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Abstract. Following Milner’s seminal paper, the representation of functions as processes
has received considerable attention. For pure λ-calculus, the process representations yield
(at best) non-extensional λ-theories (i.e., β rule holds, whereas η does not).

In the paper, we study how to obtain extensional representations, and how to move
between extensional and non-extensional representations. Using Internal π, Iπ (a subset of
the π-calculus in which all outputs are bound), we develop a refinement of Milner’s original
encoding of functions as processes that is parametric on certain abstract components called
wires. These are, intuitively, processes whose task is to connect two end-point channels.
We show that when a few algebraic properties of wires hold, the encoding yields a λ-theory.
Exploiting the symmetries and dualities of Iπ, we isolate three main classes of wires. The
first two have a sequential behaviour and are dual of each other; the third has a parallel
behaviour and is the dual of itself. We show the adoption of the parallel wires yields an
extensional λ-theory; in fact, it yields an equality that coincides with that of Böhm trees
with infinite η. In contrast, the other two classes of wires yield non-extensional λ-theories
whose equalities are those of the Lévy-Longo and Böhm trees.

1. Introduction

Milner’s work [Mil90, Mil92] on the encoding of the pure λ-calculus into the π-calculus is
generally considered a landmark paper in the area of semantics and programming languages.
The encoding of the λ-calculus is a significant test of expressiveness for the π-calculus.
The encoding also gives an interactive semantics to the λ-calculus, which allows one to
analyse it using the instruments available in the π-calculus. After Milner’s seminal work, a
number of encoding variants have been put forward (e.g. [SW01] and references therein) by
modifying the target language (often to a subcalculus of the π-calculus) or the encoding itself.
The correctness of these encodings is usually supported by the operational correspondence
against a certain evaluation strategy of the λ-calculus and by the validity of the β-rule,
(λx. M)N = M{N/x}. (In this paper, by validity of a λ-calculus rule with respect to a
certain process encoding {[ · ]}, we mean that {[M ]} ≈ {[N ]} for all instances M = N of (the
congruence closure of) the rule, where ≈ is a basic behavioural equivalence for the pure
processes, such as ordinary bisimilarity.)
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The equality on λ-terms induced by the encoding has also been investigated; in this
equality two λ-terms M and N are equal when their images are behaviourally equivalent
processes. For Milner’s original (call-by-name) encoding, such an equality coincides with
the Lévy-Longo tree (LT) equality [San93, San00] (the result is by large independent of the
behavioural equivalence adopted for the processes [SX18]). It has also been shown how to
recover the Böhm tree (BT) equality [SW01], by modifying Milner’s encoding — allowing
reductions underneath a λ-abstraction — and selecting divergence-sensitive behavioural
equivalences on processes such as must-testing.

Tree structures play a pivotal role in the λ-calculus. For instance, trees allow one to
unveil the computational content hidden in a λ-term, with respect to some relevant minimal
information. In BTs the information is the head normal forms, whereas in LTs it is the weak
head normal forms. BT and LT equalities coincide with the local structures of well-known
models of the λ-calculus, such as Plotkin and Scott’s Pω [Plo72, Sco76], and the free lazy
Plotkin-Scott-Engeler models [Lév76, Eng81, Lon83].

In BTs and LTs, the computational content of a λ-term is unveiled using the β-rule
alone. Such structures are sometimes called non-extensional, as opposed to the extensional
structures, in which the β-rule is coupled with the η-rule, M = λx. M x (for x not free
in M). In extensional theories two functions are equated if, whenever applied to the
same argument, they yield equal results. A well-known extensional tree-structure are BTs
with infinite η, shortly BTη∞s. The equality of BTη∞s coincides with that of Scott’s D∞
model [Sco76], historically the first model of the untyped λ-calculus. A seminal result by
Wadsworth [Wad76] shows that the BTη∞s are intimately related to the head normal forms,
as the BTη∞ equality coincides with contextual equivalence in which the head normal forms
are the observables.

In representations of functions as processes, extensionality and the η-rule, even in their
most basic form, have always appeared out of reach. For instance, in Milner’s encoding, x
and λy. x y have quite different behaviours: the former process is a single output particle,
whereas the latter has an infinite behaviour and, moreover, the initial action is an input.

The general goal of this paper is to study extensionality in the representation of functions
as processes. In particular, we wish to understand if and how one can derive extensional
representations, and the difference between extensional and non-extensional representations
from a process perspective.

We outline the main technical contributions. We develop a refinement of Milner’s
original encoding of functions, using Internal π (Iπ), a subcalculus of the π-calculus in
which only bound names may be exported. The encoding makes use of certain abstract
components called wires. These are, intuitively, processes whose task is to connect two
end-point channels; and when one of the two end-points is restricted, the wires behave as
substitutions. In the encoding, wires are called ‘abstract’ because their definitions are not
made explicit. We show that assuming a few basic algebraic properties of wires (having
to do with transitivity of wires and substitution) is sufficient to obtain a λ-theory, i.e. the
validity of the β-rule.

We then delve into the impact of the concrete definition of the wires, notably on the
equivalence on λ-terms induced by the encoding. In the π-calculus literature, the most
common form of wire between two channels a and b is written !a(u). b⟨u⟩ (or a(u). b⟨u⟩, if
only needed once), and sometimes called a forwarder [HY95, Mer01]. In Iπ, free outputs are
forbidden and such a wire becomes a recursively-defined process. We call this kind of wires
I-O wires, because of their ‘input before output’ behaviour. Exploiting the properties of
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Table 1: Instances of the abstract encoding
Encoding Parameter (wires) Characterises

AIO I-O wires BT
AP P wires BTη∞
AOI O-I wires LT

Iπ, e.g., its symmetries and dualities, we identify two other main kinds of wires: the O-I
wires, with an ‘output before input’ behaviour and which are thus the dual of the I-O wires;
and the P wires, or parallel wires, where input and output can fire concurrently (hence such
wires are behaviourally the same as their dual).

We show that moving among these three kinds of wire corresponds to moving among the
three above-mentioned tree structures of the λ-calculus, namely BTs, LTs, BTη∞s. Precisely,
we obtain BTs when adopting the ordinary I-O wires; LTs when adopting the O-I wires; and
BTη∞s when adopting the P wires. This also implies that P wires allow us to validate the
η-rule (in fact both η and infinite η). The results are summarised in Table 1, where AX is
the concrete encoding in which the X wires are used.

We are not aware of results in the literature that produce an extensional λ-theory from
a processes model, let alone that derive the BTη∞ equality. We should also stress that
the choice of the wire is the only modification needed for switching among the three tree
structures: the encoding of the λ-calculus is otherwise the same, nor does it change the
underlying calculus and its behavioural equivalence (namely, Iπ and bisimilarity).

There are various reasons for using Iπ in our study. The first and most important reason
has to do with the symmetries and dualities of Iπ, as hinted above. The second reason is
proof techniques: in the paper we use a wealth of proof techniques, ranging from algebraic
laws to forms of ‘up-to bisimulation’ and to unique solutions of equations; not all of them
are available in the ordinary π-calculus. The third reason has to do with η-rule. In studies
of the expressiveness of Iπ in the literature [Bor98] the encoding of the free-output construct
into Iπ resembles an (infinite) η-expansion. The essence of the encoding is the following
transformation (which needs to be recursively applied to eliminate all free outputs):

a⟨p⟩ 7→ νq (a⟨q⟩ | q(ỹ). p⟨ỹ⟩) . (1.1)

A free output of p is replaced by a bound output, that is, an output of a freshly created
name q (for simplicity, we assume that p is meant to be used only once by the recipient).
The transformation requires localised calculi [MS04], in which the recipient of a name may
only use it in output, and resembles an η-expansion of a variable of the λ-calculus in that,
intuitively, direct access to the name p is replaced by access to the function λỹ. p⟨ỹ⟩.

A possible connection between Iπ and η-expansion may also be found in papers such
as [CPT16], where η-expanded proofs (proofs in which the identity rule is only applied to
atomic formulas) are related to (session-typed) processes with bound outputs only. Yet,
the technical link with our works appears weak because the wires that we use to achieve
extensionality (the P wires of Table 1) are behaviourally quite different from the process
structures mentioned above.

We derive the encoding into Iπ in two steps. The first step consists, intuitively, in
transplanting Milner’s encoding into Iπ, by replacing free outputs with bound outputs plus
wires, following the idea in (1.1) above. However, (1.1) is only valid in localised calculi,
whereas Milner’s encoding also requires the input capability of names to be transmitted.
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Therefore we have to modify the wire in (1.1), essentially inverting the two names p and
q. The correctness of the resulting transformation relies on properties about the usage of
names that are specific to the representation of functions. The second step adopted to
derive the encoding consists of allowing reductions underneath a λ abstraction; that is,
implementing a strong reduction strategy. This transformation is necessary in order to
mimic the computation required to obtain head normal forms.

Encodings of strong reduction strategies have appeared in the literature; they rely on
the possibility of encoding non-blocking prefixes (sometimes called delayed in the litera-
ture) [Abr94, BS94, Fu97, PV98, Mer01, MS04, SW01], i.e., prefixes µ :P in which actions
from P may fire before µ, as long as µ does not bind names of the action. The encodings of
non-blocking prefixes in the literature require the names bound in µ to be localised. Here
again, the difficulty was to adapt the schema to non-localised names. Similar issues arise
within wires, as their definition also requires certain prefixes to be non-blocking.
Structure of the paper Section 2 recalls background material on λ-calculus and Iπ. Section 3
introduces wires and permeable prefixes. In Section 4, we present the abstract encoding,
using the abstract wires, and the assumptions we make on wires; we then verify that such
assumptions are sufficient to obtain a λ-theory. Section 5 defines an optimised abstract
encoding, which will be useful for later proofs. In Section 6, we introduce the three classes of
concrete wires, and show that they satisfy the required assumptions for wires. In Section 7,
we pick the I-O wires and O-I wires, and prove full abstraction for LTs and BTs. In Section 8,
we do the same for the P wires and BTη∞s. Section 9 discusses further related work and
possible future developments. For readability, some proofs are only given in the Appendixes.

2. Background

A tilde represents a tuple. The i-th element of a tuple P̃ is referred to as Pi. All notations
are extended to tuples componentwise.

2.1. The λ-calculus. We let x and y range over the set of λ-calculus variables. The set Λ
of λ-terms is defined by the grammar

M ::= x | λx. M | M1 M2 .
Free variables, closed terms, substitution, α-conversion etc. are defined as usual [Bar84];
the set of free variables of M is fv(M). Here and in the rest of the paper (including when
reasoning about processes), we adopt the usual ‘Barendregt convention’. This will allow us
to assume freshness of bound variables and names whenever needed. We group brackets
on the left; therefore MNL is (MN)L. We abbreviate λx1. · · · . λxn. M as λx1 · · · xn. M , or
λx̃. M .

A number of reduction relations are mentioned in this paper. The (standard) β-reduction
relation M −→ N is the relation on λ-terms induced by the following rules:

[β]
(λx. M) N −→ M{N/x}

[µ]
N −→ N ′

M N −→ M N ′

[ν]
M −→ M ′

M N −→ M ′ N
[ξ]

M −→ M ′

λx. M −→ λx. M ′

The (weak) call-by-name reduction relation uses only the β and ν rules, whereas strong call-
by-name, written −→sn, also has ξ; the head reduction, written −→h, is a deterministic variant of
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−→sn in which the redex contracted is the head one, i.e., (λy. M0) M1 of λx̃. (λy. M0) M1 · · · Mn.
Head normal forms are of the form λx̃. y M̃ . As usual, we use a double arrow to indicate
the reflexive and transitive closure of a reduction relation, as in =⇒ and =⇒h. A term M
has a head normal form N if M =⇒h N and N is the (unique) head normal form. Terms
that do not have a head normal form are called unsolvable. An unsolvable M has an order
of unsolvability n, if n is the largest natural number such that M =⇒h λx1 . . . xn. M ′, for
n ≥ 0, and some x1, . . . , xn, M ′. If there is no such largest number, then M is of order
ω. For instance, if ∆ is λx. x x, and Ω is ∆ ∆, and Ξ is (λxy. x x) (λxy. x x), then we have
Ω −→h Ω, therefore Ω is an unsolvable of order 0, and λx. Ω is of order 1; whereas Ξ −→h λy. Ξ,
indeed for any n we have Ξ =⇒h λy1 . . . yn. Ξ, therefore Ξ is an unsolvable of order ω.

We recall the (informal) definitions of Lévy-Longo trees and Böhm trees, and of Böhm
trees up-to infinite η-expansion. The Lévy-Longo tree of M is the labelled tree, LT(M),
defined coinductively as follows:
(1) LT(M) = ⊤ if M is an unsolvable of order ω;
(2) LT(M) = λx1 . . . xn. ⊥ if M is an unsolvable of order n < ω;
(3) LT(M) is the tree with λx̃. y as the root and LT(M1) . . . LT(Mn) as the children, if M

has head normal form λx̃. y M1 · · · Mn with n ≥ 0.
The definition of Böhm trees (BTs) is obtained from that of LTs using BT in place of LT,
and demanding that BT(M) = ⊥ whenever M is unsolvable (in place of clauses (1) and (2)).

An η-expansion of a BT, whose root is λx̃. y and children are BT(M1), . . . BT(Mn), is
given by a tree whose root is λx̃z. y and children are BT(M1), . . . BT(Mn), z. Intuitively,
an infinite η-expansion of a BT is obtained by allowing this expansion at each step of the
clause (3). Thus, an (informal) coinductuive definition of the Böhm trees up-to infinite
η-expansion of M , BTη∞(M), is given as follows:
(1) BTη∞(M) = ⊥ if M is unsolvable, and
(2) if M =⇒h λx1 . . . xn. y M1 · · · Mn, then

(a) BTη∞(M) = BTη∞(λx1 . . . xn−1. y M1 · · · Mn−1), if xn /∈ fv(y M1 · · · Mn−1) and
BTη∞(Mn) = BTη∞(xn); and otherwise

(b) BTη∞(M) = λx1 . . . xn. y

BTη∞(M1)· · · BTη∞(Mn)

In the equality induced by the above trees, two terms are related if their trees are
the same (as usual modulo α-conversion). These equalities may be defined coinductively
as forms of bisimilarity on λ-terms ([San93]), in the expected manner. We only present
BTη∞-bisimilarity, because it is the most delicate one and also because it will be used in a
few important proofs. In such a bisimilarity, first introduced by Lassen [Las99], a (finite)
η-expansion is allowed at each step of the bisimulation game.

Definition 2.1 ([Las99]). A symmetric relation R on λ-terms is a BTη∞-bisimulation if,
whenever M R N , either one of the following holds:
(1) M and N are unsolvable
(2) M =⇒h λx1 . . . xl+m. y M1 · · · Mn+m and N =⇒h λx1 . . . xl. y N1 · · · Nn, where the vari-

ables xl+1, . . . , xl+m are not free in y N1, . . . , Nn, and Mi R Ni for 1 ≤ i ≤ n, and also
Mn+j R xl+j for 1 ≤ j ≤ m

(3) the symmetric case, where N reduces to a head normal form with more leading λs.
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The largest BTη∞-bisimulation is called BTη∞-bisimilarity. We also write BTη∞(M) =
BTη∞(N) when M and N are BTη∞-bisimilar.

Example 2.2. We provide some examples of Böhm trees and Lévy-Longo trees, using the
terms ∆, Ω, and Ξ introduced earlier.

BT(∆) =
λx. x

x
BT(Ω) = ⊥ BT(λx. Ω) = ⊥ BT(Ξ) = ⊥

LT(∆) =
λx. x

x
LT(Ω) = ⊥ BT(λx. Ω) = λx. ⊥ LT(Ξ) = ⊤

For all the terms M used in this example, we have BT(M) = BTη∞(M).

Example 2.3. Let J be a term such that J z =⇒h λy. z (Jy), which is easy to define using
a fixed-point combinator. Intuitively, the term J z can be considered as the ‘limit of the
sequence of η-expansions’

z −→η λz1. z z1 −→η λz1. z (λz2. z1 z2) −→η · · ·
In other words, J z is a term that represents an ‘infinite η-expansion’ of z. The terms z and
J z have different Böhm trees:

BT(J z) =

λz1. z

λz2. z1

λz3. z2

...

BT(z) = z.

However, BTη∞(J z) = BTη∞(z) as the two terms can be equated using an infinite form
of η-expansion.

2.2. Internal π-calculus. In all encodings we consider, the encoding of a λ-term is para-
metric on a name, i.e., it is a function from names to π-calculus processes. We also need
parametric processes (over one or several names) for writing recursive process definitions
and equations. We call such parametric processes abstractions. The actual instantiation of
the parameters of an abstraction F is done via the application construct F ⟨ã⟩. We use P, Q
for processes, F for abstractions. Processes and abstractions form the set of π-agents (or
simply agents), ranged over by A. Small letters a, b, . . . , x, y, . . . range over the infinite set
of names. The grammar of Iπ is thus:

A ::= P | F (agents)
P ::= 0 | a(b̃). P | a(b̃). P | νa P (processes)

| P1 | P2 | !a(b̃). P | F ⟨ã⟩

F ::= (ã) P | K (abstractions)

The operators used have the usual meanings. In prefixes a(b̃) and a(b̃), we call a the subject.
We often abbreviate νa νb P as (νa, b) P . Prefixes, restriction, and abstraction are binders
and give rise in the expected way to the definition of free names, bound names, and names of
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an agent, respectively indicated with fn(−), bn(−), and n(−), as well as that of α-conversion.
An agent is name-closed if it does not contain free names. In the grammar, K is a constant,
used to write recursive definitions. Each constant K has a defining equation of the form
K def= (x̃) P , where (x̃) P is name-closed; x̃ are the formal parameters of the constant (replaced
by the actual parameters whenever the constant is used). Replication could be avoided in
the syntax since it can be encoded with recursion. However its semantics is simple, and it is
a useful construct for encodings; thus we chose to include it in the grammar.

For convenience, we set some conventions. An application redex ((x̃)P )⟨ã⟩ can be
normalised as P{x̃/̃a}. An agent is normalised if all such application redexes have been
contracted. When reasoning on behaviours it is useful to assume that all expressions are
normalised, in the above sense. Thus in the remainder of the paper we identify an agent with
its normalised expression. As in the λ-calculus, following the usual Barendregt convention
we identify processes or actions which only differ on the choice of the bound names. The
symbol = will mean ‘syntactic identity modulo α-conversion’.

Since the calculus is polyadic, we assume a sorting system [Mil93] to avoid disagreements
in the arities of the tuples of names carried by a given name and in applications of abstractions.
In Milner’s encoding (written in the polyadic π-calculus) as well as in all encodings in the
paper, there are only two sorts of names: location names, and variable names. Location
names carry a pair of a variable name and a location name; variable names carry a single
location name. Using p, q, r, . . . for location names, and x, y, z, . . . for variable names, the
forms of the possible prefixes are:

p(x, q). P | x(p). P | p(x, q). P | x(p). P

This sorting will be maintained throughout the paper. Hence process transformations and
algebraic laws will be given with reference to such a sorting.

The operational semantics of Iπ is standard [SW01], and reported in Figure 1. Transitions
are of the form P

µ−→ P ′, where the set of actions is given by
µ ::= a(b̃) | a(b̃) | τ

and bound names of µ are fresh, i.e., they do not appear free in P . The meaning of actions is
the usual one: a(b̃) and a(b̃) are bound input and outputs, respectively, and τ is the internal
action. The co-action µ̄ of µ used in the rule com is defined by a(b̃) def= a(b̃) and a(b̃) def= a(b̃).
Since we are using the Barendregt convention, in par, we have an implicit side condition
bn(µ) ∩ fn(Q) = ∅. The (ỹ) Q = (x̃) P in the premise of rule com merely means that the two
agents are equal up-to α-conversion. As usual, we write µ=⇒ for =⇒ µ−→=⇒, and µ̂=⇒ is µ=⇒ for
µ ̸= τ and =⇒ otherwise.

The reference behavioural equivalence for Iπ is (weak) bisimilarity. It is known that, in
Iπ, bisimilarity coincides with barbed congruence (for processes that are image-finite up to
weak bisimilarity; all the agents obtained as encodings of λ-terms will be image-finite up to
weak bisimilarity).

Definition 2.4 (Bisimilarity). A symmetric relation R over processes is a (weak) bisimulation,
if, whenever P R Q,
• P

µ−→ P ′ implies Q
µ̂=⇒ Q′ for some Q′ such that P ′ R Q′.

Processes P and Q are (weakly) bisimilar, written P ≈ Q if there exists a bisimulation R
such that P R Q.
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[pre]
µ. P

µ−→ P
[par]

P
µ−→ P ′

P | Q
µ−→ P ′ | Q

[res]
P

µ−→ P ′ x ̸∈ n(µ)
νx P

µ−→ νx P ′ [com]
P

µ−→ P ′ Q
µ−→ Q′ µ ̸= τ, x̃ = bn(µ)

P | Q
τ−→ νx̃ (P ′ | Q′)

[rep]
µ. P

µ−→ P ′

!µ. P
µ−→ P ′ | !µ. P

[con]
P

µ−→ P ′ K def= (ỹ) Q (ỹ) Q = (x̃) P

K⟨x̃⟩ µ−→ P ′

Figure 1: The standard LTS for Iπ.

In a few places we will also use strong bisimilarity, written ∼; this is defined analogous
to ≈, but Q must respond with a (strong) transition Q

µ−→ Q′.

We also use the expansion preorder, written ≲, an asymmetric variant of ≈ in which,
intuitively, P ≲ Q holds if P ≈ Q but also Q has at least as many τ -moves as P .

Definition 2.5 (Expansion). A relation R over processes is an expansion if P R Q implies:
(1) Whenever P

µ−→ P ′, there exists Q′ such that Q
µ=⇒ Q′ and P ′ R Q′;

(2) whenever Q
µ−→ Q′, there exists P ′ such that P

µ̂−→ P ′ and P ′ R Q′.

Here µ̂−→ is the strong version of µ̂=⇒, that is, µ̂−→ is µ−→ if µ ̸= τ and is = or τ−→ if µ = τ .
We say that Q expands P , written P ≲ Q, if P R Q, for some expansion R.

Finally, we sometimes use structural congruence, when we need to emphasize that two
processes are the same modulo some structural rewriting of their syntax.

Definition 2.6 (Structural congruence). The structural congruence ≡ is the smallest con-
gruence relation over processes that includes the α-equivalence and the following equivalence:

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)
νx νy P ≡ νy νx P (x ̸= y)

νx (P | Q) ≡ νx P | Q (x /∈ fv(Q)).

We summarise the inclusion order between the process relations that we use:

≡ ⊊ ∼ ⊊ ≲ ⊊ ≈.

In Iπ, all the relations above are (pre)congruences [San96b]. All behavioural relations are
extended to abstractions by requiring ground instantiation of the parameters. For instance,
(x)P ≈ (x)Q if P ≈ Q. Appendix A summarises notations used in the paper (term relations,
encodings, etc.).

2.2.1. Proof techniques. Here we review known proof-techniques for Iπ that we will use
in this paper. These are well-known algebraic laws, notably laws for private replications,
up-techniques for bisimilarity, and unique solutions of equations.
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Algebraic laws. We will often use a group of laws about private replication. That is, laws for
processes of the form νa (P | !a(b̃). Q), where a only appears free only in output position of
P and Q. Since the process !a(b̃). Q is replicated and private it can be distributed or pushed
inside prefixes. These laws are known as the replication theorems [SW01].

Lemma 2.7. Suppose x only occurs free in P , Q and R only in output subject position.
Then we have
(1) νx (Q | R | !x(p). P ) ∼ νx (Q | !x(p). P ) | νx (R | !x(p). P );
(2) νx (π. Q | !x(p). P ) ∼ π. νx (Q | !x(p). P ), if π is a non-replicated prefix, subject of π is

not x and bn(π) ∩ fn(!x(p). P ) = ∅;
(3) νx (!y(q). Q | !x(p). P ) ∼ !y(q). νx (Q | !x(p). P );
(4) νx (Q | !x(p). P ) ∼ Q, if x /∈ fn(Q);
(5) νx (x(p). Q | !x(p). P ) ≳ νx (Q | P | !x(p). P ).

We often call the law (4) the ‘garbage collection law’.

Up-to techniques. Our main up-to technique will be up-to context and expansion [San96a],
which admits the use of contexts and of behavioural equivalences such as expansion to
achieve the closure of a relation in the bisimulation game.

Definition 2.8 (Bisimulation up-to context and ≲). A symmetric relation R on Iπ-processes
is a bisimulation up-to context and up-to ≲ if P R Q and P

µ−→ P ′′ imply that there are a
(possibly multi-hole) context C and processes P̃ ′ and Q̃′ such that P ′′ ≳ C[P̃ ′], Q

µ̂=⇒≳ C[Q̃′]
and P̃ ′ R Q̃′. Here P̃ ′ R Q̃′ means P ′

i R Q′
i for each component.

A special instance of this technique is the up-to expansion technique where the common
context C is taken as the empty-context.

Theorem 2.9. If R is a bisimulation up-to context and expansion then R ⊆ ≈.

We refer the readers to [San96a] for the proof. (Adapting the proof to Iπ and non-static
multi-hole contexts is straightforward.) We also use the technique of expansion up-to context
and ≲, which is defined analogously to Definition 2.8, as a proof technique to prove expansion
results (the main difference is that one now requires P ′′ ≲ C[P̃ ′]).

Unique solution of equations. We briefly recall the ‘unique solution of equations’ tech-
nique [DHS19]. Equation variables X, Y, Z are used to write equations. The body of an
equation is a name-closed abstraction possibly containing equation variables (that is, appli-
cations can also be of the form X⟨ã⟩). We use E to range over expression bodies; and E to
range over systems of equations, defined as follows. In all the definitions, the indexing set I
can be infinite.

Definition 2.10. Assume that, for each i of a countable indexing set I, we have a variable
Xi, and an expression Ei, possibly containing variables. Then {Xi = Ei}i∈I (sometimes
written X̃ = Ẽ) is a system of equations. (There is one equation for each variable Xi.) A
system of equations is guarded if each occurrence of a variable in the body of an equation is
underneath a prefix.
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We write E[F̃ ] for the abstraction obtained by replacing in E each occurrence of the
variable Xi with the abstraction Fi. This is a syntactic replacement, with instantiation of
the parameters: e.g., replacing X with (x̃)P in X⟨ã⟩ amounts to replacing X⟨ã⟩ with the
process P{ã/̃x}.
Definition 2.11. Suppose {Xi = Ei}i∈I is a system of equations. We say that:
• F̃ is a solution of the system of equations for ≈ if for each i it holds that Fi ≈ Ei[F̃ ].
• The system has a unique solution for ≈ if whenever F̃ and G̃ are both solutions for ≈, we

have F̃ ≈ G̃.
Definition 2.12 (Syntactic solutions). The syntactic solutions of a system of equations
{Xi = Ei}i∈I are the recursively defined constants K

Ẽ,i

def= Ei[K̃Ẽ
], for i ∈ I.

The syntactic solutions of a system of equations are indeed solutions of it. The unique-
solution technique relies on an analysis of divergences. A process P diverges if it can
perform an infinite sequence of internal moves, possibly after some visible ones (i.e., actions
different from τ). Formally, this holds if there are processes Pi, i ≥ 0, and some n such that
P = P0

µ0−→ P1
µ1−→ P2

µ2−→ . . . and for all i > n, µi = τ . We call a divergence of P the
sequence of transitions

(
Pi

µi−→ Pi+1
)

i≥0. An abstraction F has a divergence if the process
F ⟨ã⟩ has a divergence, where ã are fresh names.

Theorem 2.13 [DHS22]. A guarded system of equations whose syntactic solutions are agents
with no divergences has a unique solution for ≈.

3. Wires and Permeable Prefixes

We introduce the abstract notion of wire process; and, as a syntactic sugar, the process
constructs for permeable prefixes. Wires and permeable prefixes will play a central role in
the technical development in the following sections.

Wires. We use the notation a ↔ b̄ for an abstract wire; this is, intuitively, a special process
whose purpose is to connect the output-end of a with the input-end of b (thus a ↔ b̄ itself
will use a in input and b in output). We call such wires ‘abstract’ because we will not give a
definition for them. We only state (Section 4) some behavioural properties that are expected
to hold, and that have mainly to do with substitutions; approximately:
(1) if P uses b only in input, then νb (a ↔ b̄ | P ) ≳ P{a/b}
(2) dually, if P uses a only in output, then νa (a ↔ b̄ | P ) ≳ P{b/a}
Further conditions will however be needed on P for such properties to hold (e.g., in (1),
the input at b in P should be ‘at the top-level’, and in (2), the outputs at a in P should
be ‘asynchronous’.) Special cases of (1) and (2) are forms of transitivity for wires, with the
common name restricted:
(3) νb (a ↔ b̄ | b ↔ c̄) ≳ (b ↔ c̄){a/b} = (a ↔ b̄){c/b} = a ↔ c̄.
When (1) holds we say that P is I-respectful with respect to a ↔ b̄; similarly when (2) holds
we say that P is O-respectful with respect to a ↔ b̄. When (3) holds, for any a, b, c of the
same sort, we say that wires are transitive.

As we have two sorts of names in the paper (location names and variable names), we
will correspondingly deal with two sorts of wires, location wires and variable wires. In fact,
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location wires will be the key structures. Thus when, in Section 6, we consider concrete
instantiations of the location wires, the corresponding definitions of the variable wires will
be adjusted so to maintain the expected properties of the location wires.

Permeable prefixes. We write a(b̃) : P and ā(b̃) : P for a permeable input and a permeable
output. Intuitively, a permeable prefix only blocks actions involving the bound names of
the prefix. For instance, a permeable input a(b̃) : P , as an ordinary input, is capable of
producing action a(b̃) thus yielding the derivative P . However, in contrast with the ordinary
input, in a(b̃) : P the process P is active and running, and can thus interact with the outside
environment; the only constraint is that the actions from P involving the bound names b̃
cannot fire for as long as the top prefix a(b̃) is not consumed.

Given the two sorts of names that will be used in the paper, the possible forms of
permeable prefixes are:

p(x, q) : P | p̄(x, q) : P | x(p) : P | x̄(p) : P

Moreover, it will always be the case that in a prefix p(x, q) : P process P uses x only in
output and q only once in input, and conversely for p̄(x, q) : P ; and in x(p) : P process P
uses p only once in input, and conversely for x̄(p) : P .

We stress that permeable prefixes should be taken as syntactic sugar; formally they are
defined from ordinary prefixes and wires as follows

p(x, q) : P
def= (νx, q)

(
p(x′, q′).

(
x ↔ x̄′ | q′ ↔ q̄

)
| P

)
x(p) : P

def= νp
(
x(p′). p′ ↔ p̄ | P

)
p̄(x, q) : P

def= (νx, q)
(
p(x′, q′).

(
x′ ↔ x̄ | q ↔ q̄′) | P

)
x̄(p) : P

def= νp
(
x(p′). p ↔ p̄′ | P

)
Such definitions thus depend on the concrete forms of wires adopted. The definitions behave
as intended only when the processes underneath the permeable prefixes are respectful. For
example, we have

p(x, q) : P
p(x,q)−−−→≡ (νx′, q′)

(
x′ ↔ x̄ | q ↔ q̄′ | P{x′, q′

/x, q}
)
≳ P

if P is I-respectful with respect to q′ ↔ q̄ and O-respectful with respect to x ↔ x̄′, for fresh
q′ and x′.

Later, when the abstract wires will be instantiated to concrete wires, we will study
properties of I-respectfulness and O-respectfulness, as well as, correspondingly, properties of
permeable prefixes, in the setting of encodings of functions.

We end this section by introducing some algebraic laws for permeable prefixes. These
laws allow us to avoid desugaring while proving the properties of the encodings.

Lemma 3.1.
(1) νp(p(x, q) : P | p̄(x, q) : Q) ≳ P | Q if either P is I-respectful with q ↔ q̄′ and O-respectful

with x′ ↔ x̄ or P is O-respectful with q ↔ q̄′ and I-respectful with x′ ↔ x̄.
(2) νx (!x(p). P | x̄(p) : Q | R) ≳ νx (!x(p). P | P | Q | R) if p /∈ fn(R), x does not appear

in an input subject position of P, Q, R and either P is I-respectful with p ↔ p̄′ or Q is
O-respectful with p′ ↔ p̄.
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AJxKp
def= x̄(p′) : p ↔ p̄′

AJλx. MKp
def= p(x, q) : AJMKq

AJM NKp
def= νq (AJMKq | q̄(x, p′) : (!x(r). AJNKr | p ↔ p̄′))

Figure 2: The abstract encoding A.

Lemma 3.2. Suppose that wires, which are used to define the permeable prefixes, are
transitive. Then the following laws hold.
(1) If a ̸= b and a /∈ c̃ then νa b(c̃) : P ≡ b(c̃) : νa P and νa b̄(c̃) : P ≡ b̄(c̃) : νa P

(2) If b̃ ∩ fn(Q) = ∅ then Q | a(b̃) : P ≡ a(b̃) : (Q | P ) and Q | ā(b̃) : P ≡ ā(b̃) : (Q | P ).

Lemma 3.1 expresses a property of a restricted interaction consuming permeable prefixes.
Lemma 3.2 shows two structural laws for permeable prefixes, one concerning restriction,
the other concerning parallel composition. These lemmas simply follow from the syntactic
definition of the permeable prefixes. The assumption about the transitivity of wires, in
Lemma 3.2, is harmless as all the wires we use in this paper are transitive. In what follows,
we will use these structural rules without explicitly mentioning Lemma 3.2.

4. Abstract Encoding

This section introduces the abstract encoding of λ-terms into Iπ-processes. We call the
encoding ‘abstract’ because it uses the abstract wires discussed in the previous section. In
other words, the encoding is parametric with respect to the concrete definition of the wires.
We then prove that, whenever the wires satisfy a few basic laws, the encoding yields a
λ-theory.

4.1. Definition of the abstract encoding. We begin by recalling Milner’s original
encoding M of (call-by-name) λ-calculus into the π-calculus [Mil92, Mil93]:

MJxKp
def= x⟨p⟩

MJλx. MKp
def= p(x, q). MJMKq

MJM NKp
def= (νq, x) (MJMKq | q⟨x, p⟩ | !x(r). MJNKr)

The encoding of a λ-term M is parametric over a port p, which can be thought of as
the location of M , for p represents the unique port along which M may be called by its
environment, thus receiving two names: (a trigger for) its argument and the location to
be used for the next interaction. Hence, M (as well as all the encodings in the paper) is a
function from λ-terms to abstractions of the form (p) P . We write MJMKp as a shorthand for
MJMK⟨p⟩. A function application of the λ-calculus becomes, in the π-calculus, a particular
form of parallel combination of two agents, the function and its argument; β-reduction is
then modelled as process interaction. An argument of an application is translated as a
replicated server, that can be used as many times as needed, each time providing a name to
be used as location for the following computation.
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In Figure 2 we report the abstract encoding A. There are two main modifications from
Milner’s encoding M:
(1) The encoding uses Iπ, rather than π-calculus; for this, all free outputs are replaced by a

combination of bound outputs and wires (as hinted in the Introduction).
(2) A permeable input is used, in place of an ordinary input, in the translation of abstraction

so to allow reductions underneath a λ-abstraction. (We thus implement a strong call-by-
name strategy.)
We report a few basic conditions that will be required on wires. The main ones concern

the behaviour of wires as substitutions and transitivity of wires.

Definition 4.1 (Wires). As a convention, we assume that names a, b, c are of the same
sort, either location names or variable names. Wires a ↔ b̄ are processes that satisfy the
following properties:
(1) The free names of a ↔ b̄ are a and b. Furthermore, a ↔ b̄ only uses a in input and b in

output.
(2) If a ↔ b̄

µ−→ P for some P , then µ ̸= τ .
(3) νb (a ↔ b̄ | b ↔ c̄) ≳ a ↔ c̄.
(4) νq (p ↔ q̄ | q(x, r) : P ) ≳ p(x, r) : P , provided that (νx, r )(x ↔ x̄′ | r′ ↔ r̄ | P ) ≳

P{x′, r′
/x, r}, where x′, r′ are fresh names.

(5) νp (p ↔ q̄ | p̄(x, r) : P ) ≳ q̄(x, r) : P , provided that (νx, r )(x′ ↔ x̄ | r ↔ r̄′ | P ) ≳
P{x′, r′

/x, r}, where x′, r′ are fresh names.
(6) νy (x ↔ ȳ | !y(p). P ) ≳ !x(p). P , provided that y /∈ fn(P ) and νp (p′ ↔ p̄ | P ) ≳ P{p′

/p},
where p′ is fresh.

(7) νx (x ↔ ȳ | x̄(p) : P ) ≳ ȳ(p) : P , provided that x /∈ fn(P ) and νp (p ↔ p̄′ | P ) ≳ P{p′
/p},

where p′ is fresh.
(8) x ↔ ȳ is a replicated input process at x, i.e. x ↔ ȳ = !x(p). P for some P .

Condition 1 is a simple syntactic requirement. Condition 2 says that wires are ‘optimised’
in that they cannot do any immediate internal interaction (this requirement, while not
mandatory, facilitates a few proofs). Law 3 is about the transitivity of wires. Laws 4-7 show
that wires act as substitutions for permeable inputs, permeable outputs and replicated input
prefixes. We do not require similar laws for ordinary prefixes, e.g., as in

νp (p ↔ q̄ | p(x, r). P ) ≳ q(x, r). P

because wires break the strict sequentiality imposed by such prefixes (essentially transforming
an ordinary prefix into a permeable one: only for the process on the right any action from
P is blocked until the environment accepts an interaction at q). Condition 8 requires x ↔ ȳ
to be an input replicated processes, and is useful so to be able to use the replication laws
(Lemma 2.7).

Hereafter we assume that p ↔ q̄ and x ↔ ȳ are indeed wires, i.e., processes that satisfy
the requirements of Definition 4.1. We can therefore exploit such requirements to derive
properties of the abstract encoding.

Lemma 4.2 shows that the processes encoding functions are I-respectful with respect to
the location wires, and O-respectful with respect to the variable wires.

Lemma 4.2.
(1) νq (p ↔ q̄ | AJMKq) ≳ AJMKp

(2) νx (x ↔ ȳ | AJMKp) ≳ AJM{y/x}Kp
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Proof. We prove 1 and 2 simultaneously by induction on the structure of M .
Case M = x: We begin with the case of location names.

νp (JxKp | q ↔ p̄) = νp (x̄(p′) : p ↔ p̄′ | q ↔ p̄)
≡ x̄(p′) : νp (p ↔ p̄′ | q ↔ p̄)
≳ x̄(p′) : q ↔ p̄′ (3 of Definition 4.1)
= JxKq

Next we show that νx (JMKp | x ↔ ȳ) = JM{y/x}Kp holds when M is a variable. First,
we consider the case where M = z ̸= x. Since x ↔ ȳ is of the form !x(p). P by 8 of
Definition 4.1, it follows that νx (x ↔ ȳ) ∼ 0, and this concludes this case. If M = x, then

νx (JxKp | x ↔ ȳ) = νx (x̄(p′) : p ↔ p̄′ | x ↔ ȳ)
≳ ȳ(p′) : p ↔ p̄′ (7 of Definition 4.1)
= JyKp

The premise of 7 of Definition 4.1 is satisfied because of the transitivity of wires (3 of
Definition 4.1).

Case M = λx. N : We first show that 1 holds. This is a direct consequence of 4 of
Definition 4.1.

νp (Jλx. NKp | q ↔ p̄) = νp (p(x, r) : JNKr | q ↔ p̄)
≳ q(x, r) : JNKr (4 of Definition 4.1 together with the i.h.)
= Jλx. NKr

The proof for 2 is a direct consequence of the induction hypothesis. That is,

νy (Jλx. NKp | y ↔ z̄) = νy (p(x, q) : JNKq | y ↔ z̄)
≡ p(x, q) : νy (JNKq | y ↔ z̄)
≳ p(x, q) : (JN{z/y}Kq) (i.h.)
= J(λx. N){z/y}Kp

Here we assumed that x, y and z are pairwise distinct; the general case can be proved using
α-conversion.

Case M = N L: The case for location names follows from the transitivity of wires.
Observe that

νp
(
r̄(x, p′) : (!x(r′). JLKr′ | p ↔ p̄′) | q ↔ p̄

)
≡ (νp, x, p′ )(r(x′, p′′). (x′ ↔ x̄ | p′ ↔ p̄′′) | !x(r′). JLKr′ | p ↔ p̄′ | q ↔ p̄)
≳ (νx, p′ )(r(x′, p′′). (x′ ↔ x̄ | p′ ↔ p̄′′) | !x(r′). JLKr′ | q ↔ p̄′) (3 of Definition 4.1)
= r̄(x, p′) : (!x(r′). JLKr′ | q ↔ p̄′)

Using this, we get

νp (JN LKp | p ↔ q̄) ≡ νr
(
JNKr | νp

(
r̄(x, p′) : (!x(r′). JLKr′ | p ↔ p̄′) | q ↔ p̄

))
≳ νr

(
JNKr | r̄(x, p′) : (!x(r′). JLKr′ | q ↔ p̄′)

)
= JN LKq
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The proof for x ↔ ȳ follows from the replication theorem and the induction hypothesis.
First, observe that x ↔ ȳ must be of the form !x(p). P because of 8 of Definition 4.1. We,
therefore, can apply the replication theorem to x ↔ ȳ. Hence, we have

νx (!z(p). JLKp | x ↔ ȳ) ∼ !z(p). νx (JLKp | x ↔ ȳ) (replication theorem)
≳ !z(p). JL{y/x}Kp (i.h.)

The claim follows by applying this expansion relation, the replication theorem for parallel
composition and the induction hypothesis:

νx (JN LKp | x ↔ ȳ)
≡ (νx, r )

(
JNKr | r̄(z, p′) : (!z(r′). JLKr′ | p ↔ p̄′) | x ↔ ȳ

)
∼ νr (νx (JNKr | x ↔ ȳ)

| r̄(z, p′) : (νx
(
!z(r′). JLKr′ | x ↔ ȳ

)
| p ↔ p̄′))

(replication theorem)

≳ νr
(
JN{y/x}Kr | r̄(z, p′) : (!z(r′). JL{y/x}Kr′ | p ↔ p̄′)

)
(i.h. and the above expansion relation)

= JN{y/x} L{y/x}Kp

= J(N L){y/x}Kp. □

4.2. Validity of β-reduction. The abstract encoding A validates β-reduction with respect
to the expansion relation. This is proved by showing that substitution of a λ-term M is
implemented as a communication to a replicated server that owns M . The proof is similar
to that for Milner’s encoding, except that we exploit Lemma 4.2. We recall that M −→ N is
the full β-reduction.

Lemma 4.3 (Substitution). If x /∈ fv(N), then νx (AJMKp | !x(q). AJNKq) ≳ AJM{N/x}Kp.

Proof. By induction on the structure of M using the replication theorem.
For the base case, we consider the case M = x; if x /∈ fv(M), then we just need to apply

the garbage collection law.
νx (JxKp | !x(q). JMKq) = νx (x̄(p′) : p ↔ p̄′ | !x(q). JMKq)

≳ νp′ (p ↔ p̄′ | JNKp′) (Lemma 3.1, and garbage collection on x)
≳ JMKp. (Lemma 4.2)

The case M = λx. M ′ is a straightforward consequence of the induction hypothesis.
It is the case where M = M1 M2 that needs the replication theorem. If M = M1 M2,

we have
νx (JM1 M2Kp | !x(q). JNKq)
≡ (νx, q) (JM1Kq | q̄(y, p′) :

(
!y(r). JM2Kr | p ↔ p̄′) | !x(q). JNKq)

∼ νq (νx (JM1Kq | !x(q). JNKq) |
q̄(y, p′) :

(
νx (!y(r). JM2Kr | !x(q). JNKq) | p ↔ p̄′))

(replication theorem for parallel composition)
∼ νq (νx (JM1Kq | !x(q). JNKq) |

q̄(y, p′) :
(
!y(r). νx (JM2Kr | !x(q). JNKq) | p ↔ p̄′))

(replication theorem for replicated input)
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≳ νq
(
JM1{N/x}Kq | q̄(y, p′) :

(
!y(r). JM2{N/x}Kr | p ↔ p̄′))

(i.h.)
= J(M1 M2){N/x}Kp □

Theorem 4.4. If M −→ N , then AJMKp ≳ AJNKp.

Proof. It suffices to show that J(λx. M) NKp ≳ JM{N/x}Kp because the other cases follow
from the precongruence of ≳. We have

J(λx. M) NKp = νq
(
q(x, r) : JMKr | q̄(y, p′) :

(
!y(r′). JNKr′ | p ↔ p̄′))

(q is fresh)
≳ (νy, p′ )

(
JM{y/x}Kp′ | !y(r′). JNKr′ | p ↔ p̄′) (Lemma 3.1 and 4.2)

≳ νy
(
JM{y/x}Kp | !y(r′). JNKr′

)
(Lemma 4.2)

≳ JM{N/x}Kp (Lemma 4.3)
as desired. □

Since bisimilarity is a congruence in Iπ and our encoding is compositional, the validity
of β-reduction implies that the equivalence induced by the encoding is a λ-theory.

Corollary 4.5. Let =π
def= {(M, N) | AJMK ≈ AJNK}. Then =π is a λ-theory, that is, a

congruence on λ-terms that contains β-equivalence.

Remark 4.6. From a λ-theory, a λ-model can be extracted [Bar84], hence Corollary 4.5
implies that we can construct a λ-model out of the process terms. The domain of the model
would be the processes that are in the image of the encoding, quotiented with bisimilarity.
We could not define the domain of the model out of all process terms (as in [San00], as
opposed to the processes in the image of the encoding) because our proofs rely on Lemma 4.2,
and such a lemma cannot be extended to the set of all processes.

5. Optimised Encoding

We introduce an optimised version of the abstract encoding, which removes certain ‘ad-
ministrative steps’ on the process terms. This will allow us to have a sharper operational
correspondence between λ-terms and processes, which will be needed in proofs in later
sections. As in the previous section, we work with abstract wires, only assuming the
requirements in Definition 4.1.

To motivate the need of the optimised encoding, let us consider the encoding of a term
(x M) N :

(νp0, p1) (x̄(p′
0) : p′

0 ↔ p̄0

| p̄0(x1. p′
1) :

(
!x1(r1). JMKr1 | p1 ↔ p̄′

1
)

| p̄1(x2, p2) : (!x2(r2). JNKr2 | p ↔ p̄2))
This process has, potentially (i.e., depending on the concrete instantiations of the wires),
some initial administrative reductions. For instance, the output at p1 may interact with the
input end of the wire p1 ↔ p̄′

1.
In the optimised encoding O, in Figure 3, any initial reduction of a process has a direct

correspondence with a (strong call-by-name) reduction of the source λ-term. With respect to
the unoptimised encoding A, the novelties are in the clauses for application, where the case
of a head normal form x M1 · · · Mn (for n ≥ 1) and of an application (λx. M0) M1 · · · Mn

with a head redex are distinguished. In both cases, On⟨p0, p, OJM1K · · · OJMnK⟩ is used for a
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OJxKp
def= x̄(p′) : p ↔ p̄′

OJλx. MKp
def= p(x, q) : OJMKq

OJx M1 · · · MnKp
def= x̄(p0) : On⟨p0, p, OJM1K · · · OJMnK⟩

OJ(λx. M0) M1 · · · MnKp
def= νp0 (p0(x, q) : OJM0Kq | On⟨p0, p, OJM1K · · · OJMnK⟩)

On⟨p0, p, OJM1K · · · OJMnK⟩ def= p̄0(x1, p1) : · · · p̄n−1(xn, pn) :
(!x1(r1). OJM1Kr1 | · · · | !xn(rn). OJMnKrn | p ↔ p̄n)

Figure 3: Optimised encoding. (The number n is greater than 0 in the last three cases.)

compact representation of the encoding of the trailing arguments M1, . . . , Mn, as a sequence
of nested permeable prefixes and a bunch of replications embracing the terms Mi.

Analogous properties to those in Section 4 for the unoptimised encoding A hold for O.
For instance, O validates β-reduction (Lemma 5.1). Using such properties, and reasoning by
induction of the structure of a λ-term, we can prove that O is indeed an optimisation.
Lemma 5.1. If M −→ N , then OJMKp ≳ OJNKp.

Lemma 5.2. AJMKp ≳ OJMKp.
The details about the operational behaviour of OJMKp, and its operational correspon-

dence with M , are described in Appendix B. We only report here the statements of a few
important lemmas.
Lemma 5.3. If OJMKp

τ−→ P then there exists N such that M −→sn N and P ≳ OJNKp.

Lemma 5.4. If OJMKp
µ−→ P and µ is an input action, then µ is an input at p.

If M = λx. M ′, then its process encoding OJMKp can always do an input at p, as the
encoding of a abstraction begins with an input at its location name. Lemma 5.4 says that
such an input at p is indeed the only possible input; that is, we cannot observe an inner
λ-abstraction (i.e., a λ-abstraction in M ′).

Later, when we relate our encoding to trees of the λ-calculus, the notions of head normal
form and (un)solvable term will be important. Hence some of our operational correspondence
results concern them.

Lemma 5.5. Let M be a λ-term. If OJMKp
x(q)−−→ P for some P , then M has a head normal

form λỹ. x M̃ , for some (possibly empty) sequence of terms M̃ and variables ỹ with x /∈ ỹ.

Lemma 5.6. Let M be an unsolvable term. Then there does not exist an output action µ

such that OJMKp
µ=⇒ P for some P .

Corollary 5.7. M is solvable then there are input actions µ1, . . . , µn (n ≥ 0) and an output
action µ such that OJMKp

µ1==⇒ . . .
µn==⇒ µ=⇒ P , for some P .

By Lemma 5.2, Corollary 5.7 also holds for A. The converse of Corollary 5.7 will also
hold, in all three concrete encodings that will be studied in the next section. However we
believe the result cannot be derived from the assumptions on wires in Definition 4.1.

We conclude by looking, as an example, at the unsolvable term Ω def= (λx. x x) (λx. x x) .
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Example 5.8. The process OJΩKp is
νp0 (p0(x, q) : x̄(q0) : q̄0(y1, q1) : (!y1(r1). OJxKr1 | q ↔ q̄1)

| p̄0(x1, p1) : (!x1(r1). OJλx. x xKr1 | p ↔ p̄1))
The only action OJΩKp can do is a τ -action or an input at p. Whether the input can be
performed or not will depend on the concrete definition of the wire p ↔ q̄. The possibility
of an input action from an unsolvable of order 0 such as Ω is a major difference between our
encoding and encodings in the literature, where the encoding of such unsolvables are usually
purely divergent processes.

6. Concrete Wires

We now examine concrete instantiations of the abstract wires in the encoding A (and its
optimisation O). In each case we have to define the wires for location and variable names.
The location wires are the important ones: the definition of the variable wires will follow
from them, with the goal of guaranteeing their expected properties. We consider three
concrete wires: I-O wires, O-I wires, and P wires. The main difference among them is in the
order in which the input and output of the location wires are performed.

6.1. Definition of the concrete wires. Location and variable wires will be defined by
means of mutual recursion. In contrast with the variable wires, the location wires are
non-replicated processes, reflecting the linear usage of such names. We recall that the choice
of a certain kind of concrete wires (I-O wires, O-I wires, or P wires) also affects the definition
of the permeable prefixes (as it refers to the wires), including the permeable prefixes that
may be used within the wires themselves. We will also show de-sugared definitions of the
concrete wires, i.e., without reference to permeable prefixes. We add a subscript (IO, OI, P)
to indicate a concrete wire (as opposed to an abstract one). For readability, in the definitions
of the concrete wires the name parameters are instantiated (e.g., writing a ↔IO b̄

def= P rather

than ↔IO
def= (a, b) P ).

I-O wires. In the I-O wires, the input of a wire precedes the output.

p ↔IO q̄
def= p(y, p1). q̄(x, q1) : (p1 ↔IO q̄1 | x ↔IO ȳ)

x ↔IO ȳ
def= !x(p). ȳ(q) : p ↔IO q̄

Inlining the abbreviations for permeable prefixes (as they are, in turn, defined using wires,
in this specific case, the I-O wires), we obtain:

p ↔IO q̄
def= p(y, p1). (νx, q1) (q(x′, q′

1). (q1 ↔IO q̄′
1 | x′ ↔IO x̄)

| p1 ↔IO q̄1 | x ↔IO ȳ)

x ↔IO ȳ
def= !x(p). νq (y(q′). q ↔IO q̄′ | p ↔IO q̄)

I-O wires, beginning with an input and proceeding with an output, are similar to the ordinary
wires in the literature, sometimes called forwarders, and used to prove properties about
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asynchronous and localised π-calculi (or encodings of them) [HY95, Mer01, MS04, Bor98].
An important technical difference, within location wires, is the appearance of a permeable
prefix, in place of an ordinary prefix, and the inner wire p1 ↔IO q̄1 that, in a forwarder, would
have p1 and q1 swapped. The reason for these differences is that location wires are used
with processes that are not localised (the recipient of a location name will use it in input,
rather than in output). The difference also shows up in the semantic properties: forwarders
in the literature are normally used to obtain properties of O-respectfulness (Section 3), with
the input-end of the wire restricted; in contrast, I-O wires will be used to obtain properties
of I-respectfulness, with the output-end of the wire restricted.

In the definition above of location wires, the permeable prefix cannot be replaced by an
ordinary prefix: the transitivity of the wires (property 3 in Definitions 4.1) would be lost.

O-I wires. The symmetry of Iπ enable us to consider the dual form of (location) wire, with
the opposite control flow, namely ‘from output to input’:

p ↔OI q
def= q(x, q1). p(y, p1) : (p1 ↔OI q1 | x ↔OI y)

x ↔OI y
def= !x(p). ȳ(q) : p ↔OI q

Remark 6.1 (Duality). If duality is taken to mean the exchange between input and output
prefixes, then the set of location I-O wires is the dual of the set of O-I wires. Indeed, the
location O-I wires are obtained from the corresponding location I-O wires by swapping input
and output particles; variable wires, in contrast are left unchanged. This means that we
obtain an O-I wire from an I-O wire if any input p(b̃) is made into an output p(b̃), and
conversely (moreover, accordingly, the parameters of the variable wires are swapped).

P wires. In the third form of wire, the sequentiality in location wires is broken: input and
output execute concurrently. This is achieved by using, in the definition of location wires,
only permeable prefixes.

p ↔P q̄
def= p(y, p1) : q̄(x, q1) : (p1 ↔P q̄1 | x ↔P ȳ)

x ↔P ȳ
def= !x(p). ȳ(q) : p ↔P q̄

Without the syntactic sugar of permeable prefixes, the definition of the location and variable
P wires are thus:

p ↔P q̄
def= (νp1, q1x, y) (p(y′, p′

1). (p′
1 ↔P p̄1 | y ↔P ȳ′) |

q(q′
1, x′). (q1 ↔P q̄′

1 | x′ ↔P x̄) |

p1 ↔P q̄1 | x ↔P ȳ)

x ↔P ȳ
def= !x(p). νq (y(q′). q ↔P q̄′ | p ↔P q̄)

The wire p ↔P q̄ is dual of itself: due to the use of permeable prefixes, swapping input
and output prefixes has no behavioural effect.
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6.2. Transitivity and well-definedness of the concrete wires. All three wires intro-
duced in the previous subsection are well defined:

Lemma 6.2. The I-O wires, O-I wires and P wires are indeed wires; that is, they satisfy
the laws of Definition 4.1.

For each kind of wires, the proof is carried out in two steps. First, we show that the
wires are transitive, using up-to techniques for bisimilarity. Then, the other laws are proved
by algebraic reasoning (including the use of transitivity of wires). The algebraic reasoning is
done in a similar manner for all the three wires.

Here, we shall only give the proof of the transitivity of P wires since it is the most
delicate one, because of the concurrency allowed by permeable prefixes and because permeable
prefixes are defined in terms of the wires themselves. The proofs of the transitivity of the
other two wires, and the proofs for the other laws are reported in Appendix C.

To illustrate the difficulty of P wires, let us consider the wires νq (p ↔P q̄ | q ↔P r̄). This
process can immediately reduce at the internal name q. Moreover, the derivative

p(p1, y) : r̄(q1, x) : ((νz1, z2) (x ↔P z̄1 | z1 ↔P z̄2 | z2 ↔P ȳ) |

(νs1, s2) (p1 ↔P s̄1 | s1 ↔P s̄2 | s2 ↔P q̄1))

shows that the reduction has made the chain of wires longer. To deal with these cases, we
strengthen the claim and show the transitivity of chains of wires. In doing so, we crucially
rely on up-to proof techniques for Iπ, notably ‘expansion up-to expansion and context’, and
several algebraic laws (cf. Section 2.2.1). The ‘up-to context’ is used to cut out common
contexts such as p(p1, y) : r̄(q1, x) : ([·] | [·]). The algebraic laws are used to transform
the processes so to be able to apply the ‘up-to context’, mainly by performing internal
interactions. It is unclear how the proof could be carried out without such proof techniques.

As we need to consider chains of P wires of arbitrary length, we introduce a notation
for them. We thus set:

chain1
P(p, q) def= p ↔IO q̄ chainn+1

P (p, q) def= νr (chainn
P (p, r) | r ↔IO q̄)

chain1
P(x, y) def= x ↔IO ȳ chainn+1

P (x, y) def= νz (chainn
P (x, z) | z ↔IO ȳ)

where r /∈ {p, q} and z /∈ {x, y}.
Now we are ready to show the transitivity of P wires.

Lemma 6.3. The P wires p ↔P q̄ and x ↔P ȳ are transitive, that is, νq (p ↔P q̄ | q ↔P r̄) ≳

p ↔P r̄ and νy (x ↔P ȳ | y ↔P z̄) ≳ x ↔P z̄.

Proof. For the proof, we strengthen the statement and prove transitivity for chains of wires
of arbitrary length n. Let

R1
def=

{(
p0 ↔P p̄n, chainn

P (p0, pn)
) ∣∣∣ n ≥ 2

}
R2

def=
{(

x0 ↔P x̄n, chainn
P (x0, xn)

) ∣∣∣ n ≥ 2
}

We show that R1 ∪ R2 is an expansion up-to ≲ and context.
Before considering how processes in the relation can match each other’s transition,

we present some useful observations that will be used throughout the proof. Recall that
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pi ↔P p̄i+1 is of the form

(νx+
i , q+

i , x−
i+1, q−

i+1 )
(pi(xi, qi). (x+

i ↔P x̄i | qi ↔P q̄+
i )

| pi+1(xi+1, qi+1). (xi+1 ↔P x̄−
i+1 | q−

i+1 ↔P q̄i+1)

| x−
i+1 ↔P x̄+

i | q+
i ↔P q̄−

i+1)

Therefore, given
chainn

P (p0, pn) ≡ (νp1, . . . , pn−1) (p0 ↔P p̄1 | · · · | pn−1 ↔P p̄n) ,

reducing the process by executing all the (internal) interactions at the pi’s, gives us a process
of the form

(νx+
0 , x−

1 , x1, x+
1 , . . . , x−

n−1, xn−1, x+
n−1, x−

n )
(νq+

0 , q−
1 , q1, q+

1 , . . . , q−
n−1, qn−1, q+

n−1, q−
n )

(p0(x0, q0). (x+
0 ↔P x̄0 | q0 ↔P q̄+

0 )

| pn(xn, qn). (xn ↔P x̄−
n | q−

n ↔P q̄n)

| q+
0 ↔P q̄−

1 | q−
1 ↔P q̄1 | q1 ↔P q̄+

1 | · · ·

| q−
n−1 ↔P q̄n−1 | qn−1 ↔P q̄+

n−1 | q+
n−1 ↔P q̄−

n

| x−
n ↔P x̄+

n−1 | x+
n−1 ↔P x̄n−1 | xn−1 ↔P x̄−

n−1 | · · ·

| x+
1 ↔P x̄1 | x1 ↔P x̄−

1 | x−
1 ↔P x̄+

0 )

Up to structural congruence, the above process can be written as
(νx+

0 , x−
n )(νq+

0 , q−
n )

(p0(x0, q0). (x+
0 ↔P x̄0 | q0 ↔P q̄+

0 )

| pn(xn, qn). (xn ↔P x̄−
n | q−

n ↔P q̄n)

| chain3n+1
P (q+

0 , q−
n+1) | chain3n+1

P (x−
n+1, x+

0 ))
≡ p0(x0, q0) : p̄n+1(xn+1, qn+1) : (chain3n−2

P (xn, x0) | chain3n−2
P (q0, qn))

Moreover, since the reductions performed are all at restricted linear names, in each
reduction the initial process is in the relation ≳ with the derivative process; that is, for any
n ≥ 2, we have

chainn
P (p0, pn) ≳ p0(x0, q0) : p̄n(xn, qn) : (chain3n−2

P (xn, x0) | chain3n−2
P (q0, qn)) (6.1)

Exploiting this property, we can prove that R1 ∪ R2 is an expansion up-to expansion and
context. We first consider the case where p0 ↔P p̄n R1 chainn

P (p0, pn). We only consider the
case where the process on the right-hand side makes the challenge; the opposite direction
can be proved similarly. There are three possible actions that the process on the right-hand
side can make: (1) τ -action, (2) input at p0, and (3) output at pn+1. We start by proving
the first case. If

(νp1, . . . , pn−1 )(p0 ↔P p̄1 | · · · | pn−1 ↔P p̄n) τ−→ P ,
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then the action must have been caused by an interaction at pi, for some i such that
1 ≤ i ≤ n − 1. We can execute the interactions at the remaining pi’s, and then, using the
property (6.1) above, we have

P ≳ p0(x0, q0) : p̄n+1(xn, qn) : (chain3n−2
P (xn, x0) | chain3n−2

P (q0, qn)).
For the matching transition we take the 0-step transition, i.e. the identity relation. Since

p0 ↔P p̄n = p0(x0, q0) : p̄n(xn, qn) : (xn ↔P x̄0 | qn ↔P q̄0) ,

xn ↔P x̄0 R2 chain3n−2
P (xn, x0) ,

q0 ↔P q̄n R1 chain3n−2
P (q0, qn)

we can conclude this case using the up-to expansion and context technique. Similarly, if

chainn
P (p0, pn) p0(x0,q0)−−−−−→ P,

then we can show that
P ≳ (νx+

0 , q+
0 )(x+

0 ↔P x̄0 | q0 ↔P q̄+
0 | p̄n(xn, qn) : (chain3n−2

P (xn, x+
0 ) | chain3n−2

P (q+
0 , qn))).

We can match this transition with

p0 ↔P p̄n
p0(x0,q0)−−−−−→ (νx+

0 , q+
0 )(x+

0 ↔P x̄0 | q0 ↔P q̄+
0 | p̄n(xn, qn) : (xn ↔P x̄+

0 | q+
0 ↔P q̄n)).

Once again, since
xn ↔P x̄0 R2 ,

q0 ↔P q̄n R1 chain3n−2
P (q0, qn)

we can appeal to the up-to expansion and context technique to finish the case.
The remaining case (the case where process makes an output at pn) can be proved by

the same reasoning.
Now we sketch the case for variable names. Take

x0 ↔P x̄n R2 chainn
P (x0, xn).

There is only one possible action that the process on the right-hand side can make: an input
at x0. By a reasoning similar to that of the location wires, we can show that if

chainn
P (x0, xn) x0(p0)−−−−→ P

then
P ≳ chainn

P (x0, xn) | x̄n(pn) : chain2n−1
P (p0, pn)

by executing the interactions at the xi’s. The above transition can be matched by the
transition x0 ↔P x̄n

x0(p0)−−−−→ x0 ↔P x̄n | x̄n(pn) : p0 ↔P p̄n, and we can conclude by using the
up-to context technique. □

Remark 6.4. The duality between I-O wires and O-I wires also shows up in proofs. For
instance, for I-O wires the proof of law 4 of Definitions 4.1 does not use the premise of the
law (i.e., the respectfulness of P ), whereas the proof of the dual law 5 does. In the case of
O-I wires, the opposite happens: the proof of law 5 uses the premise, whereas that of law 4
does not.
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In the following sections we examine the concrete encodings obtained by instantiating
the wires of the abstract encoding A (Figure 2) with the I-O wires, O-I wires, and P wires.
We denote the resulting (concrete) encodings as AIO, AOI, and AP, respectively. Similarly
OIO, OOI, and OP are the instantiations of the abstract optimised encoding O. For instance,
in AIO and OIO an abstract wire a ↔ b̄ is instantiated with the corresponding concrete wire
a ↔IO b̄; and similarly for O-I wires and P wires.

Having shown that all the wires satisfy the requirements of Axiom 4.1, we can use, in
the proofs about all concrete encodings (optimised and not) the results in Sections 4 and 5
for the abstract encoding and its abstract optimisation.

7. Full Abstraction for LTs and BTs

In this section we consider AIO and AOI, and prove full abstraction with respect to the BTs
and LTs, respectively. The main proof is given in Section 7.2. Before that, in Section 7.1,
we discuss the difference between AIO and AOI on the encoding of unsolvable terms because
it highlights the difference between the two encodings. Some lemmas about the encoding
of unsolvable terms given in Section 7.1 will also play key roles in the main proof. In the
proofs we exploit the optimised encodings OOI and OIO.

7.1. Encoding of unsolvable terms. We recall that the differences between BTs and LTs
are due to the treatment of unsolvable terms (cf. Section 2.1). BTs equate all the unsolvable
terms, whereas LTs distinguish unsolvables of different order, such as Ω and λx. Ω. We
begin, as an example, with the terms Ω and λx. Ω. As we have seen in Example 5.8, in the
abstract optimised encoding O process OJΩKp is:

νp0 (p0(x, q) : x̄(q0) : q̄0(y1, q1) : (!y1(r1). OJxKr1 | q ↔ q̄1)
| p̄0(x1, p1) : (!x1(r1). OJλx. x xKr1 | p ↔ p̄1)).

Its instantiation with O-I wires, OOIJΩKp, cannot do any input action: as p ↔ p̄1 becomes
the O-I wire p ↔OI p1, the input occurrence of the free name p is guarded by p1, which in
turn is bound by the (permeable) prefix at p0. Indeed, the only action that OOIJΩKp can
perform is (up-to expansion) OOIJΩKp

τ−→≳ OOIJΩKp, which corresponds to the reduction
Ω −→ Ω. Hence, OOIJΩKp cannot match the input action OOIJλx. ΩKp

p(x,q)−−−→ OOIJΩKq, and
the two processes are distinguished.

In contrast, with I-O wires, processes OIOJλx. ΩKp and OIOJΩKp are indistinguishable.
As before, the former process can exhibit an input transition OIOJλx. ΩKp

p(x,q)−−−→ OIOJΩKq.
However, now OIOJΩKp has a matching input transition, because when p ↔ p̄1 is the I-O
wire p ↔IO p̄1, the input at p is not guarded. The derivative of the input p(y, q) is

νp0 (p0(x, q) : OIOJx xKq

| p̄0(x1, p1) : (!x1(r1). OIOJλx. x xKr1

| p̄1(x2, p2) : (x2 ↔IO ȳ | q ↔IO p̄2)))
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= νp0 (p0(x, q) : OIOJx xKq

| p̄0(x1, p1) : (!x1(r1). OIOJλx. x xKr1

| p̄1(x2, p2) : (!x2(r2). OIOJyKr2 | q ↔IO p̄2)))

≡ OIOJΩ yKq

(exploiting the definitions of OIOJyKr2 and x2 ↔IO ȳ). In a similar manner, one then shows
that OIOJΩKq and OIOJΩ yKq can match each other’s transitions, and iteratively so, on the
resulting derivatives. These observations are not limited to Ω and λx. Ω, but can be said
against general unsolvable terms. Below we state these properties as lemmas. Some of the
proofs of the lemmas are given in Appendix D.

Only in OOI a term OOIJMKp can perform an input transition if and only if M is, or
may reduce to, a function, say M = λx. M ′, and the input action intuitively corresponds to
consuming the outermost ‘λx’.

Lemma 7.1. Let M be an unsolvable term of order n, where 0 < n ≤ ω. Then OOIJMKp can
do a weak input transition at p. Moreover, if OOIJMKp

p(x,q)====⇒ P , then there exists N such
that P ≳ OOIJNKq and N is an unsolvable of order n − 1 (under the assumption ω − 1 = ω).

In addition, only with OOI a process OOIJMKp is bisimilar to 0 iff the term M is an
unsolvable of order 0.

Lemma 7.2. Let M be an unsolvable term of order 0. Then the only action OOIJMKp can
do is a τ -action.

Therefore, we have:

Lemma 7.3. Let M and N be unsolvables of order m and n respectively, where 0 ≤ m, n ≤ ω.
Then OOIJMKp ≈ OOIJNKp iff m = n.

Proof. The only if direction is proved by contraposition. To see that unsolvable terms M and
N with different orders are distinguished, we just need to count the number of consecutive
inputs that OOIJMKp and OJNKp can do. By Lemmas 7.1 and 7.2, it follows that OOIJMKp

can do n consecutive weak input transitions if the order of M is n; if n = ω, the number of
consecutive inputs that OOIJMKp can do is unbounded.

We now prove the if direction. We first prove the case for n = m = 0, and use that
result to give the proof for arbitrary n.

For the case n = m = 0, we show that the relation R defined as⋃
p

{(OOIJMKp, OOIJNKp) | M, N unsolvables of order 0}

is a bisimulation up-to expansion. Suppose that OOIJMKp R OOIJNKp. If OOIJMKp makes
a transition OOIJMKp

µ−→ P , then µ = τ by Lemma 7.2. Hence, we have P ≳ OJM ′Kp with
M −→ M ′ by Lemma 5.3. Since a term obtained by reducing an unsolvable term of order 0
must also be an unsolvable of order 0, we have P ≳ OOIJM ′Kp R OOIJNKp. In other words,
we can take OOIJNKp =⇒ OOIJNKp as the matching transition.

To conclude we show that the relation R defined as⋃
p

{(OOIJMKp, OOIJNKp) | M, N are unsolvables of the same order}
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is a bisimulation up-to expansion. Suppose that OOIJMKp R OOIJNKp. The order 0 case is
exactly what we proved above, so let us assume that M and N are unsolvable terms whose
order is n ̸= 0 (where n may be ω). Assume that OOIJMKp makes a transition OOIJMKp

µ−→ P .
If µ = τ , then we can reason as we did for the order 0 case. The only other possibility is
the case where µ = p(x, q) with x, q being fresh. Then, by Lemmas 7.1, there exists M ′

such that P ≳ OOIJM ′Kq and M ′ is an unsolvable of order n − 1. By Lemma 7.1, we have
OOIJNKp

p(x,q)====⇒ Q ≳ OOIJN ′Kq for some unsolvable term whose order coincides with that of
M ′. Since M ′ and N ′ are unsolvables of the same order, we have OOIJM ′Kq R OOIJN ′Kq. □

We have discussed above why, in contrast, OIO equates λx. Ω and Ω. Similarly, OIO
equates all the unsolvable terms.

Lemma 7.4.
(1) If M is an unsolvable of order 0, then OIOJMKp can do an input at p. Moreover, if

OIOJMKp
p(x,q)−−−→ P , then P ≳ OIOJM xKq.

(2) If M is unsolvable, then OIOJMKp can do an input at p. Moreover, if OIOJMKp
p(x,q)−−−→ P ,

then there exists an unsolvable term M ′ such that P ≳ OIOJM ′Kq.

Lemma 7.5. For any unsolvable term M , we have OIOJMKp ≈ OIOJΩKp.

Proof. We show that the relation R defined as⋃
p

{(OIOJMKp, OIOJNKp) | M and N are unsolvables}

is a bisimulation up-to expansion.
Suppose that OIOJMKp R OIOJNKp. We consider the case where OIOJMKp makes the

challenge; we omit the opposite case as it is symmetrical. By Lemma 5.6 and 5.4, the only
actions P can do is either a τ -action or an input at p.

If OIOJMKp
τ−→ P then we can take OIOJNKp =⇒ OIOJNKp as the matching transition

because we have P ≳ OIOJM ′Kp R OIOJNKp for some unsolvable term M ′ such that M −→ M ′

by Lemma 5.3.
Assume that OIOJMKp

p(x,q)−−−→ P . Then, thanks to 2 of Lemma 7.4, there exists an
unsolvable term M ′ such that P ≳ OIOJM ′Kq. Similarly, by 2 of Lemma 7.4, we have
OIOJNKp

p(x,q)−−−→≳ OIOJN ′Kq for some unsolvable term N ′. The claim follows because
OIOJM ′Kq R OIOJN ′Kq. □

7.2. Full abstraction proofs. The goal of this subsection is to prove the following two
theorems:

Theorem 7.6. [Full abstraction for LT] LT(M) = LT(N) if and only if AOIJMK ≈ AOIJNK.

Theorem 7.7. [Full abstraction for BT] BT(M)=BT(N) if and only if AIOJMK ≈ AIOJNK.

The proofs exploit work by Sangiorgi and Xu [SX18], which sets conditions for obtaining
full abstraction with respect to LTs and BTs in an encoding of the λ-calculus into a process
calculus. Our proofs go through each such condition, showing that it is satisfied.
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The rest of this sections is organised as follows. We first review the general conditions
given in [SX18] (Section 7.2.1). Then we show that AOI satisfies the conditions for LTs and
AIO satisfies that for BTs (Section 7.2.2).

7.2.1. General conditions. Here we present a simplified version of the conditions given
in [SX18], tailored to our needs, where the calculus is Iπ, and the relations to be considered
are bisimilarity and the expansion relation for Iπ (the conditions in [SX18] are parametric
with respect to the calculus and its behavioural relations). We also show that some conditions
can be proved at the level of the abstract (optimised) encoding O.

We begin with reviewing some needed terminology. An abstraction context of an
encoding E is the context obtained by encoding the λ-calculus context λx. [·], that is,
EJλx. [·]K (assuming that λ-calculus holes are mapped onto identical process holes); similarly,
a variable context of E is the encoding of the λ-calculus n-hole context x [·]1 · · · [·]n. A
context is guarded if each hole appears underneath some proper (i.e., non-permeable) prefix.
A n-hole context C has an inverse with respect to ≲ if, for every i ∈ {1, . . . , n}, there exists
a π-context Di such that Di[C[Ã]] ≳ a(b̃). b(z). A i⟨z⟩ for fresh names a, b, z such that b ∈ b̃.

Theorem 7.8 [SX18]. Let E be an encoding of the λ-calculus into Iπ. Suppose that the
encoding satisfies the following conditions.
(1) The variable contexts of E are guarded;
(2) The abstraction and variable contexts of E have an inverse with respect to ≲, provided

that the every abstraction F that fills the holes of the context satisfies F = EJMK for
some λ-term M ;

(3) E and ≲ validate the β rule;
(4) If M is an unsolvable of order 0 then EJMK ≈ EJΩK;
(5) The terms EJΩK, EJx M̃K, EJx M̃ ′K, and EJy M̃ ′′K are pairwise unrelated by ≈, assuming

that x ̸= y and that tuples M̃ and M̃ ′ have different lengths.
Then we have:
(LT): if

(1) M , N unsolvable of order ω implies that EJMK ≈ EJNK and
(2) for any M the term EJλx. MK is unrelated by ≈ to EJΩK and to any term of the

form EJx M̃K,
then E and ≈ are fully abstract for LT equality;

(BT): if
(1) M solvable implies that the term EJλx. MK is unrelated by ≈ to EJΩK and to any

term of the form EJx M̃K, and
(2) EJMK ≈ EJΩK whenever M is unsolvable of order ω,
then E and ≈ are fully abstract for BT equality.

Remark 7.9. The condition (2) is weaker than the original condition used in [SX18] (i.e.,
the new condition does not imply the old one). The original condition did not have the
assumption that ‘abstractions that fills the hole must be encodings of λ-terms’. However,
this does not cause a problem because, in [SX18], whenever this condition about the inverse
context is used, the holes are indeed filled with encodings of λ-terms.

The existence of the inverse context can be proved at the abstract level (i.e., for O and
A), and hence, it need not be proved independently for AOI and AIO.
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Lemma 7.10. The abstraction and variable contexts of O have inverse with respect to ≲,
under the assumption that the every abstraction F that fills the context satisfies F = OJMK
for some λ-term M .

The proof is by simple algebraic reasonings such as I- and O-respectfulness; details are
given in Appendix D.2.

7.2.2. Checking conditions for LT and BT. Thanks to the general conditions we described,
to prove the full-abstraction results, we only need to show that AOI and AIO satisfy the
required conditions. We first show that AOI indeed satisfies the conditions for LT.
Theorem 7.6. [Full abstraction for LT] LT(M) = LT(N) if and only if AOIJMK ≈ AOIJNK.
Proof. We check the conditions given in Theorem 7.8. It suffices to give the proof for the
optimised encoding OOI.

Some conditions are trivial or have already been checked. The variable contexts of OOI
is clearly guarded, the condition about the inverse context is Lemma 7.10, the validity of β
is Lemma 5.1 and we have proved that unsolvable terms of order 0 are equated (Lemma 7.3).

We first see that OOIJΩK, OOIJx M̃K, OOIJx M̃ ′K and OOIJy M̃ ′′K are pairwise unrelated
under the assumption that x ̸= y and M̃ and M̃ ′ have different lengths. Since OOIJΩKp cannot
do an output action (Lemma 5.6), this process is different from the rest of the processes. It
is also obvious that OJy M̃ ′′Kp is different from OOIJx M̃K and OOIJx M̃ ′K. We are left with
checking that OOIJx M̃K and OOIJx M̃ ′K are not bisimilar. Let m

def= |M̃ | and n
def= |M̃ ′|, and

without loss of generality, assume that m < n. Then OOIJx M̃Kp can do an input at p after
m+2 outputs. More concretely, we have OOIJx M̃Kp

x(p0)−−−→ p0(x1,p1)−−−−−−→ · · · pn(xn+1,pn+1)−−−−−−−−−→ p(y,q)−−−→ P

for some P . However, OOIJx M̃ ′Kp cannot do an input at p after m + 2 outputs, and thus
these two processes are not bisimilar.

Now we look at the conditions in (LT) of Theorem 7.8. The condition 1 holds because
we have proved that unsolvable terms of order ω are equated (Lemma 7.3). It remains to
show the condition (2). Clearly, OIOJλx. MKp is not bisimilar to OIOJΩKp or to the encoding
of any term of the form x M̃ because OIOJλx. MKp can do an input at p, but the others
cannot. □

We conclude by proving that AIO is fully abstract with respect to BTs.
Theorem 7.7. [Full abstraction for BT] BT(M)=BT(N) if and only if AIOJMK ≈ AIOJNK.
Proof. Conditions 1-5 of Theorem 7.8 are checked similarly as in the proof of the previous
theorem. One difference is that for the encoding OIO we use Lemma 7.5 to say that unsolvable
terms of order 0 are equated. Another (minor) difference is how to show that x M̃ and x Ñ

are different when the length of M̃ , say m, and the length of Ñ , say n, are different. Without
loss of generality suppose that m < n. Then OIOJx M̃Kp can only do m + 1 consecutive
outputs:

OIOJx M̃Kp
x(p0)−−−→ p0(x1,p1)−−−−−−→ · · · pn(xn+1,pn+1)−−−−−−−−−→

≳ !x(r1). OIOJM1Kr1 | · · · | !x(rn). OIOJMnKrn | p ↔IO p̄n (7.1)

because p ↔IO p̄n cannot make an output action. On the other hand, OIOJx ÑKp can do n + 1
consecutive outputs.



28 EXTENSIONAL AND NON-EXTENSIONAL FUNCTIONS AS PROCESSES

Now we check the conditions in (BT) of Theorem 7.8. Condition (1) holds because we
proved that all the unsolvable terms are equated (Lemma 7.5). So we are left with checking
condition (2). Let M be a solvable term. We need to check that λx. M is unrelated to Ω and
any term of the form w Ñ . Since M is solvable, we have λx. M =⇒ λx. λỹ. z M̃ , where ỹ and
M̃ are possibly empty. Since the encoding is valid with respect to β-reduction (Lemma 5.1),
it suffices to show that the encoding of λx. λỹ. zM̃ is not bisimilar with the encoding of Ω
and w Ñ . The process OIOJλx. λỹ. zM̃ Kp can do an output on z after doing some inputs
that correspond to the leading λs. However, OIOJΩKp cannot do an output action even after
some τ or input actions . Hence, the encoding of λx. M and Ω are not bisimilar.

Finally, we show that the encodings of λx. λỹ. z M̃ and w Ñ are not related by ≈. First,
note that z needs to be a free variable and equal to w, otherwise OIOJλx. λỹ. z M̃Kp is not
bisimilar with OIOJw ÑKp. Second, Ñ and M̃ must have the same length. Otherwise we can
show that the two processes are not bisimilar by investigating the number of outputs that the
two process can do as we did in (7.1); the fact that we have a leading λ in λx. λỹ. w M̃ does
not change the argument, as w must be a free variable and λx is encoded as a permeable
input. So, we need to show that OIOJλxỹ. w M̃Kp and OIOJw ÑKp are not equated when M̃

and Ñ have the same length. Observe that OIOJλxỹ. w M̃Kp
p(x,q)−−−→≳ OIOJλỹ. w M̃Kq. The

only matching transition OIOJw ÑKp can do is

OIOJw ÑKp
p(x,q)−−−→ ≡ w̄(p0) : On⟨p0, q, OIOJN1K, . . . , OIOJNnK, OIOJxK⟩

= OIOJw Ñ xKq

where Ñ = N1, . . . , Nn because

p ↔IO p̄n
p(x,q)−−−→ p̄n(xn+1, pn+1) : (q ↔IO p̄n+1 | xn+1 ↔IO x̄)

= p̄n(xn+1, pn+1) : (q ↔IO p̄n+1 | !xn+1(rn+1). OIOJxKrn+1).

Once again, we look at the number of consecutive outputs these process can do. The process
OIOJλỹ. w M̃Kq can do n + 1 outputs whereas OIOJw M̃ xKq can do n + 2 outputs. We
therefore conclude that λx. λỹ. z M̃ can never be equated to a term of the form w Ñ . □

Remark 7.11. Neither AIO nor AOI validates the η-rule (i.e., the λ-theories induced are
not extensional); this follows from Theorems 7.6 and 7.7 (specifically, conditions 2 of (LT)
and 2 of (BT) mentioned in their proofs, repectively).

8. Full Abstraction for BTη∞s

In this section we show that the encoding AP obtained by instantiating the wires of the
abstract encoding A of Section 4 with the parallel wires (the P wires) yields an encoding
that is fully abstract with respect to BTη∞s (Böhm trees with infinite η-expansion).

We begin by showing that AP induces an extensional λ-theory. The result is a useful
stepping stone towards the full abstraction result with respect to BTη∞, and may help
the readers to understand the differences with respect to the other two concrete encodings
examined in Section 7. As we know (Section 6) that AP induces a λ-theory, we remain to
check the validity of η-expansion.

Theorem 8.1. For every M and x /∈ fv(M), we have APJMKp ≲ APJλx. M xKp.
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Proof. The process APJλx. M xKp is
p(x, q) : νr (APJMKr | r̄(x′, q′) : (!x′(r′). APJxKr′ | q ↔P q̄′)).

As !x′(r′). APJxKr′ = x′ ↔P x̄, we have:

APJλx. M xKp ≡ νr (APJMKr | p(x, q) : r̄(x′, q′) : (x′ ↔P x̄ | q ↔P q̄′))

= νr (APJMKr | p ↔P r̄) ≳ APJMKp

using Lemma 4.2. □

The above result relies on the use of permeable prefixes, both in the encoding of
λ-abstraction, and within the P wires.

Corollary 8.2. Let =π
def= {(M, N) | APJMK ≈ APJNK}. Then =π is an extensional

λ-theory; that is, a congruence on λ-terms that contains β and η-equivalence.

We are now ready to prove that AP is fully abstract with respect to BTη∞s. We focus
on completeness: if BTη∞(M) = BTη∞(N) then APJMK ≈ APJNK. Soundness will then be
essentially derived from completeness, as BTη∞ equality is the maximal consistent sensible
λ-theory (see e.g. [Bar84]). To show completeness, we rely on the ‘unique solution of equation’
technique, reviewed in Section 2.2.1.

Remark 8.3 (Unique solutions versus up-to techniques). Results about encodings of λ-
calculus into process calculi, in previous sections of this paper and in the literature, usually
employ up-to techniques for bisimilarity, notably up-to context and expansion. In the
techniques, expansion is used to manipulate the derivatives of two transitions so to bring up
a common context. Such techniques do not seem powerful enough for BTη∞. The reason is
that some of the required transformations would violate expansion (i.e., they would require
to replace a term by a ‘less efficient’ one), for instance ‘η-expanding’ a term APJzKp into
APJλ y. z yKp. A similar problem has been observed in the case of Milner’s call-by-value
encoding [DHS22].

Suppose R is a BTη∞-bisimulation (Definition 2.1). We define a (possibly infinite)
system of equations ER, solutions of which will be obtained from the encodings of the pairs
in R. There is one equation for each pair (M, N) ∈ R. We describe how each equation
is defined, following the clauses of BTη∞-bisimulation. Take (M, N) ∈ R and assume
ỹ = fv(M, N).
(1) If M and N are unsolvable, then, for the right-hand side of the equation, we pick a

non-divergent process that is bisimilar to the encoding of Ω:
XM,N ỹ = KΩ

For instance, we may choose KΩ
def= (p) p(x, q) : KΩ⟨q⟩.

(2) If M =⇒h λx1 . . . xl+m. z M1 · · · Mn+m and N =⇒h λx1 . . . xl. z N1 · · · Nn, then the
equation is:

XM,N ỹ p
def=

p(x1, p1) : · · · pl+m−1(xl+m, pl+m) : z̄(w, q) :

On+m
P

〈
q, pl+m, XM1,N1⟨ỹ1⟩, . . . , XMn,Nn⟨ỹn⟩,
XMn+1,xl+1⟨ỹn+1⟩, . . . , XMn+m,xl+m

⟨ỹn+m⟩

〉
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where ỹi = fv(Mi, Ni) for 1 ≤ i ≤ n,
ỹi = fv(Mi, xi−n+l) for n + 1 ≤ i ≤ n + m.

and where Or
P is the instantiation

with P wires of Or in Figure 3.
(3) For the case symmetric to (2), where N reduces to a head normal form with more leading

λ-abstractions, the equation is defined similarly to (2).
In (1), the use of a divergent-free term KΩ allows us to meet the condition about divergence
of the unique-solution technique. The right-hand side of (2) intuitively amounts to having,
as a body of the equation, the process OPJλx1 . . . xl+m. z XM1,N1 · · · XMn+m,xl+m

K.
We show that the system ER of equations has the desired solutions.

Lemma 8.4. For any M unsolvable, we have: OPJMKp ≈ OPJΩKp ≈ KΩ⟨p⟩.

Proof. The reasoning is similar to that in Lemma 7.5 (whose proof is given in Appendix D.1).
□

Lemma 8.5. Let R be a BTη∞-bisimulation and ER be the system of equations de-
fined from R as above. For each (M, N) ∈ R, we define FM,N

def= (x̃, p) OPJMKp and
GM,N

def= (x̃, p) OPJNKp, where x̃ = fv(M, N). Then {FM,N }(M,N)∈R and {GM,N }(M,N)∈R
are solutions of ER.

Proof. Take (M, N) ∈ R. There are three cases to consider following Definition 2.1.
If M and N are unsolvables then we have

FM,N ≈ (ỹ, p) OPJΩKp ≈ GM,N

by Lemma 8.4.
If the second clause of Definition 2.1 holds, then we have

FM,N ỹ p

= OPJMKp

≳ OPJλx1 . . . xl+m. y M1 · · · Mn+mKp (Lemma 5.1)
= p(x1, p1) : · · · pl+m−1(xl+m, pl+m) : ȳ(w, q) :

On+m
P ⟨q, pl+m, OPJM1K, . . . , OPJMn+mK⟩

= p(x1, p1) : · · · pl+m−1(xl+m, pl+m) : ȳ(w, q) :
On+m

P ⟨q, pl+m, FM1,N1⟨ỹ1⟩, . . . , FMn+m,xl+m
⟨ỹn+m⟩⟩

(by def. of FM,N )

= p(x1, p1) : · · · pl+m−1(xl+m, pl+m) : ȳ(w, q) :
On+m

P ⟨q, pl+m, XM1,N1⟨ỹ1⟩, . . . , XMn+m,xl+m
⟨ỹn+m⟩⟩

{FM1,N1/XM1,N1 , . . . , FMn+m,xl+m
/XMn+m,xl+m

}

as desired. The proof for GM,N is similar, but we need validity of η-expansion (Theorem 8.1).
In detail, we have

GM,N ỹ p

= OPJNKp

≳ OPJλx1 . . . xl. y N1 · · · NnKp (Lemma 5.1)
= p(x1, p1) : · · · pl−1(xl, pl) : ȳ(w, q) : On

P ⟨q, pl, OPJN1K, . . . , OPJNnK⟩
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≈ p(x1, p1) : · · · pl−1(xl, pl) :
pl(xl+1, pl+1) : · · · pl+m−1(xl+m, pl+m) : ȳ(w, q) :
On+m

P ⟨q, pl+m, OPJN1K, . . . , OPJNnK, OPJxl+1K, . . . , OPJxl+mK⟩

(Theorem 8.1)

= p(x1, p1) : · · · pl+m−1(xl+m, pl+m) : ȳ(w, q) :
On+m

P ⟨q, pl+m, GM1,N1⟨ỹ1⟩, . . . , GMn+m,xl+m
⟨ỹn+m⟩⟩

(by def. of GM,N )

= (p(x1, p1) : · · · pl+m−1(xl+m, pl+m) : ȳ(w, q) :
On+m

P ⟨q, pl+m, XM1,N1⟨ỹ1⟩, . . . , XMn+m,xl+m
⟨ỹn+m⟩⟩)

{GM1,N1/XM1,N1 , . . . , GMn+m,xl+m
/XMn+m,xl+m

}.
The case where the third clause of Definition 2.1 holds can be proved similarly. □

We also have to show that the system ER of equations we defined has a unique solution.

Lemma 8.6. The system of equations ER is guarded and the syntactic solution of ER is
divergence-free. Therefore, ER has a unique solution.

Proof. The system ER is guarded because all the occurrences of a variable in the right-hand
side of an equation are underneath a replicated input prefixing. Divergence-freedom follows
from the fact that the use of each name (bound or free) is strictly polarised in the sense
that a name is either used as an input or as an output. In a strictly polarised setting, no
τ -transitions can be performed even after some visible actions because in Iπ only fresh names
may be exchanged. □

Theorem 8.7 (Completeness for BTη∞). If BTη∞(M) = BTη∞(N) then APJMK ≈ APJNK.

Proof. Consider a BTη∞-bisimulation R that equates M and N . Take the system of
equations ER corresponding to R as defined above. By Lemma 8.5, OPJMK and OPJNK
are (components) of the solutions of ER. Since the solution is unique (Lemma 8.6), we
derive OPJMK ≈ OPJNK. We also have APJMK ≈ APJNK (equivalence on the non-optimised
encodings) because of Lemma 5.2. □

Theorem 8.8 (Soundness for BTη∞). If APJMK ≈ APJNK then BTη∞(M) = BTη∞(N).

Proof. Let =π be the equivalence induced by AP and Iπ bisimilarity. The equivalence =π is
a sensible λ-theory by Corollary 4.5 and Lemma 8.4. This theory is consistent: for example
we have APJxKp ̸≈ APJΩKp. By completeness (Theorem 8.7), it contains BTη∞equality. Then
it must be equal to BTη∞ equality because the latter is the maximal consistent sensible
λ-theory [Bar84]. □

9. Concluding Remarks

In the paper we have presented a refinement of Milner’s original encoding of functions
as processes that is parametric on certain abstract components called wires. Whenever
wires satisfy a few algebraic properties, the encoding yields a λ-theory. We have studied
instantiations of the abstract wires with three kinds of concrete wires, that differ on the
direction and/or sequentiality of the control flow produced. We have shown that such
instantiations allow us to obtain full abstraction results for LTs, BTs, and BTη∞s, (and
hence for λ-models such as Pω, free lazy Plotkin-Scott-Engeler models and D∞). In the case
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of BTη∞, this implies that the encoding validates the η-rule, i.e., it yields an extensional
λ-theory.

Following Milner’s seminal paper [Mil90], the topic of functions as processes has produced
a rich bibliography. Below we comment on the works that seem closest to ours. We have
mentioned, in the introduction, related work concerning LTs and BTs. We are unaware of
results about validity of the η-rule, let alone BTη∞, in encodings of functions as processes.
The only exception is [BHY01], where a type system for the π-calculus is introduced so to
derive full abstraction for an encoding of PCF (which implies that η-expansion for PCF
is valid). However, in [BHY01], types are used to constrain process behaviours, so to
remain with processes that represent ‘sequential functional computations’. Accordingly, the
behavioural equivalence for processes is a typed contextual equivalence in which the legal
contexts must respect the typing discipline and are therefore ‘sequential’. In contrast, in
our work η is validated under ordinary (unconstrained) process equivalence in which, for
instance, equalities are preserved by arbitrary process contexts. (We still admit polyadic
communications and hence a sorting system, for readability — we believe that the same
results hold in a monadic setting.)

In the paper we have considered the theory of the pure untyped λ-calculus. Hence, our
encodings model the call-by-name reduction strategy. A study of the theory induced by
process encodings of the call-by-value strategy is [DHS22].

Our definitions and proofs about encodings of permeable prefixes using wires follows,
and is inspired by, encodings of forms of permeable prefixes in asynchronous and localised
variants of the π-calculus using forwarders, e.g. [MS04, Yos02]. As commented in the main
text, the technicalities are however different, both because our processes are not localised,
and because we employ distinct kinds of wires.

We have worked with bisimilarity, as it is the standard behavioural equivalence in Iπ;
moreover, we could then use some powerful proof techniques for it (up-to techniques, unique
solution of equations). The results presented also hold for other behavioural equivalences
(e.g., may testing), since processes encoding functions are confluent. It would be interesting
to extend our work to preorders, i.e., looking at preorder relations for λ-trees and λ-models.

In our work, we derived our abstract encoding from Milner’s original encoding of functions.
It is unclear how to transport the same methodology to other variants of Milner’s encoding
in the literature, in particular those that closely mimics the CPS translations [San99, Thi97].

We have derived λ-tree equalities, in parametric manner, by different instantiations of
the abstract wires. Van Bakel et al. [vBBDdV02] use an intersection type system, parametric
with respect to the subtyping relations, to (almost) uniformly characterise λ-tree equalities
(the trees considered are those in our paper together with Böhm trees up-to finite η-expansion
and Beraducci trees).

We would like to investigate the possible relationship between our work and game
semantics. In particular, we are interested in the ‘HO/N style’ as it is known to be related
to process representations (e.g., [HO95, HY99, CY19, JS22]). HO/N game semantics for
the three trees considered in this paper have been proposed [KNO02, KNO03, OG04]. The
technical differences with our work are substantial. For instance, the game semantics are
not given in a parametric manner; and the D∞ equality is obtained via Nakajima trees
rather than BTη∞. Nakajima trees are a different ‘infinite η-expansion’ of Böhm trees,
in the sense that λx̃. y M̃ is expanded to λx̃z0z1 . . . . y M̃ z0z1 · · ·; that is, trees may be
infinitely branching. In processes, this would mean, for instance, having input prefixes that
receive infinitely-many names at the same time. We would like to understand whether the
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three kinds of wires we considered are meaningful in game semantics. The game semantic
counterpart of process wires are the copycat strategies, and they intuitively correspond to
I-O wires, in that they begin with an O-move (i.e., an input action). This does not change
even in concurrent game semantics [MM07, CCRW17]. We are not aware of game models
that use strategies corresponding to the O-I wires or the P wires studied in our paper.

Similarly, we would like to investigate relationships with call-by-name translations
of the λ-calculus into (pure) proof-nets [Dan90]. We think that our encoding could be
factorised into the translation from λ-calculus into proof-nets and a variant of Abramsky
translation [Abr94, BS94]. In this way, a P wire for location names would correspond to an
infinitely η-expanded form of the axiom link for the type o according to its recursive equation
o ∼= (!o)⊥ &

o. Infinite η-expansions of the identity axioms have also been considered in
Girard’s ludics [Gir01], where they are called faxes. Faxes are different from P wires because
faxes satisfy an alternation condition akin to the locality of π-calculi.

Processes like wires (often called links) appear in session-typed process calculi focusing on
the Curry-Howard isomorphism, as primitive process constructs used to represent the identity
axiom [Wad14]. Some of our assumptions for wires, cf. the substitution-like behaviour when
an end-point of the wire is restricted, are then given as explicit rules of the operational
semantics of such links.

We have studied the properties of the concrete wires used in the paper on processes
encoding functions. We would like to establish more general properties, on arbitrary processes,
possibly subject to constraints on the usage of the names of the wires. We would also like to
see if other kinds of wires are possible, and which properties they yield.
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Appendix A. List of notations

The following tables summarise the notations (for encodings, equivalence etc.) used in this
paper. Some of the notations are only used in Appendix.

Encodings

A Abstract encoding Figure 2
AIO A instantiated with I-O wires Section 7
AOI A instantiated with O-I wires Section 7
AP A instantiated with P wires Section 8
O (Abstract) Optimised encoding Figure 3
On ‘Optimised encoding of arguments’ Figure 3
OIO O instantiated with I-O wires Section 7
OOI O instantiated with O-I wires Section 7
OP O instantiated with P wires Section 7
M Milner’s encoding Section 4.1
E Metavariable for encodings —

Wires

a ↔ b̄ (Abstract) Wire Definition 4.1
a ↔IO b̄ I-O wire Section 6
b ↔OI a O-I wire Section 6
a ↔P b̄ P wire Section 6

Equivalence and Preorders

≈ Weak bisimilarity for Iπ Definition 2.4
∼ Strong bisimilarity for Iπ Definition 2.4
≲ Expansion relation for Iπ Definition 2.5
≡ Structural congruence for Iπ Definition 2.6
≡α α-equivalence —

λ-trees

LT Lévy-Longo tree Section 2.1
BT Böhm tree Section 2.1

BTη∞ Böhm tree up-to infinite η-expansion Section 2.1
Reduction of λ-calculus

−→ β-reduction Section 2.1
−→sn strong call-by-name reduction Section 2.1
−→h head reduction Section 2.1
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Appendix B. Proofs for Section 5

We present the proofs of properties of the abstract optimised encoding O.

B.1. Proofs for the basic properties of O. This section first proves the properties of O
that are analogous to those for the unoptimised encoding A. Then, using these properties,
we prove that O is indeed an optimisation of A.

Lemma B.1 and B.2 say that OJMKp and On⟨p0, p, OJM1K · · · OJMnK⟩ are respectful.

Lemma B.1.
(1) νq (p ↔ q̄ | OJMKq) ≳ OJMKp.
(2) νx (x ↔ ȳ | OJMKp) ≳ OJM{y/x}Kp.

Proof. Similar to Lemma 4.2 □

Lemma B.2. For n ≥ 1, we have

νp0 (p0 ↔ q̄ | On⟨p0, p, OJM1K, . . . , OJMnK⟩) ≳ On⟨q, p, OJM1K, . . . , OJMnK⟩.

Proof. By induction on n. First observe that

νy (x ↔ ȳ | !y(p). OJMKp) ≳ !x(p). OJMKp (B.1)

under the assumption that y /∈ fv(M). This is derived from 6 of Definition 4.1 together with
Lemma B.1.

The base case is the case where n = 1. In this case, we need to show

νp0 (p0 ↔ q̄ | p̄0(x1, p1) : (!x1(r1). OJM1Kr1 | p ↔ p̄1))
≳ q̄(x1, p1) : (!x1(r1). OJM1Kr1 | p ↔ p̄1) .

Using (B.1) and the transitivity of wires, we derive the expansion by applying 5 of Defini-
tion 4.1.

Now we consider the case n ≥ 1. We apply 5 of Definition 4.1. The premise of this law
is satisfied because of (B.1) and the induction hypothesis. □

We now prove that the optimised encoding validates β-reduction.

Lemma B.3. Let m, n ≥ 0. Then

νq (Om⟨p, q, OJM1K, . . . , OJMmK⟩ | On⟨q, r, OJN1K, . . . , OJNnK⟩)
≳ Om+n⟨p, r, OJM1K, . . . , OJMmK, OJN1K, . . . , OJNnK⟩.

Proof. Follows from Lemma B.2. □

Lemma B.4. Suppose that x /∈ fv(N). Then νx (OJMKp | !x(q). OJNKq) ≳ OJM{N/x}Kp

Proof. By induction on the structure of M . The proof is similar to that of the unoptimised
case (Lemma 4.3). Indeed the proof for the base case, namely the case M = x, is exactly
the same as that of Lemma 4.3 since OJxKp = AJxKp. The inductive case follows from the
induction hypothesis and the replication theorems. □

Lemma B.5. If n ≥ 1, then

νq (OJM0Kq | On⟨q, p, OJM1K, . . . , OJMnK⟩) ≳ OJM0 M1 · · · MnKp.
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Proof. Case M0 = x: This case follows from Lemma B.2. More precisely, we have

νq (OJxKq | On⟨q, p, OJM1K, . . . , OJMnK⟩)
= νq (x̄(q′) : q ↔ q̄′ | On⟨q, p, OJM1K, . . . , OJMnK⟩)
≡ x̄(q′) : νq (q ↔ q̄′ | On⟨q, p, OJM1K, . . . , OJMnK⟩)
≳ x̄(q′) : On⟨q′, p, OJM1K, . . . , OJMnK⟩. (Lemma B.2)
= OJx M1 · · · MnKp.

Case M0 = λx. M : By definition,

νq (OJλx. MKq | On⟨q, p, OJM1K, . . . , OJMnK⟩)
≡ OJ(λx. M) M1 · · · MnKp

Case M0 = x N1 · · · Nm with m ≥ 1: In this case, we have

νq (OJM0Kq | On⟨q, p, OJM1K, . . . , OJMnK⟩)
= νq (x̄(q0) : Om⟨q0, q, OJN1K, . . . , OJNmK⟩ | On⟨q, p, JM1K, . . . , JMnK⟩)
≡ x̄(q0) : νq (Om⟨q0, q, OJN1K, . . . , OJNmK⟩ | On⟨q, p, OJM1K, . . . , OJMnK⟩)
≳ x̄(q0) : Om+n⟨q0, p, OJN1K, . . . , OJNmK, JM1K, . . . , JMnK⟩ (Lemma B.3)
= OJx N1 · · · Nm M1 · · · MnKp

Case M0 = (λx. N0) N1 · · · Nm with m ≥ 1: Similar to the previous case. □

Lemma 5.1. If M −→ N , then OJMKp ≳ OJNKp.

Proof. It suffices to consider the case where M = (λx. M0) M1 . . . Mn, where n ≥ 1, because
the other cases follow from the precongruence of ≲. We only consider the case where n ≥ 2
because the case n = 1 can be proved as in the case for the unoptimised encoding. By
definition, OJMKp is

νp0 (p0(x, q) : OJM0Kq | On⟨p0, p, OJM1K · · · OJMnK⟩)

By interaction on p0 (Lemma 3.1), we have

OJMKp ≳ (νx, q) (OJM0Kq | !x(r1). OJM1Kr1 | On−1⟨q, p, OJM2K · · · OJMnK⟩).

Note that the assumption of Lemma 3.1 is satisfied by Lemma B.1. The claim follows
because

(νx, q) (OJM0Kq | !x(r1). OJM1Kr1 | On−1⟨q, p, OJM2K · · · OJMnK⟩)
≳ νq (OJM0{M1/x}Kq | On−1⟨q, p, OJM2K · · · OJMnK⟩) (Lemma B.4)
≳ OJM0{M1/x} M2 · · · MnKp (Lemma B.5)

□

Finally, we prove that O is indeed an optimisation.

Lemma 5.2. AJMKp ≳ OJMKp.
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Proof. By induction on the structure of M . The cases of variables and abstraction are
straightforward. Consider now M = y N1 · · · Nn. We use induction on n. For the base case,
i.e. M = y N1 we have:

AJy N1Kp

= νq
(
AJyKq | q̄(x, p′) :

(
!x(r). AJN1Kr | p ↔ p̄′))

= νq
(
ȳ(q′) : q ↔ q̄′ | q̄(x, p′) :

(
!x(r). AJN1Kr | p ↔ p̄′))

≡ ȳ(q′) : νq
(
q ↔ q̄′ | q̄(x, p′) :

(
!x(r). AJN1Kr | p ↔ p̄′))

≳ ȳ(q′) : νq
(
q ↔ q̄′ | q̄(x, p′) :

(
!x(r). OJN1Kr | p ↔ p̄′))

(i.h.)
≳ ȳ(q′) : q̄′(x, p′) :

(
!x(r). OJN1Kr | p ↔ p̄′) (Lemma B.2)

≡α ȳ(p0) : p̄0(x, p1) : (!x(r). OJN1Kr | p ↔ p̄1)
= OJy N1Kp

The inductive case for n can be proved similarly using the induction hypothesis and
Lemma B.3.

The case of M = (λx. N) N1 · · · Nn is also handled in the same manner. □

B.2. Properties about transitions. Now we prove the properties about the transitions
OJMKp can do. The first thing we prove is the operational correspondence for τ -transitions.

Lemma 5.3. If OJMKp
τ−→ P then there exists N such that M −→sn N and P ≳ OJNKp.

Proof. By induction on the structure of M . The case where M = x M̃ , where M̃ is a possibly
empty sequence of terms, is trivial since OJMKp cannot make any τ -action. The case for
M = λx. M0 is also straightforward: it follows from the induction hypothesis.

We now consider the remaining case where M = (λx. M0) M1 · · · Mn and n ≥ 1. Recall
that OJ(λx. M0) M1 · · · MnKp is

νp0 (p0(x, q) : OJM0Kq | p̄0(x1, p1) : · · · p̄n−1(xn, pn) :
(!x1(r1). OJM1Kr1 | · · · | !xn(r1). OJMnKrn | p ↔ p̄n))

There are two cases to consider: (1) the case where the τ -action originates from the τ -action
on OJM0Kq and (2) the case where the τ -action is caused by the interaction at p0. The
former case can be easily proved by using the induction hypothesis. The latter case is the
most important case. Since OJM0Kq is I-respectful with respect to q′ ↔ q̄ and O-respectful
with respect to x ↔ x̄′ (Lemma B.1), we can use the communication law for the permeable
prefixes on p0. Therefore, we have

νp0 (p0(x, q) : OJM0Kq | p̄0(x1, p1) : · · · p̄n−1(xn, pn) :
(!x1(r1). OJM1Kr1 | · · · | !xn(r1). OJMnKrn | p ↔ p̄n))

≳ (νx1, p1) (OJM0{x1/x}Kq | !x1(r1). OJM1Kp1 | p̄1(x2, p2) : · · · p̄n−1(xn, pn) :
(!x2(r2). OJM2Kp2 | · · · | !xn(r1). OJMnKrn | p ↔ p̄n))

(Lemma 3.1)

≳ νp1 (OJM0{M1/x}Kp1 | p̄1(x2, p2) : · · · p̄n−1(xn, pn) :
(!x2(r2). OJM2Kr2 | · · · | !xn(r1). OJMnKrn | p ↔ p̄n))

(Lemma B.4)
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If n ≥ 2, we can apply Lemma B.5 and obtain P ≳ OJM0{M1/x} M2 · · · MnKp. If n = 1, the
subprocess of the form p̄1(x2, p2) : · · · is simply p ↔ p̄1. Hence, by Lemma B.1, we have

OJ(λx. M0) M1Kp ≳ νp1
(
OJM0{M1/x}Kp1 | p ↔ p̄1

)
≳ OJM0{M1/x}Kp1

as desired. □

The next thing we prove is the property about input actions.

Lemma 5.4. If OJMKp
µ−→ P and µ is an input action, then µ is an input at p.

Proof. By induction on M with a case analysis on the shape of M .
Case M = x: In this case, OJMKp = x̄(p′) : p ↔ p̄′. Since the only free name that

appears in an input occurrence is p (because of 1 of Definition 4.1), the only possible input
action OJMKp can do is an input on p. (Note that whether the process can do an input on
p will depend on the concrete instantiation of p ↔ q̄.)

Case M = λx. M0: Since OJMKp = p(x, q) : OJM0Kq, if OJMKp
µ−→ P and µ is an input

action, then this action must either be an input on p or an input that originates from
OJM0Kq. In the latter case, µ must be an input on q by the induction hypothesis. Since q is
bound by p(x, q) : , this action cannot induce an input action of OJMKp.

Case M = x M1 · · · Mn: In this case, OJMKp is
x̄(p0) : p̄0(x1, p1) : · · · p̄n−1(xn, pn) :
(!x1(r1). OJM1Kr1 | · · · | !xn(rn). OJMnKrn | p ↔ p̄n)

Since the only free name that may appear in an input occurrence which is not guarded by a
(non-permeable) prefixing is p, the only possible input action OJMKp can do is an input on
p.

Case M = (λx. M0) M1 · · · Mn: By combining the argument we made in the previous
two cases. □

We now consider the relationship between output actions and head normal forms. As
an auxiliary definition, we introduce a special form of a context.

Definition B.6. H-contexts are contexts defined by the following grammar:
H ::= [·] | (λx. H) M1 · · · Mn (n ≥ 0)

Lemma B.7. Let M
def= H[x M̃ ], where M̃ is a possibly empty sequence of terms, and assume

that x ∈ fv(M). Then M =⇒h λỹ. x Ñ for some possibly empty sequences of variables ỹ and
terms Ñ .

Lemma B.8. Let M be a λ-term and suppose that OJMKp
µ−→ P for an output action

µ. Then the action µ must be of the form x̄(p) for a fresh p and a variable x ∈ fv(M),
and there exists a H-context H such that H[x M̃ ] = M for some possibly empty sequence
M̃ = M1, . . . Mn.

Proof. By induction on M with a case analysis on the shape of M .
Case M = x: In this case, OJMKp = x̄(p′) : p ↔ p̄′, and the only output action OJMKp

can do is x(p′) (cf. 1 of Definition 4.1). We can take the empty context [·] for H and the
empty sequence for M̃ .
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Case M = λx. M0: Since we have OJMKp = p(x, q) : OJM0Kq, if OJMKp
y(r)−−→ P then

this action must originate from OJM0Kq and we must have x ≠ y. Hence, by the induction
hypothesis, there is a H-context H ′ and a sequence of terms M̃ such that M0 = H ′[y M̃ ]
with y ∈ fv(M0). We can take H as λx. H ′, and since y ̸= x we also have y ∈ fv(M).

Case M = x M1 · · · Mn: In this case, OJMKp is

x̄(p0) : p̄0(x1, p1) : · · · p̄n−1(xn, pn) :
(!x1(r1). OJM1Kr1 | · · · | !xn(rn). OJMnKrn | p ↔ p̄n) .

Obviously, the only output OJMKp can do is x(p0). Hence, the claim holds by taking H = [·]
and M̃ = M1, . . . , Mn.

Case M = (λx. M0) M1 · · · Mn: Recall that OJMKp is

νp0 (p0(x, q) : OJM0Kq | p̄0(x1, p1) : · · · p̄n−1(xn, pn) :
(!x1(r1). OJM1Kr1 | · · · | !xn(r1). OJMnKrn | p ↔ p̄n))

If OJMKp does an output action, then this action must originate from OJM0Kq and the
subject of the action must be different from x. Assume that OJM0Kq

µ−→ P ′ for an output
action µ whose subject is not x. By the induction hypothesis, µ = y(r) and there is a
H-context H ′ and a sequence of terms M̃ ′ such that M0 = H ′[y M̃ ′] with y ∈ fv(M0). We
can take H = (λx. H ′) M1 · · · Mn. Since M = H[y M̃ ′] and y ∈ fv(M) the claim follows. □

Lemma 5.5. Let M be a λ-term. If OJMKp
x(q)−−→ P for some P , then M has a head normal

form λỹ. x M̃ , for some (possibly empty) sequence of terms M̃ and variables ỹ with x /∈ ỹ.

Proof. By Lemma B.7 and Lemma B.8. □

Lemma 5.6. Let M be an unsolvable term. Then there does not exist an output action µ

such that OJMKp
µ=⇒ P for some P .

Proof. Since M is an unsolvable term, by Lemma 5.5, OJMKp cannot do an output action.
Hence, if OJMKp

µ=⇒ P , where µ is an output action, we must have OJMKp( τ−→)n
P

µ−→ P ′

for n ≥ 1. Assume that such an n exist. Then, by repeatedly applying Lemma 5.3, we get
P ≳ OJM ′Kp for some term M ′ such that M −→n M ′. Note that M ′ is also an unsolvable
term. However, this is a contradiction since P

µ−→ P ′ for an output action µ, but OJM ′Kp ̸ µ−→
by Lemma 5.5. □

Appendix C. Supplementary Materials for Section 6

In this section, we prove that the three concrete wires we introduced satisfy the properties of
Definition 4.1. As explained in the main text, we first show that the wires are transitive, and
then the other laws are proved by algebraic reasoning exploiting the transitivity of wires.
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C.1. Proofs for transitivity. We prove that I-O wires and O-I wires are transitive. The
reasoning is similar to that of the P wires which we saw in Section 6; we use bisimulation
up-to context and expansion. The proofs for the I-O wires and O-I wires are slightly simpler
than that of the P wires since these wires have fewer permeable prefixes, and the two proofs
are essentialy the same because of their ‘duality’.

Chains of I-O wires and O-I wires, denoted by chainn
IO(a, b) and chainn

OI(a, b), respectively,
are defined similar to the chains of P wires. (Only for the chainn

OI(p, q), we assume that p is
an output name and q is an input name so that the ‘direction of the chain’ becomes from
output to input.)

Lemma C.1. The wires p ↔IO q̄ and x ↔IO ȳ are transitive. That is, we have νq (p ↔IO q̄ | q ↔IO

r̄) ≳ p ↔IO r̄ and νy (x ↔IO ȳ | y ↔IO z̄) ≳ x ↔IO z̄.

Proof. We strengthen the statement and prove the transitivity for chains of wires of any
length. The relations we consider for the proof are

R1
def=

{
(p0 ↔IO p̄n, chainn

IO(p0, pn)) | n ≥ 2
}

R2
def=

{
(x0 ↔IO x̄n, chainn

IO(x0, xn)) | n ≥ 2
}

.

We show that R1 ∪ R2 is an expansion up-to ≲ and context
We first consider the case for location names. Suppose p0 ↔IO p̄m R1 chainm

IO(p0, pm) for
some m ≥ 2. We only consider the case where the process on the right-hand side makes the
challenge; the opposite direction can be proved similarly. There is only one possible actions
the process can do, namely an input at p0.

First we prove the following auxiliary statement by induction on n.

For any n ≥ 2, if chainn
IO(p0, pn) p0(x0,q0)−−−−−→ P , then P ≳ p̄n(xn, qn) : (chain2n−1

IO (xn, x0) |
chain2n−1

IO (q0, qn))
The base case is n = 2. Recall that p0 ↔IO p̄1 and p1 ↔IO p̄0 are of the form

p0(x0, q0). (νx′
1, q′

1 )(p1(x1, q1). (x1 ↔IO x̄′
1 | q′

1 ↔IO q̄1)

| x1 ↔IO x̄0 | q0 ↔IO q̄′
1)

and

p1(x1, q1). (νx′
2, q′

2 )(p2(x2, q2). (x2 ↔IO x̄′
2 | q′

2 ↔IO q̄2)

| x′
2 ↔IO x̄1 | q1 ↔IO q̄′

2)).

Hence the derivative of the transition p0(x0,q0)−−−−−→ is

(νx′
1, q′

1, p1)
(p1(x1, q1). (x1 ↔IO x̄′

1 | q′
1 ↔IO q̄1) | x′

1 ↔IO x̄0 | q0 ↔IO q̄′
1

| p1(x1, q1). (νx′
2, q′

2 )(p2(x2, q2). (x2 ↔IO x̄′
2 | q′

2 ↔IO q̄2) | x′
2 ↔IO x̄1 | q1 ↔IO q̄′

2))
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≳ (νx′
1, x1, x′

2, q′
1, q1, q′

2)
(x′

2 ↔IO x̄1 | x1 ↔IO x̄′
1 | x′

1 ↔IO x̄0

| q0 ↔IO q̄′
1 | q′

1 ↔IO q̄1 | q1 ↔IO q̄′
2

| p2(x2, q2). (x2 ↔IO x̄′
2 | q′

2 ↔IO q̄2))

(interaction at p1)

≡ (νx′
2, q′

2) (chain3
IO(x′

2, x0) | chain3
IO(q0, q′

2) | p2(x2, q2). (x2 ↔IO x̄′
2 | q′

2 ↔IO q̄2))

= p̄2(x2, q,2 ) : (chain3
IO(x2, x0) | chain3

IO(q0, q2))
as desired. The inductive case can be proved similarly.

Hence if chainm
IO(p0, pm) p0(x0,q0)−−−−−→ P , we have P ≳ p̄m(xm, qm) : (chain2m−1

IO (xm, x0) |
chain2m−1

IO (q0, qm)). For the matching transition, we pick

p0 ↔IO p̄m
p0(x0,q0)−−−−−→ p̄m(xm, qm) : (xm ↔IO x̄0 | q0 ↔IO q̄m).

We can take C
def= p̄m(xm, qm) : ([·] | [·]) as the common context and conclude this case

because q0 ↔IO q̄m R1 chain2m−1
IO (q0, qm) and xm ↔IO x̄0 R2 chain2m−1

IO (xm, x0).
The case for the variable name is proved similarly. Suppose x0 ↔IO x̄m R2 chainm

IO(x0, xm)
for some m ≥ 2. The only action the two processes can do is the input at x0. As in the case
for location names, we can show that

For any n ≥ 2, if chainn
IO(x0, xn) x0(p0)−−−−→ P , then P ≳ chainn

IO(x0, xn) |
x̄n(pn) : chain2n−1

IO (p0, pn)
by induction on n. We omit the proof as it is similar to the case for location names; instead
of the expansion relation for interactions among linear names, the proof uses replication
theorems (the laws (1), (4) and (5) of Lemma 2.7). So if chainm

IO(x0, xm) x0(p0)−−−−→ P , we
can take x0 ↔IO x̄m

x0(p0)−−−−→ x0 ↔IO x̄m | x̄m(pm) : p0 ↔IO p̄m as the matching transition. We
have P ≳ chainn

IO(x0, xm) | x̄m(pm) : chain2n−1
IO (p0, pm); x0 ↔IO x̄m R2 chainm

IO(x0,); and
p0 ↔IO p̄m R1 chain2m−1

IO (p0, pm). We can apply the up-to context technique with the context
being [·] | x̄m(pm) : [·] to conclude the case. □

Now we prove the transitivity for the O-I wires. Since the proof is almost identical to
that of the I-O wires, we omit the details and only present the key points.

Lemma C.2. The wires q ↔OI p and x ↔OI y are transitive. That is, we have νq (q ↔OI p | r ↔OI

q) ≳ r ↔OI p and νy (x ↔OI y | y ↔OI z) ≳ x ↔OI z.

Proof. As in the case of the I-O wires, we consider the following relations.

R1
def=

{
(pn ↔OI p0, chainn

OI(p0, pn)) | n ≥ 2
}

R2
def=

{
(x0 ↔OI xn, chainn

OI(x0, xn)) | n ≥ 2
}

.

We show that R1 ∪ R2 is an expansion up-to ≲ and context.
Observe that chainn

OI(p0, pn) and chainn
OI(x0, xn) can only do an output at p0 and input

at x0, respectively. We can show that, for any n ≥ 2,

(1) if chainn
OI(p0, pn) p0(x0,q0)−−−−−→ P , then P ≳ pn(xn, qn) : (chain2n−1

OI (x0, xn) | chain2n−1
OI (qn, q0))
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(2) if chainn
OI(x0, xn) x0(p0)−−−−→ P , then P ≳ chainn

OI(x0, xn) | x̄n(pn) : chain2n−1
OI (pn, p0)

by induction on n.
The rest of the proof follows that of Lemma C.1. □

C.2. Proofs for laws other than transitivity. We now show the remaining properties
holds for all the three concrete wires. Again, the reasoning is similar in all the three cases,
though not identical.

Lemma C.3. The I-O wires p ↔IO q̄ and x ↔IO ȳ satisfy the laws of Definition 4.1.

Proof. Requirements 1, 2, and 8 hold by definition. Transitivity of the wires has already
been proved (Lemma C.1). Hence, we only check the remaining laws.

We start by checking laws 4 and 5. Law 4 holds because
νq (p ↔IO q̄ | q(x, r) : P )

≡ (νq, x, r) (p(x′′, r′′). q̄(x′, r′) : (x′ ↔IO x̄′′ | r′′ ↔IO r̄′)

| q(x′, r′). (x ↔IO x̄′ | r′ ↔IO r̄) | P )

∼ (νx, r) (p(x′′, r′′). νq (q̄(x′, r′) : (x′ ↔IO x̄′′ | r′′ ↔IO r̄′)

| q(x′, r′). (x ↔IO x̄′ | r′ ↔IO r̄)) | P )

≳ (νx, r) (p(x′′, r′′). (νx′, r′) (x′ ↔IO x̄′′ | x ↔IO x̄′

| r′′ ↔IO r̄′ | r′ ↔IO r̄) | P )

(Lemma 3.1)

≳ (νx, r) (p(x′′, r′′). (x ↔IO x̄′′ | r′′ ↔IO r̄) | P ) (transitivity of wires)

= p(x, r) : P

Note that the assumption of Lemma 3.1 (interaction of permeable prefixes) is fulfilled by
the transitivity of wires. Next we consider law 5:

νp (p ↔IO q̄ | p̄(x, r) : P )

≡ (νp, x, r) (p(x′, r′). q̄(x′′, r′′) : (x′′ ↔IO x̄′ | r′ ↔IO r̄′′)

| p(x′, r′). (x′ ↔IO x̄ | r ↔IO r̄′) | P )

≳ (νx, r, x′, r′) (q̄(x′′, r′′) : (x′′ ↔IO x̄′ | r′ ↔IO r̄′′)

| x′ ↔IO x̄ | r ↔IO r̄′ | P )

(Lemma 3.1)

≳ (νx, r, x′, r′, x′′, r′′) (q(x′′′, r′′′). (x′′′ ↔IO x̄′′ | r′′ ↔IO r̄′′′)

| x′′ ↔IO x̄′ | x′ ↔IO x̄

| r′ ↔IO r̄′′ | r ↔IO r̄′ | P )

(def. of q̄(x′′, r′′) :)

≳ (νx, r, x′′, r′′) (q(x′′′, r′′′). (x′′′ ↔IO x̄′′ | r′′ ↔IO r̄′′′)

| x′′ ↔IO x̄ | r ↔IO r̄′′ | P )

(transitivity of wires)

≳ (νx′′, r′′) (q(x′′′, r′′′). (x′′′ ↔IO x̄′′ | r′′ ↔IO r̄′′′) | P{x′′, r′′
/x, r}) (assumption on P )
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≡α (νx, r) (q(x′, r′). (x′ ↔IO x̄ | r ↔IO r̄′) | P )

= q̄(x, r) : P

We conclude by checking laws 6 and 7. We have

νy (x ↔IO ȳ | !y(p). P ) = νy (!x(p′). ȳ(p) : p′ ↔IO p̄ | !y(p). P )

∼ !x(p′). νy (ȳ(p) : p′ ↔IO p̄ | !y(p). P ) (replication theorem)

≳ !x(p′). νp (p ↔IO p̄′ | P ) (Lemma 3.1 and garbage collection on y)

≳ !x(p′). P{p/p′} (assumption on P )
≡α !x(p). P

and

νx (x ↔IO ȳ | x̄(p) : P )

≡ (νx, p) (!x(p′). ȳ(p′′) : p′ ↔IO p̄′′ | x(p′). p ↔IO p̄′ | P )

≳ (νp, p′) (ȳ(p′′) : p′ ↔IO p̄′′ | p ↔IO p̄′ | P ) (interaction at x and garbage collection on)

≳ (νp, p′, p′′) (y(p′′′). p′′ ↔IO p̄′′′ | p′ ↔IO p̄′′ | p ↔IO p̄′ | P ) (def. of ȳ(p′′) :)

≳ (νp, p′′) (y(p′′′). p′′ ↔IO p̄′′′ | p ↔IO p̄′′ | P ) (transitivity of wires)

≳ νp′′ (y(p′′′). p′′ ↔IO p̄′′′ | P{p′′
/p}) (assumption on P )

≡α νp (y(p′). p ↔IO p̄′ | P )

= ȳ(p) : P .

□

The proof for the O-I wires is ‘symmetric’ to that of the I-O wires.

Lemma C.4. The O-I wires p ↔OI q and x ↔OI y satisfy the laws of Definition 4.1.

Proof. We already proved transitivity in Lemma C.2. The requirement 1 and 8 immediately
follow from the definition. Law 4 holds because

νq (p ↔OI q | q(x, r) : P )

= νq (p ↔OI q | (νx, r )(q(x′, r′). (x ↔OI x′ | r′ ↔OI r) | P ))

≡ (νq, x, r) (q(x′, r′). p(x′′, r′′) : (x′ ↔OI x′′ | r′′ ↔OI r′)

| q(x′, r′). (x ↔OI x′ | r′ ↔OI r) | P )

≳ (νx, x′, r, r′) (p(x′′, r′′) : (x′ ↔OI x′′ | r′′ ↔OI r′)

| x ↔OI x′ | r′ ↔OI r | P )

(communication on a linear name)

≳ (νx, x′, x′′, r, r′, r′′)
(p(x′′′, r′′′). (x′′ ↔OI x′′′ | r′′′ ↔OI r′′)

| x ↔OI x′ | x′ ↔OI x′′ | r′ ↔OI r | r′′ ↔OI r′ | P )

(def. of p(x′′, r′′) : )
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≳ (νx, x′′, r, r′′) (p(x′′′, r′′′). (x′′ ↔OI x′′′ | r′′′ ↔OI r′′)

| x ↔OI x′′ | r′′ ↔OI r | P )

(transitivity of wires)

≳ (νx′′, r′′) (p(x′′′, r′′′). (x′′ ↔OI x′′′ | r′′′ ↔OI r′′)

| P{x′′, r′′
/x, r})

(assumption on P )

≡α (νx, r) (p(x′, r′). (x ↔OI x′ | r′ ↔OI r) | P )

= p(x, r) : P

The proof of law 5 is similar to that of 4, but does not use the respectfulness of P :
νp (p ↔OI q | p̄(x, r) : P )

≡ (νp, x, r )(q(x′′, r′′). p(x′, r′) : (x′′ ↔OI x′ | r′ ↔OI r′′)

| p(x′, r′). (x′ ↔OI x | r ↔OI r′) | P )

∼ (νx, r )(q(x′′, r′′). νp (p(x′, r′) : (x′′ ↔OI x′ | r′ ↔OI r′′)

| p(x′, r′). (x′ ↔OI x | r ↔OI r′)) | P )

≳ (νx, r )(q(x′′, r′′). (νx′, r′ )(x′′ ↔OI x′ | x′ ↔OI x | r′ ↔OI r′′ | r ↔OI r′) | P ) (Lemma 3.1)

≳ (νx, r )(q(x′′, r′′). (x′′ ↔OI x | r ↔OI r′′) | P ) (transitivity of wires)

= q̄(x, r) : P

The proofs for laws 6 and 7 are the same as those for I-O wires. Law 6 holds because:
νy (x ↔OI y | !y(p). P ) = νy (!x(p′). ȳ(p) : p′ ↔OI p | !y(p). P )

∼ !x(p′). νy (ȳ(p) : p′ ↔OI p | !y(p). P ) (replication theorem)

≳ !x(p′). νp (p′ ↔OI p | P ) (Lemma 3.1 and garbage collection)

≳ !x(p′). P{p′
/p}. (assumption on P )

Finally, law 7 holds because:
νx (x ↔OI y | x̄(p) : P )

≡ (νx, p )(!x(p′). ȳ(p′′) : p′ ↔OI p′′ | x(p′). p ↔OI p′ | P )

≳ (νp , p′)(ȳ(p′′) : p′ ↔OI p′′ | p ↔OI p′ | P ) (reduction and garbage collection on x)

≳ (νp, p′, p′′) (y(p′′′). p′′ ↔OI p′′′ | p′ ↔OI p′′ | p ↔OI p′ | P ) (def. of ȳ(p′′) :)

≳ (νp, p′′) (y(p′′′). p′′ ↔OI p′′′ | p ↔OI p′′ | P ) (transitivity)

≳ νp′′ (y(p′′′). p′′ ↔OI p′′′ | P{p′′
/p}) (assumption on P )

≡α νp (y(p′). p ↔OI p′ | P )

= ȳ(p) : P

□

We conclude the section by checking that also P wires satisfy the desired properties.
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Lemma C.5. The P wires q ↔P p̄ and x ↔P ȳ satisfy the laws of Definition 4.1.

Proof. Transitivity has already been proved in Lemma 6.3, and the requirements on free
names and the shape of x ↔ ȳ follow from the definition. So we only check the remaining
laws.

We now consider law 4. Although the definition of p ↔P q̄ is more complex than that
for the other wires, the proof is similar; we can remove the wires using transitivity and the
assumption on P .

νq (p ↔P q̄ | q(x, r) : P )

= (νx, y, q, r, s )
(p(x′, r′). (x ↔P x̄′ | r′ ↔P r̄)

| q(y′, s′). (y′ ↔P ȳ | s ↔P s̄′)

| y ↔P x̄ | r ↔P s̄

| (νx , r)(q(x′, r′). (x ↔P x̄′ | r′ ↔P r̄) | P ))

≳ (νx, y, y′, r, s, s′ )(p(x′, r′). (x ↔P x̄′ | r′ ↔P r̄)

| y′ ↔P ȳ | s ↔P s̄′ | y ↔P x̄ | r ↔P s̄

| (νx , r)(x ↔P ȳ′ | s′ ↔P r̄ | P ))

(communication on q)

≳ (νx, y′, r, s′ )(p(x′, r′). (x ↔P x̄′ | r′ ↔P r̄)

| y′ ↔P x̄ | r ↔P s̄′

| (νx , r)(x ↔P ȳ′ | s′ ↔P r̄ | P ))

(transitivity of wires)

≡α (νx′′, y′, r′′, s′ )(p(x′, r′). (x′′ ↔P x̄′ | r′ ↔P r̄′′)

| y′ ↔P x̄′′ | r′′ ↔P s̄′

| (νx , r)(x ↔P ȳ′ | s′ ↔P r̄ | P ))

≳ (νx, x′′, r, r′′ )(p(x′, r′). (x′′ ↔P x̄′ | r′ ↔P r̄′′)

| x ↔P x̄′′ | r′′ ↔P r̄ | P )

(transitivity of wires)

≳ (νx′′, r′′ )(p(x′, r′). (x′′ ↔P x̄′ | r′ ↔P r̄′′) | P{x′′, r′′
/x, r}) (assumption on P )

≡α (νx, r )(p(x′, r′). (x ↔P x̄′ | r′ ↔P r̄) | P )

= p(x, r) : P

The proof for law 5 is the dual of the previous case.
Now we check law 6. The reasoning is identical to the case for I-O wires and O-I wires.

νy (x ↔P ȳ | !y(p). P ) = νy (!x(p′). ȳ(p) : p′ ↔P p̄ | !y(p). P )

∼ !x(p′). νy (ȳ(p) : p′ ↔P p̄ | !y(p). P ) (replication theorem)

≳ !x(p′). νp (p′ ↔P p̄ | P ) (Lemma 3.1 and garbage collection)

≳ !x(p′). P{p′
/p} (assumption on P )
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≡α !x(p). P

The last thing to check is law 7. Again, the reasoning is identical to the case for I-O
wires and O-I wires.

νx (x ↔P ȳ | x̄(p) : P )

= νx (!x(p). ȳ(q) : p ↔P q̄ | νp (x(p′). p ↔P p̄′ | P ))

≳ (νp, p′q )(y(q′). q ↔P q̄′ | p′ ↔P q̄ | p ↔P p̄′ | P ) (interaction at x and garbage collection)

≳ (νp, q )(y(q′). q ↔P q̄′ | p ↔P q̄ | P ) (transitivity)

≳ νq (y(q′). q ↔P q̄′ | P{q/p}) (assumption on P )

≡α νp (y(p′). p ↔P p̄′ | P )

= ȳ(p) : P

□

Appendix D. Supplementary Materials for Section 7

We present the proofs that were omitted from the main text.

D.1. Proofs for the properties of encoding of unsolvable terms. In the main text, we
have seen what kind of transition OOIJMKp and OIOJMKp can do when M is an unsolvable
term. Notably, the only visible action these processes can do is an input at p, and the
behaviour of OOI differs from that of OIO. We give the proofs for these results.

Lemma 7.2. Let M be an unsolvable term of order 0. Then the only action OOIJMKp can
do is a τ -action.

Proof. If M is unsolvable of order 0 then it must be of the form (λx. M0) M̃ , with M̃
non-empty. Therefore, by definition of OOI, if M is unsolvable of order 0, OOIJMKp cannot
do an input at p. This implies that the only transition OOIJMKp can do is a τ -transition. □

Lemma 7.1. Let M be an unsolvable term of order n, where 0 < n ≤ ω. Then OOIJMKp can
do a weak input transition at p. Moreover, if OOIJMKp

p(x,q)====⇒ P , then there exists N such
that P ≳ OOIJNKq and N is an unsolvable of order n − 1 (under the assumption ω − 1 = ω).

Proof. By definition of the order of unsolvables, we have M =⇒h λx. M ′ for some M ′ whose
order is n − 1. By validity of β-reduction (Lemma 5.1), we have OOIJMKp ≳ OOIJλx. M ′Kp.

First, we show that M can do a weak input transition at p. Since OOIJλx. M ′Kp
p(x,q)−−−→

OOIJM ′Kq, we must have a matching transition OOIJMKp
p(x,q)====⇒ P for some P .

We remain to show that for every OOIJMKp
p(x,q)====⇒ P there is a suitable N with

P ≳ OOIJNKq. Assume that OOIJMKp( τ−→)nQ
p(x,q)−−−→ P . Then we have OOIJλx. M ′Kp( τ̂−→)nQ′

such that Q ≳ Q′. By Lemma 5.3, we have Q′ ≳ OOIJλx. M ′′Kp for a λ-term λx. M ′′ such
that λx. M ′ =⇒ λx. M ′′. Since M ′ is unsolvable of order n − 1, so is M ′′. We also have
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P ≳ OJM ′′Kq, because Q ≳ OOIJλx. M ′′Kp and OOIJλx. M ′′Kp
p(x,q)−−−→ OOIJM ′′Kq is the only

input transition that OOIJλx. M ′′Kp can do. □

Lemma 7.4.
(1) If M is an unsolvable of order 0, then OIOJMKp can do an input at p. Moreover, if

OIOJMKp
p(x,q)−−−→ P , then P ≳ OIOJM xKq.

(2) If M is unsolvable, then OIOJMKp can do an input at p. Moreover, if OIOJMKp
p(x,q)−−−→ P ,

then there exists an unsolvable term M ′ such that P ≳ OIOJM ′Kq.

Proof. To prove 1, first observe that M , an unsolvable term of order 0, must be of the form
(λx. M0) M1 · · · Mn for n ≥ 0. Hence, we have

OIOJMKp

= νp0 (p0(x, r) : OIOJM0Kr | p̄0(x1, p1) : · · · p̄n−1(xn, pn) :
(!x1(r1). OIOJM1Kr1 | · · · | !xn(rn). OIOJMnKrn | p ↔IO p̄n))

p(x,q)−−−→≡ νp0 (p0(x, r) : OIOJM0Kr

| p̄0(x1, p1) : · · · p̄n−1(xn, pn) : p̄n(xn+1, pn+1) :
(!x1(r1). OIOJM1Kr1 | · · · | !xn(rn). OIOJMnKrn | xn+1 ↔IO x̄ | q ↔IO p̄n+1))

= νp0 (p0(x, r) : OIOJM0Kr | p̄0(x1, p1) : · · · p̄n−1(xn, pn) : p̄n(xn+1, pn+1) :
((!x1(r1). OIOJM1Kr1 | · · · | !xn(rn). OIOJMnKrn | !xn+1(rn+1). OIOJxKrn+1 | q ↔IO p̄n+1))

(since x ↔IO ȳ = !x(p). OIOJyKp)

= OIOJ(λx. M0) M1 · · · Mn xKp

as desired.
We prove (2) by a case analysis on the order of M . If M is an unsolvable of order 0, the

claim follows from (1) because M x is also an unsolvable of order 0.
Now assume that M is an unsolvable of order n > 0 (n may be ω). The fact that

OIOJMKp can do an input at p follows by the definition of OIO. We remain to prove the
latter claim. Observe that we have M =⇒h λx. M ′, and M ′ must be an unsolvable. By
Lemma 5.1, we have OIOJMKp ≳ OIOJλx. M ′Kp. Thus, if OIOJMKp

p(x,q)−−−→ P , we have a
matching transition OIOJλx. M ′Kp

p(x,q)−−−→ Q such that P ≳ Q. By definition of OIO and of
permeable inputs, and by Lemma B.1, we have Q ≳ OIOJM ′Kq. Hence, P ≳ OIOJM ′Kq as
desired. □

D.2. Proof for the inverse context lemma.

Lemma 7.10. The abstraction and variable contexts of O have inverse with respect to ≲,
under the assumption that the every abstraction F that fills the context satisfies F = OJMK
for some λ-term M .

Proof. Abstraction context: For our encoding, the abstraction context is defined by

Cx
λ

def= (p) (νx, q) (p(x′, q′). (q′ ↔ q̄ | x ↔ x̄′) | [·]⟨q⟩).
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We define the inverse context by

D
def= a(b, x). b(r). νp ([·]⟨p⟩ | p(x′, q′). (x′ ↔ x̄ | r ↔ q̄′)).

Then
D[C[F ]]
= a(b, x). b(r). νp ((νx, q) (p(x′, q′). (q′ ↔ q̄ | x ↔ x̄′)

| F ⟨q⟩) | p(x′, q′). (x′ ↔ x̄ | r ↔ q̄′))
≡α a(b, x). b(r). νp ((νz, q) (p(x′, q′). (q′ ↔ q̄ | z ↔ x̄′)

| (F ⟨q⟩){z/x}) | p(x′, q′). (x′ ↔ x̄ | r ↔ q̄))
(z fresh)

≳ a(b, x). b(r). (νz, x′, q, q′) (q ↔ q̄′ | z ↔ x̄′

| (F ⟨q⟩){z/x} | x′ ↔ x̄ | r ↔ q̄)
(communication on p)

≳ a(b, x). b(r). (νz, q′ )(r ↔ q̄′ | z ↔ x̄ | (F ⟨q′⟩){z/x}) (transitivity of wires)
≳ a(b, x). b(r). F ⟨r⟩ (Lemma B.1 and F = OJMK)

as desired.
Variable context: For a variable context obtained by translating x [·]1 · · · [·]n the

inverse context D for the i-th hole can be defined by
a(x′, b). b(r). (νx, p )([·]⟨p⟩
| x(p0). p0(x1, p1). . . . pn−1(xn, pn). (x′ ↔ x̄ | xi(r′). r ↔ r̄′))

.

Now let us consider the process D[C[F̃ ]]. Since the communication on pi is a communication
on linear names, we can safely execute theses communications. (Note that since permeable
input prefixes are encoded using wires, there will be unguarded wires after the reductions)
With this in mind, we get

D[C[F̃ ]]
≳ a(x′, b). b(r). (νx, x1, . . . , xn, x′

1, . . . , x′
n, pn )

(!x1(r1). F1⟨r1⟩ | · · · | !xn(rn). Fn⟨rn⟩ |
x′

1 ↔ x̄1 | · · · | x′
n ↔ x̄n |

p ↔ p̄n | x′ ↔ x̄ | x′
i(r

′). r ↔ r̄′)
≳ a(x′, b). b(r). (νx, x′

1, . . . , x′
n, pn )

(!x′
1(r1). F1⟨r1⟩ | · · · | !x′

n(rn). Fn⟨rn⟩ |

p ↔ p̄n | x′ ↔ x̄ | x′
i(r

′). r ↔ r̄′)

(6 of Definition 4.1 and Fj = OJMjK)

∼ a(x′, b). b(r). (νx, x′
i )(!x′

i(ri). Fi⟨ri⟩ | x′ ↔ x̄

| x′
i(r

′). r ↔ r̄′)

(garbage collection)

≳ a(x′, b). b(r). (νx, r′ )
(
Fi⟨r′⟩ | x′ ↔ x̄ | r ↔ r̄′)

(communication on x′
i and garbage collection)

≳ a(x′, b). b(r). (Fi⟨r⟩){x′
/x} (Lemma B.1 and Fi = OJMiK)

≡α a(x, b). b(r). Fi⟨r⟩
□
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