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Asymptotic-preserving hybridizable discontinuous Galerkin

method for the Westervelt quasilinear wave equation
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Abstract

We discuss the asymptotic-preserving properties of a hybridizable discontinuous Galerkin method

for the Westervelt model of ultrasound waves. More precisely, we show that the proposed method

is robust with respect to small values of the sound diffusivity damping parameter δ by deriving

low- and high-order energy stability estimates, and a priori error bounds that are independent of δ.

Such bounds are then used to show that, when δ → 0+, the method remains stable and the discrete

acoustic velocity potential ψ
(δ)
h

converges to ψ
(0)
h

, where the latter is the singular vanishing dissipation

limit. Moreover, we prove optimal convergence for the approximation of the acoustic particle velocity

variable
¯
v = ∇ψ. The established theoretical results are illustrated with some numerical experiments.

Keywords: asymptotic-preserving method, nonlinear acoustics, Westervelt equation, hybridizable dis-
continuous Galerkin method.
Mathematics Subject Classification. 65M60, 65M15, 35L70.

1 Introduction

Let QT = Ω× (0, T ) be a space–time cylinder, where Ω ⊂ Rd (d ∈ {2, 3}) is an open, bounded polytopic
domain with Lipschitz boundary ∂Ω, and T > 0 is the final time. We consider the following Westervelt
equation of nonlinear acoustics [36]:





(1 + 2k∂tψ)∂ttψ − c2∆ψ − δ∆(∂tψ) = 0 in QT ,

ψ = 0 on ∂Ω× (0, T ),

ψ = ψ0, ∂tψ = ψ1 on Ω× {0},
(1.1)

where the unknown ψ : QT → R is the acoustic velocity potential. In IBVP (1.1), the constant k ∈ R

is a medium-dependent nonlinearity parameter, c > 0 is the speed of sound, ψ0 and ψ1 are given initial
data, and δ ≥ 0 is the sound diffusivity coefficient.

Introducing the acoustic particle velocity variable
¯
v : QT → Rd, defined by

¯
v := ∇ψ, the Westervelt

equation in (1.1) can be rewritten in mixed form as





(1 + 2k∂tψ)∂ttψ − c2∇ ·
¯
v − δ∇ · (∂t

¯
v) = 0 in QT ,

¯
v = ∇ψ in QT ,

ψ = 0 on ∂Ω× (0, T ),

ψ = ψ0, ∂tψ = ψ1 on Ω× {0}.

(1.2)

Since we study the limit as δ → 0+, we make the purely technical assumption that δ ∈ [0, δ) for some
fixed δ > 0. Such an assumption is helpful in the limiting behavior analysis in Section 5, as it allows us
to make the estimates depend on δ but never on δ itself.

The Westervelt equation in (1.1) models the propagation of sound in a fluid medium, and it is a
well-accepted model in nonlinear acoustics (see e.g., [22, §5.3]). Nonlinear sound propagation finds a
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multitude of technical and medical applications, such as ultrasound imaging, lithotripsy, welding, and
sonochemistry; see [12, 23].

When the parameter δ is strictly positive, equation (1.1) is strongly damped, and its solution enjoys
global existence properties for initial conditions satisfying some smallness and regularity assumptions as
shown in [18,30]. Conversely, when δ = 0, the main mechanism preventing the formation of singularities is
lost and no global existence results are known. The stark contrast between these two regimes gives rise to
interesting issues, such as the continuous dependence of the solution on the damping parameter δ → 0+,
and the interplay of this limit and numerical discretizations. A numerical method for the Westervelt
equation is said to be asymptotic preserving if it allows for interchanging the vanishing limits of the mesh
size parameter h and the sound diffusivity parameter δ, i.e., if it satisfies the commutative diagram in
Figure 1. The main focus of this work is to show that the proposed method is asymptotic preserving.

ψ
(δ)
h ψ(δ)

ψ
(0)
h ψ(0)

h→0+

δ→0+ δ→0+

h→0+

Figure 1: Asymptotic-preserving commutative diagram for the Westervelt equation. This diagram represents the con-

nections between ψ
(δ)
h

and ψ(δ) as h → 0+ (even in the limit case δ = 0) as well as between ψ
(δ)
h

and ψ
(0)
h

as δ → 0+.
The superscript (δ) is used to emphasize the dependence on the parameter δ of the continuous solution and its numerical
approximation.

In the literature, a priori error results for the approximation of the Westervelt equation initially relied
on the assumption of strictly positive values of the damping parameter δ (see, e.g., [2,33]). Nevertheless, as
the damping parameter is relatively small in practice and it can become negligible in certain applications,
there have been recent efforts to devise numerical methods that are robust with respect to small values
of the sound diffusivity parameter δ. In particular, estimates for the standard and mixed finite element
discretizations of the Westervelt equation with δ = 0 follow as particular cases of those in [16, 26, 29],
whereas the asymptotic behaviour of such methods for δ → 0+ has been recently studied in [14,32]. The
main challenge resides in the limited regularity offered by most standard finite element spaces, which
hinders the extension of the arguments used to study the vanishing viscosity limit in the continuous
setting (see, e.g., [20]).

This work concerns the asymptotic analysis of a hybridizable discontinuous Galerkin (HDG) method
for the Westervelt equation when δ → 0+. HDG methods, originally introduced in [7] for an elliptic
PDE, are a class of discontinuous Galerkin methods characterized by the possibility of performing a local
static condensation procedure to reduce the number of unknowns of the linear system stemming from
the discretization of a d-dimensional linear PDE. Such a procedure leads to a linear systems involving
only unknowns associated with degrees of freedom on (d − 1)-dimensional mesh-facets. Although this
hybridization property does not naturally extend to nonlinear PDEs, it can be used in combination with
suitable nonlinear solvers (see, e.g., Section 6.1 below). Moreover, provided that the exact solution is
smooth enough, the Local Discontinuous Galerkin-hybridizible (LDG-H) method in [4,7] for the Poisson
equation converges with optimal order O(hp+1) for the L2(Ω)-error of the flux variable when approxi-
mations of degree p are used, and allows for a local postprocessing that produces an approximation of
degree p+ 1 of the primal variable that superconverges with order O(hp+2) in the L2(Ω)-norm.

To the best of our knowledge, there are four different versions of the HDG method for the linear
acoustic wave equation (c−2∂ttu−∆u = f):

a) the dissipative HDG method introduced in [31] and analyzed in [11], which is based on the first-order
system (∂t

¯
q = ∇v; c−2∂tv −∇ ·

¯
q = f) with v := ∂tu and

¯
q := ∇u;

b) the conservative HDG method in [15] based on the same first-order system, whose energy conserving
property is enforced by choosing the numerical fluxes of

¯
qh in dependence of ∂tvh, which in turn

causes a theoretical loss of convergence of half an order;

c) the HDG method in [34] for the Hamiltonian formulation (∂tu = v; c−2∂tv = f +∇ ·
¯
q); and

d) the conservative HDG method in [6], which is based on the mixed formulation (
¯
q = −∇u; c−2∂ttu+

∇ ·
¯
q = f).
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The theoretical results in a), c), and d) predict optimal convergence for the approximation of all the
variables involved, and superconvergence for some (locally computable) postprocessed approximations of
the scalar variables.

In this work, we design a HDG method for the Westervelt model, which is based on the conserva-
tive HDG method in [6] for the linear second-order wave equation. This choice allows us to directly
approximate the variables of interest (ψ,

¯
v), eliminate efficiently the discrete vector variable

¯
vh from

the nonlinear ODE system, and obtain optimal convergence in the low- and high-order energy norms.
Moreover, it facilitates the extension of the techniques used for the analysis of mixed FEM discretizations
of the Westervelt equation [29].

Main contributions. The main theoretical results in this work are as follows: under some sensible
assumptions on the smallness and regularity of the exact solution, we show that

i) There exists a unique solution to the proposed HDG semi-discrete formulation.

ii) Optimal convergence rates of order O(hp+1) are achieved for the error of the method in some energy
norms. In particular, the higher accuracy obtained for the approximation of the acoustic particle
velocity

¯
v exceeds the one expected for standard DG discretizations; cf. [2]. An accurate numerical

approximation of
¯
v is relevant, e.g., for enforcing absorbing conditions [35] or gradient-based shape

optimization of focused ultrasound devices [21, 28].

iii) The method is asymptotic preserving (i.e., the commutative diagram in Figure 1 holds), which
implies that the semi-discrete approximation does not degenerate when δ → 0+.

These theoretical results are validated in Section 6 below by some numerical examples. In addi-
tion, we numerically observe superconvergence of the discrete approximation of ψ obtained by the local
postprocessing technique in [6, Eq. (2.2)].

Outline of the paper. In Section 2, we introduce the discrete spaces and the HDG semi-discrete
formulation for model (1.2). In Section 3, we study the well-posedness and derive a priori error estimates
for an auxiliary linearized problem. By means of a fixed-point argument, such results are extended in
Section 4 to the nonlinear Westervelt equation. Section 5 is devoted to establishing the convergence of the
numerical scheme to its vanishing δ-limit. In Section 6, we describe a fully discrete scheme obtained by
combining the proposed HDG method with a predictor-corrector Newmark time discretization, and illus-
trate our theoretical findings with some numerical experiments. We end this work with some concluding
remarks in Section 7.

Notation. We denote the first, second, and third, partial derivatives with respect to the time variable t
of a function v by ∂tv, ∂ttv, and ∂tttv, respectively.

We shall use the notation x . y, which stands for x ≤ Cy, where C is a generic constant that does
not depend on the mesh size parameter h nor on the sound diffusivity parameter δ.

Standard notation for Lp, Sobolev, and Bochner spaces is employed throughout. For example, for a
given bounded, Lipschitz domain D ⊂ Rd (d ∈ N) and s ∈ R+, the Sobolev space Hs(D) is endowed
with the standard inner product (·, ·)s,D, the semi-norm | · |Hs(D), and the norm ‖ · ‖Hs(D). Let n ∈ N,
p ∈ [1,∞], and X be a Banach space, and denote by ∂it the ith partial derivative with respect to time.
The Bochner space

Wn,p(0, T ;X) := {u ∈ Lp(0, T ;X), ∂itu ∈ Lp(0, T ;X) ∀i ≤ n}

is endowed with the norm

‖u‖Hn(0,T ;X) :=

n∑

i=0

‖∂itu‖Lp(0,T ;X) for all u ∈ Hn(0, T ;X).

2 Semi-discrete HDG formulation

Let {Th}h>0 be a family of conformal simplicial meshes for the domain Ω satisfying the standard shape-
regularity and quasi-uniformity conditions. We denote by Fh = FI

h ∪ FD
h the set of mesh facets of Th,

where FI
h and FD

h are the sets of internal and Dirichlet boundary facets, respectively. For each ele-
ment K ∈ Th, we denote by (∂K)◦ and (∂K)D the union of the facets of K that belong to FI

h and FD
h ,

respectively. Denoting the diameter of each element K by hK , we define the mesh size h := maxK∈Th hK .

3



Given p ∈ N, we define the following piecewise polynomial spaces

Sph :=
∏

K∈Th

Pp(K), Q
p
h :=

∏

K∈Th

Pp(K)d, Mp
h :=

∏

F∈FI
h

Pp(F ), (2.1)

where Pp(K) and Pp(F ) denote the spaces of polynomials of total degree at most p on K and F , re-
spectively. We denote by J·K

N
the normal jump operator, which is defined for all wh ∈ Sph and

¯
rh ∈ Q

p
h

as
{

JwhKN := wh|K1 ¯
nK1

+ wh|K2 ¯
nK2 on F = ∂K1 ∩ ∂K2 ∈ FI

h , for some K1,K2 ∈ Th,J
¯
rhKN :=

¯
rh|K1

·
¯
nK1

+
¯
rh|K2

·
¯
nK2

where
¯
nK denotes the outward-pointing unit normal vector on ∂K. For any positive real number s, we

define the following broken Sobolev space

Hs(Th) := {v ∈ L2(Ω) : v|K ∈ Hs(K) ∀K ∈ Th}.

The proposed hybridizable discontinuous Galerkin semi-discrete formulation for the Westervelt equa-
tion in (1.2) is1: for all t ∈ (0, T ], find (ψh(·, t),

¯
vh(·, t), λh(·, t)) ∈ (Sph,Q

p
h,M

p
h) such that the following

equations are satisfied for all K ∈ Th
∫

K ¯
vh ·

¯
rhdx =

∫

∂K

ψ̂h
¯
rh ·

¯
nKdS −

∫

K

ψh∇ ·
¯
rhdx ∀

¯
rh ∈ Q

p
h, (2.2a)

∫

K

(1 + 2k∂tψh)∂ttψhwhdx−
∫

∂K

wh(c
2 ̂̂
¯
vh + δ∂t ̂̂

¯
vh) ·

¯
nKdS

+

∫

K

(c2
¯
vh + δ∂t

¯
vh) · ∇whdx = 0 ∀wh ∈ Sph,

(2.2b)

the following compatibility equation is satisfied for all F ∈ FI
h

∫

F

µh
q̂̂
¯
vh

y
N
dS = 0 ∀µh ∈ Mp

h, (2.2c)

and appropriate discrete initial conditions, which will be specified in Section 3.3, are prescribed.
The numerical fluxes ψ̂h and ̂̂

¯
vh are approximations of the traces of ψh and

¯
vh on Fh, and are defined

as follows (see [9, §3.2]):

ψ̂h :=

{
λh if F ∈ FI

h ,

0 if F ∈ FD
h ,

̂̂
¯
vh :=

{
¯
vh − τ(ψh − λh)

¯
nK if F ∈ FI

h ,

¯
vh − τψh

¯
nΩ if F ∈ FD

h ,
(2.3)

for some piecewise constant function τ that is double valued on FI
h and single valued on FD

h . In particular,
we consider the single-facet choice introduced in [4, Eq. (1.6)], i.e., given a strictly positive constant τ̄ ,
we define τ on each element K ∈ Th as

τ |∂K :=

{
0 on ∂K\F τK ,
τ̄ on F τK ,

(2.4)

for a fixed facet F τK of K. The compatibility condition in (2.2c) implies that the normal component of ̂̂
¯
vh

is single valued on the mesh skeleton, i.e.,
q̂̂
¯
vh

y
N
= 0 on FI

h .
We define the following inner products:

(u, v)0,Th :=
∑

K∈Th

(u, v)0,K , (u, v)0,∂Th :=
∑

K∈Th

(u, v)0,∂K ,

(u, v)0,(∂Th)◦ :=
∑

K∈Th

(u, v)0,(∂K)◦ , (u, v)0,(∂Th)D :=
∑

K∈Th

(u, v)0,(∂K)D .

Given bases for the spaces in (2.1), let M , M , B, S, E, F , and G be the matrix representations of the
following bilinear forms2

mh(ψh, wh) := (ψh, wh)0,Th ∀ψh, wh ∈ Sph,
1In this work, the vector variable

¯
vh approximates ∇ψ, whereas it typically approximates −∇ψ in elliptic problems.

As a consequence, there are some slight differences in the standard HDG tools used in the coming sections.
2These bilinear forms are also well defined for sufficiently regular functions.
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mh(
¯
vh,

¯
rh) := (

¯
vh,

¯
rh)0,Th ∀

¯
vh,

¯
rh ∈ Q

p
h,

bh(ψh,
¯
rh) := (ψh,∇ ·

¯
rh)0,Th ∀(ψh,

¯
rh) ∈ (Sph ,Q

p
h),

sh(ψh, wh) := (τψh, wh)0,∂Th ∀ψh, wh ∈ Sph,
eh(λh,

¯
rh) := −(λh, J

¯
rhKN)0,FI

h
∀(λh,

¯
rh) ∈ (Mp

h,Q
p
h),

fh(λh, wh) := −(τλh, wh)0,(∂Th)◦ ∀(λh, wh) ∈ (Mp
h,S

p
h),

gh(λh, µh) := (τλh, µh)0,(∂Th)◦ ∀λh, µh ∈ Mp
h,

and Nh(·, ·) be the vector representation of the nonlinear operator

nh(φh; θh, wh) :=
∑

K∈Th

∫

K

(1 + 2kφh)θhwhdx ∀φh, θh, wh ∈ Sph.

Then, after summing up over all the elements K ∈ Th, replacing the numerical fluxes by their definition
in (2.3), and using the following notation

λ̃h = λh +
δ

c2
∂tλh, ψ̃h = ψh +

δ

c2
∂tψh, and ˜̄vh =

¯
vh +

δ

c2
∂t
¯
vh, (2.5)

semi-discrete HDG formulation (2.2) can be written in operator form as follows: for all t ∈ (0, T ],
find (ψh(·, t),

¯
vh(·, t), λh(·, t)) ∈ (Sph,Q

p
h,M

p
h) such that

mh(
¯
vh,

¯
rh) + bh(ψh,

¯
rh) + eh(λh,

¯
rh) = 0 ∀

¯
rh ∈ Q

p
h, (2.6a)

nh(∂tψh, ∂ttψh, wh)− c2bh(wh, ˜̄vh) + c2sh(ψ̃h, wh) + c2fh(λ̃h, wh) = 0 ∀wh ∈ Sph, (2.6b)

−eh(µh,
¯
vh) + fh(µh, ψh) + gh(λh, µh) = 0 ∀µh ∈ Mp

h, (2.6c)

which leads to the following system of nonlinear ordinary differential equations (ODEs):

MVh +BΨh + EΛh = 0,

Nh

(
d

dt
Ψh,

d2

dt2
Ψh

)
− c2BT Ṽh + c2SΨ̃h + c2F Λ̃h = 0,

−ETVh + FTΨh +GΛh = 0.

Remark 2.1 (Structure of Nh(·, ·)). Since the nonlinear operator Nh(·, ·) is linear with respect to its

second argument, it can also be written as Nh(
d
dtΨh,

d2

dt2Ψh) = Nh(
d
dtΨh)

d2

dt2Ψh, for some block diagonal

matrix Nh = Nh(
d
dtΨh).

Remark 2.2 (Linear case). Setting δ = 0 and k = 0 in semi-discrete formulation (2.6), the conservative
HDG method in [6] for the linear acoustic wave equation is recovered.

3 Linearized semi-discrete HDG formulation

As an intermediate step for the asymptotic and convergence analysis of the semi-discrete HDG formu-
lation in (2.6) for the Westervelt equation, we analyze an auxiliary linearized problem with damping
parameter δ ≥ 0 and a variable coefficient. We first make some assumptions on the data of the linearized
problem. In Section 3.1, we show some low- and high-order energy stability estimates and discuss the exis-
tence of a unique semi-discrete solution. In Section 3.2, we show some a priori error bounds in the energy
norms. The choice of the discrete initial conditions is discussed in Section 3.3. Optimal h-convergence
rates for the errors are proven in Section 3.4.

We consider the following auxiliary, potentially damped, perturbed linear wave equation:





(1 + 2kα)∂ttψ − c2∇ ·
¯
v − δ∇ · (∂t

¯
v) = ϕ in QT ,

¯
v = ∇ψ +

¯
Υ in QT ,

ψ = 0 on ∂Ω× (0, T ),

ψ = ψ0, ∂tψ = ψ1 on Ω× {0},

(3.1)

for some given functions ϕ : QT → R, α: QT → R, and
¯
Υ: QT → Rd. The force term ϕ will be used to

represent the consistency error due to the approximation of ∂tψ by α. The perturbation function
¯
Υ will

5



be used in Theorem 3.6 below to represent the error resulting from the low-order L2(Ω)-orthogonality
properties of the HDG projection in (3.9) of

¯
v. Such an error term also appears in the analysis of the

HDG method for the linear acoustic wave equation in [11, Lemma 3.1].
We consider the following semi-discrete HDG formulation for the auxiliary problem in (3.1): for

all t ∈ (0, T ], find (ψh(·, t),
¯
vh(·, t), λh(·, t)) ∈ (Sph,Q

p
h,M

p
h) such that

mh(
¯
vh,

¯
rh) + bh(ψh,

¯
rh) + eh(λh,

¯
rh) = (

¯
Υ,

¯
rh)0,Ω ∀

¯
rh ∈ Q

p
h, (3.2a)

mh((1 + 2kαh)∂ttψh, wh)− c2bh(wh, ˜̄vh) + c2sh(ψ̃h, wh)

+c2fh(λ̃h, wh) = (ϕ,wh)0,Ω ∀wh ∈ Sph, (3.2b)

−eh(µh,
¯
vh) + fh(µh, ψh) + gh(λh, µh) = 0 ∀µh ∈ Mp

h, (3.2c)

where αh is a discrete approximation of α. To complete the system of differential equations in (3.2),
it is necessary to compute appropriate discrete initial conditions from the initial data of the continuous
problem ψ0, ψ1. A suitable choice for these initial conditions is essential in the error analysis below. We
discuss our choice for the discrete initial conditions in Section 3.3.

To show the well-posedness of semi-discrete problem (3.2), we make the following assumptions on the
semi-discrete coefficient αh, the forcing function ϕ, and the perturbation function

¯
Υ.

Assumption 1. Let T > 0. We assume that ϕ ∈ H1(0, T ;L2(Ω)),
¯
Υ ∈ W 3,1(0, T ;L2(Ω)d), and the

coefficient αh ∈ H1(0, T ;Sph) is non degenerate, i.e., there exist constants α, α > 0 independent of h
and δ, such that

0 < 1− 2|k|α ≤ 1 + 2kαh(x, t) ≤ 1 + 2|k|α ∀(x, t) ∈ Ω× (0, T ). (3.3)

Furthermore, we assume that there exist constants 0 < γ0 < σ0 < 1 independent of h and the damping
parameter δ, such that

|k|
1− 2|k|α‖∂tαh‖L1(0,T ;L∞(Ω)) +

γ0
2

≤ σ0
2
. (3.4)

Remark 3.1 (Linearization argument). It is fairly common in the (numerical) analysis of quasilinear
wave equations to combine a linearized problem with nondegeneracy assumptions on the variable coeffi-
cient. Such assumptions are then shown to be verified by the solution to the nonlinear problem by using
a fixed-point strategy; see Theorem 4.1 below. See also [2, Thm. 3], [33, Thm. 6.1], and [29, Thm. 4.1]
for similar arguments.

3.1 Well-posedness and energy estimates

In this section, we discuss the existence and uniqueness of the solution to semi-discrete formulation (3.2),
and derive some low- and high-order energy stability estimates.

We first write semi-discrete formulation (3.2) in matrix form as

MVh +BΨh + EΛh = Γ, (3.5a)

Nh(αh)
d2

dt2
Ψh − c2BT Ṽh + c2SΨ̃h + c2F Λ̃h = Φ, (3.5b)

−ETVh + FTΨh +GΛh = 0, (3.5c)

where Φ and Γ are, respectively, the vector representations of the terms in (3.2a) and (3.2b) involving φ
and

¯
Υ. The matrix Nh = Nh(αh), defined in Remark 2.1, is symmetric positive definite on account of

the nondegeneracy assumption made in (3.3) on αh. From (3.5a) and (3.5c), we deduce that

(
M E
−ET G

)(
Ṽh

Λ̃h

)
=

(
−BΨ̃h + Γ̃

−FT Ψ̃h

)
. (3.6)

Since M and G are symmetric positive definite matrices, the block matrix on the left-hand side of (3.6)

is nonsingular. Therefore, Ṽh and Λ̃h can be expressed in terms of Ψ̃h and Γ̃ through (3.6). This
implies that ODE system (3.5) can be reduced to a second-order linear ODE system involving only Ψh by
multiplying equation (3.5b) by the matrix Nh(αh)

−1. If Assumption 1 holds, classical ODE theory (see,
e.g., [1, Thm. 1.8]) predicts the existence of a unique solution ψh ∈ W 3,1(0, T ;Sph). Moreover, through
(3.5a) and (3.5c), we obtain that

¯
vh ∈ W 3,1(0, T ;Qp

h) and λh ∈ W 3,1(0, T ;Mp
h). In the analysis below,

the embedding W 3,1(0, T ) →֒ C2([0, T ]) is of utmost relevance.
We derive low- and high-order energy stability estimates for semi-discrete formulation (3.2).
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Theorem 3.2 (Energy estimates for the discrete linearized problem). Let T > 0, c > 0, and δ ≥
0. Assume that the semi-discrete-in-space coefficient αh, the forcing function ϕ, and the perturbation
function

¯
Υ satisfy Assumption 1. Then, the solution to semi-discrete formulation (3.2) satisfies the

following energy stability estimates

sup
t∈(0,T )

E(0)
h [ψh,

¯
vh, λh](t) ≤ (1− σ0)

−1

(
E(0)
h [ψh,

¯
vh, λh](0) +

T

2γ0(1 − 2|k|α)‖ϕ‖
2
L2(0,T ;L2(Ω))

+

(
δ

4
+
c2T

2σ0

)
‖∂t

¯
Υ‖2L2(0,T ;L2(Ω)d)

)
, (3.7a)

sup
t∈(0,T )

E(1)
h [ψh,

¯
vh, λh](t) ≤ (1− σ0)

−1

(
E(1)
h [ψh,

¯
vh, λh](0) +

T

2γ0(1 − 2|k|α)‖∂tϕ‖
2
L2(0,T ;L2(Ω))

+

(
δ

4
+
c2T

2σ0

)
‖∂tt

¯
Υ‖2L2(0,T ;L2(Ω)d)

)
, (3.7b)

where σ0 is the constant in smallness assumption (3.4), and the discrete energy functionals E(0)
h [·, ·, ·](t)

and E(1)
h [·, ·, ·](t) are given by

E(0)
h [ψh,

¯
vh, λh](t) :=

1

2
‖
√
1 + 2kαh∂tψh‖2L2(Ω)

+
c2

2

(
‖
¯
vh‖2L2(Ω)d + ‖τ 1

2 (λh − ψh)‖2L2((∂Th)◦)
+ ‖τ 1

2ψh‖2L2((∂Th)D)

)
,

E(1)
h [ψh,

¯
vh, λh](t) :=

1

2
‖
√
1 + 2kαh∂ttψh‖2L2(Ω)

+
c2

2

(
‖∂t

¯
vh‖2L2(Ω)d + ‖τ 1

2 (∂tλh − ∂tψh)‖2L2((∂Th)◦)
+ ‖τ 1

2 ∂tψh‖2L2((∂Th)D)

)
.

Proof. The proofs of the energy estimates in (3.7a) and (3.7b) are postponed to Appendices A and B,
respectively.

Estimates (3.7a) and (3.7b) show boundedness of the energy of the semi-discrete solution with respect
to the initial energies, the forcing function ϕ, and the perturbation function

¯
Υ. In order to show that these

constitute indeed stability results, we need to show that the initial discrete energies, E(0)
h [ψh,

¯
vh, λh](0)

and E(1)
h [ψh,

¯
vh, λh](0), remain bounded uniformly in h.

Remark 3.3 (Stabilization parameter). In order to obtain the energy stability estimates in (3.7a)
and (3.7b), we only require the stabilization parameter τ̄ in (2.4) to be strictly positive, whereas the
stabilization parameter of the interior-penalty DG method in [2] for the Westervelt equation is assumed
to be “sufficiently large”. In particular, there are no polynomial inverse estimates involved in the proof
of Theorem 3.2.

3.2 A priori error estimates

In this section, we carry out an a priori error analysis for semi-discrete formulation (3.2). To do so, we

first recall the properties of some special HDG projections. For all ǫ > 0, let PM : H
1
2
+ǫ(Th) → Mp

h be

the L2-orthogonal projection in Mp
h, defined for all u ∈ H

1
2
+ǫ(Th) as

(PMu− u, µh)0,(∂Th)◦ = 0 ∀µh ∈ Mp
h, (3.8)

and let ΠHDG := (ΠS ,ΠQ) : H
1
2
+ǫ(Th)×H

1
2
+ǫ(Th)d → Sph ×Q

p
h be the HDG projection in [8, Eq. (2.1)],

defined for all (ψ,
¯
v) ∈ H

1
2
+ǫ(Th)×H

1
2
+ǫ(Th)d and all K ∈ Th as

(ΠQ
¯
v −

¯
v,

¯
rh)0,K = 0 ∀

¯
rh ∈ Pp−1(K)d, (3.9a)

(ΠSψ − ψ,wh)0,K = 0 ∀wh ∈ Pp−1(K), (3.9b)
(
(Π̂Q

¯
v −

¯
v) ·

¯
nK , µh

)
0,f

= 0 ∀ facets F ⊂ ∂K, ∀µh ∈ Pp(F ), (3.9c)
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where
Π̂Q

¯
v ·

¯
nK := ΠQ

¯
v ·

¯
nK − τ(ΠSψ − PMψ) on ∂K.

Let (ψ,
¯
v) be the solution to the continuous Westervelt equation in (1.2), and let (ψh,

¯
vh) be the

solution to semi-discrete formulation (3.2) for the linearized problem in (3.1) with
¯
Υ = 0 and ϕ = 0.

We define the following error functions

εψ := ψ − ψh, ε
¯
v :=

¯
v −

¯
vh, ελ := ψ − λh, (3.10a)

ξψ := ΠSψ − ψ, ξ
¯
v
:= ΠQ

¯
v −

¯
v, ξλ := PMψ − ψ, (3.10b)

ηψ,h := ΠSψ − ψh, η
¯
v,h := ΠQ

¯
v −

¯
vh, ηλ,h := PMψ − λh, (3.10c)

and recall the approximation properties of ΠHDG in [8, Thm. 2.1].

Lemma 3.4 (Approximation properties of ΠHDG). Suppose p ≥ 0, τ|∂K is nonnegative, and τmax
K :=

max τ|∂K > 0. Then, ΠHDG(ψ,
¯
v) = (ΠSψ,ΠQ

¯
v) is well defined. Furthermore, there is a constant CΠ > 0

independent of K and τ such that

‖ξ
¯
v
‖L2(K) ≤ CΠ

(
h
s
¯
v+1

K |
¯
v|
H
s
¯
v+1

(K)d
+ h

sψ+1
K τ⋆K |ψ|Hsψ+1(K)

)
,

‖ξψ‖L2(K) ≤ CΠ

(
h
sψ+1
K |ψ|Hsψ+1(K) +

h
s
¯
v+1

K

τmax
K

|∇ ·
¯
v|Hs¯v (K)

)
,

for sψ , s
¯
v ∈ [0, p] and (ψ,

¯
v) ∈ Hsψ+1(K)×Hs

¯
v+1(K)d. Above, τ⋆K := max τ|∂K\F⋆

, where F ⋆ is a facet
of K at which τ|∂K is maximum.

For the single-facet choice in (2.4), we have that τ⋆K = 0 and τmax
K = τ̄ for all K ∈ Th. In particular,

the error bound for ξ
¯
v
does not depend on the regularity of ψ.

The following lemma is crucial for the error analysis of HDG methods.

Lemma 3.5. For all (ψ,
¯
v) ∈ H

1
2
+ǫ(Th)×H1(Th)d, it holds

bh(wh, ξ
¯
v
) = sh(wh, ξψ) ∀wh ∈ Sph. (3.12)

Proof. This identity is an immediate consequence of the weak commutativity property in [8, Prop. 2.1].

By the consistency of the proposed method and recalling the tilde (∼) notation from (2.5), the
following error equations are verified:

mh(ε
¯
v,
¯
rh) + bh(εψ,

¯
rh) + eh(ελ,

¯
rh) = 0 ∀

¯
rh ∈ Q

p
h,

mh((1 + 2kαh)∂ttεψ, wh)− c2bh(wh, ε̃
¯
v)

+c2sh(ε̃ψ, wh) + c2fh(ε̃λ, wh) = −mh(2k(∂tψ − αh)∂ttψ,wh) ∀wh ∈ Sph,
−eh(µh, ε

¯
v) + fh(µh, εψ) + gh(ελ, µh) = 0 ∀µh ∈ Mp

h.

We are in a position to obtain a priori error bounds for the semi-discrete linearized formulation
in (3.2) with respect to the continuous solution to the Westervelt equation in (1.2).

Theorem 3.6 (Error bounds for the semi-discrete linearized formulation). Under the assumptions of
Theorem 3.2, the following error bounds are satisfied:

sup
t∈(0,T )

(
c2

2
‖ε

¯
v‖2L2(Ω)d +

1

2
‖
√
1 + 2kαh∂tεψ‖2L2(Ω)

)

≤ sup
t∈(0,T )

(
c2‖ξ

¯
v
‖2L2(Ω)d + ‖

√
1 + 2kαh∂tξψ‖2L2(Ω)

)
+ 2(1− σ0)

−1
(
E(0)
h [ηψ,h,η

¯
v,h, ηλ,h](0)

+
T

2γ0(1− 2|k|α)‖ϕ̂‖
2
L2(0,T ;L2(Ω)) +

(
δ

4
+
c2T

2σ0

)
‖∂tξ

¯
v
‖2L2(0,T ;L2(Ω)d)

)
, (3.14a)

sup
t∈(0,T )

(
c2

2
‖∂tε

¯
v‖2L2(Ω)d +

1

2
‖
√
1 + 2kαh∂ttεψ‖2L2(Ω)

)

≤ sup
t∈(0,T )

(
c2‖∂tξ

¯
v
‖2L2(Ω)d + ‖

√
1 + 2kαh∂ttξψ‖2L2(Ω)

)
+ 2(1− σ0)

−1
(
E(1)
h [ηψ,h,η

¯
v,h, ηλ,h](0)
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+
T

2γ0(1− 2|k|α)‖∂tϕ̂‖
2
L2(0,T ;L2(Ω)) +

(
δ

4
+
c2T

2σ0

)
‖∂ttξ

¯
v
‖2L2(0,T ;L2(Ω)d)

)
, (3.14b)

where ϕ̂ ∈ H1(0, T ;Sph) is given by

ϕ̂ = Π0 [(1 + 2kαh)∂ttξψ + 2k(∂tψ − αh)∂ttψ] , (3.15)

with Π0 denoting the L2(Ω)-orthogonal projection in Sph.

Proof. We only present the proof of the error bound in (3.14a), as the proof of (3.14b) is similar.
We split the error functions in (3.10a) as

εψ = ηψ,h − ξψ, ε
¯
v = η

¯
v,h − ξ

¯
v
, ελ = ηλ,h − ξλ.

The definition of the HDG projections in (3.8) and (3.9) implies that, for all t ∈ (0, T ], the discrete
error functions (ηψ,h(·, t),η

¯
v,h(·, ), ηλ,h(·, t)) ∈ (Sph,Q

p
h,M

p
h) solve a semi-discrete linearized problem as

in (3.2). More precisely, they satisfy the following equations for all (wh,
¯
rh, µh) ∈ (Sph,Q

p
h,M

p
h):

mh(η
¯
v,h,¯

rh) + bh(ηψ,h,
¯
rh) + eh(ηλ,h,

¯
rh) = −(ξ

¯
v
,
¯
rh)0,Ω (3.16a)

mh((1 + 2kαh)∂ttηψ,h, wh)− c2bh(wh, η̃
¯
v,h) + c2sh(η̃ψ,h, wh) + c2fh(η̃λ,h, wh) = (ϕ̂, wh)0,Ω, (3.16b)

−eh(µh,η
¯
v,h) + fh(µh, ηψ,h) + gh(ηλ,h, µh) = 0, (3.16c)

where ϕ̂ ∈ H1(0, T ;Sph) is a lifting function defined by the following projection:

(ϕ̂, wh)0,Ω := mh((1 + 2kαh)∂ttξψ, wh)+mh(2k(∂tψ − αh)∂ttψ,wh)

− c2bh(wh, ξ̃
¯
v
) + c2sh(ξ̃ψ , wh) + c2fh(ξ̃λ, wh) ∀wh ∈ Sph.

From the definition of PM in (3.8) and identity (3.12), we deduce that

fh(ξ̃λ, wh) = 0 and − bh(wh, ξ̃
¯
v
) + sh(ξ̃ψ , wh) = 0 ∀wh ∈ Sph,

which implies that ϕ̂ satisfies (3.15).
The desired bound is then obtained from triangle inequality and energy estimate (3.7a) in Theorem 3.2.

3.3 Choice of the discrete initial conditions

All the results presented so far are valid for any choice of the discrete initial conditions. However, in
order to show optimal convergence rates for the error in the low- and high-order energy norms, we assume

that ψ0, ψ1 ∈ H2(Ω) ∩H1
0 (Ω) and choose the discrete initial conditions ψ

(i)
h (i = 0, 1) as the solution to

the following discrete HDG elliptic problem: find (ψ
(i)
h ,

¯
v
(i)
h , λ

(i)
h ) ∈ Sph ×Q

p
h ×Mp

h such that

mh(
¯
v
(i)
h ,

¯
rh) + bh(ψ

(i)
h ,

¯
rh) + eh(λ

(i)
h ,

¯
rh) = 0 ∀

¯
rh ∈ Q

p
h, (3.17a)

−bh(wh,
¯
v
(i)
h ) + sh(ψ

(i)
h , wh) + fh(λ

(i)
h , wh) = (−∆ψi, wh)0,Th ∀wh ∈ Sph, (3.17b)

−eh(µh,
¯
v
(i)
h ) + fh(µh, ψ

(i)
h ) + gh(λ

(i)
h , µh) = 0 ∀µh ∈ Mp

h. (3.17c)

This choice of the discrete initial conditions can be interpreted as a HDG variant of the well-known Ritz
projection, which was used in the numerical analysis for the strongly damped Westervelt equation in [33].

In next lemma, we provide bounds for the terms containing the discrete errors (ηψ,h,η
¯
v,h, ηλ,h) on

the right-hand side of the a priori bounds (3.14a) and (3.14b).

Lemma 3.7 (Estimates at t = 0). Assume that ψ0, ψ1 ∈ H2(Th) ∩ H1
0 (Ω), and the discrete initial

conditions are chosen as in (3.17). Then, the following bounds hold:

E(0)
h [ηψ,h,η

¯
v,h, ηλ,h](0) ≤

(1 + 2kα)

2
‖ΠSψ1 − ψ

(1)
h ‖2L2(Ω) +

c2

2
‖ξ

¯
v
(·, 0)‖2L2(Ω)d , (3.18a)

E(1)
h [ηψ,h,η

¯
v,h, ηλ,h](0) ≤

c2

2
‖∂tξ

¯
v
(·, 0)‖2L2(Ω)d +

(1 + 2kα)2

(1− 2kα)
‖∂ttξψ(·, 0)‖2L2(Ω)
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+
4k2

1− 2kα
‖(∂tψ − αh)(·, 0)∂ttψ(·, 0)‖2L2(Ω). (3.18b)

Moreover, if the domain Ω is such that

ϕ ∈ H1
0 (Ω), ∆ϕ ∈ L2(Ω) =⇒ ϕ ∈ H2(Ω), (3.19)

then, there exists a constant C∗ > 0 independent of h and δ such that

‖ΠSψ1 − ψ
(1)
h ‖L2(Ω) ≤ C∗h‖∂tξ

¯
v
(·, 0)‖L2(Ω)d . (3.20)

Proof. By using the nondegeneracy assumption in (3.3), the low-order bound in (3.18a) can be proven
as in [6, Lemma 3.6] for the linear wave equation, whereas estimate (3.20) follows from [8, Thm. 4.1]. In

contrast to [6, Lemma 3.6], due to the choice of ψ
(1)
h in (3.17), the term ∂tηψ,h(·, 0) = ΠSψ1 − ψ

(1)
h does

not vanish.
As for bound (3.18b), proceeding again as in [6, Lemma 3.6], we get

E(1)
h [ηψ,h,η

¯
v,h, ηλ,h](0) ≤

1

2
‖
√
1 + 2kαh(·, 0)∂ttηψ,h(·, 0)‖2L2(Ω) +

c2

2
‖∂tξ

¯
v
(·, 0)‖L2(Ω)d . (3.21)

Hence, it only remains to bound the first term on the right-hand side of (3.21). To do so, we
choose wh = ∂ttηψ,h(·, 0) in (3.16b) for t = 0 (the explicit evaluation at t = 0 is omitted in the subsequent
steps), which leads to the following identity

‖
√
1 + 2kαh∂ttηψ,h‖2L2(Ω) = c2

(
bh(∂ttηψ,h,η

¯
v,h)− sh(ηψ,h, ∂ttηψ,h)− fh(ηλ,h, ∂ttηψ,h)

)

+ δ
(
bh(∂ttηψ,h, ∂tη

¯
v,h)− sh(∂tηψ,h, ∂ttηψ,h)− fh(∂tηλ,h, ∂ttηψ,h)

)

+ (ϕ̂, ∂ttηψ,h)0,Ω,

where ϕ̂ ∈ Sph(Th) is defined in (3.15).

The choice of the discrete initial conditions ψ
(i)
h (i = 0, 1) in (3.17), the definition of PM in (3.8), and

identity (3.12) imply that

bh(∂ttηψ,h,η
¯
v,h)− sh(ηψ,h, ∂ttηψ,h)− fh(ηλ,h, ∂ttηψ,h) = 0,

bh(∂ttηψ,h, ∂tη
¯
v,h)− sh(∂tηψ,h, ∂ttηψ,h)− fh(∂tηλ,h, ∂ttηψ,h) = 0.

Therefore, by using the Cauchy-Schwarz inequality and the stability of the L2(Ω)-orthogonal projec-
tion Π0, we have

1

2
‖
√
1 + 2kαh∂ttηψ,h‖2L2(Ω) ≤

1

2
‖(1 + 2kαh)

− 1
2 ϕ̂‖2L2(Ω)

≤ (1 − 2kα)−1
(
(1 + 2kα)2‖∂ttξψ(·, 0)‖2L2(Ω) + 4k2‖(∂tψ − αh)(·, 0)∂ttψ(·, 0)‖2L2(Ω)

)
,

which, together with bound (3.21), completes the proof.

3.4 h-convergence

In order to obtain optimal h-convergence rates in Theorem 3.8 below for the error in the low- and high-
order energy norms, we will assume that the nonlinear Westervelt equation in (1.2) has a regular enough
solution. We refer the reader to [19, 20] for δ-uniform analyses of the Westervelt equation. Higher-
order regularity of the exact solution follows from [24, Thm. 2.2] under stronger regularity and smallness
assumptions on the initial conditions, and higher-order compatibility of the initial and boundary data.

Henceforth, we assume that h < 1. We will also make the following assumption on how well the semi-
discrete coefficient αh approximates ∂tψ. This assumption will later be verified by means of a fixed-point
argument.

Assumption 2. For given sψ, s
¯
v ∈ [0, p], we assume that the semi-discrete coefficient αh and its time

derivative ∂tαh approximate ∂tψ and ∂ttψ, respectively, up to the following accuracy:

‖∂tψ − αh‖L∞(0,t;L2(Ω)) ≤ C∗

(
hsψ+1‖ψ‖H2(0,t;Hsψ+1(Ω)) + hs¯v+1‖

¯
v‖

H2(0,t;H
s
¯
v+1

(Ω)d)

)
,

‖∂ttψ − ∂tαh‖L2(0,t;L2(Ω)) ≤ C∗

(
hsψ+1‖ψ‖H3(0,t;Hsψ+1(Ω)) + hs¯v

+1‖
¯
v‖H3(0,t;H

s
¯
v+1

(Ω)d)

)
,
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for all t ∈ [0, T ], where the constant C∗ > 0 does not depend on h or δ.
To establish the higher-order-in-time error estimate in (3.23b) below, we make a uniform boundedness

assumption on the time derivative of the linear coefficient αh, namely, we require that

‖∂tαh‖L2(0,T ;L∞(Ω)) ≤ α̌, (3.22)

for some positive constant α̌ independent of h and δ.

The smallness assumption in (3.22) matches the one made in [29, Assumpt. W1] for the analysis of
the mixed FEM approximation of the Westervelt equation.

Theorem 3.8 (Error estimate for the semi-discrete linearized problem). Let h ∈ (0, h) and let the
assumptions of Theorem 3.2 and Assumption 2 hold. Let additionally ψ ∈ H3(0, T ;H1

0 (Ω) ∩Hsψ+1(Ω))
for some sψ ∈ [0, p] and

¯
v ∈ H3(0, T ;Hs

¯
v+1(Ω)d) for some s

¯
v ∈ [0, p] be the solution to the IBVP for

the Westervelt equation in (1.2). Let also Ω be such that the regularity condition in (3.19) holds, and the
discrete initial condition be chosen as in Section 3.3. Then,

sup
t∈(0,T )

(
‖ε

¯
v‖2L2(Ω)d + ‖∂tεψ‖2L2(Ω)

)

.
(
h2sψ+2‖ψ‖2

H2(0,t;Hsψ+1(Ω))
+ h2s¯v+2‖

¯
v‖2

H2(0,t;H
s
¯
v+1

(Ω)d)

)(
1 + ‖∂ttψ‖2L2(0,T ;L∞(Ω))

)
, (3.23a)

and

sup
t∈(0,T )

(
‖∂tε

¯
v‖2L2(Ω)d + ‖∂ttεψ‖2L2(Ω)

)
.
(
h2sψ+2‖ψ‖2

H3(0,t;Hsψ+1(Ω))

+ h2s¯v+2‖
¯
v‖2

H3(0,t;H
s
¯
v+1

(Ω)d)

)(
1 + ‖∂ttψ‖2L∞(0,T ;L∞(Ω)) + ‖∂tttψ‖2L2(0,T ;L∞(Ω))

)
, (3.23b)

where the hidden constants are independent of h and δ.

Proof. We start from the estimates in Theorem 3.6. We then combine them with Lemma 3.7, the Hölder
inequality, and the approximation properties in Lemma 3.4 of the HDG projection. Furthermore, the
terms involving the forcing function ϕ̂ in (3.15) are estimated by using the Cauchy-Schwarz and the
Hölder inequalities as follows

‖ϕ̂‖L2(0,T ;L2(Ω)) ≤ ‖1 + 2kαh‖L∞(0,T ;L∞(Ω))‖∂ttξψ‖L2(0,T ;L2(Ω))

+ 2|k|‖∂tψ − αh‖L∞(0,T ;L2(Ω))‖∂ttψ‖L2(0,T ;L∞(Ω)),

‖∂tϕ̂‖L2(0,T ;L2(Ω)) ≤ ‖∂tαh‖L2(0,T ;L∞(Ω))‖∂ttξψ‖L∞(0,T ;L2(Ω))

+ ‖1 + 2kαh‖L∞(0,T ;L∞(Ω))‖∂tttξψ‖L2(0,T ;L2(Ω)),

+ ‖∂ttψ − ∂tψh‖L2(0,T ;L2(Ω))‖∂ttψ‖L∞(0,T ;L2(Ω))

+ ‖∂tψ − αh‖L∞(0,T ;L2(Ω))‖∂tttψ‖L2(0,T ;L∞(Ω)).

Finally, the terms involving the semi-discrete coefficient αh can be bounded using Assumption 2.
The following estimates are then obtained:

sup
t∈(0,T )

(
‖ε

¯
v‖2L2(Ω)d + ‖∂tεψ‖2L2(Ω)

)

. h2s¯v
+2
(
|
¯
v(·, 0)|2Hs¯v+1

(Ω)d + h |∂t
¯
v(·, 0)|2Hs¯v+1

(Ω)d + |∇ · (∂tt
¯
v)|2L2(0,T ;H

s
¯
v (Ω))

+ sup
t∈(0,T )

|
¯
v|2
H
s
¯
v+1

(Ω)d
+ sup
t∈(0,T )

|∇ · (∂t
¯
v)|2Hs¯v (Ω) + |∂t

¯
v|2
L2(0,T ;H

s
¯
v+1

(Ω)d)

+ ‖
¯
v‖2

H2(0,T ;H
s
¯
v+1

(Ω)d)

(
1 + ‖∂ttψ‖2L2(0,T ;L∞(Ω))

))

+ h2sψ+2
(

sup
t∈(0,T )

|∂tψ|2Hsψ+1(Ω) + |∂ttψ|2L2(0,T ;Hsψ+1(Ω)) + ‖∂ttψ‖2L2(0,T ;Hsψ+1(Ω))

+ ‖ψ‖2
H2(0,T ;Hsψ+1(Ω))

‖∂ttψ‖2L2(0,T ;L∞(Ω))

)
,

sup
t∈(0,T )

(
‖∂tε

¯
v‖2L2(Ω)d + ‖∂ttεψ‖2L2(Ω)

)
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. h2s¯v+2
(
|∇ · (∂tt

¯
v)(·, 0)|2Hs¯v (Ω) + |∂t

¯
v(·, 0)|2

H
s
¯
v+1

(Ω)d
+ sup
t∈(0,T )

|∂t
¯
v|2
H
s
¯
v+1

(Ω)d

+ sup
t∈(0,T )

|∇ · (∂tt
¯
v)|2Hs¯v (Ω) + |∂tt

¯
v|2
L2(0,T ;H

s
¯
v+1

(Ω)d)
+ ‖∇ · (∂tt

¯
v)‖2L∞(0,T ;H

s
¯
v (Ω)d)

+ ‖∇ · (∂ttt
¯
v)‖2L2(0,T ;H

s
¯
v (Ω)d) + ‖

¯
v‖2

H3(0,T ;H
s
¯
v+1

(Ω)d)
‖∂tttψ‖2L2(0,T ;L∞(Ω))

)

+ h2sψ+2
(
|∂ttψ(·, 0)|2Hsψ+1(Ω) + sup

t∈(0,T )

|∂ttψ|2Hsψ+1(Ω) + ‖∂tttψ‖2L2(0,T ;Hsψ+1(Ω))

+ ‖∂ttψ‖2L∞(0,T ;Hsψ+1(Ω))
+ ‖∂tttψ‖2L2(0,T ;Hsψ+1(Ω))

+ ‖ψ‖2
H2(0,T ;Hsψ+1(Ω))

‖∂ttψ‖2L∞(0,T ;L∞(Ω))

+ ‖ψ‖2
H3(0,T ;Hsψ+1(Ω))

‖∂tttψ‖2L2(0,T ;L∞(Ω))

)
,

where the hidden constants are independent of h and δ. Using Sobolev embeddings H2(0, T ) →֒ C1([0, T ])
and H3(0, T ) →֒ C2([0, T ]), and the fact that h ∈ (0, h), we get the desired result.

4 Analysis of the semi-discrete HDG formulation for the West-

ervelt equation

We are now in a position to analyze the nonlinear semi-discrete formulation in (2.6). The main idea
consists of employing a Banach fixed-point argument applied to the mapping

F : BF-P ∋ (ψ∗
h, ¯
v∗
h) 7→ (ψh,

¯
vh),

(ψh,
¯
vh) being the two first components (i.e., we omit the λh component, which is uniquely determined

by (ψh,
¯
vh); see also Remark 4.5 bellow) of the unique solution to linear problem (3.2) with discrete

initial conditions as in Section 3.3,
¯
Υ = 0, ϕ = 0, and

αh = ∂tψ
∗
h

from

BF-P :=

{
(ψ∗
h, ¯
v∗
h) ∈W 2,∞(0, T ;Sph)×W 1,∞(0, T ;Qp

h) : (ψ
∗
h, ∂tψ

∗
h)|t=0

= (ψ0
h, ψ

1
h),

sup
t∈(0,T )

(
‖
¯
v −

¯
v∗
h‖2L2(Ω)d + ‖∂tψ − ∂tψ

∗
h‖2L2(Ω)

)

≤ C0

(
h2sψ+2‖ψ‖2

H2(0,T ;Hsψ+1(Ω))
+ h2s¯v

+2‖
¯
v‖2

H2(0,T ;H
s
¯
v+1

(Ω)d)

)
,

sup
t∈(0,T )

(
‖∂t

¯
v − ∂t

¯
v∗
h‖2L2(Ω)d + ‖∂ttψ − ∂ttψ

∗
h‖2L2(Ω)

)

≤ C1

(
h2sψ+2‖ψ‖2

H3(0,T ;Hsψ+1(Ω))
+ h2s¯v+2‖

¯
v‖2

H3(0,T ;H
s
¯
v+1

(Ω)d)

) }
,

(4.1)

which is a ball centered at the exact solution (ψ,
¯
v) ∈ H3(0, T ;H1

0 (Ω)∩Hsψ+1(Ω))×H3(0, T ;Hs
¯
v+1(Ω)d)

for some sψ, s
¯
v ∈ (d2 − 1, p]. In the definition of BF-P, C0 and C1 are positive constants independent of h

and δ that will be fixed in the proof of Theorem 4.1.
Next theorem concerns the existence and uniqueness of the solution to semi-discrete formulation (2.6).

Moreover, it provides optimal a priori error estimates due to the definition of the ball BF-P. We denote
by Ih the Lagrange interpolation operator in Sph. In particular, we will use the approximation result
in [3, Thm. 4.4.20] and the inverse estimate in [3, Thm. 4.5.11].

Theorem 4.1. Let δ ∈ [0, δ̄), p > d
2 − 1, and sψ, s

¯
v ∈ (d2 − 1, p]. Assume that (ψ,

¯
v) ∈ H3(0, T ;H1

0(Ω)∩
Hsψ+1(Ω))×H3(0, T ;Hs

¯
v+1(Ω)d) is the the solution to the Westervelt equation in (1.2) for suitable initial

conditions (ψ, ψt)|t=0
= (ψ0, ψ1). Furthermore, let the discrete initial conditions (ψh, ∂tψh)|t=0

be chosen
as in Section 3.3. Then, there exist T > 0,

h = h
(
‖ψ‖H3(0,T ;Hsψ+1(Ω)), ‖¯v‖H3(0,T ;H

s
¯
v+1

(Ω)d)

)
< 1, and 0 < M =M(k, T ),
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such that, for 0 < h < h and

∫ T

0

‖∂tttψ(s)‖2L∞(Ω)ds+ sup
t∈(0,T )

‖∂ttψ(t)‖2L∞(Ω) +

∫ T

0

‖∂ttψ(s)‖2L∞(Ω)ds+ sup
t∈(0,T )

‖∂tψ(t)‖2L∞(Ω) ≤M,

there is a unique solution (ψh,
¯
vh) ∈ BF-P to semi-discrete HDG formulation (2.6) for some con-

stants C0, C1 > 0 in the definition of BF-P that are independent of h and δ.

Proof. We proceed by using a Banach fixed-point argument. The ball BF-P is nonempty as it contains
the HDG projection of the exact solution thanks to the estimates given in Lemma 3.4.

We split the proof into two parts.

Part I: Self-mapping. Let (ψ∗
h, ¯
v∗
h) ∈ BF-P and set

(ψh,
¯
vh) = F(ψ∗

h, ¯
v∗
h).

To show the self-mapping property, we use the error estimates in Theorem 3.8. We first verify that its
assumptions hold. We start by considering the nondegeneracy assumption in (3.3). By using the triangle
inequality, the quasi-uniformity of the mesh, and the stability and inverse estimates in [3, Thm. 4.4.20,
Thm. 4.5.11] for the Lagrange interpolation operator, we obtain

‖αh‖L∞(0,T ;L∞(Ω)) ≤‖∂tψ∗
h − Ih∂tψ‖L∞(0,T ;L∞(Ω)) + ‖Ih∂tψ‖L∞(0,T ;L∞(Ω))

. h−d/2‖∂tψ∗
h − Ih∂tψ‖L∞(0,T ;L2(Ω)) + ‖Ih∂tψ‖L∞(0,T ;L∞(Ω))

. h−d/2‖∂tψ∗
h − ∂tψ‖L∞(0,T ;L2(Ω)) + h−d/2‖∂tψ − Ih∂tψ‖L∞(0,T ;L2(Ω))

+ ‖Ih∂tψ‖L∞(0,T ;L∞(Ω)).

(4.2)

Thus, we can guarantee that the nondegeneracy condition in (3.3) holds with

α = α = C
(
h
sψ+1−d/2‖ψ‖H3(0,T ;Hsψ+1(Ω)) + h

s
¯
v+1−d/2‖

¯
v‖H2(0,T ;H

s
¯
v+1

(Ω)d) +M1/2
)
∈
(
0,

1

2|k|
)
,

(4.3)
for sufficiently small M and h, and some positive constant C depending on C0 and C1, but not on h or δ.

Similarly, the smallness assumptions in (3.4) and (3.22) can be shown to hold provided M , h, and the
final time T are sufficiently small. Assumption 2 is naturally verified since (ψ∗

h, ¯
v∗
h) ∈ BF-P. Therefore,

Theorem 3.8 ensures the self-mapping property of F (i.e., F(BF-P) ⊆ BF-P) provided that C0 and C1 are
large enough, and M is sufficiently small.

Part II: Strict contractivity. Contractivity of the mapping F follows similarly as in [29, Thm. 5.1],
where the δ-robustness of the mixed FEM for the Westervelt equation was proven. Indeed, one can

obtain the contractivity of F with respect to the lower topology supt∈(0,T ) E(0)
h [·, ·, ·](t) by reducing M

and h. The arguments showing the closedness of BF-P with respect to the lower topology are analogous
to [20, Thm. 1.4]. This shows that the fixed-point problem has a unique solution in BF-P, which solves
the nonlinear problem (2.6)

Along the lines of the analysis performed in [32, §4] for the conforming FEM, we state here a corollary
of the previous existence and uniqueness theorem, which will be useful in Section 6.3 below for establishing
the rate of convergence as δ → 0+.

Corollary 4.2. Under the assumptions of Theorem 4.1, the solution (ψh,
¯
vh, λh) to (2.6) satisfies

‖∂ttψh‖L∞(0,T ;L∞(Ω)) ≤ C(‖ψ‖H3(0,T ;Hsψ+1(Ω)) + ‖
¯
v‖

H3(0,T ;H
s
¯
v+1

(Ω)d)
), (4.4)

where C > 0 does not depend on h or δ. Furthermore, the following bound holds

‖∂tψh‖L∞(0,T ;L∞(Ω)) ≤ α. (4.5)

Proof. The uniform-in-h-and-δ bounds follow from the use of inverse estimates as in (4.2).

We end this section showing that the solution to semi-discrete formulation (2.6) from Theorem 4.1
is energy stable. The next result assumes that the exact solution ψ ∈ C2([0, T );H1

0 (Ω) ∩H2(Ω)), which
holds due to the regularity assumptions in Theorem 4.1.

13



Lemma 4.3 (Energy stability). Assume that h > 0, the initial data ψ0, ψ1 belong to H2(Ω)∩H1
0 (Ω), the

discrete initial conditions are chosen as in (3.17), and the solution ψ to the Westervelt equation in (1.1)
belongs to C2([0, T );H1

0 (Ω) ∩ H2(Ω)). Then, there exists a constant CS > 0 independent of h ∈ (0, h)
and δ ∈ [0, δ) such that

sup
t∈(0,T )

E(0)
h [ψh,

¯
vh, λh](t) ≤ CS(‖ψ0‖H2(Ω) + ‖ψ1‖H2(Ω)), (4.6a)

sup
t∈(0,T )

E(1)
h [ψh,

¯
vh, λh](t) ≤ CS(‖ψ1‖H2(Ω) + ‖ψtt(·, 0)‖H2(Ω)), (4.6b)

with αh = ∂tψh in the definition of E(0)
h [ψh,

¯
vh, λh](t) and E(1)

h [ψh,
¯
vh, λh](t).

Proof. The proof follows by considering the solution to the nonlinear semi-discrete problem in (2.6) as
the solution to the linearized problem in (3.2) with αh = ∂tψh. We can then proceed similarly as in
Section 3.1 to deduce that (ψh,

¯
vh, λh) ∈ W 3,1(0, T ;Sph) ×W 3,1(0, T ;Qp

h) ×W 3,1(0, T ;Mp
h). By using

similar arguments to those for the low- and high-order energy stability estimates in Theorem 3.2, we get

sup
t∈(0,T )

E(0)
h [ψh,

¯
vh, λh](t) ≤ (1− σ0)

−1E(0)
h [ψh,

¯
vh, λh](0), (4.7a)

sup
t∈(0,T )

E(1)
h [ψh,

¯
vh, λh](t) ≤ (1− σ0)

−1E(1)
h [ψh,

¯
vh, λh](0). (4.7b)

Therefore, it only remains to bound the initial discrete energies.
The following estimate follows from the stability of the discrete HDG elliptic problem in (3.17)

‖
¯
v
(i)
h ‖2L2(Ω)d + ‖τ 1

2 (λ
(i)
h − ψ

(i)
h )‖2L2((∂Th)◦)

+ ‖τ 1
2ψ

(i)
h ‖2L2((∂Th)D)

≤ 1

2
‖∆ψi‖2L2(Th)

+
1

2
‖ψ(i)

h ‖2L2(Ω) for i = 0, 1.
(4.8)

By using the triangle inequality and the error estimate in [4, Cor. 2.7] for second-order elliptic prob-
lems, we have

‖ψ(i)
h ‖L2(Ω) ≤ ‖ψ(i)

h − ψi‖L2(Ω) + ‖ψi‖L2(Ω) ≤ max{1, Ch2}‖ψi‖H2(Ω), (4.9)

for i = 0, 1. This shows that we can estimate the right-hand side of (4.8) independently of h. In particular,
we can estimate

‖
√
1 + 2k∂tψh(·, 0)ψ(1)

h ‖2L2(Ω) ≤ (1 + 2kα)(‖ψ1‖L2(Ω) + ‖ψ(1)
h − ψ1‖L2(Ω))

≤ (1 + 2kα)max{1, Ch2}‖ψ1‖H2(Th),
(4.10)

for some positive constant C independent of h. Bound (4.6a) then follows by combining (4.7a), bounds (4.8)
and (4.9) for i = 0, and (4.10).

By the triangle inequality, we get

‖
√
1 + 2k∂tψh(·, 0)∂ttψh(·, 0)‖L2(Ω) ≤ ‖

√
1 + 2k∂tψh(·, 0)∂ttψ(·, 0)‖L2(Ω)

+ ‖
√
1 + 2k∂tψh(·, 0)∂ttξψ(·, 0)‖L2(Ω)

+ ‖
√
1 + 2k∂tψh(·, 0)∂ttηψ,h(·, 0)‖L2(Ω).

(4.11)

The third term in the inequality above satisfies

‖
√
1 + 2k∂tψh(·, 0)∂ttηψ,h(·, 0)‖2L2(Ω) ≤ E(1)

h [ηψ,h,η
¯
v,h, ηλ,h](0),

which can be bounded using the approximation properties in Lemma 3.4 of the HDG projection ΠHDG

due to (3.18b). Moreover, the following estimates hold

‖∂tξ
¯
v
(·, 0)‖L2(Ω) . h‖ψ1‖H2(Ω),

‖∂ttξψ(·, 0)‖L2(Ω) . h
(
|∂ttψ(·, 0)|H1(Ω) + ‖∂ttψ(·, 0)‖H2(Ω)

)
.

Introducing these bounds into (4.11), combining it with bounds (4.8) and (4.9) for i = 1, and using
the nondegeneracy of ∂tψh complete the proof of bound (4.6b).
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Remark 4.4 (Minimum degree of approximation). The condition p > d
2 − 1 in the statement of The-

orem 4.1, combined with the restriction d ∈ {2, 3} on the spatial dimension, imposes that the degree of
approximation must satisfy p ≥ 1.

Nevertheless, in the case d = 2, we can ensure the nondegeneracy of ∂tψh even for p = d
2 − 1 = 0, by

assuming smallness of the exact solution ‖ψ‖H3(0,T ;Hsψ+1(Ω)) + ‖
¯
v‖

H2(0,T ;H
s
¯
v+1

(Ω)d)
; see equation (4.3).

This is relevant in practice, as is shown in the numerical experiments of Section 6.

Remark 4.5 (Omission of λh). In the definition of the ball BF-P, we have omitted the component λh of
the solution to the linearized semi-discrete problem in (3.2), as Theorem 3.8 does not provide an error
control for this component. Nonetheless, given the fixed-point (ψh,

¯
vh) of the mapping F , which solves

the nonlinear semi-discrete formulation in (2.6), the component λh is uniquely determined by (ψh,
¯
vh)

through (2.6c). In fact, one can also define the mapping F in terms of the first component ψh only, as
the nonlinearity solely depends on such a component.

5 Asymptotic behaviour at the vanishing viscosity limit

This section is dedicated to the proof of convergence of the numerical scheme as δ → 0+. We denote in

this section by (ψ
(δ)
h ,

¯
v
(δ)
h , λ

(δ)
h ) the solution to semi-discrete formulation (2.6), where we have stressed

the dependence of the solution on the parameter δ. Then, we denote the difference

(ψh, ¯
vh, λh) = (ψ

(δ)
h − ψ

(0)
h ,

¯
v
(δ)
h −

¯
v
(0)
h , λ

(δ)
h − λ

(0)
h ),

which satisfies the following system of equations:

mh(
¯
vh,¯

rh) + bh(ψh,¯
rh) + eh(λh,

¯
rh) = 0 ∀

¯
rh ∈ Q

p
h, (5.1a)

mh((1 + 2k∂tψ
(δ)
h )∂ttψh, wh) +mh(2k∂tψh∂ttψ

(0)
h , wh)

−c2bh(wh,
¯
vh) + c2sh(ψh, wh) + c2fh(λh, wh) = δF (wh) ∀wh ∈ Sph, (5.1b)

−eh(µh,
¯
vh) + fh(µh, ψh) + gh(λh, µh) = 0 ∀µh ∈ Mp

h, (5.1c)

with zero initial conditions. Above, the forcing term F (wh) is given by

F (wh) = bh(wh, ∂t
¯
v
(δ)
h )− sh(∂tψ

(δ)
h , wh)− fh(∂tλ

(δ)
h , wh).

Theorem 5.1 (δ-convergence). Let the assumptions of Theorem 4.1 hold, and let h and T be fixed

as in Theorem 4.1. Then, the family of solutions
{
(ψ

(δ)
h ,

¯
v
(δ)
h , λ

(δ)
h )
}
δ∈[0,δ̄)

converges to (ψ
(0)
h ,

¯
v
(0)
h , λ

(0)
h )

as δ → 0+, and

sup
t∈(0,T )

E(0)
h (t)[ψh, ¯

vh, λh] ≤ C(T )δ, (5.2a)

sup
t∈(0,T )

‖ψh‖2L2(Ω) ≤ C(T )δ2, (5.2b)

where C(T ) is a generic constant that depends exponentially on T .

Proof. We prove each estimate separately.

Proof of estimate (5.2a). The proof follows by a similar energy argument to that used to establish
the low-order stability bound in Appendix A. We differentiate (5.1a) in time once and then take the test
functions

¯
rh =

¯
vh, wh = ∂tψh, and µh = ∂tλh. Multiplying the first and third equations by c2, and

summing the results, we get the identity

mh((1+2k∂tψ
(δ)
h )∂ttψh, ∂tψh) +mh(2k∂tψh∂ttψ

(0)
h , ∂tψh)

+ c2
(
mh(∂t

¯
vh, ¯

vh) + sh(ψh, ∂tψh) + fh(λh, ∂tψh) + fh(∂tλh, ψh) + gh(∂tλh, ∂tλh)
)

= δF (∂tψh).

(5.3)

We consider the following identities, which follow from the definition of the discrete bilinear forms in
Section 2:

mh((1 + 2k∂tψ
(δ)
h )∂ttψh, ∂tψh) =

1

2

d

dt
‖
√
1 + 2k∂tψ

(δ)
h ∂tψh‖2L2(Ω) −mh(2k∂ttψ

(δ)
h ∂tψh, ∂tψh),
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mh(∂t
¯
vh, ¯

vh) + sh(ψh, ∂tψh) + fh(λh, ∂tψh) + fh(∂tλh, ψh) + gh(∂tλh, ∂tλh)

=
1

2

d

dt

(
‖
¯
vh‖2L2(Ω)d + ‖τ 1

2 (λh − ψh)‖2L2((∂Th)◦)
+ ‖τ 1

2ψh‖2L2((∂Th)D)

)
.

Using Corollary 4.2, we can ensure that

∫ t

0

mh((1 + 2k∂tψ
(δ)
h )∂ttψh, ∂tψh)ds ≥

1− 2|k|α
2

‖∂tψh‖2L2(Ω) − 2|k|
∫ t

0

‖∂ttψ(δ)
h ‖L∞(Ω)‖∂tψh‖2L2(Ω)ds,

where the negative term on the right-hand side will be controlled using Grönwall’s inequality.
It thus remains to control the term δF (∂tψh). To this end, recall that the following equations hold

0 = −mh(∂t
¯
vh,¯

rh)− bh(∂tψh,¯
rh)− eh(∂tλh,

¯
rh) ∀

¯
rh ∈ Q

p
h,

F (wh) = bh(wh, ∂t
¯
v
(δ)
h )− sh(∂tψ

(δ)
h , wh)− fh(∂tλ

(δ)
h , wh) ∀wh ∈ Sph,

0 = eh(µh, ∂t
¯
v
(δ)
h )− fh(µh, ∂tψ

(δ)
h )− gh(∂tλ

(δ)
h , µh) ∀µh ∈ Mp

h.

Choosing
¯
rh = ∂t

¯
v
(δ)
h , wh = ∂tψh, and µh = ∂tλh above, and summing up the results yield the following

identity:

F (∂tψh) = −mh(∂t
¯
vh, ∂t¯

v
(δ)
h )− sh(∂tψ

(δ)
h , ∂tψh)− fh(∂tλ

(δ)
h , ∂tψh)

−fh(∂tλh, ∂tψ(δ)
h )− gh(∂tλ

(δ)
h , ∂tλh).

By the definition of (
¯
vh, ψh, λh) and the Young inequality, we get

F (∂tψh) =− ‖∂t
¯
v
(δ)
h ‖2L2(Ω)d − ‖τ 1

2 (∂tλ
(δ)
h − ∂tψ

(δ)
h )‖2L2((∂Th)◦)

− ‖τ 1
2 ∂tψ

(δ)
h ‖2L2((∂Th)D)

+
(
∂t
¯
v
(δ)
h , ∂t

¯
v
(0)
h

)
0,Ω

+
(
τ(∂tψ

(δ)
h − ∂tλ

(δ)
h ), ∂tψ

(0)
h − ∂tλ

(0)
h

)
0,(∂Th)◦

+
(
τ∂tψ

(δ)
h , ∂tψ

(0)
h

)
0,(∂Th)D

≤ 3c−2E(1)
h [ψ

(δ)
h ,

¯
v
(δ)
h , λ

(δ)
h ](t) + c−2E(1)

h [ψ
(0)
h ,

¯
v
(0)
h , λ

(0)
h ](t).

Moreover, for all t̃ ∈ (0, T ),

∫ t̃

0

F (∂tψh)dt ≤ 3c−2t̃

(
sup
t∈(0,t̃)

E(1)
h [ψ

(δ)
h ,

¯
v
(δ)
h , λ

(δ)
h ](t) + sup

t∈(0,t̃)

E(1)
h [ψ

(0)
h ,

¯
v
(0)
h , λ

(0)
h ](t)

)
.

Thus, by the energy stability estimates in Lemma 4.3, the right-hand side is uniformly bounded with
respect to both δ and h. Inserting the above estimates into (5.3) and using the Grönwall inequality yield
estimate (5.2a).

Proof of estimate (5.2b). We follow the approach in [27, §5.2, Thm. 2] for establishing asymptotic
behavior of wave equations in weak topologies. For simplicity of notation, we introduce the operator

It′ u(t) :=

{ ∫ t′
t u(s)ds if 0 ≤ t ≤ t′,
0 if t′ ≤ t ≤ T.

We can then manipulate the system of equations in (5.1) to obtain

mh(It′
¯
vh,¯

rh) + bh(It′ ψh,¯
rh) + eh(It′ λh,

¯
rh) = 0 ∀

¯
rh ∈ Q

p
h, (5.5a)

mh(∂ttψh + k∂t(∂tψh∂tψ
(δ)
h + ∂tψh∂tψ

(0)
h ), wh)

−c2bh(wh,
¯
vh) + c2sh(ψh, wh) + c2fh(λh, wh) = δF (wh) ∀wh ∈ Sph, (5.5b)

−eh(µh,
¯
vh) + fh(µh, ψh) + gh(λh, µh) = 0 ∀µh ∈ Mp

h, (5.5c)

where, in the second equation, we have used the identity

∂t(∂tψh∂tψ
(δ)
h + ∂tψh∂tψ

(0)
h ) = 2∂tψ

(δ)
h ∂ttψ

(δ)
h − 2∂tψ

(0)
h ∂ttψ

(0)
h .

We then choose the test functions
¯
rh =

¯
vh, wh = It′ ψh, and µh = It′ λh. Multiplying the first and third

equations in (5.5) by c2 and summing the results, we get the identity

mh(∂ttψh+k∂t(∂tψh∂tψ
(δ)
h + ∂tψh∂tψ

(0)
h ), It′ ψh)
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+ c2
(
mh(It′

¯
vh, ¯

vh) + sh(ψh, It′ ψh) + fh(λh, It′ ψh) + fh(It′ λh, ψh) + gh(λh, It′ λh)
)

= δF (It′ ψh),

which we integrate by parts in time on (0, t′) to obtain

∫ t′

0

mh([1 + k(∂tψ
(δ)
h + ∂tψ

(0)
h )]∂tψh, ψh)ds

+

∫ t′

0

c2
[
mh(It′

¯
vh, ¯

vh) + sh(ψh, It′ ψh) + 2fh(λh, It′ ψh) + gh(λh, It′ λh)
]
ds = δF (It′ ψh). (5.6)

For the first term on the left-hand side, we make use of the following identity:

mh([1 + k(∂tψ
(δ)
h + ∂tψ

(0)
h )]∂tψh, ψh) =

1

2

d

dt
‖
√
1 + k(∂tψ

(δ)
h + ∂tψ

(0)
h )ψh‖2L2(Ω)

−mh(k(∂ttψ
(δ)
h + ∂ttψ

(0)
h )ψh, ψh).

The positivity of 1 + k(∂tψ
(δ)
h + ∂tψ

(0)
h ) > 0 follows from bound (4.5) in Corollary 4.2. Further, by

using the Hölder inequality and bound (4.4), we obtain

mh(k(∂ttψ
(δ)
h + ∂ttψ

(0)
h )ψh, ψh) ≤‖∂ttψ(δ)

h + ∂ttψ
(0)
h ‖L∞(0,T ;L∞(Ω))‖ψh‖2L2(Ω)

.‖ψh‖2L2(Ω).

Since ∂t It′ u(t) = −u(t), we can write

mh(It′
¯
vh, ¯

vh) + sh(ψh, It′ ψh) + 2fh(λh, It′ ψh) + gh(λh, It′ λh)

=− 1

2

d

dt

(
‖ It′

¯
vh‖2L2(Ω)d + ‖τ 1

2 It′(λh − ψh)‖2L2((∂Th)◦)
+ ‖τ 1

2 It′ ψh‖2L2((∂Th)D)

)
.

It only remains to treat the forcing term F (It′ ψh). To this end, we proceed similarly as in the proof
of estimate (5.2a), and obtain

F (It′ ψh) =−mh(It′
¯
vh, ∂t¯

v
(δ)
h )− sh(∂tψ

(δ)
h , It′ ψh)

− fh(∂tλ
(δ)
h , It′ ψh)− fh(It′ λh, ∂tψ

(δ)
h )− gh(∂tλ

(δ)
h , It′ λh)

=−
(
It′

¯
vh, ∂t¯

v
(δ)
h

)
0,Ω

−
(
τ It′(λh − ψh), ∂tψ

(δ)
h − ∂tλ

(δ)
h

)
0,(∂Th)◦

−
(
τ It′ ψh, ∂tψ

(δ)
h

)
0,(∂Th)D

.
(
‖ It′

¯
vh‖L2(Ω)d + ‖τ 1

2 It′(λh − ψh)‖L2((∂Th)o) + ‖τ 1
2 It′ ψh‖L2((∂Th)D)

)
.

In the last line, we have used the uniform-in-δ estimate on the high-order energy E(1)
h [ψ

(δ)
h ,

¯
v
(δ)
h , λ

(δ)
h ] from

Lemma 4.3. Putting the above estimates into identity (5.6), we obtain

‖ψh(t′)‖2L2(Ω) + ‖ It′
¯
vh(0)‖2L2(Ω)d + ‖τ 1

2 It′(λh − ψh)(0)‖2L2((∂Th)◦)
+ ‖τ 1

2 It′ ψh(0)‖2L2((∂Th)D)

.

∫ t′

0

‖ψh‖2L2(Ω)ds+ δ

∫ t′

0

(
‖ It′

¯
vh‖L2(Ω)d + ‖τ 1

2 It′(λh − ψh)‖L2((∂Th)◦) + ‖τ 1
2 It′ ψh‖L2((∂Th)D)

)
ds,

(5.7)

where the hidden constant does not depend on δ or h.
In order to rewrite (5.7) in a suitable form so as to be able to use the Grönwall inequality, we introduce

the time-reversed operator Ĩt′ , which we define for an integrable function u and t ∈ (0, T ) by

Ĩt′u(t) := It′ u(t
′ − t).

By the definition of Ĩt′ , bound (5.7) can be conveniently rewritten as

‖ψh(t′)‖2L2(Ω) + ‖̃It′
¯
vh(t

′)‖2L2(Ω)d + ‖τ 1
2 Ĩt′(λh − ψh)(t

′)‖2L2((∂Th)o)
+ ‖τ 1

2 Ĩt′ψh(t
′)‖2L2((∂Th)D)

. δ2 +

∫ t′

0

(
‖ψh‖2L2(Ω) + ‖̃It′

¯
vh‖2L2(Ω)d + ‖τ 1

2 Ĩt′(λh − ψh)‖2L2((∂Th)◦)
+ ‖τ 1

2 Ĩt′ψh‖2L2((∂Th)D)

)
ds,

where we have additionally used the Young inequality to get δ2 on the right-hand side. The Grönwall
inequality yields then the desired result.
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6 Numerical experiments

In this section, we assess the accuracy and robustness of the proposed method. In Section 6.1, we present
some details for the implementation of the fully discrete scheme obtained by combining semi-discrete
formulation (2.6) with the Newmark time-marching scheme. The h- and δ-convergence of the proposed
method are illustrated in Sections 6.2 and 6.3, respectively. In Section 6.4, we present an example of the
effect of the nonlinearity parameter k on the solution.

Although our theory does not provide any superconvergence result, in the numerical experiments
below, we consider the following local postprocessing technique (see [6, §2.2]): given the numerical ap-
proximation (ψh,

¯
vh, λh) of the solution to (1.2) at some time t ≥ 0, we define ψ∗

h ∈ Sp+1(Th) such that,
for all K ∈ Th, it satisfies

∫

K

∇ψ∗
h · ∇qp+1dx =

∫

K ¯
vh · ∇qp+1dx ∀qp+1 ∈ Pp+1(K), (6.1a)

∫

K

ψ∗
hdx =

∫

K

ψhdx. (6.1b)

For the HDG discretization in [6] for the linear wave equation, the postprocessed variable ψ∗
h was

shown to superconverge with order O(hp+2) if p > 0. Such a superconvergence is also numerically
observed in Section 6.2 below for the nonlinear Westervelt equation.

An object-oriented MATLAB implementation of the fully discrete scheme described in the next section
was developed to carry out the numerical experiments in two-dimensional domains.

6.1 Fully discrete scheme

We use the predictor-corrector Newmark scheme in [22, §5.4.2] as time discretization. Let ∆t be a fixed
time step, tol > 0 be a given tolerance, smax be a maximum number of linear iterations, and (γ, β) be
the Newmark parameters with γ ∈ [0, 1] and β ∈ [0, 1/2]. In the numerical experiments below, it will be
useful to consider an inhomogeneous forcing term ϕ : QT → R. For convenience, we use the dot notation
for discrete approximations of time derivatives.

We provide some details for an efficient implementation of the method.

Step 1) Define the coefficient µ := c2(∆t)2β + δγ∆t and the number of time steps NT := T/∆t.

Step 2) Compute the following Schur complement matrices

Sψ = S +BTM−1B, Aλ = G+ ETM−1E,

Sλ,µ = G+ ETX − FTY, S̄λ = G+ ETX − FTY ,

where Rλ = F +BTM−1E, and the pairs (X, Y ) and (X, Y ) solve

{
(M + µSψ)Y = µRλ,

MX = E −BY.

{
SψY = Rλ,

MX = E −BY .
(6.2)

The matrix systems in (6.2) can be solved completely in parallel due to the block-diagonal
structure of the matrices M , M , and Sψ.

Step 3) Set the discrete initial conditions (Ψ
(0)
h ,V

(0)
h ,Λ

(0)
h ) and (

.
Ψ

(0)
h ,

.
V

(0)
h ,

.
Λ
(0)
h ) as in (3.17), and recall

the tilde notation in (2.5).

Step 4) Compute (
..
Ψ

(0)
h ,

..
Λ
(0)
h ) by solving the linear systems

Nh(
.
Ψ

(0)
h )

..
Ψ

(0)
h = −c2

(
SψΨ̃(0)

h +RλΛ̃
(0)
h

)
and Aλ

..
Λ
(0)
h = −RT

λ

..
Ψ

(0)
h ,

where Nh(·) is the block-diagonal matrix described in Remark 2.1.

Step 5) For n = 0, . . . , NT − 1, solve the nonlinear system of equations using the following iterative
scheme:
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Predictor step: Define the approximations

Ψ̂
(n+1)
h := Ψ

(n)
h +∆t

.
Ψ

(n)
h +

(∆t)2

2
(1− 2β)

..
Ψ

(n)
h , Λ̂

(n+1)
h := Λ

(n)
h +∆t

.
Λ
(n)
h +

(∆t)2

2
(1− 2β)

..
Λ
(n)
h ,

.̂
Ψ

(n+1)

h :=
.
Ψ(n) + (1 − γ)∆t

..
Ψ

(n)
h ,

.̂
Λ
(n+1)

h :=
.
Λ(n) + (1 − γ)∆t

..
Λ
(n)
h ,

˜̂
Ψ

(n+1)

h := Ψ̂
(n+1)
h +

δ

c2
.̂
Ψ

(n+1)

h ,
˜̂
Λ
(n+1)

h := Λ̂
(n+1)
h +

δ

c2
.̂
Λ
(n+1)

h ,

and the nth step vector

Ln := Φn+1 − c2
(
Sψ ˜̂Ψ

(n+1)

h +Rλ
˜̂
Λ
(n+1)

h

)
,

where Φn+1 is the vector representation of the forcing term ϕ at t = tn+1.

Nonlinear iterative solver: For s = 1, . . . , smax,

a) Compute: R(n+1,s) =
(
M −Nh(

.
Ψ

(n+1,s)
h )

) ..
Ψ

(n+1,s)
h + Ln.

b) Solve: (M + µSψ)Z(n+1,s) = R(n+1,s).

c) Solve: Sλ,µ
..
Λ
(n+1,s+1)
h = −RT

λZ
(n+1,s).

d) Solve: (M + µSψ)
..
Ψ

(n+1,s+1)
h = R(n+1,s) − µRλ

..
Λ
(n+1,s+1)
h .

e) Corrector step:
.
Ψ

(n+1,s+1)
h =

.̂
Ψ

(n+1)

h + γ∆t
..
Ψ

(n+1,s+1)
h .

f) Stopping criteria: If
‖Ψn+1,s+1

h −Ψn+1,s
h ‖

‖Ψn+1,s+1
h ‖

< tol, stop.

As before, the linear systems in substeps b) and d) can be solved in parallel due to the block-
diagonal structure of the matrix M + µSψ. Substep c) involves the solution of a statically
condensed linear system, where the unknowns are associated with degrees of freedom on (d−1)-
dimensional mesh facets only.

In all the experiments below we use tol = 10−10 and smax = 100.

6.2 h-convergence

In order to assess the accuracy in space of the proposed method, we consider the Westervelt equation
in (1.1) on the domain QT = (0, 1)2 × (0, T ), with parameters c = 100ms−1, δ = 6× 10−9ms−1, and k =
0.5s2m−2. We add a forcing term ϕ : QT → R and set the initial data such that the exact solution is
given by

ψ(x, y, t) = A sin(ωt) sin(ℓx) sin(ℓy), (6.3)

with A = 10−2m2s−1, ω = 3.5πHz, and ℓ = πm−1; cf. [29, §6].
We consider a set of structured simplicial meshes {Th}h>0 for the spatial domain Ω, which we exemplify

in Figure 2(left panel in the first row). We set the parameters (γ, β) = (1/2, 1/4) for the Newmark
scheme, which guarantee second-order accuracy in time and unconditional stability in the linear setting

(see, e.g., [17, §9.1.2]). The time step is chosen as ∆t = O(h
p+2

2 ), so as to balance the expected convergence
rates of order O(hp+2) for the postprocessed approximation ψ∗

h with the second-order accuracy of the
Newmark scheme.

In Figure 2, we show in log-log scale the following errors at the final time T = 1s

‖ψ(·, T )− ψ
(NT )
h ‖L2(Ω), ‖ψ(·, T )− ψ∗

h
(NT )‖L2(Ω), ‖

¯
v(·, T )−

¯
v
(NT )
h ‖L2(Ω)2 . (6.4)

For p = 0, 1, 2, optimal convergence rates of order O(hp+1) are obtained for the L2(Ω)-errors of ψh
and

¯
vh, which is in agreement with the a priori error estimates derived in Section 4 for the semi-discrete

HDG formulation. Moreover, when p > 0, superconvergence of order O(hp+2) is observed for the L2(Ω)-
error of the postprocessed variable ψ∗

h defined in (6.1).
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Figure 2: First panel: Example of the simplicial meshes used in the numerical examples. Remaining panels: h-
convergence of the errors in (6.4) at the final time T = 1s for the test case with exact solution (6.3). The numbers in the
yellow rectangles denote the experimental rates of convergence.

6.3 δ-convergence

We now validate the convergence of the method when the sound diffusivity parameter δ tends to zero.
To do so, we consider the Westervelt equation in (1.1) on the domain QT = (0, 1)2 × (0, T ), with
parameters c = 1ms−1 and k = 0.3s2m−2. The initial data are given by

ψ0(x, y) = 10−2 sin(πx) sin(πy), ψ1(x, y) = sin(πx) sin(πy), (6.5)

the spatial mesh is taken as in Figure 2(left panel in the first row), and the parameters (γ, β) and the
time step is chosen as in the previous experiment; cf. [14, §2.4.2]. We consider piecewise constant (p = 0)
and piecewise linear (p = 1) approximations, and δ = 10−2i with i = 1, . . . , 5.

In Figure 3, we show in log-log scale the following errors computed at the final time T = 1s

‖ψ(δ)
h − ψ

(0)
h ‖L2(Ω) and ‖

¯
v
(δ)
h −

¯
v
(0)
h ‖L2(Ω)2 . (6.6)

Convergence rates of order O(δ) are observed for both errors. For p = 1, these results are in agreement
with estimate (5.2b), and suggest that estimate (5.2a) may be not sharp. In fact, in [14, Thm. 2.2],
convergence rates of order O(δ) were established for the standard finite element method by exploiting
the relation

¯
vh = ∇ψh. Moreover, it is likely that the exact solution is more regular than assumed in

Theorem 4.1, in which case one could show full convergence rates of order O(δ) in (5.2a), by deriving
higher-order energy stability estimates.

6.4 Steepening of a wavefront

In this experiment, we illustrate the effect of the nonlinearity parameter k on the solution. We consider
the Westervelt equation in (1.1) on the domain QT = (0, 1)2 × (0, T ), with parameters c = 1500ms−1,
δ = 6 × 10−9ms−1, and k = −10s2m−2. We consider homogeneous initial conditions and the following
forcing term

ϕ(x, y, t) =
a√
σ
exp(−αt) exp

(
− (x− 0.5)2 + (y − 0.5)2

2σ2

)
, (6.7)
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Figure 3: δ-convergence of the errors in (6.6) at the final time T = 1s for the test case in Section 6.3.

where a = 400, α = 5× 104, and σ = 3× 10−2; cf. [29, §6].

We employ a simplicial mesh Th with h ≈ 8.83 × 10−2, a fixed time step ∆t = 10−6, and p = 5.
In order to deal with the steepening of the wave, the parameters for the Newmark scheme are chosen
as (γ, β) = (0.85, 0.45). In Figure 4(left panels), we show the approximation of ∂tψ obtained at t =
5× 10−5s and t = 2× 10−4s. In Figure 4(right panels), we compare the approximation of ∂tψ obtained
for the nonlinear Westervelt equation (k = −10) and the damped linear wave equation (k = 0) along the
line y = 0.5. A steepening at the wavefront of the solution is clearly observed for the nonlinear model.
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Figure 4: Results obtained at t = 5×10−5s (first row) and t = 2×10−4s (second row) for the test case in Section 6.4. Left

panels: Approximation of ∂tψ obtained for p = 5 and k = −10s2m−2. Right panels: Comparison of the approximations
obtained for the Westervelt equation (black lines) and the linear damped wave equation (red lines) along the line y = 0.5.

Since the forcing term ϕ in (6.7) is independent of δ, the δ-convergence estimates in Theorem 5.1
are still valid. In Figure 5, we show the errors in (6.6) obtained at t = 10−4s. Convergence rates of
order O(δ) are observed as in the numerical experiment of Section 6.3.
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Figure 5: δ-convergence of the errors in (6.6) at t = 10−4s for the test case in Section 6.4 with degree of approximation p =
5.

7 Conclusions

In this work, we have designed an asymptotic-preserving HDG method for the numerical simulation of
the quasilinear Westervelt equation. We built up a well-posedness and approximation theory for this
method, and illustrated our theoretical results with two-dimensional numerical experiments.

Optimal h-convergence rates of order O(hp+1) are proven for the approximation of the acoustic par-
ticle velocity

¯
v = ∇ψ, thus exceeding the expected convergence rates for most standard DG methods.

Moreover, we have proven the convergence of the discrete approximation to the vanishing viscosity limit
when the sound diffusivity parameter δ tends to zero. Such a result guarantees the robustness of the
method for small values of δ.

Our analysis imposes a restriction on the degree of approximation of the method, namely p ≥ 1.
However, in the numerical experiments, we have obtained convergence of the method with respect to h
and δ also for p = 0. This is most likely due to the fact that the numerical experiments were performed
for two-dimensional domains. Indeed, the case p = 0 is critical for dimension d = 2, as commented in
Remark 4.4.

The following are three interesting possible directions for the extension of our analysis:

• In view of the close relation between mixed FEM and HDG methods (see, e.g., [7, 10]), we expect
that the present analysis can be extended to a unified framework covering a large class of methods.

• More general polytopic meshes could be considered using the theory of M -decompositions [5], or
hybrid high-order (HHO) methods [13].

• The extension of the method to more general nonlinear sound propagation models such as the
Kuznetzov equation [25].

In addition, the superconvergence of order O(hp+2) for the local postprocessed approximation ψ∗
h

defined in (6.1), and the asymptotic-preserving properties of fully discrete schemes as in [14], with special
attention to high-order time stepping schemes, are the subject of ongoing research.
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A Proof of low-order energy stability estimate (3.7a)

The ideas for the proof of the stability estimates are inspired by the δ-robust analysis carried out in [29, §5]
for the mixed FEM approximation of the Westervelt equation.

Observe that (3.2a)–(3.2c) imply

c2mh (∂t
¯
vh,¯

rh) + c2bh (∂tψh,
¯
rh) + c2eh (∂tλh,

¯
rh) = c2(∂t

¯
Υ,

¯
rh)0,Ω ∀

¯
rh ∈ Q

p
h, (A.1a)

mh((1 + 2kαh)∂ttψh, wh)− c2bh(wh, ˜̄vh)
+c2sh(ψ̃h, wh) + c2fh(λ̃h, wh) = (ϕ,wh)0,Ω ∀wh ∈ Sph, (A.1b)

−c2eh(µh, ˜̄vh) + c2fh(µh, ψ̃h) + c2gh(λ̃h, µh) = 0 ∀µh ∈ Mp
h. (A.1c)

By taking
¯
rh = ˜̄vh, wh = ∂tψh, and µh = ∂tλh in (A.1), and summing the results, we get

mh((1 + 2kαh)∂ttψh, ∂tψh)

+ c2
(
mh(∂t

¯
vh, ¯

vh) + sh(ψh, ∂tψh) + fh(λh, ∂tψh) + fh(∂tλh, ψh) + gh(λh, ∂tλh)
)

+ δ (mh(∂t
¯
vh, ∂t¯

vh) + sh(∂tψh, ∂tψh) + 2fh(∂tλh, ∂tψh) + gh(∂tλh, ∂tλh))

= c2(∂t
¯
Υ,

¯
vh)0,Ω + δ(∂t

¯
Υ, ∂t

¯
vh)0,Ω + (ϕ, ∂tψh)0,Ω.

(A.2)

Moreover, the following identities follow from the definition of the discrete bilinear forms mh(·, ·),
sh(·, ·), fh(·, ·), and gh(·, ·):

mh((1 + 2kαh)∂ttψh, ∂tψh) =
1

2

d

dt
‖
√
1 + 2kαh(·, t)∂tψh‖2L2(Ω) −mh(k∂tαh∂tψh, ∂tψh), (A.3a)
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mh(∂t
¯
vh, ¯

vh) + sh(ψh, ∂tψh) + fh(λh, ∂tψh) + fh(∂tλh, ψh) + gh(λh, ∂tλh)

=
1

2

d

dt

(
‖
¯
vh‖2L2(Ω)d + ‖τ 1

2 (λh − ψh)‖2L2((∂Th)◦)
+ ‖τ 1

2 ∂tψh‖2L2((∂Th)D)

)
, (A.3b)

mh(∂t
¯
vh, ∂t¯

vh) + sh(∂tψh, ∂tψh) + 2fh(∂tλh, ∂tψh) + gh(∂tλh, ∂tλh)

= ‖∂t
¯
vh‖2L2(Ω)d + ‖τ 1

2 (∂tλh − ∂tψh)‖2L2((∂Th)◦)
+ ‖τ 1

2 ∂tψh‖2L2((∂Th)D). (A.3c)

Substituting the identities (A.3a)–(A.3c) into (A.2), we get

d

dt
E(0)
h [ψh,

¯
vh, λh](t) + δ

(
‖∂t

¯
vh‖2L2(Ω)d + ‖τ 1

2 (∂tλh − ∂tψh)‖2L2((∂Th)◦)
+ ‖τ 1

2 ∂tλh‖2L2((∂Th)D)

)

=

∫

Ω

k∂tαh(∂tψh)
2dx+ c2(∂t

¯
Υ,

¯
vh)0,Ω + δ(∂t

¯
Υ, ∂t

¯
vh)0,Ω + (ϕ, ∂tψh)0,Ω. (A.4)

All the terms multiplied by δ on the left-hand side of (A.4) are nonnegative. By using the Cauchy–Schwarz
and the Young inequalities, we get

δ(∂t
¯
Υ, ∂t

¯
vh)0,Ω ≤ δ

4
‖∂t

¯
Υ‖2L2(Ω)d + δ‖∂t

¯
vh‖2L2(Ω)d ,

so the second term cancels out with the one on the left-hand side of (A.4). Integrating identity (A.4)
over (0, t) and using the Hölder and Young inequalities, we deduce that

E(0)
h [ψh,

¯
vh, λh](t) ≤ E(0)

h [ψh,
¯
vh, λh](0)

+
(
‖k(1 + 2kαh)

−1∂tαh‖L1(0,t;L∞(Ω)) +
γ

2

)
‖
√
1 + 2kαh∂tψh‖2L∞(0,t;L2(Ω))

+
1

2γ
‖(1 + 2kαh)

− 1
2ϕ‖2L1(0,t;L2(Ω)) +

δ

4
‖∂t

¯
Υ‖2L2(0,t;L2(Ω)d)

+
c2

2σ0
‖∂t

¯
Υ‖2L1(0,t;L2(Ω)d) +

c2σ0
2

‖
¯
vh‖2L∞(0,t;L2(Ω)d),

(A.5)

for all γ > 0.
Moreover, by using the Hölder inequality, we have the following bounds

‖(1 + 2kαh)
− 1

2ϕ‖2L1(0,t;L2(Ω)) ≤ t‖(1 + 2kαh)
− 1

2ϕ‖2L2(0,t;L2(Ω)),

‖∂t
¯
Υ‖2L1(0,t;L2(Ω)d) ≤ t‖∂t

¯
Υ‖2L2(0,t;L2(Ω)d),

‖
¯
vh‖2L∞(0,t;L2(Ω)d) ≤ sup

s∈(0,t)

‖
¯
vh‖2L2(Ω)d .

(A.6)

Finally, smallness assumption (3.4) states that there exist constants 0 < γ0 < σ0 < 1 independent
of h and δ such that

‖k(1 + 2kαh)
−1∂tαh‖L1(0,t;L∞(Ω)) +

γ0
2

≤ |k|
1− 2|k|α‖∂tαh‖L1(0,t;L∞(Ω)) +

γ0
2

≤ σ0
2
,

which, together with (A.5) and (A.6), gives the low-order energy estimate in (3.7a).

B Proof of high-order energy stability estimate (3.7b)

The proof of the high-order stability estimate in (3.7b) follows by considering the time-differentiated
system

c2mh (∂tt
¯
vh,¯

rh) + c2bh (∂ttψh,
¯
rh) + c2eh (∂ttλh,

¯
rh) = (∂tt

¯
Υ,

¯
rh)0,Ω ∀

¯
rh ∈ Q

p
h,

mh((1 + 2kαh)∂tttψh, wh) +mh(2k∂tαh∂ttψh, wh)− c2bh(wh, ∂t˜̄vh)
+c2fh(∂tλ̃h, wh) + c2sh(∂tψ̃h, wh) = (∂tϕ,wh)0,Ω ∀wh ∈ Sph,

−c2eh(µh, ∂t˜̄vh) + c2fh(µh, ∂tψ̃h) + c2gh(∂tλ̃h, µh) = 0 ∀µh ∈ Mp
h,

choosing
¯
rh = ∂t ˜̄vh, wh = ∂ttψh, and µh = ∂ttλh as test functions, and summing the resulting equations.

The remaining steps are similar to those exposed in Appendix A for the low-order estimate in (3.7a), and
are therefore omitted.
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