible” circular order on ∆M . The
proof of Theorem 1.8 relies on the ability to carry these circular or-
derings through a sequence of essential (but in general, non-veering)
triangulations.

A more speculative application is the following.

Conjecture 1.9. Suppose that M is a complete finite volume once-
cusped hyperbolic three-manifold. Then there exists an ideal triangulation
T that “yields” all factors of the A–polynomial.

Marc Culler [8,24] gives a list of A–polynomials of knot complements,
computed using the shape variety for some ideal triangulation T . If T
is not L–essential, for any anchoring of any representation ρ in some
component of the character variety, then Culler’s algorithm will miss
the corresponding factor of the A–polynomial. Experimentally, Culler
found that in at least one example it is possible to retriangulate to
move from a triangulation that does not see all factors to one that
does. See [36, Remark 11.5]. It seems likely that for a given manifold
(perhaps with extra hypotheses), a labelling could be constructed that
when used in Theorem 3.1 answers Conjecture 1.9.

Outline. We give the necessary background in Section 2. We prove
Theorem 3.1 in Section 3. The idea is as follows. We start with any
triangulation. We then take the first barycentric subdivision. This
breaks apart any L–inessential edges at the cost of introducing many
material vertices. We then remove each material vertex by “identifying”
it with an ideal vertex. The tool we use to do this is a snake: see
Section 3.11. These must be carefully chosen (using Algorithm 3.22) to
avoid creating any new L–inessential edges.

The strategy to prove Theorem 6.1 is to repeatedly improve a path
of triangulations connecting two given triangulations. In Section 4 we
apply a result of Casali [7] to construct a path of L–essential triangula-
tions using 2-3 moves, bubble moves, and their inverses (Corollary 4.8).
Bubble moves increase the number of material vertices in the trian-
gulation. In Sections 5 and 6 we fix this, replacing the use of bubble
moves with 0-2 moves. This is a difficult procedure. A bubble move
introduces a new material vertex, but 2-3 and 0-2 moves do not. So we
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must closely shadow the given sequence of triangulations in which the
number of vertices changes. We do this while not actually adding any
material vertices or creating any L–inessential edges.

The theorems are stated in terms of triangulations. However, the
proofs mostly deal with the dual objects: special spines, following
Matveev. In this paper we use the more descriptive term foam. Foams
and triangulations record the same combinatorial information. However,
pictures of foams are often easier to understand than the corresponding
pictures for triangulations.

Acknowledgements. We thank Moishe Kohan and Andy Putman
for their helpful comments on the proof of Lemma 2.21. We thank
Ka Ho Wong for many enlightening conversations regarding the 1-loop
invariant. We thank Marc Culler and Peter Shalen for their helpful
comments on character varieties. We thank Abhijit Champanerkar and
Matthias Goerner for useful conversations about the Bloch invariant.
The third author was supported in part by National Science Foundation
grant DMS-2203993.

2. Definitions and preliminaries

2.1. Triangulations and foams. Let

T =
{
x ∈ R4

∣∣∣∑xi = 1, xi ≥ 0
}

be the standard tetrahedron. The vertices, edges, and faces of T are
called model cells. A triangulation T is a collection of copies of T, called
the model tetrahedra, as well as a collection of face pairings. These are
affine isomorphisms of pairs of model faces. We require that every model
face appear in exactly two face pairings (once as a domain and once as
a codomain). The realisation |T | is the topological space obtained by
taking the disjoint union of the model tetrahedra and quotienting by
the face pairings. We define the vertices of |T | to be the images of the
model vertices. We take a subset T (0)

ideal of these to be the ideal vertices
of T . The remaining vertices are the material vertices.

Suppose that M is a compact, connected three-manifold, possibly
with boundary. We say that T is a partially ideal triangulation of M if

|T | − T (0)
ideal

∼= M − ∂M

We say that T is an ideal triangulation of M if it has no material
vertices. We say that T is a material triangulation of M if it has no
ideal vertices. In the latter case ∂M must be empty.
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Definition 2.2. Suppose thatM is a compact, connected three-manifold,
possibly with boundary. Suppose that F is a finite two-dimensional
piecewise-linear CW complex embedded in M with the following prop-
erties.

(1) The attaching maps are locally injective.
(2) Every zero-cell is adjacent to four ends of one-cells.
(3) The intersection of F with a small regular neighbourhood of

a zero-cell is isomorphic to the cone over the one-skeleton of a
tetrahedron.

(4) Every one-cell is adjacent to three segments of boundaries of
two-cells.

(5) Every complementary component of M − F is either an open
three-ball or is homeomorphic to a product of a component of
∂M with [0, 1). We call the former material regions and the
latter peripheral regions.

(See Figures 2.3a, 2.3b, and 2.3c for small neighbourhoods of points of
F in M .) We call F a foam in M .

Example foams in S3 and in S1×S2 are illustrated in Figure 2.5. This
terminology appears in [21, page 1047] and [39, Section 5]. Matveev [28,
Section 1.1.4] calls F a special spine for M .

(a) (b) (c) (d)

Figure 2.3. Local pictures of foams.

Remark 2.4. Note that, since M is connected and M (minus a point
from each material region) deformation retracts to F , it follows that F
is connected.

As discussed in [35, Section 2.7], we have the following duality (also
see Figure 2.3d).

Lemma 2.6. Suppose that the foam F is dual to the triangulation T .
Then material regions of F are dual to material vertices of T , while
peripheral regions of F are dual to ideal vertices of T . □
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(a) A foam in S3. (b) A foam in S1 ×D2.

Figure 2.5. Example foams. We obtain a foam in S1 × S2 by doubling the
foam in Figure 2.5b across the boundary of the solid torus.

We deduce the following. A foam for which all complementary regions
are material is dual to a material triangulation. A foam for which all
complementary regions are peripheral is dual to an ideal triangulation.
A foam with both kinds of complementary region is dual to a partially
ideal triangulation.

Definition 2.7. Suppose that T is an ideal or partially ideal triangu-
lation. Suppose that every k–simplex of T has k + 1 distinct vertices.
Suppose that any set of k + 1 vertices of T are the vertices of at most
one k + 1–simplex of T . Then we say that T is simplicial. Suppose
further that no edge of T has both endpoints being ideal vertices. Then
we say that T is insulated simplicial.

2.8. Universal cover. Suppose that M is a compact, connected three-
manifold, possibly with boundary. We use the notation ϕ = ϕM : M̃ →
M for the universal covering of M . For every boundary component C
of M , we call a component of ϕ−1(C) an elevation of C. Note that an
elevation is a lift precisely when C is a sphere.

Suppose that T is a partially ideal triangulation of M . We use T̃
to denote the induced partially ideal triangulation of M̃ . For every
image of a model cell c in M , there is an induced countable collection
of images of model cells in M̃ . We call these the lifts of c to M̃ .

We use ∆M to denote the set of components of ∂M̃ . Note that there
is a natural bijection between ∆M and T̃ (0)

ideal.

2.9. Labellings and L–essentiality.

Definition 2.10. Suppose that L is a set, equipped with an action of
π1(M). We say that L is a set of labels. Suppose that L : ∆M → L is a
π1(M)–equivariant function. Then we call L a labelling of ∆M .
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Example 2.11. We take L = ∆M and we take L to be the identity
map.

Example 2.12. Suppose that ψ : M ′ →M is a regular covering map.
Let ϕ′ : M̃ → M ′ be the induced universal covering. Let L be the
set of components of ∂M ′. Since ψ is regular, the fundamental group
π1(M) acts on M ′, by homeomorphisms, and surjecting the deck group.
This gives the action of π1(M) on L. The labelling L is given by
L(c) = ϕ′(c).

Definition 2.13. Suppose that π1(M) acts on a set X. Suppose that
c ∈ X. We use the following standard notation for the stabiliser of c.

Stab(c) = {α ∈ π1(M) | α · c = c}

Definition 2.14. Suppose that M has non-empty boundary. Suppose
that ρ : π1(M) → PSL(2,C) is a representation. Let Fixρ(c) ⊂ ∂∞H3 be
the fixed points at infinity for ρ(Stab(c)). We say that ρ is anchorable at
c if Fixρ(c) is non-empty. We say that ρ is anchorable if it is anchorable
at c for all c in ∆M .

Note that Fixρ(c) may be empty even when c is an elevation of a
torus boundary component: see Example 2.27.

Definition 2.15. Suppose that ρ : π1(M) → PSL(2,C) is a represen-
tation. A labelling L is an anchoring of ρ if L = ∂∞H3 and we have
L(γ(c)) = ρ(γ)(L(c)) for all γ ∈ π1(M).

Lemma 2.16. A representation ρ : π1(M) → PSL(2,C) is anchorable
if and only if there exists an anchoring of ρ.

Proof. In the forward direction we equivariantly pick, for each c in
∆M , a point zc ∈ Fixρ(c). Set L(c) = zc. In the backwards direction,
equivariance implies that Fixρ(c) is non-empty. □

A construction very similar to the forward direction of Lemma 2.16
appears in [11, Section 2.5]. Also see the last sentence of [41, page 216].

2.16.1. Label-essential triangulations.

Definition 2.17. Suppose that T is an ideal triangulation of M . Sup-
pose that L is a labelling of ∆M , as in Definition 2.10. Suppose that e is
an edge of T with a lift ẽ in T̃ . Suppose that ũ and ṽ are the endpoints
of ẽ. If L(ũ) = L(ṽ) then we say that e is L–inessential. Otherwise we
say that e is L–essential. If all edges of T are L–essential then we say
that T is L–essential.
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Remark 2.18. If L is the identity labelling as in Example 2.11 then
an ideal triangulation is L–essential if and only if it is essential as in
Definition 3.5 of [18].

Remark 2.19. Suppose that M is a closed manifold with a material
triangulation T . Let N be a small regular neighbourhood of the vertices.
Let M◦ =M −N . Let T ◦ be the resulting ideal triangulation of M◦.
Suppose that L is the identity labelling of ∆M◦ as in Example 2.11.
Then T ◦ is L–essential if and only if T is essential in the sense of [18,
Definition 3.2] (in the one-vertex case) or in the sense of [25, page 336]
(more generally).

Remark 2.20. For an L–essential triangulation to exist, the image of the
labelling L must have at least four elements. As a corollary of this, the
universal cover M̃ must have at least four boundary components. We
deduce that a handlebody, and similarly, a surface-cross-interval, cannot
have an L–essential triangulation. This is because their universal covers
only have one and two boundary components, respectively.

Lemma 2.21. Suppose that M is a compact, connected three-manifold
with boundary. Suppose that π1(M) is infinite. Suppose that |∆M | ≥ 3.
Then ∆M is infinite.

Proof. Passing to a double cover, if necessary, we may assume that M
is oriented. Fix now some c ∈ ∆M . Let C = ϕ(c). So C is a compact,
connected, oriented surface. Fix a basepoint p ∈ C. Let ΓC be the
image of π1(C, p) in π1(M, p).

Suppose first that ΓC has infinite index in π1(M, p). Then the full
preimage of C in M̃ has infinitely many components and we are done.
Suppose instead that ΓC has finite index in π1(M, p). In this case we
replace M with the finite cover with fundamental group ΓC . So we may
assume that π1(C, p) surjects π1(M, p). If the homomorphism induced
by inclusion is an isomorphism then by [17, Theorem 10.2] (and by
Perelman’s resolution to the Poincaré conjecture), we deduce that M
is homeomorphic to a surface-cross-interval C × [0, 1]. If instead the
homomorphism has kernel then the disk theorem [16, page 474] realises
M as a boundary connect sum; the decomposing disk has boundary
in C. Induction on the (negative of the) Euler characteristic of M
proves that M is a compression body (possibly with two-spheres in
its internal boundary), with exterior boundary equal to C. If M is a
handlebody or a product then the universal cover M̃ has at most two
boundary components, contrary to hypothesis. We deduce that the
compression body M has an internal boundary component C ′. So C ′

is incompressible in M (or is a sphere) and has genus less than that
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of C. We deduce that π1(C ′) has infinite index in π1(M). So the full
preimage of C ′ in M̃ has infinitely many components. Again we are
done. □

Corollary 2.22. Suppose that M is a compact and connected three-
manifold with boundary. Suppose that π1(M) is infinite. Suppose that
T is an L–essential ideal triangulation of M . Then ∆M is infinite.

Proof. Any ideal tetrahedron in T̃ has all of its edges L–essential. Thus
its vertices have four distinct labels. Thus it meets four distinct elements
of ∆M . We can therefore apply Lemma 2.21. □

2.23. Hyperbolic geometry. Our generalisation from essential to L–
essential triangulations has applications in hyperbolic geometry. Given
a triangulation T we can try to solve Thurston’s gluing equations. These
give each tetrahedron t of T the shape of an ideal hyperbolic tetra-
hedron. We record this shape as the cross-ratio of its four points
in CP1. Thurston’s gluing equations for T ensure that the hyper-
bolic tetrahedra fit together properly about each edge. For details,
see [40, Chapter 4; 34, Section 4.2].

Suppose that Z is such a solution to the gluing equations. By [38,
Corollaries 2 and 10], associated to Z we have a pseudo-developing
map DZ : M̃ → H3, a representation ρZ : π1(M) → PSL(2,C), and a
pseudo-developing map at infinity ∂DZ : ∆M → ∂∞H3.

Lemma 2.24. Suppose that ρ : π1(M) → PSL(2,C) is a representation.
Suppose that T is an ideal triangulation of M . Then the following are
equivalent:

• There is an anchoring L of ρ such that T is L–essential.
• There is a solution Z of Thurston’s gluing equations on T so

that ρZ is conjugate to ρ.

Remark 2.25. As mentioned in the introduction, the second property
exactly says that T is ρ–regular in the sense of [10, Definition 4.2].

Proof of Lemma 2.24. Let L be the given anchoring. Suppose that t is
a tetrahedron of T . Choose a lift t̃ of t to T̃ . Since T is L–essential,
the vertices of t̃ map under L to four distinct points of ∂∞H3. The
order of the model vertices of t chooses a particular cross-ratio of these
four points; this gives a shape for t̃. Since L is π1(M)–equivariant, this
shape is independent of the choice of lift t̃. Thus we get a shape for t
and so a collection of shapes Z.

Suppose that e is an edge of T . Choose a lift ẽ of e to T̃ . Let (t̃i)

be the cyclicly ordered list of tetrahedra of T̃ around ẽ. This gives a
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cyclic order to the ideal vertices of T̃ incident to the tetrahedra (t̃i) but
not contained in ẽ. We deduce that the product of the shapes of the
(t̃i) around ẽ is 1. Thus the shapes Z solve the gluing equations for T .
Choosing the first three vertices correctly, the pseudo-developing map
at infinity ∂DZ equals the labelling L. Likewise, ρZ equals ρ.

Now suppose that Z is a solution of Thurston’s gluing equations on T .
Let DZ , ρZ , and ∂DZ be the maps derived from Z. After an appropriate
conjugation, we may assume that ρZ equals ρ. We deduce that for
each boundary component c of ∆M , the point ∂DZ(c) lies in Fixρ(c).
Moreover, for any γ ∈ π1(M) we have that ∂DZ(γ · c) = ρ(γ)(∂DZ(c)).
That is, ∂DZ is an anchoring of ρ. We claim that T is ∂DZ–essential.
This holds because every ideal tetrahedron under DZ has four distinct
vertices on ∂∞H3. □

2.25.1. Non-anchorable representations. The following lemma controls
the behaviour of non-anchorable representations for manifolds with
torus boundary. See also [4, Section 10.2]. As a piece of notation we
set K4 = Z/2Z⊕ Z/2Z.
Lemma 2.26. Suppose that M is compact, connected, and oriented.
Suppose that c ∈ ∆M covers a torus boundary component of M . Suppose
that ρ : π1(M) → PSL(2,C) is a representation. If the set Fixρ(c) is
empty then ρ(Stab(c)) ∼= K4.
Proof. The subgroup ρ(Stab(c)) is isomorphic to a quotient of Z2 and
is thus abelian. The only one of these which acts without fixed points
on ∂∞H3 is K4 [3, Theorem 4.3.6]. □

Example 2.27. Suppose that M is a Z/2Z–homology torus-cross-
interval : that is, with coefficients in Z/2Z

• the manifold M has the homology of the two-torus and
• the inclusion of each boundary component induces an isomor-

phism on homology.
So H1(M ;Z/2Z) is isomorphic to K4. Let ρ : π1(M) → PSL(2,C) be
any representation with image isomorphic to K4. The elements of order
two are conjugate to rotations by π. Since they commute, they fix
perpendicular and crossing axes.

Concretely, take M equal to m367 from the SnapPy census [9]; this
is an integral homology torus-cross-interval. The fundamental group,
using capital letters for inverses, is as follows.

π1(M) ∼= ⟨a, b | aaaBAABaabAAAbaabAAB⟩
The meridians and longitudes of the two cusps are as follows.

µ0 = Ab λ0 = aaBAABaaa µ1 = b λ1 = AABaaaBAA
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So we may take ρ(a) = X, take ρ(b) = Y , and extend to obtain the
desired representation.

Other examples in the SnapPy cenus having such a representation
include m125, m202, m203, m295, m328, m359, and m366.

Remark 2.28. It follows from Lemma 2.24 that a non-anchorable rep-
resentation cannot be recovered from a solution to Thurston’s gluing
equations for any ideal triangulation.

2.29. Partially ideal triangulations. Our results are stated in terms
of ideal triangulations. However, our constructions make use of partially
ideal triangulations. We extend Definition 2.17 to this case as follows.

Definition 2.30. Suppose that T is a partially ideal triangulation of
M . Suppose that L is a labelling of ∆M , as in Definition 2.10. We say
that T is weakly L–essential if there are no L–inessential edges between
ideal vertices. If in addition there are no edge loops based at material
vertices then we say that T is L–essential.

Remark 2.31. Suppose that T is an insulated simplicial partially ideal
triangulation. Then T is L–essential for any labelling L.

We use the notion of weak L–essentiality only in Appendix B.

2.32. Essential foams.

Definition 2.33. Suppose that T is a partially ideal triangulation of M .
Suppose that F is the foam dual to T . Suppose that L : ∆M → L is a
labelling of ∆M . Then we obtain a function LF from peripheral regions
of M̃ − F̃ to L as follows. Suppose that C is a peripheral region that
contains the boundary component c ∈ ∆M . Then we set LF(C) = L(c).
In what follows, we abuse notation and suppress the subscript F . We
also say that a peripheral region C has the label L(C).

Let e be an edge of T . Let f be the corresponding dual face in F .
We say that f is L–essential or L–inessential as e is. We say that F is
(weakly) L–essential if T is (weakly) L–essential.

The following remark rephrases what it means for a face of a foam to
be L–essential.

Remark 2.34. With notation as in Definition 2.33, suppose that f̃ is a
lift of f to F̃ . Then the face f is L–inessential if and only if the regions
of M̃ − F̃ on either side of f̃ have the same label.

Similarly, an edge with both ends at a material vertex of T corre-
sponds to a face of F with the same material region on both sides.
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2.35. Edge loops and cyclic edges.

Definition 2.36. An edge e of a foam that has both ends at a single
vertex is an edge loop. Any lift of e to a cover is called a cyclic edge.

Let F be a foam in a manifold M . Let e be an edge loop in F based
at a vertex v. Let N be a small neighbourhood of v. There are six disks
of (F ∩N )−F (1). See Figure 2.3c. Let d be the disk that meets both
ends of e. Let f be the face of F that contains d. There are now two
cases: the face f does or does not contain other disks of (F ∩N )−F (1).

Suppose that f does not contain any other disks of (F ∩N )−F (1).
Then f is degree-one: that is, f has only one model edge (which is
mapped to e). This is the configuration shown in Figure 2.37.

Suppose instead that f does contain other disks of (F ∩N )−F (1). If
M is orientable then the edge e forms the core of a solid torus embedded
in M . See Figure 2.5b. If M is non-orientable then the edge e forms
the core of a solid torus or a solid Klein bottle embedded in M .

Figure 2.37. An edge loop forming the boundary of a degree-one face.

Our main hypothesis implies that there are no degree-one faces.

Lemma 2.38. Suppose that T is an L–essential ideal triangulation.
Let F be the dual foam. Then F has no degree-one faces.

Proof. Suppose for a contradiction that f is a degree-one face incident
to a vertex v. Let N be a small regular neighbourhood of f . Thus N
is a three-ball. See Figure 2.37 for a picture of F ∩ N . Let g be the
face of F that meets v along the two edges that f does not. Consulting
Figure 2.37, we see that g meets the same region on both sides. Since
the edge loop bounds a disk, it lifts to a loop in the universal cover.
Thus any lift of g also meets the same region on both sides. Thus g is
L–inessential for any labelling L. □

On the other hand, L–essentiality does not rule out edges at the
cores of solid tori or solid Klein bottles. These show up in practice, for
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example in foams dual to the canonical triangulations of hyperbolic
knot complements.

Previous work [37] of the third author addresses the connectivity of
the set of triangulations without degree-one edges.

2.39. Basic moves on triangulations. We use various moves to con-
nect triangulations (and their dual foams) to each other. We illustrate
these moves on foams. Suppose that F is a foam in a manifold M .

2.39.1. Bistellar moves. The three-dimensional bistellar moves [31] are
the 1-4, 2-3, 3-2, and 4-1 moves.

The 1-4 move can be applied to any vertex of F and creates a new
material region. See Figure 2.40. The reverse move is the 4-1 move.
It can be performed on a material region whose boundary in F is
combinatorially identical to the boundary of a three-simplex.

(a) Before. (b) After.

Figure 2.40. A 1-4 move.

(a) (b)

Figure 2.41. The 2-3 move.
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The 2-3 move (called the T move by Matveev [28, page 14]) can be
performed along any edge of F that is not an edge loop. See Figure 2.41.
The reverse move is the 3-2 move. It can be performed on a triangular
face whose closure is embedded in F .

2.41.2. The 0-2 move. The 0-2 move (called the ambient lune move by
Matveev [28, page 17]) is applied along any path δ embedded in a face
of F . It creates two new vertices and a new bigon face. See Figure 2.42.
The reverse move is the 2-0 move. The 2-0 move produces a foam in M
unless the disks labelled f and f ′ in Figure 2.42b are part of the same
face, or if the foam has only two vertices.

δ

(a)

f f ′

(b)

Figure 2.42. The 0-2 move. The vertical dotted arc δ in Figure 2.42a
indicates the path along which the 0-2 move acts.

2.42.3. The bubble move. The bubble move is applied on any edge of a
foam F and creates a new material region. (Matveev [28, Section 1.2.3]
defines three variants of the bubble move. Our bubble move is equivalent
to his case involving a “triple line of the simple subpolyhedron”.) We
choose a point on the edge and a small neighbourhood N around that
point. The result of applying the bubble move is the foam (F−N )∪∂N .
See Figure 2.43. The reverse bubble move can be performed on a
material region whose boundary in F consists of three bigons.

Lemma 2.44. A 1-4 move may be performed by a bubble move followed
by a 2-3 move.

Proof. We first perform a bubble move on one of the edges incident to
the vertex, taking us from Figure 2.40a to Figure 2.45. This produces
a new material region and two new vertices. We then perform a 2-3
move on the top and middle vertices to produce Figure 2.40b. □



CONNECTING ESSENTIAL TRIANGULATIONS I 17

(a) (b)

Figure 2.43. The bubble move.

Figure 2.45. A 1-4 move can be performed by doing a bubble move followed
by a 2-3 move. Here we show the intermediate stage.

Definition 2.46. Suppose that F is a foam in M . Suppose that e is
an edge of F . Suppose that N (e) is a small regular neighbourhood of
e. Suppose that F ′ is the result of applying a 2-3 move to F along
e, supported in N (e). Suppose that c and c′ are open cells or open
complementary regions of F and F ′ respectively. Suppose there is a
point x lying in c ∩ c′ −N (e). Then we say that c the ancestor of c′
and c′ is the descendant of c.

We make similar definitions for the various other moves (3-2, 1-4,
4-1, 0-2, 2-0, bubble, reverse bubble). Finally we make the relation
transitive through multiple moves.

Remark 2.47. We will frequently abuse notation and use the same name
for a cell (or complementary region) and its descendants.

3. Building L–essential triangulations

The goal of this section is to prove the following.
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Theorem 3.1. Suppose that M is a compact, connected three-manifold
with boundary. Suppose that L is a labelling of ∆M with infinite image.
Then there is an L–essential ideal triangulation of M .

See Remarks 2.18 and 2.19 for the consequences of this theorem for
essential triangulations in the sense of [18,25].

Remark 3.2. Note that we do not produce strongly essential triangula-
tions, as given in [18, Definitions 3.2 and 3.5]. In particular, our main
tool (Definition 3.13) prevents strong essentiality.

3.3. Recovering representations. Thurston [40, Chapter 4] was
the first to generate representations from ideal triangulations. Weeks’
heuristic algorithm, implemented in SnapPy [9], finds triangulations
that are not only essential, but also geometric. SnapPy is also very
successful at finding solutions for representations coming from (large)
hyperbolic Dehn filling. However, not every representation can be
recovered from every essential triangulation. There may even be entire
components of the representation variety that are “missed” by certain
essential triangulations. See [36, Sections 4 and 11.3]. In this section, we
show that under mild conditions on ρ there exists an ideal triangulation
of M for which a solution to Thurston’s gluing equations recovers ρ.

Previous work by the third author [36] and Goerner-Zickert [14] used
solutions to alternative sets of equations to generate representations.

Definition 3.4. Suppose that ρ : π1(M) → PSL(2,C) is an anchorable
representation. Let Γ = ρ(π1(M)). Suppose that for some c in ∆M

there is some z ∈ Fixρ(c) such that the orbit Γ · z is infinite. Then we
say that ρ is infinitely anchorable (at c).

Suppose that M is a three-manifold with toroidal boundary whose
interior admits a finite volume hyperbolic metric. Then any discrete
and faithful representation is infinitely anchorable.

As a simple non-example, suppose that M is the lens space L(p, q),
minus a ball. There is a representation ρ mapping the generator to an
elliptic element of order p. The boundary ∂M is a single sphere. Thus
∆M is a collection of p two-spheres. For each c in ∆M , the set Fixρ(c)
is all of ∂∞H3. Thus ρ is anchorable, but not infinitely anchorable.

Corollary 3.5. Suppose that M is a compact, connected, oriented three-
manifold with non-empty boundary. Suppose that ρ : π1(M) → PSL(2,C)
is infinitely anchorable. Then there is an ideal triangulation T of M
satisfying both of the following equivalent properties.

• There is an anchoring L of ρ such that T is L–essential.
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• There is a solution Z to Thurston gluing equations for T so that
ρZ is conjugate to ρ.

Combined with Remark 2.19, this corollary gives the triangulation
required for, and recovers the first consequence of, Theorem 1.1 in [25].

Proof of Corollary 3.5. By hypothesis ∆M is non-empty. Since ρ is
anchorable, it admits an anchoring L by Lemma 2.16. Since ρ is
infinitely anchorable, we may arrange matters so that the image of L
is infinite. The first conclusion follows from Theorem 3.1. The second
follows from Lemma 2.24. □

Corollary 3.6. Suppose that M is an oriented, compact, connected
three-manifold with non-empty toroidal boundary. Suppose that S is a
collection of filling slopes (some of which may be ∞, meaning that we
do not fill). Suppose that M(S), the resulting Dehn filled manifold, is
hyperbolic with canonical representation ρS. Let ι : M →M(S) be the
resulting inclusion. Let ρ = ι∗(ρS). Then there is an ideal triangulation
T of M and a solution Z of Thurston’s gluing equations for T so that
ρZ is conjugate to ρ.

Proof. Suppose that T is a boundary component of M . Thus T is a
torus. Let c ∈ ∆M be an elevation of T . Then Stab(c) is conjugate
to π1(T ). Thus ρ(Stab(c)) is isomorphic to Z2, Z, or the trivial group.
(No torsion can appear because M(S) is a manifold rather than an
orbifold.) Therefore Fixρ(c) is either a point, a pair of points, or all
of ∂∞H3. Thus ρ is anchorable. Let Γ = ρ(π1(M)). Since M(S) is
hyperbolic, for any z0 ∈ ∂∞H3, the orbit Γ · z0 is infinite. Thus ρ is
infinitely anchorable. Therefore we may apply Corollary 3.5. □

In Appendix B we refine this result to provide a triangulation needed
for an application to the 1-loop invariant due to Pandey and Wong [32].

3.7. Building triangulations avoiding certain edges. One simple
possibility for the set of labels is π1(M) itself. In this case equivariance
requires that ∂M is a single two-sphere. The next most obvious set
of labels comes from the coset space π1(M)/G where G is a normal
subgroup.

Corollary 3.8. Suppose that M is a closed, connected three-manifold.
Suppose that p is a point in M . Suppose that G is an infinite index and
normal subgroup of π1(M, p). Then there exists a one-vertex material
triangulation T of M with vertex at p so that no edge of T lies in G.

Proof. As in Remark 2.19, suppose thatB is a small three-ball neighbour-
hood of p in M . Let N =M − interior(B). Note that π1(N) ∼= π1(M).
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Let NG be the cover of N corresponding to G. Let L be the labelling
of ∆N induced by the covering map from Ñ to NG, as in Example 2.12.
This labelling L has infinite image because G has infinite index.

Apply Theorem 3.1 to obtain an L-essential ideal triangulation TN of
N . Let T denote the induced one-vertex triangulation of M . Suppose,
to prove the contrapositive, that an edge of T lies in G. Then the
corresponding edge in TN lifts to an edge in NG with both endpoints on
the same boundary component ofNG. This contradicts the L-essentiality
of TN . □

Applying Corollary 3.8 with G equal to the commutator subgroup of
π1(M) gives the following.

Corollary 3.9. Suppose that M is a closed connected three-manifold
with infinite H1(M). Then there exists a one-vertex triangulation of M
none of whose edges are null-homologous. □

Corollary 3.10. Suppose that M is a closed connected orientable Seifert
fibred space whose fundamental group is not virtually cyclic. Then there
exists a one-vertex triangulation of M none of whose edges are homotopic
to a regular fibre of M .

Proof. Let G be the subgroup of π1(M) generated by a regular fibre.
Thus G is normal. Since π1(M) is not virtually cyclic, the index of G
in π1(M) is infinite. The result follows from Corollary 3.8. □

Burton and He [6, Section 5.3] give a concrete example of an 11-
tetrahedra, one-vertex triangulation of a Seifert fibred space with no
Seifert fibre edges. They find this via a targeted search through the
graph of one-vertex triangulations.

3.11. Snake paths. The main tool that we will use to prove Theo-
rem 3.1 is a snake. We describe this in the following sections. Suppose
that M is a three-manifold. Suppose that T is a triangulation of M .
We take F to be the dual foam.

Definition 3.12. Suppose that γ is a non-trivial oriented path embed-
ded in F . Suppose that γ is transverse to the one-skeleton F (1) except at
its endpoints which lie in the interior of edges of F (1). See Figure 3.14a.
Suppose that c and d are the initial and terminal endpoints of γ. Three
regions of M −F meet c. Exactly one of these, say C, is locally disjoint
from the interior of γ. We call C the source of γ. We define the target
D of γ similarly, using d. We require that C is peripheral and that D
is material. When all these properties hold we call γ a snake path.
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Definition 3.13. Suppose that F is a foam. Suppose that γ is a snake
path in F . We obtain a new inflated foam F(γ) by inflating along
the snake path as follows. Let η = η(γ) be a sufficiently small regular
neighbourhood, chosen so that η does not contain any vertices of F and
has a product structure away from the endpoints of γ. Let B be the
collection of bigons of ∂η −F . (Note that each bigon arises from the
initial or terminal point of γ.) We set F(γ) = (F − η) ∪ (∂η −B). See
Figure 3.14. We call η a snake. We extend the notions of ancestor and
descendant (given in Definition 2.46) to inflating along snake paths.

(a) γ (b) N(γ)

(c) F(γ)

f
f

(d) F(γ) may not be a foam.

Figure 3.14. Inflating along a snake path γ. The result is shown in Fig-
ure 3.14c.

Lemma 3.15. Suppose that M is a manifold with a foam F . Suppose
that γ is a snake path in F . Then the inflation F(γ) is a foam in M .

Proof. Let C and D be the source and target regions for γ. Since the
inflation move occurs inside of a three-ball, all local properties of a
foam are maintained. Thus it suffices to check two properties. First,
Definition 2.2(5) holds because it holds for F and the only change is
that C and D are now combined into a single region. Second, we check
that F(γ) is a CW complex: that is, we check that each component of
the (k + 1)–skeleton minus the k–skeleton is a cell.



22 TEJAS KALELKAR, SAUL SCHLEIMER, AND HENRY SEGERMAN

Faces of F(γ) are either unchanged from F , or they have small parts
removed, or they extend along the snake, or they are new faces running
along the snake. The only possible non-disk face f would be an annulus
of the form shown in Figure 3.14d. There the snake path γ lies entirely
within the boundary of a region E say. Consulting the figure, we see
that C and E are on opposite sides of f , and also that D and E are on
opposite sides of f . We deduce that E equals D and also that E equals
C. However, C is a peripheral region and D is a material region. Thus
we reach a contradiction.

By Remark 2.4, we have that F is connected. Since inflation occurs
in a small neighbourhood of an embedded arc, we deduce that F(γ) is
connected. Since all faces are disks, we have that the one-skeleton of
F(γ) is connected. If some component δ of the one-skeleton of F(γ) is
a circle without vertices then F(γ) has no vertices. Therefore F had
no vertices. But F is a foam and therefore a CW-complex, so it has
vertices. Thus we reach a contradiction. □

3.16. Labels and snake paths. In this section we discuss how snake
paths, snakes, and labels interact.

Definition 3.17. Suppose that L : ∆M → L is a labelling. Suppose
that γ is a snake path in F . In Definition 2.33 we extended L to be
defined on peripheral regions of M̃ − F̃ . Given γ, we further extend L
to a labelling scheme Lγ as follows.

Let γ̃ be any lift of γ. Let C be the source and D be the target of γ̃.
Set Lγ(γ̃) = Lγ(D) = L(C). When γ is clear from context we drop the
subscript.

In the classic video game [15, page 101] a snake may never touch its
own tail. We require a similar constraint on snake paths: a snake path
γ̃ cannot touch itself, its source, its target, or Stab(L(γ̃))–translates of
these.

Definition 3.18. Suppose that L : ∆M → L is a labelling. Suppose
that γ is a snake path in F . Suppose that γ̃ is a lift of γ with source C
and target D. Suppose that the label L(γ̃) is distinct from the labels
of all regions meeting either D or the interior of γ̃. Suppose that for
each τ ∈ Stab(L(γ̃)), there is no face with D on one side and τ(D) on
the other. Then we say that γ is L–self-avoiding.

The above is well-defined because L is equivariant.

Remark 3.19. The condition in Definition 3.18 involving Stab(L(γ̃))
is automatically satisfied if F is L–essential (rather than only weakly
L–essential).
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Lemma 3.20. Suppose that F is a (weakly) L–essential foam. Suppose
that γ is an L–self-avoiding snake path in F . Then F(γ) is (weakly)
L–essential.

Proof. Suppose that γ̃ is a lift of γ with source C and target D. By
Definition 3.17 we have that L(C) = L(γ̃) = L(D). Suppose that f
is a face of F(γ). There are two cases as f does or does not have an
ancestor in F .

Recall that ϕ : M̃ → M is the covering map. Suppose that f has
an ancestor f ′ in F . There are two subcases. Either f ′ lies on the
boundary of ϕ(D) or it does not.

• Suppose that f ′ lies on the boundary of ϕ(D). There are two
sub-subcases. Either f ′ meets ϕ(D) on only one side or on both
sides. Suppose first that f ′ meets ϕ(D) on only one side. Let
f̃ ′ be the unique lift of f ′ contained in the boundary of D. The
two regions adjacent to f̃ ′ are D and E say, which are distinct.
If E is peripheral then, since γ is L–self-avoiding, L(E) ̸= L(C).
If instead E is material then, since ϕ(E) ̸= ϕ(D), the region E
has no label. Thus f is L–essential.

Now suppose that f ′ meets ϕ(D) on both sides. Let f̃ ′ be
a lift of f ′ contained in the boundary of D. The region on
the other side of f̃ ′ is a translate of D, say τ(D). Since γ is
L–self-avoiding, we have that τ /∈ Stab(L(γ̃)). Thus the regions
either side of the corresponding face f̃ have labels L(γ̃) and
τ(L(γ̃)), which are different. Thus f is L–essential.

• Suppose that f ′ does not lie on the boundary of ϕ(D). Here
the two regions adjacent to any lift of f are the same as the
two regions adjacent to the corresponding lift of f ′. Thus f is
L–essential since f ′ is.

Finally, suppose that f does not have an ancestor in F . Then f

is contained the boundary of the snake η(γ). Let f̃ be the lift of f
contained in the boundary of η(γ̃).

The region on one side of f̃ is η(γ̃) so has label L(γ̃). Since γ is L–
self-avoiding, the region on the other side of f̃ does not have label L(γ̃).
(Note that the other side could be a translate of D. Definition 3.17
gives this region a label as well, which by L–self avoidance is different
from L(γ̃).) Thus, again, f is L–essential.

Finally, note that inflation does not lead to any material regions
coming into contact with each other, so if F was L–essential then F(γ)
is also L–essential. □
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3.21. Creating snake paths. In a slight abuse of notation, if A is a
collection of subspaces of a space then we may write A = ∪a∈Aa. We
now describe how to produce snake paths.

Algorithm 3.22 (Create snake path).
Input: A manifold M equipped with a foam F and a labelling function
L : ∆M → L together with the following:

• A material region D of M̃ − F̃ .
• A label ℓ ∈ L(∆M) so that

◦ ℓ is distinct from the labels of all regions incident to D and
◦ for each τ ∈ Stab(ℓ), there is no face of F̃ with D on one

side and τ(D) on the other.
• A possibly empty collection A of either

◦ disjoint snake paths in F , or
◦ faces and edges of F such that

⋄ F̃ − ϕ−1(A) is connected,
⋄ some edge of ϕ(D) not in A is adjacent to a face not

in A, and
⋄ there is a peripheral region C ′ so that L(C ′) = ℓ and

some edge of ϕ(C ′) not in A is adjacent to a face not
in A.

Output: An L–self-avoiding snake path γ in F with the following
properties.

• Some lift γ̃ of γ has source C say, with L(C) = ℓ, and target D.
• If A is non-empty then the snake path γ is disjoint from A.

Let e be an edge of F̃ which is adjacent to a region with label ℓ. Let
d be an edge of F̃ which is adjacent to D. If A contains edges or faces
then we additionally assume that ϕ(e) and ϕ(d) are not in A and are
adjacent to faces not in A. In all cases we have that F̃ − ϕ−1(A) is
connected. Thus we may choose an (oriented) path γ̃′ starting on e,
ending on d, transverse to F̃ (1), and whose interior lies in F̃ − ϕ−1(A).
(Note that the endpoints of γ̃′ may meet ϕ−1(A).) Let γ′ = ϕ(γ̃′) be
the image of γ̃′ under the covering map. We arrange matters so that γ′
is transverse to itself.

We now construct a snake path γ in F which is homotopic (rel
endpoints) to γ′. We partition γ′ into segments {γ′0, . . . , γ′N} by cutting
with the one-skeleton F (1). We begin by taking γ to be the empty path.
Assume that we have processed γ′0, . . . , γ′k−1. We then do the following.

(1) Isotope γ′k rel boundary in its face, remaining disjoint from A,
to meet γ minimally.
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δ

γ′k,j

γ′k,j+1

e

(a) (b)

Figure 3.23. A detour connects γ′k,j to γ′k,j+1 while avoiding the cutting
path δ as follows. We first remove a small regular neighbourhood of δ from
each. We then add an arc lying in the boundary of that regular neighbourhood.

(2) Partition γ′k into segments γ′k,j by cutting with γ.
(3) Form γk by connecting, for all j, the segment γ′k,j to γ′k,j+1

using a detour around the cutting segment, δ say, as shown in
Figure 3.23. The orientation on γ induces an orientation on δ.
We detour around the terminal point of δ. This ensures that the
detour does not go around the initial point of γ, and therefore
does not meet a face of A. (Note that the detour lies in a ball
so no new self-intersections are introduced.)

(4) Add γk to the end of γ.
This completes the recursive part of the algorithm. Let γ̃ be the lift of
γ that starts at the initial point of γ̃′ (and, by homotopy lifting, ends
at the terminal point of γ̃′). Next, we truncate γ̃ twice. We remove
a prefix of γ̃ so that the remainder meets a region with label ℓ only
at its initial point. Thus the source for γ̃, say C, has label L(C) = ℓ.
Moreover, no peripheral region meeting the interior of γ̃ has label ℓ.
We remove a suffix of γ̃ so that the remainder meets Stab(ℓ) ·D only
at its terminal point. Finally, set γ = ϕ(γ̃) to be the image of γ̃ under
the covering map. This completes Algorithm 3.22.

The lift of γ with target D is a translate of γ̃, but again its source has
label ℓ. Moreover, no material region meeting the interior of γ̃ has label
ℓ. The label ℓ is distinct from all labels of peripheral regions meeting
D by hypothesis. Also by hypothesis, for each τ ∈ Stab(ℓ), there is no
face of F̃ with D on one side and τ(D) on the other. Thus the resulting
γ is an L–self-avoiding snake path with the desired properties, proving
the correctness of Algorithm 3.22.
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Remark 3.24. The condition in Algorithm 3.22 involving Stab(ℓ) is
automatically satisfied if F is L–essential (rather than only weakly
L–essential).

Figure 3.25. Barycentric subdivision of a tetrahedron.

Proof of Theorem 3.1. Suppose that S is an ideal triangulation of M .
Let BS be the barycentric subdivision of S. We claim that BS is
L–essential. To see this, note that no pair of original vertices of S share
an edge in BS. All new vertices are material so do not have labels, and
there are no edge loops in BS. See Figure 3.25.

We now produce a sequence of L–essential foams F0, . . . ,Fn where
• F0 is dual to BS,
• Fi+1 is related to Fi by inflating a snake along an L–self-avoiding

snake path γi, and
• Fn has no material regions.

To produce the snake path γi on Fi, we proceed as follows. Choose
a material region Di in M̃ − F̃i. By hypothesis, L(∆M) is infinite.
Therefore there is some label ℓi ∈ L(∆M ) that is distinct from the labels
on all regions incident to Di. We can therefore apply Algorithm 3.22
with inputs Di, ℓi (using Remark 3.24), and A = ∅ to produce an
L–self-avoiding snake path γi that has a lift γ̃i with L(γ̃i) = ℓi and
target Di. By Lemma 3.20 we have that Fi+1 = Fi(γi) is L–essential.
The dual of Fn is the desired L–essential triangulation. □

4. Simplicial connectivity

The goal of this section is to use a result of Casali [7] to prove
Corollary 4.8, which is a precursor to Theorem 6.1. Suppose that M is a
compact connected three-manifold with non-empty boundary. Suppose
that T is an L–essential ideal triangulation of M .
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Definition 4.1. Let σ be an edge or a triangle of T . Suppose that
each model tetrahedron in T meets σ at most once. Then the union of
tetrahedra which contain σ is a ball B(σ), possibly with identifications
along its boundary. We call this subcomplex the star of σ.

Definition 4.2. Suppose that v is a vertex of T . The link of v is the
boundary of the star of v.

Definition 4.3. A stellar move along σ retriangulates the interior of
the star B(σ) by replacing the existing triangulation with the following.
We choose a point in the interior of B(σ) and cone the boundary ∂B(σ)
to that point.

A stellar move on T can be realised by a sequence of bistellar moves
(sometimes called Pachner moves). See [35, Section 2.4]. That paper
is not concerned with L–essential triangulations or simplicial triangu-
lations. However, if T is L–essential, or is insulated simplicial, then
the intermediate triangulations described in [35] are L–essential, or are
insulated simplicial, respectively. In the following section we recall the
constructions and check that the two properties are preserved.

4.4. Stellar subdivisions.

4.4.1. σ is a face. Suppose that the face σ is a face of two distinct
tetrahedra t1 and t2. A stellar move on σ can be realised by a 1-4 move
on t1 followed by a 2-3 move along σ. Let w be the new material vertex
created by the 1-4 move. There are no edge loops based at w, and the
new edge created by the 2-3 move connects w with the vertex of t2
opposite σ. Therefore an L–essential triangulation remains L–essential.
Also all the new triangles and tetrahedra created contain w, so an
insulated simplicial triangulation remains insulated simplicial after this
stellar subdivision.

4.4.2. σ is an edge. Suppose that the edge σ has degree m and is an
edge of m distinct tetrahedra of T . If T is L–essential then m is at
least two. A stellar move on σ can be realised as follows. Perform a 1-4
move on one of the tetrahedra containing σ to obtain a triangulation T0

which has no L–inessential edges and no edge loops based at material
vertices. Let w be the new vertex introduced by the 1-4 move. The
degree of σ in T0 is m + 1. If the degree of σ is greater than three
then we perform a 2-3 move on a pair of adjacent tetrahedra both of
which contain σ and exactly one of which contains w. This reduces
the degree of σ by one and introduces a new edge between w and one
of the original vertices of T . The new triangulation T1 obtained after
this move has no L–inessential edges or edge loops based at material
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vertices. The ball B(σ) in T1 has m− 1 distinct tetrahedra. Repeat this
process till the degree of σ has been reduced to three. Finally perform
a 3-2 move on Tm−2 to get rid of σ and obtain its stellar subdivision.

If the triangulation T is insulated simplicial then the initial degree
m is at least three, and the above moves go through, keeping all
intermediate triangulations insulated simplicial.

Lemma 4.5. Suppose that M is a compact connected three-manifold
with non-empty boundary. Suppose that T is an insulated simplicial ideal
triangulation of M . Let Λ be the (possibly disconnected) triangulated
surface that is the link of the ideal vertex set of T . Let Λ′ be a simplicially
triangulated surface that can be obtained from Λ by a two-dimensional
bistellar move. Then there is an insulated simplicial ideal triangulation
T ′ such that

• the link of the ideal vertex set of T ′ is Λ′ and
• there exists a sequence of insulated simplicial partially ideal

triangulations connecting T to T ′ where two consecutive trian-
gulations are related by a three-dimensional bistellar move.

Proof. Suppose that Λ′ is obtained from Λ by a two-dimensional bistellar
move on the link of an ideal vertex v of T . Since T is insulated simplicial,
all vertices of Λ are material. There are three cases as the bistellar
move is a 1-3, a 2-2, or a 3-1 move.

Case I (1-3). Suppose that Λ′ is obtained by a 1-3 move on a face f
of Λ. Let t be the tetrahedron of T containing v and f . Let T ′ be
the triangulation obtained from T by a 1-4 move on t. Then T ′ is still
insulated simplicial and Λ′ is the link of the ideal vertex set of T ′ as
required.

Case II (2-2). Suppose that Λ′ is obtained by a 2-2 move on a pair of
adjacent faces f1 and f2 of Λ. Suppose that e is the edge common to f1
and f2. Suppose that wi is the vertex of fi which is not in e. Since wi

is a vertex of Λ it is material. If there is an edge e′ in T that connects
w1 and w2 then since Λ′ is simplicial, the edge e′ does not lie in Λ′. We
eliminate e′ by taking its stellar subdivision. By Section 4.4.2, this can
be realised by a sequence of bistellar moves passing through insulated
simplicial triangulations. These moves do not change Λ because the
interior of the star of e′ is disjoint from Λ. Once there are no edges that
connect w1 to w2, the 2-2 move on Λ can be realised by applying the
2-3 move on the pair of tetrahedra containing f1, f2, and v. The new
edge connects the vertices w1 and w2. Since these vertices are material
the triangulation obtained after this 2-3 move is insulated simplicial as
required.
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Case III (3-1). Suppose that Λ′ is obtained by a 3-1 move on pairwise
adjacent faces f1, f2 and f3 of Λ. Let w be the vertex common to f1,
f2, and f3. The edge joining v and w is of degree three. If there exists a
face f in T whose boundary is ∂(f1 ∪ f2 ∪ f3) then since Λ′ is simplicial,
f does not lie in Λ. We eliminate f by taking its stellar subdivision.
By Section 4.4.1, this can be realised by a sequence of bistellar moves
passing through insulated simplicial triangulations. These moves do not
change Λ because the interior of the star of f is disjoint from Λ. Once
there is no triangle whose boundary is ∂(f1 ∪ f2 ∪ f3), the 3-1 move on
Λ can be realised by applying the 3-2 move along the edge joining v to
w. The triangulation obtained after this 3-2 move is insulated simplicial
as required. □

Lemma 4.6. Suppose that M is a compact connected three-manifold
with non-empty boundary. Suppose that T is an L–essential triangula-
tion of M . Let BT be the barycentric subdivision of T . Then there is a
sequence of L–essential triangulations connecting T to BT , where two
consecutive triangulations are related by a 1-4, 2-3, 3-2, or a 4-1 move.

Proof. The construction appears in [35, Section 2.5]. Again, that paper
is not concerned with L–essential triangulations. However, if T is
L–essential then the intermediate triangulations described in [35] are
also L–essential. Here we recall the construction and check that the
intermediate triangulations are L–essential.

We first do a 1-4 move to each tetrahedron of T . This does not
introduce any new edge loops. Every edge that is introduced by a 1-4
move connects an existing vertex to the material vertex that is created
by the 1-4 move. Thus at every step the triangulation is L–essential.
Each face of this new triangulation lies in two distinct tetrahedra. So
we can perform a stellar subdivision of all of the faces of T . Using
Section 4.4.1 we realise this via bistellar moves through L–essential
triangulations. Finally, each edge of T in the new triangulation is
contained in each model tetrahedron at most once. So we can perform
a stellar subdivision of all of the edges of T . Using Section 4.4.2 we
realise this via bistellar moves through L–essential triangulations. This
gives us the barycentric subdivision of T . □

Theorem 4.7. Suppose that M is a compact connected three-manifold
with non-empty boundary. Suppose that T and T ′ are L–essential
ideal triangulations of M . Then there is a sequence of L–essential
(partially) ideal triangulations connecting T to T ′, where two consecutive
triangulations are related by a 1-4, 2-3, 3-2, or a 4-1 move.
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Proof. Let V be the set of ideal vertices of M . Note that this gives a
bijection between the vertices of T and the vertices of T ′. Let B2T
and B2T ′ be the second barycentric subdivisions of T and T ′ respec-
tively. Both of these are insulated simplicial triangulations. Applying
Lemma 4.6 twice, we get from T to B2T through L–essential triangula-
tions.

Let S be the star of the ideal vertices V in B2T . Let Λ = ∂S
be the triangulated link of the cusps. We define S ′ and Λ′ similarly
with respect to B2T ′. Note that Λ and Λ′ are two triangulations of a
(possibly disconnected) surface Σ.

The triangulations Λ and Λ′ are related by a sequence of simplicial
triangulations of Σ where consecutive triangulations are related by a
single two-dimensional bistellar move. See [29, Theorem 5, page 64]
and [23, Theorem 5.9, page 303].

Apply Lemma 4.5 repeatedly to get a sequence of insulated simplicial
partially ideal triangulations of M , where consecutive triangulations
are related by a single three-dimensional bistellar move, taking B2T to
a simplicial partially ideal triangulation T0 in which the link of V is Λ′.
Note that the star of V in T0 is equal to S ′.

Now consider T0 − interior(S ′) and B2T ′ − interior(S ′). These are
triangulations of a compact manifold with no ideal vertices. The bound-
ary of both triangulations is the triangulated surface Λ′. We now
apply [7, Main Theorem, page 257] to get from T0 − interior(S ′) to
B2T ′ − interior(S ′) by a sequence of bistellar moves through simplicial
triangulations. Gluing interior(S ′) onto each triangulation gives a se-
quence of bistellar moves from T0 to B2T ′ through insulated simplicial
triangulations.

Thus we obtain a sequence of bistellar moves taking us from B2T
to B2T ′, through insulated simplicial triangulations. By Remark 2.31,
these intermediate triangulations are L–essential. Finally we reverse
the process of taking barycentric subdivisions to get from B2T ′ back
to T ′. Using Lemma 4.6 again, the intermediate triangulations are
L–essential. □

The combinatorics of the 1-4 move are slightly more complicated
than that of the bubble move. To simplify later arguments we replace
the former with the latter.

Corollary 4.8. Suppose that M is a compact connected three-manifold
with non-empty boundary. Suppose that T and T ′ are L–essential
ideal triangulations of M . Then there is a sequence of L–essential
(partially) ideal triangulations connecting T to T ′, where two consecutive
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triangulations are related by a 2-3 move, a bubble move, or inverses of
these moves.

Proof. We modify the sequence of triangulations given by Theorem 4.7.
Using Lemma 2.44 we replace each 1-4 move with a bubble move followed
by a 2-3 move. We similarly replace each 4-1 move with a 3-2 move
followed by a reverse bubble move. Each intermediate triangulation is
L–essential. □

5. Snake handling

In order to prove Theorem 6.1, we take the sequence of moves given
by Corollary 4.8 and modify it to remove the bubble moves. As in
the proof of Theorem 3.1 we use snakes to do this. In this section we
describe some moves and algorithms for modifying snakes and snake
paths using 2-3, 3-2, 0-2, and 2-0 moves.

5.1. Building a snake. The first hurdle we must overcome is that we
can only use 2-3, 3-2, 0-2, and 2-0 moves to build our snakes.

Definition 5.2. Suppose that F is a foam. Suppose that γ is a snake
path in F . We build along γ to produce a new foam denoted by F [γ]
as follows. Consider the first segment γ′ of γ −F (1). We perform a 0-2
move along γ′; the new bigon is placed at the end of γ′. If γ′ = γ then
we are done. If not, let η(γ′) be a small regular neighbourhood of γ′.
Then γ − η(γ′) is again a snake path and we recurse.

This construction is the dual of [36, Algorithm 8.15], which was
the inspiration for snakes and snake paths in this paper. Figures 5.3a
and 5.3b show one move in the sequence of 0-2 moves. Figure 5.3c shows
the result of building a snake along the path γ shown in Figure 3.14a if
it is oriented from left to right.

Remark 5.4. In the construction of the inflated foam F(γ) (Defini-
tion 3.13) we remove both bigons from ∂η(γ). The foam F [γ] is identical
to F(γ) except that the former retains the bigon at the terminal point
of γ.

Remark 5.5. Note that if F is L–essential and γ is L–self-avoiding then
the intermediate foams arising in Definition 5.2 are all L–essential. The
argument is similar to the proof of Lemma 3.20.

5.6. Basic moves on snakes. We will isotope snake paths around on
foams F in various ways. When we do so, the corresponding inflated
foams F(γ) change. In this section we describe how to implement these
modifications using 2-3, 3-2, 0-2, and 2-0 moves.
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(a) (b)

(c) F [γ]

Figure 5.3. Given a snake path we build a snake using 0-2 moves.

5.6.1. Sliding over an edge (slide move A). See Figure 5.7. We can
implement slide move A by doing two 0-2 moves.

(a) Before slide move A. (b) After slide move A.

Figure 5.7. Sliding a snake over an edge of the foam (slide move A).

5.7.2. Sliding over a vertex (slide move B). See Figure 5.8. We can
implement slide move B by doing two 2-3 moves. Note that the 2-3
moves each involve one vertex of the background foam and one vertex
on the snake. Thus these vertices are distinct and the 2-3 move is
possible.



CONNECTING ESSENTIAL TRIANGULATIONS I 33

(a) Before slide move B. (b) After slide move B.

Figure 5.8. Sliding a snake over a vertex of the foam (slide move B).

5.8.3. Sliding into a face (slide move C). See Figure 5.9. We can
implement slide move C by doing a 0-2 move.

(a) Before slide move C. (b) After slide move C.

Figure 5.9. Sliding a snake into a face of the foam (slide move C ).

5.9.4. Sliding a snake end (slide move D). See Figure 5.10. We can
implement slide move D by doing a 0-2 move.

(a) Before slide move D. (b) Before slide move D. (c) After slide move D.

Figure 5.10. Sliding an end of a snake across a vertex (slide move D). Here
Figure 5.10b is an isotopy of Figure 5.10a to better see the 0-2 move between
Figure 5.10b and Figure 5.10c.

Without any further hypotheses, it is possible that moves A and B
could introduce an L–inessential face. We will deal with this possibility
as it arises. See, for example, Section 6.5.3.
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5.11. Finger moves. We need five finger moves. Each of these is
applied to a foam F containing a snake path γ. The finger moves are
shown in Figure 5.12. Each is an isotopy of F in M together with an
isotopy of γ in F .

Corresponding to a finger move on the pair (F , γ) we have a move
on the inflated foam F(γ). These moves on the inflated foams can be
implemented, as follows, using basic moves.

• Finger move A (along the path a 0-2 move will occur) is imple-
mented by a slide move A.

• Finger move H (across a “horizontal” snake path) is implemented
by the following sequence of moves: B, C, B, C−1. See Fig-
ure 5.13.

• Finger move V (across a “partially vertical” snake path) is im-
plemented by a slide move B.

• Finger move EH (across the end of a “horizontal” snake path) is
implemented by a slide move D.

• Finger move EV (across the end of a “vertical” snake path) is
implemented by a slide move D.

Note that if there are no L–inessential faces before or after an H
finger move then there are also no L–inessential faces created by the
basic moves that realise it.

5.14. Replacing a snake. Given a material region and a snake path
targeting it, we may need to replace the snake path in order to change
the label on the material region. The following algorithm achieves this.

Algorithm 5.15 (Replace snake).
Input: An L–essential foam F , a material region D of M̃ − F̃ , and
disjoint L–self-avoiding snake paths γP and γQ in F with the following
properties.

• There is a peripheral region P and a lift γ̃P of γP with source P .
• There is a peripheral region Q and a lift γ̃Q of γQ with source
Q.

• The targets of γ̃P and γ̃Q are both D.
• L(P ) ̸= L(Q).

Output: A sequence of 2-3, 3-2, 0-2, and 2-0 moves that starts with
the inflated foam F(γP ), produces the inflated foam F(γQ), and such
that every foam in the sequence is L–essential.

Starting from F(γP ), we first build a snake (as in Definition 5.2)
along γQ. This gives us the foam F(γP )[γQ]. Note that since γQ is
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x

(a) Before finger move A.

x

(b) After finger move A.

(c) Before finger move H. (d) After finger move H.

(e) Before finger move V. (f) After finger move V.

(g) Before finger move EH. (h) After finger move EH.

(i) Before finger move EV. (j) After finger move EV.

Figure 5.12. Finger moves. The snake path is drawn in red. In Figures 5.12a
and 5.12b the blue dotted line is a path along which a 0-2 move will be
applied.
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(a) Before. (b) Apply slide move B. (c) Apply slide move C.

(d) Apply slide move B. (e) Apply slide move C−1.

Figure 5.13. Steps to implement an H finger move. We show only a small
patch of the front of the finger.

disjoint from γP , the snake building process for γQ is unaffected by the
presence of the snake η(γP ).

Our current goal is to perform 2-3, 3-2, 0-2, and 2-0 moves to get
from F(γP )[γQ] to F(γQ)[γP ], always staying L–essential. In F(γP )[γQ]
the peripheral region Q meets D along a single bigon bQ. Note that the
boundary ∂D lies in F(γP )[γQ] apart from a bigon, bP say, where the
snake η(γP ) meets D. Our plan is to push the disk bQ through D to bP .

Let e1 and e2 be the two edges of ∂D that meet bP . See Fig-
ure 5.16. Let G be the graph obtained by intersecting the one-skeleton
of F(γP )[γQ] with D and then subtracting the open edges e1 and e2.

Lemma 5.17. G is connected.

Proof. Let H be the graph formed from G ∪ {e1, e2} by gluing the two
free endpoints of e1 and e2 together. Note that H is the one-skeleton of
D in F . If H had multiple components then some face of ∂D would
not be a disk, a contradiction. Suppose instead that H is connected
but that G is not. Then the faces of F(γP )[γQ] incident to e1 and e2
that do not lie on ∂D would be L–inessential.

Let T be a spanning tree of G that contains (precisely) one of the
two edges of bQ. We delete the interior of this edge from T to form TQ,
which consists of two trees (one of which may be a single vertex).
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bPe1 e2

(a) The end of the P snake.
The bigon bP is not a face of
the foam.

bQ

(b) The end of the Q snake.
The bigon bQ is a face of the
foam.

(c) Top down view of bP . (d) Top down view of bQ.

Figure 5.16. Bigons incident to a ball.

(a) Before the first 2-3 move. (b) After the first 2-3 move.

Figure 5.18. 2-3 moves expand the Q region.

We apply 2-3 moves to the foam, spreading out from bQ along TQ.
Figure 5.18 shows the first 2-3 move. Note that the vertices we wish to
apply the first 2-3 move to cannot be the same as each other (and so
the edge we want to apply the 2-3 move to cannot be cyclic). This is
because one of the vertices was just produced by the 0-2 move creating
bQ, while the other was already a vertex of ∂D. A similar argument
applies to the subsequent moves. The L–self-avoiding hypothesis implies
that these moves do not produce L–inessential faces.

Once all of the 2-3 moves have been done, the edges of G− TQ are
dual to the edges of a dual tree T P made from the faces of D. Here
note that e1 and e2 are not in G. Thus the two faces of D that meet bP
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(together with bP itself) count as a single vertex of T P . We take this
vertex to be the root of T P . Given a leaf of T P , we may remove it by
applying a 2-0 move. See Figure 5.19.

(a) Before a 2-0 move. (b) After a 2-0 move.

Figure 5.19. 2-0 moves expand Q further.

We repeatedly remove leaves of T P until all that is left is the root
of T P . (Each 2-0 move removes a face of contact between regions but
does not add any. Thus we remain L–essential.) This done, the region
P meets D only in a small neighbourhood of the bigon bP and we have
reached F(γQ)[γP ]. See Figure 5.20. We retract the snake η(γP ) by a
sequence of 2-0 moves, following the reverse of the process for building
a snake. This completes Algorithm 5.15.

(a) Before the isotopy. (b) After the isotopy and
before the 2-0 move.

(c) After the 2-0 move.

Figure 5.20. When only the root of TP is left, the region Q covers almost
all of ∂D. Figure 5.20a shows the last part still uncovered. An isotopy
shrinks the intersection of P and the ball D to a small neighbourhood of
the bigon bP (see Figure 5.20b). A single 2-0 move removes the last contact
between P and the ball D. The result is shown in Figure 5.20c.

Note that the combinatorics of ∂D are identical before and after
replacing one snake with the other, except possibly for where the snakes
meet D.
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6. Traversing foams with snakes

The goal of this section is to prove the following.

Theorem 6.1. Suppose that M is a compact, connected three-manifold.
Suppose that L is a labelling of ∆M with infinite image. Then the set
of L–essential ideal triangulations of M is connected via 2-3, 3-2, 0-2,
and 2-0 moves.

Here is the overall plan. Suppose that T and T ′ are L–essential ideal
triangulations of M . We take the sequence of triangulations (Ti)i=0,...n

given by Corollary 4.8 and modify it. Let (Fi)i=0,...n be the sequence
of foams dual to (Ti). We produce a new sequence (F ′

i′)i′=0,...n′ of
L–essential foams with the following properties.

• F ′
0 = F0,

• F ′
n′ = Fn,

• F ′
i′+1 is obtained from F ′

i′ by a 2-3, 3-2, 0-2, 2-0, bubble, or
reverse bubble move, and

• The sequence (F ′
i′) has one fewer bubble move than the sequence

(Fi).
If (F ′

i′) has no bubble moves then we are done. Otherwise we run
the above algorithm again starting with (F ′

i′). This eventually gives a
sequence starting and ending at the same foams as (Fi) and which uses
no bubble moves, proving Theorem 6.1.

In order to produce (F ′
i′) from (Fi), we choose any index p so that

Fp is obtained from Fp−1 by applying a bubble move. Suppose that
the material region Z created by this bubble move is removed by the
reverse bubble move between Fq and Fq+1. (The index q is well-defined
since the final foam Fn has no material regions.) For i < p we take
F ′

i = Fi. In this section we construct the middle of (F ′
i′), corresponding

to the sequence (Fi)i=p,...,q. We take the suffix of (F ′
i′) to be equal to

the corresponding suffix of (Fi), with appropriate reindexing.

6.2. Notation. To keep track of the middle section of (F ′
i′) we introduce

the following notation. Suppose that we have a snake path (γi,j) ⊂ F (2)
i .

Here i ranges between p and q and j ranges between 0 and some Ji.
Let Fi,j = Fi(γi,j) be the result of inflating Fi along γi,j.

In Section 6.3 we show how to move from F ′
p−1 = Fp−1 to F ′

p′ = Fp,0

(for some appropriate index p′) using only 2-3, 3-2, 0-2, and 2-0 moves.
(In this section, we also deal with any bubble move that does not create
the material region Z we are removing in this iteration of the algorithm.)
In Sections 6.5 through 6.10, we show how to move from Fi,j to Fi,j+1,
again using only 2-3, 3-2, 0-2, and 2-0 moves. We similarly show how



40 TEJAS KALELKAR, SAUL SCHLEIMER, AND HENRY SEGERMAN

to move from Fi,Ji to Fi+1,0. (Note that everything is contained in M
so it makes sense to talk about snake paths living in Fi also living in
Fi+1.) Finally, in Section 6.12 we show how to move from Fq,0 to Fq+1.
(In this section, we also deal with any reverse bubble moves that do not
destroy the material region Z.)

6.3. Bubble move. Suppose that the bubble move taking Fi to Fi+1

occurs on the edge e. First assume that i = p− 1. Here we must create
the snake path γp,0. Choose a lift ẽ of e. By hypothesis, L(∆M) is
infinite, so we may choose a label ℓ ∈ L(∆M) different from any label
on the three complementary regions that meet the interior of ẽ.

Let D be the material region in the complement of F̃p that is created
by the bubble move and splits ẽ in two. Note that no translate of D
shares a face with D. We now apply Algorithm 3.22 with foam Fp, with
material region D, label ℓ (using Remark 3.24), and with A the three
faces of the image ϕ(D) under the covering map ϕ.

Let γ be the resulting L–self-avoiding snake path in Fp. Since γ is
disjoint from ϕ(D) other than at its terminal point, γ lies in Fp−1. Let
γ′ be the L–self-avoiding snake path in Fp−1 formed by adding to γ a
small segment that connects within ϕ(D) from the end of γ to a point
of e. See Figure 6.4a. We take γp,0 = γ. (Note that for the bubble
move we do not use the j index.)

To get from Fp−1 to Fp,0 = Fp(γp,0) = Fp−1[γ
′] we build along the

snake path γ′ as in Definition 5.2. Figure 6.4b shows the result of the
last 0-2 move at the end of γ′. Here we draw it in a different style,
showing it as the result of inflating Fp along γp,0, with the bubble region
shaded in blue. By Remark 5.5 every foam generated in our sequence
is L–essential.

(a) We extend γ by a small segment
inside of the bubble to make γ′.

(b) The last step of building a snake,
interpreted as creating a bubble.

Figure 6.4
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Next we deal with the case that p ≤ i < q. Thus the bubble move,
applied to Fi, introduces a material region in this iteration of the
algorithm. By an isotopy of the bubble in Fi+1 we may assume that
the bubble does not intersect γi,0. This allows us to set γi+1,0 = γi,0.
The bubble move taking Fi to Fi+1 also takes Fi,0 to Fi+1,0.

6.5. 0-2 move. Suppose that applying a 0-2 move along a path δ in a
face f of Fi produces Fi+1. (Note that the original sequence provided
by Corollary 4.8 has no 0-2 or 2-0 moves, but later sequences in our
recursion will.) Let δ̃ be a lift of δ to M̃ . Let f̃ be the lift of f containing
δ̃. See Figure 2.42. There are four regions of M̃ − F̃i incident to δ̃:
two meet its interior and two meet only its endpoints. Let N and S
be the regions at the endpoints. Note that they come into contact in
the L–essential foam Fi+1. If N and S are both peripheral then we
deduce that L(N) ̸= L(S). If N and S are both material then, by
L–essentiality, ϕ(N) ̸= ϕ(S). Only a material region that projects to
Z has a label. Now suppose (breaking symmetry) that N is material
and S is peripheral. Here, it is possible that Lγi,0(N) = L(S) (recall
the notation given in Definition 3.17). They are equal if and only if we
have the following:

• the image ϕ(N) = Z is (in Fi) the target for γi,0 and
• the lift γ̃i,0 that has N as its target has Lγi,0(γ̃i,0) = L(S).

Suppose further that γi,0 is disjoint from δ. (As we will see, this can
be arranged by appropriately modifying γi,0.) Then bringing N and S
together with the 0-2 move would create an L–inessential face in the
inflated foam Fi+1(γi,0). To avoid this we “relabel” N as follows.

6.5.1. Replacing a snake path. By hypothesis, L(∆M) is infinite, so we
may choose a label ℓ ∈ L(∆M ) different from L(γ̃i,0) and different from
the label of any complementary region that meets N .

Note that no translate of N shares a face with N . We apply Algo-
rithm 3.22 with foam Fi, with material region N , with label ℓ (using
Remark 3.24), and with A = {γi,0}. This returns an L–self-avoiding
snake path γℓ which is disjoint from γi,0. We take γi,1 = γℓ. Re-
placing γi,0 with γi,1 has the effect of changing the label on N from
Lγi,0(N) = Lγi,0(γ̃i,0) = L(S) to ℓ ̸= L(S). Algorithm 5.15 then de-
scribes how to connect F(γi,0) to F(γi,1).

6.5.2. Clearing δ. Recall that δ is the path on which the 0-2 move is
applied. Recall that δ̃ is its chosen lift. Recall that N and S are the two
regions meeting the endpoints of δ̃. By Section 6.5.1 we may assume
that the labels of N and S (if they exist) are distinct. If at this point



42 TEJAS KALELKAR, SAUL SCHLEIMER, AND HENRY SEGERMAN

the snake path γ (either γi,0 or γi,1) does not meet δ then we can apply
the 0-2 move. If not then we recursively clear γ off of δ as follows.

Choose X to be one of N or S. Suppose that x is the endpoint of
δ̃ meeting X. See Figure 5.12a. We choose a small neighbourhood
of x in one of the two faces of X containing x. We push the small
neighbourhood along δ̃. Let γ̃ be the lift of the snake path that meets
δ̃ closest to x. If the label of X (if it exists) and the label of γ̃ are
different then we may perform the finger move, obtain Figure 5.12b,
and γ remains L–self-avoiding. On the other hand, if L(X) = L(γ̃)
then we truncate the snake path γ as follows.

X
x

γ̃
δ̃

(a)

X

x

γ̃−

δ̃

(b) End γ̃ early.

X

x

γ̃+

δ̃

(c) Start γ̃ late.

Figure 6.6. Ways to truncate a snake path γ̃ instead of having it meet a
region with the same label as itself.

6.5.3. Truncating a snake path. There are two cases as X is either
material or peripheral.

• Suppose that X is material. We replace γ̃ essentially with a
prefix of itself. This is illustrated in Figure 6.6b; here are the
details. Let γ̃′ be the snake path produced by applying the A
move to slide the finger onto γ̃. Let γ̃− be the prefix of γ̃′ whose
lift ends where it meets X. By isotoping γ̃− slightly to one side
of γ̃ we make them disjoint. The snake path γ− = ϕ(γ̃−) is, up
to a small isotopy, a prefix of the L-self-avoiding snake path γ.
Thus L(γ̃−) = L(γ̃) is distinct from the labels of regions meeting
the interior of γ̃−. Moreover, this label is distinct from regions
meeting X. Thus γ− is L–self-avoiding.

Since L(∆M) is infinite we may choose a label ℓ ∈ L(∆M)
different from the label of γ̃ and of any complementary region
that meets X. Note that no translate of X shares a face with
X. We apply Algorithm 3.22 with the current foam, with
material region X, with label ℓ (using Remark 3.24), and with
A = {γ, γ−}. This produces an L–self-avoiding snake path γℓ
disjoint from A.
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With γℓ in hand, we replace γ by γℓ using Algorithm 5.15.
This done, we replace γℓ by γ−, again using Algorithm 5.15.
This achieves the desired truncation.

• Suppose thatX is peripheral. In this case we replace γ̃ essentially
with a suffix of itself. This suffix, γ̃+ say, starts on X (or possibly
a Stab(L(X)) translate of X). This is illustrated in Figure 6.6c.
This case is very similar to the first.

6.6.4. Applying the 0-2 move. In all cases, each finger or truncation
move we use advances the j index, giving the sequence (γi,j)j=0,...,Ji .
The foams Fi,j are related to each other by sequences of 2-3, 3-2, 0-2,
and 2-0 moves. As j increases, the number of intersections between δ
and γi,j decreases. After a finite number of moves we have cleared all
snake paths from δ.

At this point we implement the 0-2 move along δ that changes Fi

into Fi+1. We do this in a neighbourhood of δ small enough to avoid
the current snake path γi,Ji . This allows us to set γi+1,0 = γi,Ji . Finally,
the same 0-2 move takes the foam Fi,Ji to the foam Fi+1,0.

6.7. 2-3 move. Suppose that applying a 2-3 move to edge e of Fi

produces Fi+1. Let ẽ be a lift of e to M̃ . See Figure 2.41. There are
five regions of M̃ − F̃i incident to ẽ: three meet its interior and two
meet only its endpoints. Let N and S be the regions at the endpoints.

As in Section 6.5, and up to breaking symmetry, there are three cases
depending on the materiality or peripherality of N and S. Again, in the
case that one is material and one is peripheral it is possible that they
share the same label. If so then we replace the label on the material
region, exactly as we did in Section 6.5.1.

Suppose now that no snake paths meet ẽ. Then we simply perform
the 2-3 move.

Otherwise, we must first clear ẽ of snake paths. This is very similar
to the process of clearing the path for a 0-2 move, before performing the
0-2 move, as discussed in Section 6.5.2. Again we choose X to be one
of N or S. We choose one of the three face corners incident to the X
end of ẽ and push it towards the other end of ẽ. When we meet a lift γ̃
of the snake path, we use finger moves (as in Section 5.11) or truncate
the snake (similar to the method of Section 6.5.3). Here, instead of the
one-finger move A, there are four different finger moves, H, V, EH, and
EV, depending on

• whether a snake path crosses or ends on ẽ and
• how the snake path is arranged relative to the finger.

See Figure 5.12.
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If we apply move H or V then it is possible that the lift γ̃ and X share
the same label. In these cases we truncate the snake path essentially as
described in Section 6.5.3. If we apply move EH or EV then the label
on the snake path γ̃ cannot match the label on X. This is because the
region connected to the end of the snake path already meets X along a
face of the foam and by induction the foam is L–essential.

This constructs the sequence of snake paths (γi,j)j=0,...,Ji as before.
The remainder of the construction is the same as in Section 6.6.4.

6.8. 2-0 move. Suppose that applying a 2-0 move to the bigon b of
Fi produces Fi+1. Let b̃ be a lift of b to M̃ . All regions around b̃
have distinct (or no) labels; this is because they are all in contact with
each other in F̃i. Suppose that γ = γi,0 is the current snake path. If
γ is disjoint from b then we can apply the 2-0 move. If not then we
must clear b̃ of snake paths. Let e1 and e2 be the edges of b. We first
clear γ (incrementing j) off of e1 using exactly the same process as in
Section 6.7.

Next, we perform finger moves (possibly with truncations) along e2
as shown in Figure 6.9. In particular, we push the finger from a face
that shares an edge with b. When we perform an EV finger move (as in
Section 5.11), we have a choice of which side of the finger to move the
endpoint of γ to. We always push the endpoint off of b. (Note that a
neighbourhood of b is an embedded three-ball because we are about to
perform a 2-0 move.)

e1 b e2

(a)

b

(b)

Figure 6.9. We use a sequence of finger moves to clear a bigon.

We continue doing finger moves (perhaps with truncations) until we
have passed all intersections of γ with e2.
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Claim. At this point neither endpoint of γ is on b.

Proof. By our choice of face to push the finger from, after an EH finger
move, the endpoint of γ is no longer in contact with b. Given our
choice during each EV finger move, the only way that an endpoint
of γ could end up on b is if it is there as a result of truncating the
snake path, as in Section 6.5.3. However, every segment of γ enters
and exits b on the edge where b meets the finger (see Figure 6.9b).
Suppose for a contradiction that there is an endpoint x of γ on this
edge. Let x̃ be the lift of x meeting b̃. Let γ̃ be the lift of γ containing
x̃. Let R be the region containing the finger meeting x̃. Thus the label
of R agrees with the label on γ̃. Since γ reenters the finger, we find
that γ is not L–self-avoiding. This contradicts the fact that the snake
paths produced by finger moves (perhaps with truncations) are always
L–self-avoiding. □

Therefore γ meets b along a disjoint collection of arcs with no endpoint
of γ meeting b, and with all endpoints of arcs meeting the same edge
of b. Each of these arcs can be removed using a slide move A−1 (see
Section 5.6.1), applied to outermost arcs first. Once γ has been cleared
off of b we apply the 2-0 move.

6.10. 3-2 move. Suppose that applying a 3-2 move to the triangular
face f of Fi produces Fi+1. Let f̃ be a lift of f to M̃ . All regions
around f̃ have distinct labels because they are all in contact with each
other in F̃i. If γ is disjoint from f then we can apply the 3-2 move. If
not then we must clear f̃ of snake paths. The process is very similar
to the process of clearing the bigon in preparation for a 2-0 move (see
Section 6.8). Let e1, e2, and e3 be the edges of f . We clear γ off e1
using the same process as in Section 6.7. Next, we perform finger moves
along both e2 and e3, as shown in Figure 6.11. We push endpoints of
γ off of f if we make any EV finger moves. (Note that f is embedded
because we are about to perform a 3-2 move.)

Once we have pushed the fingers past all intersections of γ with e2
and e3, neither endpoint of γ meets f , and all endpoints of intervals of
γ on f meet the same edge of f . We now repeatedly apply slide move
A−1 to clear γ off of f . We then apply the 3-2 move.

6.12. Reverse bubble move. Suppose that applying a reverse bubble
move to Fi produces Fi+1. Let B be the region inside the bubble that
is removed by the reverse bubble move. We first assume that i = q, and
so B = Z. In this case let e1 be the edge of B that the snake path γ
terminates on. Let x be the terminal point of γ. Note that it is possible
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R

e1
f

e2

e3

(a)

R

f

(b)

Figure 6.11. We use a sequence of finger moves to clear a triangle.

that the initial point of γ is also on some edge of B. However, in this
case a prefix of γ lies in ∂B, since the source of γ is peripheral. Let e2
and e3 be the other edges of B. Label the bigons of B as b1, b2, and b3,
with bi opposite ei.

We first clear γ off of the bigon b1 using the same process as in
Section 6.8. Note that when pushing fingers along ∂B, the finger is
never part of the region B. This is because ∂B is embedded (because
we are about to perform a reverse bubble move). Since the finger is
never part of B, truncating (as in Section 6.5.3) never replaces γ with
a prefix. Thus x remains the terminal point of γ.

Next we push fingers in along e1 from both sides towards x. See
Figure 6.13.

e1

b1

x

(a) (b)

Figure 6.13. We use a sequence of finger moves to clear a bubble.
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Again the fingers are not part of B, so x remains the terminal point
of γ. Note that in pushing these fingers inwards, we never make an EV
finger move (see Section 5.11). This is because exactly one end of the
snake path γ points into B, and it does so at x. Therefore, if we meet
the initial point of γ, we do so with an EH finger move. After we have
applied the EH finger move, the initial point of γ is no longer in contact
with B.

Once we have pushed the fingers past all intersections with γ (other
than the terminal point x), the snake path γ meets B at x, as well as a
disjoint collection of arcs. These arcs fall into two subcollections. One
subcollection is contained in b2, with endpoints only on e3, while the
other subcollection is contained in b3, with endpoints only on e2. As
in previous cases these can be removed by slide move A−1, applied to
outermost arcs first.

This done, γ meets B = Z only at x. We now remove the bubble and
the snake by performing 2-0 moves, following Definition 5.2 in reverse.

Finally, we deal with the case that p ≤ i < q, so B ̸= Z. This is very
similar but slightly simpler than the case when B = Z. Here we choose
the edge e1 arbitrarily. We clear the opposite bigon b1 as before, then
clear the edge e1 again using two fingers, this time pointing towards an
arbitrarily chosen point x on e1 − γ. Again we clear b2 and b3 using
slide move A−1. This done, γ does not meet ∂B. We now perform the
reverse bubble move.

6.14. The proof is complete. We have now dealt with all types of
moves that can appear in the sequence (Fi). Following the outline given
at the start of Section 6, this completes the proof of Theorem 6.1. □

Appendix A. Many infinitely anchorable representations

We now recall a few definitions from the theory of character varieties
over PSL(2,C), following [5, Section 3]. Suppose that M is a compact,
connected, oriented three-manifold with non-empty boundary. Suppose
that the interior of M admits a finite volume complete hyperbolic metric.
We use ρ0 to denote a discrete and faithful representation from π1(M)
to PSL(2,C).

Suppose that ρ : π1(M) → PSL(2,C) is any representation. For any
γ in π1(M) we use tr2ρ(γ) to denote the square of the trace of ρ(γ). This
gives a function tr2ρ from π1(M) to C; we call this the character of ρ.
We use X(M) to denote the resulting character variety. We use the
notation tr2(γ) : X(M) → C to denote the regular function that given
the character of ρ returns the squared trace tr2ρ(γ).

The goal of this appendix is to prove the following.
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Theorem A.1. Suppose that M is a compact, connected, oriented
three-manifold with non-empty boundary. Suppose that the interior of
M admits a finite volume complete hyperbolic metric. Then there is
a neighbourhood of ρ0 (in the Zariski topology on X(M)) that consists
solely of infinitely anchorable representations.

Proof. Our hypotheses imply that all boundary components of M are
tori. Fix one such boundary component C. Let c ∈ ∆M be an elevation
of C. Fix a point p ∈ C. Fix generators µ and λ in π1(C, p).

Suppose that γ lies in π1(M, p); let Γ = ⟨µ, λ, γ⟩ be the corresponding
subgroup of π1(M). Choosing γ appropriately, and appealing to Klein’s
“combination theorem” [22, III.16], we may assume that all peripheral
elements of π1(M, p) (in Γ) are conjugate (in Γ) into π1(C, p). (For
other, somewhat more modern, statements of the combination theorem
see [12, page 210] or [27, page 499].)

As we proceed we will impose (finitely many) algebraic inequalities of
the form tr2(w) ̸= r where w is an element in Γ and where r lies in C.
We will always check that our inequalities hold at ρ0. Finally, we will
prove that any representation ρ satisfying our inequalities is infinitely
anchorable.
(A.2) tr2(µ) ̸= 0, tr2(λ) ̸= 0, tr2(γ) ̸= 0

An element of PSL(2,C) has trace equal to zero if and only if it is
conjugate to an order two rotation [3, Theorem 4.3.1]. Thus Equa-
tion A.2 holds at ρ0 because ρ0 is faithful and because π1(M) is torsion
free.

From Equation A.2 and from Lemma 2.26 we deduce that Fixρ(c)
is non-empty. Therefore ρ is anchorable at c. Choosing framings for
the finitely many other torus boundary components, and imposing
Equation A.2 for those meridians and longitudes, implies that ρ is
anchorable.
(A.3) tr2([µ, γ]) ̸= 4, tr2([λ, γ]) ̸= 4

This holds at ρ0 because the commutators [µ, γ] and [λ, γ] are not con-
jugate in Γ into π1(C, p) and because ρ0 sends non-peripheral elements
to loxodromics.

From Equation A.3 we deduce that ρ(µ) and ρ(λ) are not the identity.
Thus Fixρ(c) contains one or two points.

(A.4) tr2(γ) ̸= 4

This holds at ρ0 because γ is non-peripheral. We impose this condition
only to simplify our case analysis.

Case. Fixρ(c) is a single point.
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Suppose that Fixρ(c) = {z}. By [3, Theorem 4.3.6], since ρ(µ) and
ρ(λ) commute and are not of order two, they are parabolic. Thus
ρ(π1(C, p)) is infinite.

(A.5) tr2([µ, γµγ−1]) ̸= 4, tr2([λ, γλγ−1]) ̸= 4

This holds at ρ0 because the commutators [µ, γµγ−1] and [λ, γλγ−1]
are not conjugate in Γ into π1(C, p).

By Equation A.4 we have that ρ(γ) is either elliptic or loxodromic.
We deduce from Equation A.5 that z is not a fixed point of ρ(γ). Let
A be the axis of ρ(γ). We deduce that ρ(π1(C, p)) · A is infinite. Thus
the orbit ρ(Γ) · z is infinite. Thus ρ is infinitely anchorable, as desired.

Case. Fixρ(c) is a pair of points.

By Equation A.4 we have that ρ(γ) is not parabolic. Thus Fixρ(γ)
is also a pair of points. By Equation A.3, by Equation A.2, and
by [3, Theorem 4.3.6] we have that Fixρ(c) ̸= Fixρ(γ).

Subcase. ρ(γ) is loxodromic.

Suppose that Fixρ(c) = {z, w} with, say, z /∈ Fixρ(γ). Thus the orbit
ρ(⟨γ⟩) · z is infinite, and we are done.

Subcase. ρ(µ) (or ρ(λ)) is loxodromic.

Set δ = γµγ−1. Note that ρ(δ) is loxodromic. By Equation A.5
we have that δ does not commute with µ. Again applying [3, Theo-
rem 4.3.6] we have that Fixρ(c) ̸= Fixρ(δ). So we may apply the subcase
immediately above with δ in place of γ.

Subcase. ρ(µ), ρ(λ), and ρ(γ) are elliptic.

Let A be the common axis of ρ(µ) and ρ(λ). Let B be the axis of
ρ(γ).

Subsubcase. A = B.

This implies that µ and γ commute [3, Theorem 4.3.6], contradicting
Equation A.3.

Subsubcase. A and B meet at a point of H3.

Recall that Γ = ⟨µ, λ, γ⟩. Thus ρ(Γ) is conjugate into SO(3). By
Equation A.3, we have that ρ(Γ) is not cyclic (or infinite cyclic). By
Equation A.2, we have that ρ(Γ) is not dihedral (or infinite dihedral).

(A.6) tr2(µ), tr2(λ), tr2(γ) ̸= 4 cos2(π/n) for n = 3, 4, 5

This holds at ρ0 because ρ0 is faithful and π1(M) is torsion free.



50 TEJAS KALELKAR, SAUL SCHLEIMER, AND HENRY SEGERMAN

From Equation A.6 we deduce that ρ(Γ) is not a platonic subgroup
of SO(3). We now work in S2 = ∂∞H3 equipped with the round metric
dS2 . We arrange matters so that ρ(γ) acts on S2 by isometries. We
further arrange matters so that Fixρ(c) = {N,S}, the north and south
poles.

Claim. The orbit ρ(Γ) ·N is infinite.

Given this, ρ is infinitely anchorable, as desired.

Proof of Claim. Suppose not. Pick some N ′ in the orbit that minimises
dS2(N,N ′). Since ρ(Γ) is neither cyclic nor dihedral, ρ(γ) does not fix
and does not interchange N and S. Thus N ′ ̸= S.

Since the orbit is finite, we deduce that ρ(µ) is finite order. By
Equation A.3 we have that ρ(µ) is not the identity. By Equation A.6
we have that the order of ρ(µ) is at least six. Taking m = ρ(µk) for an
appropriate power k, we find that

0 < dS2(N ′,m(N ′)) < dS2(N,N ′)

This is a contradiction, and we are done. □

Subsubcase. A and B meet, but only at a point of ∂∞H3.

In this case, ρ([µ, γ]) is parabolic, contradicting Equation A.3.

Subsubcase. A and B are disjoint, even at ∂∞H3.

In this case Γ contains an element δ so that ρ(δ) is not elliptic
(see [12, page 62] or [26, page 1119]). In fact we may assume that ρ(δ)
does not fix both endpoints of A. We deduce that the orbit of Fixρ(c)
under the action of ρ(δ) is infinite. Thus ρ is infinitely anchorable, as
desired. □

Appendix B. Constructing L–essential triangulations

Our next result is inspired by, and used in, the work of [32], following
[19, Proposition 5.1]. Recall that Fixρ is defined in Definition 2.14.

Proposition B.1. Suppose that M is a connected, compact, oriented
three-manifold with boundary consisting of m+1 ≥ 2 tori T0, T1, . . . , Tm.
Fix k > 0. Suppose that S = (sk, . . . , sm) is a collection of slopes
on (Tk, . . . , Tm). Let M(S) be the resulting Dehn filled manifold. Let
ι : M →M(S) be the resulting inclusion. Suppose that ρS : π1(M(S)) →
PSL(2,C) is a representation. Let ρ = ι∗(ρS). Let c0 ∈ ∆M be some
fixed elevation of T0. Set Γ = ρ(π1(M)) and Γj = ρ(π1(Tj)).

(A) Suppose that ρ is infinitely anchorable at c0.
(B) Suppose that, for j ≥ k, we have |Γj| ≥ 3.
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Then there exists an ideal triangulation T of M with the following
properties.

(1) In M , the cusp corresponding to Tj for any j ≥ k meets exactly
two ideal tetrahedra, tj,1 and tj,2. Each of these tetrahedra meets
Tj in exactly one ideal vertex.

(2) We obtain an ideal triangulation T (S) of the manifold M(S)
as follows. For each filled cusp Tj, remove the ideal tetrahedra
tj,1 and tj,2 and fold the resulting parallelogram in the boundary
along its diagonal as shown in [32, Figure 5].

(3) There exists a choice of generators for H1(T0;Z), represented by
curves µ0 and λ0, such that µ0 and λ0 meet the cusp triangulation
inherited from T in a sequence of arcs cutting off single vertices
of triangles, without backtracking, and such that µ0 and λ0 are
disjoint from the tetrahedra tj,1 and tj,2, for all j = k, . . . ,m.

(4) There are solutions Z and Z(S) to the gluing equations for T and
T (S) respectively, such that for j ≥ k, deleting the coordinates
(j, 1) and (j, 2) from the list Z gives the list Z(S). Moreover,
ρZ and ρZ(S) are conjugate to ρ and ρS respectively.

Remark B.2. By Theorem A.1, if M is hyperbolic and ρ is close (in
the Zariski, and therefore the euclidean, topology) to a discrete and
faithful representation on M then hypothesis (A) holds. Furthermore,
Equations A.2 and A.3 imply that hypothesis (B) holds.

Remark B.3. For ideal triangulations (with no material vertices), the
concepts of weakly L–essential and L–essential (given in Definition 2.30)
agree.

Proof of Proposition B.1. As in the proof of [19, Proposition 5.1], we
start with a material triangulation of M where there is exactly one
vertex in every boundary component Tj for j ≥ 0. For each j ≥ k we
layer tetrahedra onto the triangulation of Tj until the three edges have
slopes pj, qj, and rj. These are chosen so that the Farey sum of pj
and qj that does not give rj instead gives sj. In M(S) the curve sj is
null-homotopic. We deduce that ρ(sj) is trivial. Moreover, in M(S) the
curves pj and qj are identified. Thus ρ(rj) is the square of ρ(pj) = ρ(qj);
furthermore these generate ρ(π1(Tj)). Thus Γj = ρ(π1(Tj)) is cyclic.
Hypothesis (B) now implies that ρ(pj) and ρ(rj) are non-trivial.

Now take the first barycentric subdivision of the triangulation. For
each j ≥ k we layer tetrahedra onto the boundary torus Tj as shown in
Figure B.4 to recover the two-triangle triangulation of Tj . Let vj be the
unique vertex in the triangulation of Tj. The resulting triangulation
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Figure B.4. Layering onto the barycentric subdivision to return it to the
two triangle triangulation of the torus. Each layered tetrahedron implements
a bistellar move on the two-dimensional triangulation of the torus. We draw
the top edge of each 2-2 tetrahedron in red. We draw the bottom edges of
2-2 and 3-1 tetrahedra with dotted lines. From left to right along the top
row followed by the bottom row we do six 2-2 moves, two 3-1 moves, two 2-2
moves, two 2-2 moves, two 3-1 moves, one 2-2 move, and one 3-1 move.

has the property that the only material vertices with edge loops are the
vertices vj.

Following the proof of [19, Proposition 5.1], we now cone each Tj
(for j ≥ 0) and its triangulation to a new ideal vertex wj. This gives a
partially ideal triangulation, S say, of M .

We now choose an anchoring L of ρ, making sure that L(c0) = z0.
The triangulation S is weakly L–essential (rather than L–essential), but
only due to the loops based at the vertices vj for j ≥ k.

Let F0 be the foam dual to the triangulation S. For each j ≥ k let
Bj be the material region dual to the material vertex vj . For each j ≥ 0
let Cj be the peripheral region dual to the ideal vertex wj. (There are
many other material regions in the complement of F0 that we do not
name.)

We now choose curves µ0 and λ0 in the one-skeleton of ∂C0, as shown
in Figure B.5. These generate H1(T0,Z). We set A to be the union of
the faces of ∂Cj (for j ≥ k) together with the edges of ∂C0 that carry
µ0 and λ0. Note that there are edges of ∂C0 that are not in A. Also
note that F̃0 − ϕ−1

(
A
)

is connected.
We proceed by induction. As in the proof of Theorem 3.1, we

recursively build and inflate snake paths from elevations of C0 to the
material regions. Suppose that Fi is weakly L–essential. Suppose
that F̃i − ϕ−1

(
A
)

is connected. If Fi has no material regions then
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µ0

λ0

Figure B.5. The triangulation of T0 after barycentric subdivision (drawn in
black). The one-skeleton of ∂C0 (drawn in blue) is dual to the triangulation.
The curves µ0 (drawn in red) and λ0 (drawn in green) are carried by the
one-skeleton of ∂C0.

by Remark B.3, Fi is L–essential. In this case we are done with the
recursive construction.

Suppose instead that F̃i has a material region D. We produce an
L–self avoiding snake path γi with target D. There are two cases, as
ϕ(D) is or is not one of the Bj.

Suppose first that ϕ(D) is not one of the Bj . Then for any τ ∈ π1(M)
we have that D and τ(D) do not share a face. Applying hypothesis (A)
we choose g ∈ π1(M) so that ℓ = ρ(g) · z0 is distinct from the labels
on all regions incident to D. Thus we may apply Algorithm 3.22 with
material region D, with label ℓ, and with A defined as above. This
gives us the L–self avoiding snake path γi with target D.

Suppose instead that ϕ(D) = Bj. In this case we take the basepoint
of π1(M) to be vj. Applying hypothesis (A) and recalling that ρ(pj) is
non-trivial (so has at most two fixed points), we choose g ∈ π1(M, vj)
and define ℓ = ρ(g) · z0 so that

• ℓ is distinct from the labels on all regions incident to D and
• ℓ is not a fixed point of ρ(pj).

Claim B.6. For each τ ∈ Stab(ℓ), there is no face with D on one side
and τ(D) on the other.

Proof. We prove the contrapositive. Suppose that for τ ∈ π1(M, vj)

there is a face f of F̃ with D on one side of f and with τ(D) on the
other. We now must show that τ /∈ Stab(ℓ).

Since ϕ(D) = Bj , we have that ϕ(f) is dual to one of the three edges
connecting vj to itself. We deduce that τ is one of the slopes pj, qj, or
rj (or their inverses), thought of as elements of π1(Tj, vj). Our choice
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of g implies that ℓ = ρ(g) · z0 is not fixed by ρ(τ). Thus τ /∈ Stab(ℓ), as
desired. □

Thus we may apply Algorithm 3.22 with material region D, with
label ℓ, and with A defined as above. Again this gives us the L–self
avoiding snake path γi with target D.

In either case, Lemma 3.20 now gives us that Fi+1 = Fi(γi) is weakly
L–essential. Also in either case, by our choice of A, for j ≥ k the snake
path γi does not meet any of the regions Cj, nor does it meet any of
the edges of ∂C0 that carry µ0 or λ0. Thus, for j ≥ k the combinatorics
of ∂Cj in Fi+1 is the same as it is in Fi. Similarly, the edges of ∂C0

that carry λ0 or µ0 do not change. In particular, A does not change
from Fi to Fi+1.

Because no faces incident to either end of the snake path γi are in A,
it follows that no faces on the boundary of the snake are in A. Recalling
that F̃i − ϕ−1

(
A
)

is connected and consulting Figures 3.14a and 3.14c,
we conclude that F̃i+1 − ϕ−1

(
A
)

is connected.
The recursive process terminates because at each step we reduce the

number of material regions by one. Let Fn be the final foam. Let T be
the triangulation dual to Fn. By Remark B.3 the triangulation T is
L–essential.

For each j ≥ k the combinatorics of Cj in Fn is the same as it is in F0.
That is, there are two vertices on ∂Cj . These are dual to two tetrahedra
in T , giving us (1). These tetrahedra tj,1 and tj,2 are combinatorially
identical in T and in S. Thus, by the choice of slopes pj, qj, and rj,
removing tj,1 and tj,2 and folding along the slope rj for each j ≥ k
produces T (S), an ideal triangulation of M(S). Thus we have (2). By
our choice of A, the curves µ0 and λ0 are combinatorially identical in T
and in S. In particular, in Fn the curves µ0 and λ0 do not pass through
the vertices dual to tj,1 and tj,2 for each j ≥ k. This gives (3).

By Lemma 2.24, there is a solution Z to the gluing equations on T
so that ρZ is conjugate to ρ. Now consider T (S). The set ∆M(S) is
obtained from ∆M in two steps.

(1) Remove preimages under the covering map ϕ of the tori Tj for
j ≥ k, giving a set ∆′

M .
(2) Quotient ∆′

M by the relationship induced by folding along the
slopes rj.

Let Φ: ∆′
M → ∆M(S) be this quotient map. We now define LS, a

labelling on ∆M(S), as follows. Suppose that c lies in ∆M(S). Choose
any element c′ lying in Φ−1(c). We set LS(c) = L(c′). This is well-
defined because L is given by ρ, which is the pullback of ρS.
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Suppose that e is an edge of T̃ (S). Suppose that e has endpoints c
and d in ∆M(S). Pick e′ to be any edge of T̃ sent to e under the quotient
map. Let c′ and d′ in ∆M be the endpoints of e′. Since T is L–essential
we have that L(c′) and L(d′) are distinct. Thus LS(c) = L(c′) and
LS(d) = L(d′) are distinct. Thus T (S) is LS–essential. In fact, the
shapes given to the tetrahedra of T (S) given by LS are the same as
those given to the corresponding tetrahedra of T by L. Thus by deleting
the pairs of tetrahedron shapes with coordinates (j, 1) and (j, 2) for
j ≥ k we obtain the desired solution Z(S). This gives (4). □
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