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Abstract

In a Hamiltonian Lie algebroid over a pre-symplectic manifold and over a Poisson

manifold, we introduce a map corresponding to a comomentum map, called a comomen-

tum section. We show that the comomentum section gives a Lie algebroid morphism

among Lie algebroids. Moreover, we prove that a momentum section on a Hamiltonian

Lie algebroid is a Poisson map between proper Poisson manifolds, which is a generaliza-

tion that a momentum map is a Poisson map between the symplectic manifold to dual

of the Lie algebra. Finally, a momentum section is reinterpreted as a Dirac morphism

on Dirac structures.
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1 Introduction

A momentum map is a fundamental object in symplectic geometry defined on a symplectic

manifold with a Lie group action. Then, the action is a Hamiltonian action and the total

space is called a Hamiltonian G-space.

Analyses of physical models suggest that Lie group actions in momentum maps should

be generalized to ’Lie groupoid actions’ to realize symmetries and conserved quantities in

physical theories.[3, 7, 13] A ’groupoid’ generalization of a Lie algebra is a Lie algebroid. A

Lie algebroid is an infinitesimal object of a Lie groupoid analogous that a Lie algebra is an

infinitesimal object of a Lie group.

Recently, a generalization of a momentum map and a Hamiltonian G-space over a pre-

symplectic manifold has been proposed in a Lie algebroid (Lie groupoid) setting [8]. It is

inspired by the analysis of the Hamiltonian formalism of general relativity [7] and compati-

bility of physical models with Lie algebroid structures [28].

Mathematically, the idea is natural in the following sense. A momentum map µ is a map

from a smooth manifold M to dual of a Lie algebra g∗, µ : M → g∗. It is also regarded

as a section of a trivial vector bundle M × g∗. A momentum map on the trivial bundle

can be generalized to a section on dual of a vector bundle A∗ satisfying certain consistency

conditions. The generalization µ ∈ Γ(A∗) is called a momentum section, and the Hamiltonian

G-space is generalized to a Hamiltonian Lie algebroid.[8]

A momentum section and a Hamiltonian Lie algebroid over a Poisson manifold has also

been proposed in [9]. In this paper, we consider both momentum maps over a (pre-)symplectic

manifold and over a Poisson manifold since a symplectic manifold is a Poisson manifold. A

momentum section has been generalized to a momentum section on a Courant algebroid [24],

over a pre-multisymplectic manifold [20], over bundle-valued (multi)symplectic structures [21]

and over a Dirac structure [25].

Momentum maps are some important beautiful properties. In this paper, we generalize

two properties of momentum maps to momentum sections. One is a comomentum map and

another is the momentum map as a Poisson map.

For a momentum map µ, we can define a comomentum map µ∗ : g → C∞(M) as a dual

map, which has properties induced from the momentum map. Especially, a comomentum

map has the following property.
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Proposition 1.1 The comomentum map is a Lie algebra morphism from g to C∞(M), where

a Lie algebra structure on C∞(M) is defined by the Poisson bracket.

We have the following natural question.

Q. Construct a comomentum section such that it is a Lie algebroid morphism between

proper two Lie algebroids.

In this paper, we define and analyze a bracket-compatible comomentum section µ∗ :

Γ(A) → C∞(M) corresponding to a bracket-compatible momentum section µ. It is proved

that the comomentum section µ∗ is a Lie algebroid morphism from A to a proper space in-

cluding C∞(M). Idea is that we consider a pair of the anchor map ρ of the Lie algebroid A

and comomentum section µ∗. Since ρ is a map from A to TM , ρ+ µ∗ is regarded as a map

from A to TM ⊕ R.

The next important property of a momentum map is that it is a Poisson map between

proper Poisson manifolds.

The dual of a Lie algebra g∗ has the so called Kirillov-Kostant-Souriau (KKS) Poisson

structure πKKS ∈ ∧2(Tg∗).[26] Then, a momentum map µ is a map between two Poisson

manifolds (M,π) and (g∗, πKKS) satisfying the following property.

Proposition 1.2 A momentum map µ :M → g∗ is a Poisson map.

The purpose of this paper is to generalize this proposition to a momentum section.

A momentum section µ ∈ Γ(A∗) is regarded as a map µ : M → A∗. A generalization of

Proposition 1.2 for a bracket-compatible momentum section has been analyzed in [9]. On the

dual of the Lie algebroid A∗, a bivector field π̃A∗ = π̃ + πA∗ is defined, where π̃ is the lift of

the Poisson bivector field π on M to A∗ and πA∗ is a Poisson bivector field induced from a

Lie algebroid structure on A. In the Hamiltonian Lie algebroid over a Poisson manifold M ,

µ : M → A∗ is a bivector map if the basic curvature is zero, AS = 0. Here a bivector map

ψ :M → A∗ is a bilinear map such that

{ψ∗a, ψ∗b}M = ψ∗{a, b}A∗ , (1)

for every a, b ∈ C∞(A∗), where a bilinear bracket {−,−}M is the Poisson bracket induced

from πM and {−,−}A∗ is a bilinear bracket induced from π̃A∗ . In this result, π̃A∗ is not

necessarily a Poisson bivector field on A∗, i.e., {−,−}A∗ does not satisfy the Jacobi identity,

which means that µ is not necessarily a Poisson map.
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Q. Is a momentum section µ regarded as a Poisson map of two proper Poisson manifolds?

We prove that a bracket-compatible momentum section is a Poisson map from T ∗M ⊕ R

to A∗ under Poisson structures induced from the Poisson structure πM on M and the Lie

algebroid structure on A.

This paper is organized as follows. Section 2 is the preparation. In Section 2, after a Lie

algebroid, connections and related notion are introduced, a Hamiltonian Lie algebroid and

a momentum section over a pre-symplectic manifold and a Poisson manifold are explained.

Moreover, a Courant algebroid and a Dirac structure are introduced. In Section 3, a relation

of a momentum section with the basic curvature is discussed and some formulas are given.

In Section 4, comomentum sections are defined for a pre-symplectic case and a Poisson case,

and Lie algebroid morphisms induced from momentum sections are constructed. In Section 5,

a Poisson map induced from a momentum section is constructed. In Section 6, a momentum

section is reinterpreted as a Dirac morphism and a Hamiltonian Lie algebroid over a Dirac

structure is discussed.

2 Preliminary

In this section, we summarize definitions and previous results, a Lie algebroid and connections,

momentum sections and Hamiltonian Lie algebroids over a pre-symplectic manifold and over

a Poisson manifold, a Courant algebroid and a Dirac structure.

2.1 Lie algebroids

Definition 2.1 Let A be a vector bundle over a smooth manifold M . A Lie algebroid

(A, [−,−], ρ = ρA) is a vector bundle A with a bundle map ρ = ρA : A → TM called

the anchor map, and a Lie bracket [−,−] = [−,−]A : Γ(A) × Γ(A) → Γ(A) satisfying the

Leibniz rule,

[e1, fe2] = f [e1, e2] + ρA(e1)f · e2, (2)

where e1, e2 ∈ Γ(A) and f ∈ C∞(M).

A Lie algebroid is a generalization of a Lie algebra and the space of vector fields on a smooth

manifold.
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Example 2.1 (Lie algebras) Let a manifold M be one point M = {pt}. Then a Lie alge-

broid is a Lie algebra g.

Example 2.2 (Tangent Lie algebroids) If a vector bundle A is a tangent bundle TM and

ρA = id, then a bracket [−,−] is a normal Lie bracket on the space of vector fields X(M) and

(TM, [−,−], id) is a Lie algebroid. It is called a tangent Lie algebroid.

Example 2.3 (Action Lie algebroids) Assume a smooth action of a Lie group G to a

smooth manifold M , M × G → M . The differential map induces an infinitesimal action on

a manifold M of the Lie algebra g of G. Since g acts as a differential operator on M , the

differential map is a bundle map ρ : M × g → TM . Consistency of a Lie bracket requires

that ρ is a Lie algebra morphism such that

[ρ(e1), ρ(e2)] = ρ([e1, e2]), (3)

where the bracket in left hand side of (3) is the Lie bracket of vector fields. These data give

a Lie algebroid (A =M × g, [−,−], ρ). This Lie algebroid is called an action Lie algebroid.

Example 2.4 (Poisson Lie algebroids) A bivector field π ∈ Γ(∧2TM) is called a Poisson

bivector field if [π, π]S = 0, where [−,−]S is the Schouten bracket on the space of multivector

fields, Γ(∧•TM). A smooth manifold M with a Poisson bivector field π, (M,π) is called a

Poisson manifold.

Let (M,π) be a Poisson manifold. Then, a Lie algebroid structure is induced on T ∗M .

A bundle map is defined as π♯ : T ∗M → TM by 〈π♯(α), β〉 = π(α, β) for all β ∈ Ω1(M).

ρ = −π♯ is the anchor map, and a Lie bracket on Ω1(M) is defined by the Koszul bracket,

[α, β]π = Lπ♯(α)β −Lπ♯(β)α− d(π(α, β)), (4)

where α, β ∈ Ω1(M). (T ∗M, [−,−]π,−π♯) is a Lie algebroid.

One can refer to reviews and textbooks for basic properties of Lie algebroids, for instance,

in [30].

For a Lie algebroid A, sections of the exterior algebra of A∗ are called A-differential forms.

A differential Ad : Γ(∧mA∗) → Γ(∧m+1A∗) on the spaces of A-differential forms, Γ(∧•A∗),

called a Lie algebroid differential, or an A-differential, is defined as follows.
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Definition 2.2 For an A-differential form η ∈ Γ(∧mA∗), a Lie algebroid differential Ad :

Γ(∧mA∗) → Γ(∧m+1A∗) is defined by

Adη(e1, . . . , em+1) =

m+1∑

i=1

(−1)i−1ρA(ei)η(e1, . . . , ěi, . . . , em+1)

+
∑

1≤i<j≤m+1

(−1)i+jη([ei, ej], e1, . . . , ěi, . . . , ěj, . . . , em+1), (5)

where ei ∈ Γ(A).

The A-differential satisfies (Ad)2 = 0. It is a generalization of the de Rham differential on

T ∗M and the Chevalley-Eilenberg differential on a Lie algebra.

(A1, [−,−]1, ρA1) and (A2, [−,−]2, ρA2) are two Lie algebroids over M . A Lie algebroid

morphism between two Lie algebroids A1 and A2 is a vector bundle morphism φ : A1 → A2

such that

φ([e1, e2]1) = [φ(e1), φ(e2)]2, (6)

ρA2 ◦ φ = ρA1, (7)

for e1, e2 ∈ Γ(A1).
‡

2.2 Connections on Lie algebroids

We introduce a connection on a vector bundle E. A connection is an R-linear map, ∇ :

Γ(E) → Γ(E ⊗ T ∗M), satisfying the Leibniz rule,

∇(fs) = f∇s+ (df)⊗ s, (8)

for s ∈ Γ(E) and f ∈ C∞(M). A dual connection on E∗ is defined by the equation,

d(µ, s) = 〈∇µ, s〉+ 〈µ, ∇s〉, (9)

for all sections µ ∈ Γ(E∗) and s ∈ Γ(E), where 〈−, −〉 is the pairing between E and E∗. We

use the same notation ∇ for the dual connection.

‡For Lie algebroids over different base manifolds, we can define more general Lie algebroid morphism. [30]

For two Lie algebroids (A1,M1) and (A2,M2), a morphism φ : A1 → A2 is a vector bundle morphism whose

graph, Gr(φ) ⊂ A1 ×A2, is a Lie subalgebroid of A1 ×A2.
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On a Lie algebroid, another derivation called an A-connection is defined. Let A be a Lie

algebroid over a smooth manifold M and E be a vector bundle over the same base manifold

M . An A-connection on a vector bundle E with respect to the Lie algebroid A is a R-linear

map, A∇ : Γ(E) → Γ(E ⊗ A∗), satisfying

A∇e(fs) = fA∇es+ (ρA(e)f)s, (10)

for e ∈ Γ(A), s ∈ Γ(E) and f ∈ C∞(M). The ordinary connection is regarded as an A-

connection for A = TM , ∇ = TM∇.

If an ordinary connection ∇ on A as a vector bundle is given, an A-connection on A is

simply given by

A∇ee
′ := ∇ρA(e′)e, (11)

for e, e′ ∈ Γ(A).

Another A-connection called a basic A-connection on A is defined by

A∇
bas

e e′ := ∇ρA(e′)e + [e, e′], (12)

for e, e′ ∈ Γ(A). For the tangent bundle E = TM , The basic A-connection on TM , A∇
bas

:

Γ(TM) → Γ(TM ⊗A∗), is defined by

A∇
bas

e v := LρA(e)v + ρA(∇ve) = [ρA(e), v] + ρA(∇ve), (13)

where e ∈ Γ(A) and v ∈ X(M). The basic connection on TM is also called the opposite

connection. For a 1-form α ∈ Ω1(M), the basic A-connection is given by

A∇
bas

e α := LρA(e)α + 〈ρA(∇e), α〉. (14)

In this paper, the A-connection A∇ on TM is always the basic A-connection A∇ = A∇
bas

,

(13) and (14), which are used throughout this paper. One can refer to [1, 16, 18] about a

theory of general and basic A-connections on a Lie algebroid.

For two connections, ∇ and A∇, various torsions and curvatures are introduced. Ad-

ditional to the normal curvature R ∈ Ω2(M,A ⊗ A∗) and the torsion for a vector bun-

dle connection ∇, similar quantities for the A-connections are introduced. An A-curvature,

AR ∈ Γ(∧2A∗ ⊗ A⊗ A∗) is defined by

AR(e, e′) := [A∇e,
A∇e′]−

A∇[e,e′], (15)
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for e, e′ ∈ Γ(A). It does not appear explicitly in our paper. Important ones are as follows. A

normal curvature R ∈ Ω2(M,A⊗A∗), an A-torsion, AT ∈ Γ(A⊗∧2A∗), and a basic curvature,

AS ∈ Ω1(M,∧2A∗ ⊗ A), [6] are defined by

R(v, v′) := [∇v,∇v′ ]−∇[v,v′], (16)

AT (e, e′) := ∇ρ(e)e
′ −∇ρ(e′)e− [e, e′], (17)

AS(e, e′) := Le(∇e
′)−Le′(∇e)−∇ρA(∇e)e

′ +∇ρA(∇e′)e

−∇[e, e′] = (∇AT + 2Alt ιρR)(e, e
′), (18)

for v, v′ ∈ X(M) and e, e′ ∈ Γ(A).

2.3 Momentum sections and Hamiltonian Lie algebroids

In this section, a bracket-compatible momentum section and a Hamiltonian Lie algebroid,

which are a generalization of a momentum map on a symplectic manifold, are reviewed.[8, 9]

A closed 2-form ω ∈ Ω2(M) on M is called a pre-symplectic form. A pair (M,ω) of

a manifold M and a pre-symplectic form ω is called a pre-symplectic manifold. If ω is

nondegenerate, (M,ω) is a symplectic manifold.

On a pre-symplectic manifold M , the following three conditions are introduced.

Definition 2.3 [Momentum sections over pre-symplectic manifolds] Suppose that a base

manifold (M,ω) is a pre-symplectic manifold, and take a Lie algebroid (A, [−,−], ρA) over

M .

(S1) A Lie algebroid A is called pre-symplectically anchored if ω satisfies

A∇ω = 0. (19)

(S2) A section µ ∈ Γ(A∗) is a ∇-momentum section if it satisfies§

(∇µ)(e) = −ιρA(e)ω, (20)

for e ∈ Γ(A).

§Notation of the momentum section such as µ(e), (∇µ)(e), etc. are in fact pairings of A∗ and A, 〈µ, e〉,

〈∇µ, e〉, etc.
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(S3) µ is bracket-compatible if it satisfies

(Adµ)(e1, e2) = ω(ρA(e1), ρA(e2)), (21)

where e1, e2 ∈ Γ(A).

Definition 2.4 A Lie algebroid A over a pre-symplectic manifold with a connection ∇ and

a section µ ∈ Γ(A∗) is called Hamiltonian ¶ if Eqs. (19), (20) and (21) are satisfied.

On a trivial bundle, a momentum section is equivalent to a momentum map. Suppose that

M has an action of a Lie group G and ω is a symplectic form. For a Lie algebra g of G, a

trivial bundle A = M × g has an action Lie algebroid structure in Example 2.3. A section

e ∈ Γ(M × g) is restricted to the constant section, which is identified to an element of g.

We can take a trivial connection ∇ = d on the trivial bundle M × g. Then, conditions of

Definition 2.3 reduce to the following conditions. Equation (20) is

(dµ)(e) = −ιρA(e)ω, (22)

where e is a constant section. Eq. (22) means that µ(e) is the Hamiltonian function for the

Lie algebra action ρA(e). Equation (19) is A∇eω = LρA(e)ω = 0 from the definition of the

A-connection. This equation is trivially satisfied from dω = 0 and Eq. (22). Equation (21) is

equivalent to

ρA(e1)µ(e2) = µ([e1, e2]), (23)

under (20) and (19), which means that µ is infinitesimally equivariant. Since the section

µ ∈ Γ(M × g∗) is a map µ :M → g∗, therefore, µ is a momentum map on the pre-symplectic

manifold M .

A Hamiltonian Lie algebroid over a Poisson manifold is defined as follows.[9]

Definition 2.5 [Momentum sections over Poisson manifolds] Let (M,π) be a Poisson man-

ifold with a Poisson bivector field π ∈ Γ(∧2TM) and (A, [−,−], ρA) be a Lie algebroid over

M .

¶If the condition is satisfied on a neighborhood of every point in M , it is called locally Hamiltonian.[8] All

the analysis in this paper are applicable in the locally Hamiltonian case.
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(P1) A is called Poisson anchored if π satisfies

A∇π = 0. (24)

(P2) A section µ ∈ Γ(A∗) is a ∇-momentum section if it satisfies

ρA(e) = −π♯((∇µ)(e)), (25)

for e ∈ Γ(A).

(P3) µ is called bracket-compatible if it satisfies

(Adµ)(e1, e2) = −π((∇µ)(e1), (∇µ)(e2)), (26)

for e1, e2 ∈ Γ(A).

Definition 2.6 A Lie algebroid A over a Poisson manifold with a connection ∇ and a section

µ ∈ Γ(A∗) is called Hamiltonian if Eqs. (24), (25) and (26) are satisfied.

If π is nondegenerate, M is a symplectic manifold with ω = π−1. A Hamiltonian Lie algebroid

over a Poisson manifold is a Hamiltonian Lie algebroid over a symplectic manifold in Definition

2.4.

2.4 Courant algebroids and Dirac structures

In this subsection, a Courant algebroid and a Dirac structure [15, 29] are introduced as

preparations in next sections.

Definition 2.7 A Courant algebroid is a vector bundle E overM , which has a nondegenerate

symmetric bilinear form 〈−, −〉, a bilinear operation [−,−]D on Γ(E), and a bundle map

called an anchor map, ρE : E −→ TM , satisfying the following properties:

1. [e1, [e2, e3]D]D = [[e1, e2]D, e3]D + [e2, [e1, e3]D]D, (27)

2. ρE([e1, e2]D) = [ρE(e1), ρE(e2)], (28)

3. [e1, fe2]D = f [e1, e2]D + (ρE(e1)f)e2, (29)

4. [e1, e2]D =
1

2
D〈e1, e2〉, (30)

5. ρE(e1)〈e2, e3〉 = 〈[e1, e2]D, e3〉+ 〈e2, [e1, e3]D〉, (31)
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where e1, e2, e3 ∈ Γ(E), f ∈ C∞(M) and D is a map from C∞(M) to Γ(E), defined as

〈Df, e〉 = ρE(e)f . [29]

[−,−]D is called the Dorfman bracket. A Courant algebroid is encoded in the quadruple

(E, 〈−, −〉, [−,−]D, ρE).

Example 2.5 The standard Courant algebroid is the Courant algebroid as defined below on

the vector bundle E = TM ⊕ T ∗M .

Three operations of the standard Courant algebroid are defined as follows,

〈X + α, Y + β〉 = ιXβ + ιY α,

ρT⊕T ∗(X + α) = X,

[X + α, Y + β]D = [X, Y ] + LXβ − ιY dα + ιXιYH,

for X + α, Y + β ∈ Γ(TM ⊕ T ∗M), where X, Y are vector fields, α, β are 1-forms, and

H ∈ Ω3(M) is a closed 3-form on M .

Definition 2.8 A Dirac structure L is a maximally isotropic subbundle of a Courant alge-

broid E, whose sections are closed under the Dorfman bracket. i.e., L is a subbundle of a

Courant algebroid satisfying

〈e1, e2〉 = 0 (isotropic), (32)

[e1, e2]D ∈ Γ(L) (closed), (33)

for every e1, e2 ∈ Γ(L).

The following proposition is a basic fact for a Dirac structure.

Proposition 2.9 [29] A Dirac structure L is a Lie algebroid.

Example 2.6 Let (M,ω) be a pre-symplectic manifold and (TM⊕T ∗M, 〈−, −〉, [−,−]D, ρT⊕T ∗)

be a standard Courant algebroid with H = 0 in Example 2.5. A bundle map ω♭ : TM → T ∗M

is defined by ω♭(X)(Y ) = ω(X, Y ) for every Y ∈ X(M). A subbundle Lω ⊂ TM⊕T ∗M given

by

Lω = Gr(ω) := {X + ω♭(X)|X ∈ X(M)}, (34)
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is a Dirac structure. In fact, 〈X + ω♭(X), Y + ω♭(Y )〉 = 0 since ω(X, Y ) = −ω(Y,X), and

the concrete calculation gives

[X + ω♭(X), Y + ω♭(Y )]D = [X, Y ] + ω♭([X, Y ]), (35)

if dω = 0, which means that Lω is involutive.

Example 2.7 Let (M,π) be a Poisson manifold and (TM⊕T ∗M, 〈−, −〉, [−,−]D, ρT⊕T ∗) be

a standard Courant algebroid with H = 0. For a bundle map π♯ : T ∗M → TM , a subbundle

Lπ ⊂ TM ⊕ T ∗M given by

Lπ = Gr(π) := {−π♯(α) + α|α ∈ Ω1(M)}, (36)

is a Dirac structure. In fact, 〈−π♯(α)+α, −π♯(β)+β〉 = 0 since π(α, β) = −π(β, α), and the

concrete calculation gives

[−π♯(α) + α,−π♯(β) + β]D = −π♯([α, β]π) + [α, β]π, (37)

if π is a Poisson bivector field, which means that Lπ is involutive.

3 Basic curvatures and momentum sections

Let (A, π,∇, µ) be a Hamiltonian Lie algebroid over a Poisson manifold.

The anchor map ρA is a Lie algebroid morphism ρA : A→ TM , i.e., ρA satisfies

[ρA(e1), ρA(e2)] = ρA([e1, e2]), (38)

for e1, e2 ∈ Γ(A). Using (17), the covariant forms of Eq. (38) is

∇ρA(e1)ρA(e2)−∇ρA(e2)ρA(e1) + 〈ρA,
AT (e1, e2)〉 = 0. (39)

The Jacobi identity of the Lie bracket [−,−] is equivalent to the equation,

∇ρA(e1)
AT (e2, e3)−

AT (e1,
AT (e2, e3))−R(ρA(e1), ρA(e2), e3) + Cycl(e1, e2, e3) = 0.(40)

Substituting (P2), Eq. (25), to (39), and using [π, π]S = 0, we obtain the following formula,

π♯
[
π((∇∇(·)µ)(e1), (∇µ)(e2)) + π((∇µ)(e1), (∇∇(·)µ)(e2)) + (∇(·)π)((∇µ)(e1), (∇µ)(e2))

−〈AT (e1, e2), ∇(·)µ〉
]
= 0, (41)
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for X ∈ X(M). Here the equation enclosed [−] is regarded a 1-form with respect to (·) and is

mapped by π♯. On the other hand, the condition (P3), Eq. (26), is equivalent to the equation,

〈µ, AT (e1, e2)〉 = π((∇µ)(e1), (∇µ)(e2)). (42)

The covariant derivative of this equation Eq. (42) by ∇ gives the equation,

π((∇∇(·)µ)(e1), (∇µ)(e2)) + π((∇µ)(e1), (∇∇(·)µ)(e2)) + (∇(·)π)((∇µ)(e1), (∇µ)(e2))

−〈AT (e1, e2), ∇(·)µ〉 − 〈AS((·), e1, e2), µ〉 = 0. (43)

Compare (41) and (43) after mapping Eq. (43) by the map π♯. Then, π♯ of the final term in

Eq. (43) must be zero, i.e.,

π♯〈AS((·), e1, e2), µ〉 = 0. (44)

Note that AS((·), e1, e2) is a 1-form on M . Therefore, we obtain the following lemma.

Lemma 3.1 In a Hamiltonian Lie algebroid over a Poisson manifold, 〈AS, µ〉 ∈ ker(π♯) for

a momentum section µ.

From now on, we assume the equation,

〈AS(X, e1, e2), µ〉 =
1

2

[
−([∇X ,

A∇
bas

e1
]µ)(e2) + ([∇X ,

A∇
bas

e2
]µ)(e1)

]
= 0. (45)

for every X ∈ X(M). Here Ad is the basic A-connection defined in Eq. (12). This equation

is realized by ker(π♯) = 0, or sections e1, e2 ∈ Γ(A) are restricted to the subspace of Γ(A)

satisfying Eq. (45). If π is nondegenerate, i.e., ω = π−1 is symplectic, it is always satisfied.

However we do not specify the condition for Eq. (45) in this paper. Substituting Eq. (45) to

Eq. (43), the following identity is satisfied,

π((∇∇Xµ)(e1), (∇µ)(e2)) + π((∇µ)(e1), (∇∇Xµ)(e2)) + (∇Xπ)((∇µ)(e1), (∇µ)(e2))

−〈AT (e1, e2), ∇Xµ〉 = 0. (46)

Eq. (46) is equivalent to the following equation, which is useful for us,

π((d∇Xµ)(e1), (∇µ)(e2)) + π((∇µ)(e1), (d∇Xµ)(e2)) + (dXπ)((∇µ)(e1), (∇µ)(e2))

+(∇Xµ)([e1, e2])

= −ιX([(∇µ)(e1), (∇µ)(e2)]π) + (∇Xµ)([e1, e2]) = 0. (47)
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Here, [−,−]π is the Koszul bracket Ω1(M)× Ω1(M) → Ω1(M) defined by

[α, β]π = Lπ♯αβ −Lπ♯βα− d(π(α, β)). (48)

Eq. (47) is

[(∇µ)(e1), (∇µ)(e2)]π = (∇µ)([e1, e2]), (49)

which means that ∇µ is a Lie algebra morphism from A to T ∗M .

The condition (P2), Eq. (25), −π♯(∇µ)(e) = ρA(e) is nothing but the condition for anchor

maps in the Lie algebroid morphism, where the anchor map in A is ρA and one in T ∗M is

−π♯. Therefore, ∇µ is a Lie algebroid morphism.

We summarize analysis in this subsection. If M is a pre-symplectic manifold, 〈AS, µ〉 = 0

is satisfied and we obtain the following proposition.‖

Proposition 3.2 Let (M,π,A, µ) be a Hamiltonian Lie algebroid over a pre-symplectic man-

ifold. Then, (∇µ)∗ : A→ T ∗M is a Lie algebroid morphism.

For a Poisson manifold M , the corresponding proposition is obtained.

Proposition 3.3 Let (M,π,A, µ) be a Hamiltonian Lie algebroid over a Poisson manifold.

Then, if 〈AS, µ〉 = 0, (∇µ)∗ : A→ T ∗M is a Lie algebroid morphism.

4 Comomentum sections and Lie algebroid morphisms

We analyze the comomentum description of momentum sections and Hamiltonian Lie alge-

broids. The comomentum section gives a Lie algebroid morphism from A to a proper vector

bundle on M .

4.1 Pre-symplectic case

Let (M,ω) be a pre-symplectic manifold. We define the following bracket on X(M)⊕C∞(M),

[X + f, Y + g]TM⊕R = [X, Y ] +Xg − Y f + ιXιY ω, (50)

‖For a momentum section µ ∈ Γ(A∗), notation µ(e) in fact means that the pairing of A∗ and A, 〈µ, e〉.

After this section, if µ is regarded as the map µ∗ : Γ(A) → C∞(M) to consider a morphism, it is denoted by

µ∗ to emphasize it, which is a comomentum defined by µ∗(e) = 〈µ, e〉.
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where X, Y ∈ X(M) and f, g ∈ C∞(M). The bracket (50) is the R-bilinear Lie bracket if and

only if dω = 0. Moreover we define the map, ρTM⊕R : X(M)⊕ C∞(M) → X(M),

ρTM⊕R(X + f) = X. (51)

The space for X(M)⊕C∞(M) is denoted by TM ⊕R. An element X + f ∈ X(M)⊕C∞(M)

is regarded as a section on the bundle TM ⊕ R. Then, the map (51) is induced from the

bundle map ρTM⊕R : TM ⊕ R → TM . Two operations (50) and (51) defines a Lie algebroid

on TM ⊕ R. The Lie algebroid (TM ⊕ R, [−,−]TM⊕R, ρTM⊕R) is called the Almeida-Molino

Lie algebroid [4].

Let (A, ρA, [−,−]A) be a Lie algebroid over M . For a section µ ∈ Γ(A∗), a map µ∗ :

Γ(A) → C∞(M) is defined by 〈µ, e〉 = µ∗(e). It is regarded that µ∗ is induced from the

bundle map µ∗ : A → M × R. Then, ρA + µ∗ is a map ρA + µ∗ : Γ(A) → X(M) ⊕ C∞(M),

which is induced from the bundle map ρA + µ∗ : A → TM ⊕ R. We obtain the following

proposition to characterize the condition of a momentum section (S3) as a Lie algebroid

morphism.

Proposition 4.1 ρA + µ∗ is a Lie algebroid morphism from A to TM ⊕ R if and only if µ

satisfies the condition (S3), i.e., Eq. (21).

Proof We prove the equation,

[(ρA + µ∗)(e1), (ρA + µ∗)(e2)]TM⊕R = (ρA + µ∗)([e1, e2]A), (52)

for every e1, e2 ∈ Γ(A). The identity [ρA(e1), ρA(e2)]TM = ρA([e1, e2]A), is satisfied since ρA is

a Lie algebroid morphism from A to TM from the definition of a Lie algebroid. It is nothing

but the ρA([e1, e2]A) part in Eq. (52). Since the Lie algebroid differential Ad is

Adµ(e1, e2) = ρA(e1)µ(e2)− ρA(e2)µ(e1)− µ([e1, e2]A), (53)

the condition (S3) is equivalent to

ρA(e1)µ(e2)− ρA(e2)µ(e1) + ιρA(e2)ιρA(e1)ω = µ([e1, e2]A), (54)

which is the µ∗([e1, e2]) part in Eq. (52). Therefore, (52) is proved, which is the condition

(54) for a Lie bracket in the definition of a Lie algebroid morphism. The second condition

(55) for the anchor map,

ρA(e) = ρTM⊕R ◦ (ρA + µ∗)(e), (55)
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is easily checked. Eq. (52) and (55) shows that ρA + µ∗ is a Lie algebroid morphism from A

to TM ⊕ R.

Next we characterize the condition (S2) in terms of a Lie algebroid morphism.

For a section µ ∈ Γ(A∗), ∇µ ∈ Ω1(M,A∗), which is considered as a bundle map (∇µ)∗ :

A→ T ∗M by taking 〈∇Xµ, e〉 = (∇Xµ)
∗(e) for every e ∈ Γ(A) and X ∈ X(M). We consider

the map ρA + (∇µ)∗ : A→ TM ⊕ T ∗M .

TM ⊕T ∗M naturally has a standard Courant algebroid structure with H = 0 in Example

2.5. The pre-symplectic structure on M induces the Dirac structure Lω. Then, the following

proposition is obtained.

Proposition 4.2 The map ρA + (∇µ)∗ : A → TM ⊕ T ∗M is a Lie algebroid morphism

ρA + (∇µ)∗ : A→ Lω if and only if µ satisfies the condition (S2), i.e., Eq. (20).

Proof Assume the condition (S2). For e1, e2 ∈ Γ(A), using Eq. (20), (S2), we obtain the

inner product,

〈(ρA + (∇µ)∗)(e1), (ρA + (∇µ)∗)(e2)〉 = ω(ρ(e1), ρ(e2)) + ω(ρ(e2), ρ(e1)) = 0, (56)

and the Dorfman bracket,

[(ρA + (∇µ)∗)(e1), (ρA + (∇µ)∗)(e2)]D

= [ρA(e1), ρA(e2)]TM − ι[ρA(e1),ρA(e2)]TM
ω + ιρA(e2)ιρA(e1)dω

= ρA([e1, e2]A)− ιρA([e1,e2]A)ω

= ρA([e1, e2]A) + (∇µ)∗([e1, e2]A), (57)

which show (ρA + (∇µ)∗)(e) ∈ Lω since dω = 0. The condition (55) for anchor maps are

obvious. Therefore, ρ + (∇µ)∗ is a Lie algebroid morphism. If we consider the reverse, the

condition (S2) is obtained from the Lie algebroid morphism condition.

By combining two Propositions 4.1 and 4.2, we obtain a characterization of the momentum

section based on Lie algebroid morphisms.

Theorem 4.3 Let (M,ω) be a pre-symplectic manifold and (A, ρA, [−,−]A) be a Lie algebroid

over M . µ ∈ Γ(A∗) is a bracket-compatible momentum section if and only if ρA + µ∗ is a Lie

algebroid morphism from A to TM ⊕R and ρA + (∇µ)∗ is a Lie algebroid morphism from A

to Lω.
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The map ρA + (∇µ)∗ can be considered as a Lie algebroid morphism from A to TM since

Lω ≃ TM .

We define a bracket-compatible comomentum section.

Definition 4.4 [Comomentum sections over pre-symplectic manifolds] Let (M,ω) be a pre-

symplectic manifold and (A, [−,−], ρA) be a Lie algebroid over M . µ∗ : A → M × R is a

bracket-compatible if ρA+µ
∗ is a Lie algebroid morphism from A to TM⊕R. µ∗ is a bracket-

compatible comomentum section if in addition, ρA + (∇µ)∗ is a Lie algebroid morphism from

A to Lω.

4.2 Poisson case

Let (M,π) be a Poisson manifold. We consider the following bilinear bracket on Ω1(M) ⊕

C∞(M),

[α + f, β + g]T ∗M⊕R = [α, β]π + π♯(α)g − π♯(β)f + π(α, β). (58)

where α, β ∈ Ω1(M) and f, g ∈ C∞(M). [−,−]π is the Koszul bracket defined in Eq. (48).

The bracket (58) is a Lie bracket if and only if π is a Poisson bivector field. If α = dh and

β = dk with h, k ∈ C∞(M), the equation (58) reduces to

[dh + f, dk + g]T ∗M⊕R = d({h, k}M) + {f, g}M , (59)

where {f, g}M = π(df, dg) is a Poisson bracket on C∞(M) defined by π. Therefore, the

normal Poisson bracket is given as a special case of Eq. (58).

We define a bundle map, ρTM⊕R : T ∗M ⊕ R → TM as

ρTM⊕R(α+ f) = π♯(α). (60)

Operations (58) and (60) give a Lie algebroid structure on T ∗M ⊕ R.

Similar to Subsection (4.1), we consider a map µ∗ : Γ(A) → C∞(M) on a Lie algebroid

A over M . Then, (∇µ)∗ is a map (∇µ)∗ : Γ(A) → Ω1(M) and (Adµ)∗ is a map (Adµ)∗ :

Γ(A)× Γ(A) → C∞(M).

A comomentum section on a Poisson manifold is defined from Eqs. (25) and (26) as follows.
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Definition 4.5 [Comomentum sections over Poisson manifolds] Let (M,π) be a Poisson man-

ifold with a Poisson bivector field π and (A, [−,−], ρA) be a Lie algebroid over M .

A map µ∗ : Γ(A) → C∞(M) is a bracket-compatible ∇-comomentum section if it satisfies

(PC2) ρA(e) = −π♯((∇µ)∗(e)), (61)

(PC3) ((Adµ)∗)(e1, e2) = −π((∇µ)∗)(e1), ((∇µ)
∗)(e2)), (62)

for e, e1, e2 ∈ Γ(A).

We give characterizations similar to Propositions 4.2 and 4.1 over a pre-symplectic mani-

fold.

Consider the map (∇µ)∗ − µ∗ : Γ(A) → Ω1(M)⊕ C∞(M). which can be regarded as the

bundle map, (∇µ)∗ − µ∗ : A→ T ∗M ⊕ R. Then, we obtain the following proposition.

Proposition 4.6 Let µ be a momentum section (PC2) and (PC3), i.e., Eqs. (61) and (62).

Equivalently, let µ∗ be a comomentum section. Assume 〈AS, µ〉 = 0 in Eq. (45). Then,

(∇µ)∗ − µ∗ is a Lie algebroid morphism from A to T ∗M ⊕ R.

Proof We prove that the equation

[((∇µ)∗ − µ∗)(e1), ((∇µ)
∗ − µ∗)(e2)]T ∗M⊕R = ((∇µ)∗ − µ∗)([e1, e2]A), (63)

is satisfied under the Lie bracket (58) in T ∗M ⊕ R for every e1, e2 ∈ Γ(A).

If 〈AS, µ〉 = 0 is imposed, Eq. (46) is satisfied. The left hand side of the T ∗M part of

Eq. (63) is

[(∇µ)∗(e1), (∇µ)
∗(e2)]π (64)

Using Eq. (47), it is equal to (∇µ)∗([e1, e2]), which is the T ∗M part in the right hand side of

Eq. (63).

Using (25), the R part of Eq. (63) is

−ρA(e1)µ(e2) + ρA(e2)µ(e1)− π((∇µ)∗(e1), (∇µ)
∗(e2)), (65)

It is equal to −µ∗([e1, e2)] from Eq. (26).

The morphism for the anchor maps is

ρA(e) = ρTM⊕R ◦ ((∇µ)∗ − µ∗)(e), (66)
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which is equivalent to the condition (PC2). Eqs. (63) and (63) shows that (∇µ)∗ − µ∗ is the

Lie algebroid morphism A→ T ∗M ⊕ R.

Next a Lie algebroid morphism corresponding to Proposition 4.2 is introduced.

We consider the map ρA + (∇µ)∗ : A → TM ⊕ T ∗M . Here TM ⊕ T ∗M is the standard

Courant algebroid with H = 0 in Example 2.5.

Proposition 4.7 Let µ be a comomentum section satisfying (PC2) and (PC3). Assume

〈AS, µ〉 = 0. Then, ρA + (∇µ)∗ is a Lie algebroid morphism from A to Lπ.

Proof From the condition (PC2), (61), the inner product is

〈(ρA + (∇µ)∗)(e1), (ρA + (∇µ)∗)(e2)〉

= π((∇µ)∗(e1), (∇µ)
∗(e2)) + π((∇µ)∗(e2), (∇µ)

∗(e1)) = 0. (67)

Using (PC2) and the π is Poisson, the Dorfman bracket is

[(ρA + (∇µ)∗)(e1), (ρA + (∇µ)∗)(e2)]D = π♯[(∇µ)∗(e1), (∇µ)
∗(e2)]π − [(∇µ)∗(e1), (∇µ)

∗(e2)]π,

(68)

Using Eq. (47), this equation Eq. (68) becomes

= −π♯(∇µ)∗([e1, e2]A) + (∇µ)∗([e1, e2]A) = (ρ+ (∇µ)∗)([e1, e2]A). (69)

and

= (ρ+ (∇µ)∗)([e1, e2]A). (70)

which gives

[(ρA + (∇µ)∗)(e1), (ρA + (∇µ)∗)(e2)]D = (ρ+ (∇µ)∗)([e1, e2]A). (71)

Eq. (67) and (69) show that (ρA+(∇µ)∗)(e) is an element of the Dirac structure Lπ. Eq. (71)

means that (ρA + (∇µ)∗) is a Lie algebroid morphism between A and Lπ.

The condition (55) for anchor maps are obvious. Therefore, ρ+ (∇µ)∗ is a Lie algebroid

morphism from A to Lπ.

We combine two Propositions 4.6 and 4.7.
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Theorem 4.8 Let (M,π) be a Poisson manifold and (A, ρA, [−,−]A) be a Lie algebroid over

M . Let µ∗ : Γ(A) → C∞(M) be a bracket-compatible comomentum section. If 〈AS, µ〉 = 0,

(∇µ)∗−µ∗ is a Lie algebroid morphism from A to T ∗M⊕R and ρA+(∇µ)∗ is a Lie algebroid

morphism from A to Lπ.

Under the condition 〈AS, µ〉 = 0, the reverse is proved, i.e., if (∇µ)∗ − µ∗ is a Lie algebroid

morphism from A to T ∗M ⊕ R and ρA + (∇µ)∗ is a Lie algebroid morphism from A to Lπ,

µ∗ : Γ(A) → C∞(M) be a bracket-compatible comomentum section.

5 Momentum sections as Poisson maps

In this section, we construct a Poisson map by considering a map from T ∗M⊕R to A∗ induced

from a momentum section µ. It is an improvement of a “bivector map” in the paper [9] to a

Poisson map in some sense. In this section, we concentrate on a Hamiltonian Lie algebroid

over a Poisson manifold. Obviously, a Hamiltonian Lie algebroid over a symplectic manifold

is a special case.

Definition 5.1 (Poisson map) Let (M1, π1) and (M2, π2) be Poisson manifolds. A smooth

map ψ is a Poisson map if ψ∗ : C∞(M2) → C∞(M1) satisfies

ψ∗{f, g}2 = {ψ∗f, ψ∗g}1, (72)

for f, g ∈ C∞(M2), where {−,−}1 and {−,−}2 are Poisson brackets induced from π1 and π2.

The condition of a Poisson map is equivalent to the condition for Poisson bivector fields,

ψ∗π1 = π2. (73)

As explained in Introduction, a momentum map µ : M → g∗ is a Poisson map, where a

Poisson structure onM is induced from the symplectic structure, orM is a Poisson manifold.

A Poisson structure on g∗ is the KKS Poisson structure. We generalize it to the momentum

section.

For construction of a Poisson map, we can use following fundamental facts. For instance,

one can refer to [17] and [31]. The first one is that if A is a Lie algebroid, A∗ is a Poisson

manifold with a (fiberwise linear) Poisson structure. The second one is as follows.
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Proposition 5.2 Let (A1,M1) and (A2,M2) be two Lie algebroids. A vector bundle morphism

φ : A1 → A2 is Lie algebroid morphism if and only if the dual map ψ : A∗
2 → A∗

1 is a Poisson

map.

Applying Proposition 5.2 to the map (∇µ)∗ in Proposition 3.3, we obtain the following

proposition.

Proposition 5.3 Let (M,π,A, µ) be a Hamiltonian Lie algebroid over a Poisson manifold.

Then, if 〈AS, µ〉 = 0, ∇µ : TM → A is a Poisson map.

However, since the map is not based on µ but ∇µ, this Poisson map is not what we want.

5.1 Dg-manifolds for Lie algebroids and graded Poisson manifolds

Let (M,π) be a Poisson manifold. We generalize the Lie bracket (58) on T ∗M⊕R introduced

in Section 4.2 to a Poisson bracket. For it, we consider “a space of functions on T ∗M ⊕ R”.

Similarly we also consider “a space of functions on A∗” and a Poisson bracket on the space.

They are graded manifolds for T ∗M⊕R and A∗. Differential graded manifolds (dg manifolds)

corresponding to these spaces are introduced and (graded) Poisson brackets are defined on

spaces of functions on these graded manifolds. Dg manifolds are also called Q-manifolds. For

reviews of graded manifolds, One can refer to [14, 22, 33] and references therein.

At first, we consider T ∗M ⊕ R. We introduce the graded manifold M = T ∗[1](TM ⊕ R),

where [1] means that degree of coordinates is shifted by one. Take local coordinates on

TM ⊕ R, (xi, yi, s) of degree 0, where xi is a local coordinate on M , yi is one on T , and s

is one on R. Moreover take local coordinates on the cotangent fiber T ∗[1], (ξi, ηi, t) of degree

one. We consider the space of functions C∞(M) as a generalization of Ω1(M)⊕ C∞(M). A

section of T ∗M⊕R, α+f ∈ Ω1(M)⊕C∞(M) is identified to a function α+fs ∈ C∞(TM⊕R),

where α = αi(x)y
i corresponds to a 1-form α = αi(x)dx

i.

Since M is a cotangent bundle, there exist the following canonical graded symplectic form

of degree one,

ωM = δxi ∧ δξi + δyi ∧ δηi + δs ∧ δt. (74)

In order to construct a Lie algebroid structure on T ∗M ⊕R, or a graded Poisson structure on

TM ⊕ R, a dg symplectic structure, or a QP-manifold structure, is defined on M as follows.
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We consider the following function of degree two,

ΘM = π(ξ, η)− ιy(dπ)(η, η) + π(η, η)s

= πij(x)ξiηj −
1

2
∂iπ

jk(x)ηjηky
i +

1

2
πjk(x)ηjηks. (75)

Here π = 1
2
πij(x) ∂

∂xi ∧
∂

∂xj ∈ Γ(∧2TM) is a local coordinate expression of a bivector field on

M . The (graded) Poisson bracket {−,−}M is induced from the symplectic form (74) as usual.

Since ΘM satisfies {ΘM,ΘM}M = 0 if and only if π = 1
2
πij(x) ∂

∂xi ∧
∂

∂xj is the Poisson bivector

field, we obtain a homological vector field QM = {ΘM,−} satisfying Q2
M = 0. (ωM,ΘM)

define a dg symplectic structure (a QP-manifold structure) on M. The homological function

ΘM is “a Poisson bivector field” on M and define a (graded) Poisson bracket on TM ⊕R by

the derived bracket,

{u, v}TM⊕R
:= {{u,ΘM}M, v}

M
, (76)

for u, v ∈ C∞(TM ⊕ R). For u = α + fs ≃ α + f and v = β + gs ≃ β + g, the bracket (76)

is equivalent to the Lie bracket (58),

{α + fs, β + gs}
TM⊕R

= [α+ f, β + g]T ∗M⊕R. (77)

Thus, the graded manifold TM ⊕R is a Poisson manifold with a Poisson bracket (76) corre-

sponding to T ∗M ⊕ R.

Next, we consider A∗. For Γ(A) ⊕ C∞(M), a Poisson bracket is induced from the Lie

algebroid structure on A. The Poisson bracket on A∗ is concretely defined by

{f, g}A∗ = 0, (78)

{a, g}A∗ = ρA(a)g, (79)

{a, b}A∗ = [a, b]A, (80)

where f, g ∈ C∞(M) and a, b ∈ Γ(A).

More generally, this Poisson bracket is induced from a graded Poisson bracket on the space

of functions on a dg symplectic manifold. It is known that the graded manifold A[1] is a dg

manifold corresponding to the Lie algebroid A [35]. For a vector bundle A over M , A[1] is

a graded bundle, of which fiber is shifted by one. Let xi be a local coordinate on the base
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manifold M , qa be a local coordinate on the fiber of A[1]. A vector field of degree one on the

shifted vector bundle A[1] is given by

Q = ρA
i
a(x)q

q ∂

∂xi
−

1

2
Cc

ab(x)q
aqb

∂

∂qc
, (81)

Require that A[1] is a dg manifold, i.e., Q is a homological vector field such that Q2 =

1
2
[Q,Q] = 0. This give a Lie algebroid structure on A. Here the anchor map and the Lie

bracket on A are given by

ρA(ea) := ρA
i
a(x)∂i, (82)

[ea, eb] := Cc
abec, (83)

for the basis ea of A.

The corresponding dg symplectic manifold, the QP-manifold, is constructed on the graded

cotangent bundle N = T ∗[2]A[1]. We take the canonical graded symplectic form on the

cotangent bundle Then, a Hamiltonian function ΘN ∈ C∞(N ) for Q is defined by

δΘN = −ιQωN , (84)

where δ is the differential on the graded manifold N . Since Q2 = 0, Θ satisfies that

{ΘN ,ΘN}N = 0. (85)

Take local coordinates on N = T ∗[2]A[1], (xi, qa, ξi, pa) of degree (0, 1, 2, 1), (xi, qa) are local

coordinates on A[1] of degree (0, 1) and (ξi, pa) are corresponding fiber coordinates. The

graded symplectic form is

ωcan = δxi ∧ δξi + δqa ∧ δpa. (86)

The local coordinate expression of the homological function ΘN is

ΘN = ρA
i
a(x)ξiq

a +
1

2
Cc

ab(x)q
aqbpc. (87)

Eq. (85) shows that Θ is regarded as a ’Poisson bivector field’ on A∗[1]. A Poisson brackets

on A[1] is defined by the derived bracket,

{F,G}A∗[1] := −{{F,Θ}N , G}N , (88)
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for F,G ∈ C∞(A∗[1]).

A section α = αa(x)ea ∈ Γ(A) is identified to a degree one function on A∗[1], a = aa(x)pa.

For elements F = a + f ≃ a + f and G = b + g ≃ b + g, the Poisson bracket (88) coincides

with Eqs. (78)–(80),

{a+ f, b+ g}A∗[1] = {a + f, b+ g}A∗ . (89)

Therefore, Eq. (88) is regarded as the Poisson bracket on Γ(A)⊕ C∞(M).

5.2 Poisson map between dg symplectic manifolds

We construct a Poisson map from (TM⊕R, {−,−}TM⊕R) to (A
∗[1], {−,−}A∗[1]) induced from

a momentum section µ. Obviously, it gives a Poisson map between two ordinary manifolds,

(T ∗M ⊕ R, {−,−}T ∗M⊕R) to (A∗, {−,−}A∗).

For µ ∈ Γ(A∗), ∇µ ∈ Ω1(M,A∗) is a 1-form taking a value on A∗, and regarded as a map

∇µ : TM → A∗. Thus, we have the map ∇µ− µ : TM ⊕M → A∗.

Theorem 5.4 Let (A, π,∇, µ) be a Hamiltonian Lie algebroid over a Poisson manifold M .

If 〈ES, µ〉 = 0, ∇µ− µ : TM ⊕ R → A∗[1] is a Poisson map.

Proof The statement of theorem is the following equation is satisfied,

{((∇µ)∗ − µ∗)F , ((∇µ)∗ − µ∗)G}TM⊕R
= ((∇µ)∗ − µ∗)({F,G}A∗[1]), (90)

for every F,G ∈ C∞(A∗[1]). We can directly prove by calculating this equation using the

derived bracket construction of Poisson brackets of two spaces T ∗[1](TM ⊕R) and T ∗[2]A∗[1]

with homological functions, (75), (76), (87) and (88). Here F,G ∈ C∞(A∗[1]) are arbitrary

functions of xi and pa, F = F (x, p) and G = G(x, p). (∇µ)∗ − µ∗ corresponds to the element

(∇µ)∗ − µ∗ = (∇iµa)y
iqa − µaq

a on the dg manifold. In the derived bracket, we can prove

that the following equation is satisfied,

{{{∇µ∗ − µ∗, F}
M
,ΘM}

M
, {∇µ∗ − µ∗, G}

M
}
M

= {∇µ∗ − µ∗, {{F,ΘN}N , G}N}
N
. (91)

Another simpler proof is to use the proposition 5.2 and the result in Subsection 4.2. ∇µ−µ

is nothing but the dual of (∇µ)∗ − µ∗. In Proposition 4.6, we proved that it (∇µ)∗ − µ∗ is

the Lie algebroid morphism between A to T ∗M ⊕R. Therefore, Theorem 5.4 is obtained that

∇µ− µ is a Poisson map from TM ⊕ R to A∗.
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6 Momentum sections as Dirac morphisms

In previous sections, Lie algebroid morphisms and Poisson maps of momentum sections have

been realized in Dirac structures L. This suggests a generalization of a Poisson map to a

morphism between Dirac manifolds. Moreover we propose Hamiltonian Lie algebroids over

Dirac structures.

6.1 Dirac morphisms

We introduce a Dirac morphism [2] between two Dirac structures. It is a generalization of a

Dirac map [10, 11] and is related to the morphism between Dirac structures with other names

[12].

Let (M,LM ) and (N,LN) be two Dirac manifolds. A Dirac morphism is defined as follows.

Definition 6.1 Let ϕ : M → N be a smooth map. ϕ is called a (forward) Dirac morphism

if the map

Tϕ : (TM ⊕ T ∗M,LM) → (TN ⊕ T ∗N,LN ), (92)

has the following property.

For m ∈M and Y +β ∈ LN,ϕ(m), there exists a unique X+α ∈ LM,m such that n = ϕ(m)

and Y = (Tmϕ)X , α = (Tmϕ)
∗β.

There exists the following relation of a Poisson map with a Dirac morphism.[31]

Proposition 6.2 Let (M,πM) and (N, πN) be Poisson manifolds. Then, ϕ : M → N is a

Poisson map if and only if Tϕ : (TM ⊕ T ∗M,Gr(πM)) → (TN ⊕ T ∗N,Gr(πN)) is a Dirac

morphism, Let Gr(πM) be the graph of the map πM : T ∗M → TM .

We apply Proposition 6.2 to our settings.

Let (M,π,A, µ) be a Hamiltonian Lie algebroid over a Poisson manifold. Remember

results in Subsection 5.2. From Theorem 5.4, ∇µ− µ : TM ⊕ R → A∗ is a Poisson map. We

can take M and N in Proposition 6.2 as TM ⊕ R and A∗. Then, we obtain the following

proposition.
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Proposition 6.3 Let (M,π,A, µ) be a Hamiltonian Lie algebroid over a Poisson manifold.

Then, T(∇µ− µ) : (T (TM ⊕R)⊕ T ∗(TM ⊕R),Gr(πTM⊕R)) → (TA∗ ⊕ T ∗A∗,Gr(πA∗)) is a

Dirac morphism.

6.2 Hamiltonian Lie algebroids over Dirac structures

A definition of a Hamiltonian Lie algebroid over a Dirac structure has been proposed in [25].

In this subsection, we propose another definition based on Lie algebroid morphisms defined

in this paper.

Definition 6.4 Let L ⊂ TM ⊕ T ∗M be a Dirac structure.

(D1) Let v + γ : A → TM ⊕ T ∗M be a map with v : A → TM and γ : A → T ∗M . Suppose

that Im(v+ γ) = L and the map v+ γ is a Lie algebroid morphism from A to L. Then,

A is called Dirac anchored if A∇(v + γ) : A×A→ L is a Lie algebroid morphism from

A× A to L.

(D2) A section µ ∈ Γ(A∗) is called a ∇-momentum section if Im(ρA + (∇µ)∗) = L and

ρA + (∇µ)∗ : A→ L is a Lie algebroid morphism.

(D3) µ is called bracket-compatible if ρA+(∇µ)∗−µ∗ : A→ L⊕R is a Lie algebroid morphism,

where L⊕ R is regarded as a Dirac structure of the bundle TM ⊕ T ∗M ⊕ R⊕ R.

Definition 6.5 A Lie algebroid A with a connection ∇ and a section µ ∈ Γ(A∗) is called

Hamiltonian if the condition (D1), (D2) and (D3) are satisfied.

We can prove that Hamiltonian Lie algebroids over a pre-symplectic manifold and over a

Poisson manifold are Hamiltonian Lie algebroids over Dirac structures in Definition 6.4 and

6.5.

From Propositions 4.1 and 4.2 in Subsection 4.1, we obtain the following proposition.

Proposition 6.6 Let (M,ω,A, µ) be a Hamiltonian Lie algebroid over a pre-symplectic man-

ifold. Then, it is a Hamiltonian Lie algebroid over the Dirac structure L = Lω.

From Propositions 4.6 and 4.7 in Subsection 4.2, we obtain the following statement.
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Proposition 6.7 Let (M,π,A, µ) be a Hamiltonian Lie algebroid over a Poisson manifold.

If 〈AS, µ〉 = 0, then, it is a Hamiltonian Lie algebroid over the Dirac structure L = Lπ.
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[34] P. Ševera and A. Weinstein, Poisson geometry with a 3 form background, Prog. Theor.

Phys. Suppl. 144 (2001), 145-154 [arXiv:math/0107133 [math.SG]].

[35] A. Vaintrob, Lie algebroids and homological vector fields, Uspekhi Mat. Nauk, 52/2 314

(1997) 161.

30


