Commentum sections and Poisson maps in Hamiltonian Lie algebroids

Yuji Hirota
 a * and Noriaki Ikeda
b †

^aDivision of Integrated Science, Azabu University, Sagamihara, Kanagawa 252-5201, Japan

^bDepartment of Mathematical Sciences, Ritsumeikan University Kusatsu, Shiga 525-8577, Japan

May 7, 2024

Abstract

In a Hamiltonian Lie algebroid over a pre-symplectic manifold and over a Poisson manifold, we introduce a map corresponding to a comomentum map, called a comomentum section. We show that the comomentum section gives a Lie algebroid morphism among Lie algebroids. Moreover, we prove that a momentum section on a Hamiltonian Lie algebroid is a Poisson map between proper Poisson manifolds, which is a generalization that a momentum map is a Poisson map between the symplectic manifold to dual of the Lie algebra. Finally, a momentum section is reinterpreted as a Dirac morphism on Dirac structures.

^{*}E-mail: hirotaATazabu-u.ac.jp

[†]E-mail: nikedaATse.ritsumei.ac.jp

1 Introduction

A momentum map is a fundamental object in symplectic geometry defined on a symplectic manifold with a Lie group action. Then, the action is a Hamiltonian action and the total space is called a Hamiltonian G-space.

Analyses of physical models suggest that Lie group actions in momentum maps should be generalized to 'Lie groupoid actions' to realize symmetries and conserved quantities in physical theories.[3, 7, 13] A 'groupoid' generalization of a Lie algebra is a Lie algebroid. A Lie algebroid is an infinitesimal object of a Lie groupoid analogous that a Lie algebra is an infinitesimal object of a Lie group.

Recently, a generalization of a momentum map and a Hamiltonian G-space over a presymplectic manifold has been proposed in a Lie algebroid (Lie groupoid) setting [8]. It is inspired by the analysis of the Hamiltonian formalism of general relativity [7] and compatibility of physical models with Lie algebroid structures [28].

Mathematically, the idea is natural in the following sense. A momentum map μ is a map from a smooth manifold M to dual of a Lie algebra \mathfrak{g}^* , $\mu : M \to \mathfrak{g}^*$. It is also regarded as a section of a trivial vector bundle $M \times \mathfrak{g}^*$. A momentum map on the trivial bundle can be generalized to a section on dual of a vector bundle A^* satisfying certain consistency conditions. The generalization $\mu \in \Gamma(A^*)$ is called a momentum section, and the Hamiltonian G-space is generalized to a Hamiltonian Lie algebroid.[8]

A momentum section and a Hamiltonian Lie algebroid over a Poisson manifold has also been proposed in [9]. In this paper, we consider both momentum maps over a (pre-)symplectic manifold and over a Poisson manifold since a symplectic manifold is a Poisson manifold. A momentum section has been generalized to a momentum section on a Courant algebroid [24], over a pre-multisymplectic manifold [20], over bundle-valued (multi)symplectic structures [21] and over a Dirac structure [25].

Momentum maps are some important beautiful properties. In this paper, we generalize two properties of momentum maps to momentum sections. One is a commentum map and another is the momentum map as a Poisson map.

For a momentum map μ , we can define a *commentum map* $\mu^* : \mathfrak{g} \to C^{\infty}(M)$ as a dual map, which has properties induced from the momentum map. Especially, a commentum map has the following property.

Proposition 1.1 The commentum map is a Lie algebra morphism from \mathfrak{g} to $C^{\infty}(M)$, where a Lie algebra structure on $C^{\infty}(M)$ is defined by the Poisson bracket.

We have the following natural question.

Q. Construct a commentum section such that it is a Lie algebroid morphism between proper two Lie algebroids.

In this paper, we define and analyze a bracket-compatible commentum section μ^* : $\Gamma(A) \to C^{\infty}(M)$ corresponding to a bracket-compatible momentum section μ . It is proved that the commentum section μ^* is a *Lie algebroid morphism* from A to a proper space including $C^{\infty}(M)$. Idea is that we consider a pair of the anchor map ρ of the Lie algebroid A and commentum section μ^* . Since ρ is a map from A to TM, $\rho + \mu^*$ is regarded as a map from A to $TM \oplus \mathbb{R}$.

The next important property of a momentum map is that it is a Poisson map between proper Poisson manifolds.

The dual of a Lie algebra \mathfrak{g}^* has the so called Kirillov-Kostant-Souriau (KKS) Poisson structure $\pi_{KKS} \in \wedge^2(T\mathfrak{g}^*)$.[26] Then, a momentum map μ is a map between two Poisson manifolds (M, π) and $(\mathfrak{g}^*, \pi_{KKS})$ satisfying the following property.

Proposition 1.2 A momentum map $\mu : M \to \mathfrak{g}^*$ is a Poisson map.

The purpose of this paper is to generalize this proposition to a momentum section.

A momentum section $\mu \in \Gamma(A^*)$ is regarded as a map $\mu : M \to A^*$. A generalization of Proposition 1.2 for a bracket-compatible momentum section has been analyzed in [9]. On the dual of the Lie algebroid A^* , a bivector field $\tilde{\pi}_{A^*} = \tilde{\pi} + \pi_{A^*}$ is defined, where $\tilde{\pi}$ is the lift of the Poisson bivector field π on M to A^* and π_{A^*} is a Poisson bivector field induced from a Lie algebroid structure on A. In the Hamiltonian Lie algebroid over a Poisson manifold M, $\mu : M \to A^*$ is a bivector map if the basic curvature is zero, ${}^A S = 0$. Here a bivector map $\psi : M \to A^*$ is a bilinear map such that

$$\{\psi^* a, \psi^* b\}_M = \psi^* \{a, b\}_{A^*},\tag{1}$$

for every $a, b \in C^{\infty}(A^*)$, where a bilinear bracket $\{-, -\}_M$ is the Poisson bracket induced from π_M and $\{-, -\}_{A^*}$ is a bilinear bracket induced from $\tilde{\pi}_{A^*}$. In this result, $\tilde{\pi}_{A^*}$ is not necessarily a Poisson bivector field on A^* , i.e., $\{-, -\}_{A^*}$ does not satisfy the Jacobi identity, which means that μ is not necessarily a Poisson map. Q. Is a momentum section μ regarded as a Poisson map of two proper Poisson manifolds? We prove that a bracket-compatible momentum section is a Poisson map from $T^*M \oplus \mathbb{R}$ to A^* under Poisson structures induced from the Poisson structure π_M on M and the Lie algebroid structure on A.

This paper is organized as follows. Section 2 is the preparation. In Section 2, after a Lie algebroid, connections and related notion are introduced, a Hamiltonian Lie algebroid and a momentum section over a pre-symplectic manifold and a Poisson manifold are explained. Moreover, a Courant algebroid and a Dirac structure are introduced. In Section 3, a relation of a momentum section with the basic curvature is discussed and some formulas are given. In Section 4, commentum sections are defined for a pre-symplectic case and a Poisson case, and Lie algebroid morphisms induced from momentum sections are constructed. In Section 5, a Poisson map induced from a momentum section is constructed. In Section 6, a momentum section is reinterpreted as a Dirac morphism and a Hamiltonian Lie algebroid over a Dirac structure is discussed.

2 Preliminary

In this section, we summarize definitions and previous results, a Lie algebroid and connections, momentum sections and Hamiltonian Lie algebroids over a pre-symplectic manifold and over a Poisson manifold, a Courant algebroid and a Dirac structure.

2.1 Lie algebroids

Definition 2.1 Let A be a vector bundle over a smooth manifold M. A Lie algebroid $(A, [-, -], \rho = \rho_A)$ is a vector bundle A with a bundle map $\rho = \rho_A : A \to TM$ called the anchor map, and a Lie bracket $[-, -] = [-, -]_A : \Gamma(A) \times \Gamma(A) \to \Gamma(A)$ satisfying the Leibniz rule,

$$[e_1, fe_2] = f[e_1, e_2] + \rho_A(e_1)f \cdot e_2, \qquad (2)$$

where $e_1, e_2 \in \Gamma(A)$ and $f \in C^{\infty}(M)$.

A Lie algebroid is a generalization of a Lie algebra and the space of vector fields on a smooth manifold.

Example 2.1 (Lie algebras) Let a manifold M be one point $M = \{pt\}$. Then a Lie algebraic broid is a Lie algebra \mathfrak{g} .

Example 2.2 (Tangent Lie algebroids) If a vector bundle A is a tangent bundle TM and $\rho_A = \text{id}$, then a bracket [-, -] is a normal Lie bracket on the space of vector fields $\mathfrak{X}(M)$ and (TM, [-, -], id) is a Lie algebroid. It is called a *tangent Lie algebroid*.

Example 2.3 (Action Lie algebroids) Assume a smooth action of a Lie group G to a smooth manifold $M, M \times G \to M$. The differential map induces an infinitesimal action on a manifold M of the Lie algebra \mathfrak{g} of G. Since \mathfrak{g} acts as a differential operator on M, the differential map is a bundle map $\rho : M \times \mathfrak{g} \to TM$. Consistency of a Lie bracket requires that ρ is a Lie algebra morphism such that

$$[\rho(e_1), \rho(e_2)] = \rho([e_1, e_2]), \tag{3}$$

where the bracket in left hand side of (3) is the Lie bracket of vector fields. These data give a Lie algebroid $(A = M \times \mathfrak{g}, [-, -], \rho)$. This Lie algebroid is called an *action Lie algebroid*.

Example 2.4 (Poisson Lie algebroids) A bivector field $\pi \in \Gamma(\wedge^2 TM)$ is called a Poisson bivector field if $[\pi, \pi]_S = 0$, where $[-, -]_S$ is the Schouten bracket on the space of multivector fields, $\Gamma(\wedge^{\bullet}TM)$. A smooth manifold M with a Poisson bivector field π , (M, π) is called a Poisson manifold.

Let (M, π) be a Poisson manifold. Then, a Lie algebroid structure is induced on T^*M . A bundle map is defined as $\pi^{\sharp} : T^*M \to TM$ by $\langle \pi^{\sharp}(\alpha), \beta \rangle = \pi(\alpha, \beta)$ for all $\beta \in \Omega^1(M)$. $\rho = -\pi^{\sharp}$ is the anchor map, and a Lie bracket on $\Omega^1(M)$ is defined by the Koszul bracket,

$$[\alpha,\beta]_{\pi} = \mathcal{L}_{\pi^{\sharp}(\alpha)}\beta - \mathcal{L}_{\pi^{\sharp}(\beta)}\alpha - d(\pi(\alpha,\beta)), \tag{4}$$

where $\alpha, \beta \in \Omega^1(M)$. $(T^*M, [-, -]_{\pi}, -\pi^{\sharp})$ is a Lie algebroid.

One can refer to reviews and textbooks for basic properties of Lie algebroids, for instance, in [30].

For a Lie algebroid A, sections of the exterior algebra of A^* are called A-differential forms. A differential ${}^{A}d : \Gamma(\wedge^{m}A^*) \to \Gamma(\wedge^{m+1}A^*)$ on the spaces of A-differential forms, $\Gamma(\wedge^{\bullet}A^*)$, called a *Lie algebroid differential*, or an A-differential, is defined as follows. **Definition 2.2** For an A-differential form $\eta \in \Gamma(\wedge^m A^*)$, a Lie algebroid differential ${}^A d$: $\Gamma(\wedge^m A^*) \to \Gamma(\wedge^{m+1} A^*)$ is defined by

$${}^{A} d\eta(e_{1}, \dots, e_{m+1}) = \sum_{i=1}^{m+1} (-1)^{i-1} \rho_{A}(e_{i}) \eta(e_{1}, \dots, \check{e}_{i}, \dots, e_{m+1}) + \sum_{1 \le i < j \le m+1} (-1)^{i+j} \eta([e_{i}, e_{j}], e_{1}, \dots, \check{e}_{i}, \dots, \check{e}_{j}, \dots, e_{m+1}), \quad (5)$$

where $e_i \in \Gamma(A)$.

The A-differential satisfies $(^{A}d)^{2} = 0$. It is a generalization of the de Rham differential on $T^{*}M$ and the Chevalley-Eilenberg differential on a Lie algebra.

 $(A_1, [-, -]_1, \rho_{A_1})$ and $(A_2, [-, -]_2, \rho_{A_2})$ are two Lie algebroids over M. A Lie algebroid morphism between two Lie algebroids A_1 and A_2 is a vector bundle morphism $\phi : A_1 \to A_2$ such that

$$\phi([e_1, e_2]_1) = [\phi(e_1), \phi(e_2)]_2, \tag{6}$$

$$\rho_{A_2} \circ \phi = \rho_{A_1}, \tag{7}$$

for $e_1, e_2 \in \Gamma(A_1)$.[‡]

2.2 Connections on Lie algebroids

We introduce a connection on a vector bundle E. A connection is an \mathbb{R} -linear map, ∇ : $\Gamma(E) \to \Gamma(E \otimes T^*M)$, satisfying the Leibniz rule,

$$\nabla(fs) = f\nabla s + (\mathrm{d}f) \otimes s,\tag{8}$$

for $s \in \Gamma(E)$ and $f \in C^{\infty}(M)$. A dual connection on E^* is defined by the equation,

$$d(\mu, s) = \langle \nabla \mu, s \rangle + \langle \mu, \nabla s \rangle, \tag{9}$$

for all sections $\mu \in \Gamma(E^*)$ and $s \in \Gamma(E)$, where $\langle -, - \rangle$ is the pairing between E and E^* . We use the same notation ∇ for the dual connection.

[‡]For Lie algebroids over different base manifolds, we can define more general Lie algebroid morphism. [30] For two Lie algebroids (A_1, M_1) and (A_2, M_2) , a morphism $\phi : A_1 \to A_2$ is a vector bundle morphism whose graph, $\operatorname{Gr}(\phi) \subset A_1 \times A_2$, is a Lie subalgebroid of $A_1 \times A_2$.

On a Lie algebroid, another derivation called an A-connection is defined. Let A be a Lie algebroid over a smooth manifold M and E be a vector bundle over the same base manifold M. An A-connection on a vector bundle E with respect to the Lie algebroid A is a \mathbb{R} -linear map, ${}^{A}\nabla : \Gamma(E) \to \Gamma(E \otimes A^{*})$, satisfying

$${}^{A}\nabla_{e}(fs) = f^{A}\nabla_{e}s + (\rho_{A}(e)f)s, \qquad (10)$$

for $e \in \Gamma(A)$, $s \in \Gamma(E)$ and $f \in C^{\infty}(M)$. The ordinary connection is regarded as an Aconnection for A = TM, $\nabla = {}^{TM}\nabla$.

If an ordinary connection ∇ on A as a vector bundle is given, an A-connection on A is simply given by

$${}^{A}\nabla_{e}e' := \nabla_{\rho_{A}(e')}e,\tag{11}$$

for $e, e' \in \Gamma(A)$.

Another A-connection called a *basic* A-connection on A is defined by

$${}^{A}\nabla_{e}^{\mathrm{bas}}e' := \nabla_{\rho_{A}(e')}e + [e, e'], \qquad (12)$$

for $e, e' \in \Gamma(A)$. For the tangent bundle E = TM, The basic A-connection on TM, ${}^{A}\nabla^{\text{bas}}$: $\Gamma(TM) \to \Gamma(TM \otimes A^{*})$, is defined by

$${}^{A}\nabla_{e}^{\mathrm{bas}}v := \mathcal{L}_{\rho_{A}(e)}v + \rho_{A}(\nabla_{v}e) = [\rho_{A}(e), v] + \rho_{A}(\nabla_{v}e), \qquad (13)$$

where $e \in \Gamma(A)$ and $v \in \mathfrak{X}(M)$. The basic connection on TM is also called the *opposite* connection. For a 1-form $\alpha \in \Omega^1(M)$, the basic A-connection is given by

$${}^{A}\nabla_{e}^{\mathrm{bas}}\alpha := \mathcal{L}_{\rho_{A}(e)}\alpha + \langle \rho_{A}(\nabla e), \alpha \rangle.$$
(14)

In this paper, the A-connection ${}^{A}\nabla$ on TM is always the basic A-connection ${}^{A}\nabla = {}^{A}\nabla^{\text{bas}}$, (13) and (14), which are used throughout this paper. One can refer to [1, 16, 18] about a theory of general and basic A-connections on a Lie algebroid.

For two connections, ∇ and ${}^{A}\nabla$, various torsions and curvatures are introduced. Additional to the normal curvature $R \in \Omega^{2}(M, A \otimes A^{*})$ and the torsion for a vector bundle connection ∇ , similar quantities for the A-connections are introduced. An A-curvature, ${}^{A}R \in \Gamma(\wedge^{2}A^{*} \otimes A \otimes A^{*})$ is defined by

$${}^{A}R(e,e') := [{}^{A}\nabla_{e}, {}^{A}\nabla_{e'}] - {}^{A}\nabla_{[e,e']}, \qquad (15)$$

for $e, e' \in \Gamma(A)$. It does not appear explicitly in our paper. Important ones are as follows. A normal curvature $R \in \Omega^2(M, A \otimes A^*)$, an A-torsion, ${}^AT \in \Gamma(A \otimes \wedge^2 A^*)$, and a basic curvature, ${}^AS \in \Omega^1(M, \wedge^2 A^* \otimes A)$, [6] are defined by

$$R(v,v') := [\nabla_v, \nabla_{v'}] - \nabla_{[v,v']}, \qquad (16)$$

$${}^{A}T(e,e') := \nabla_{\rho(e)}e' - \nabla_{\rho(e')}e - [e,e'], \qquad (17)$$

$${}^{A}S(e,e') := \mathcal{L}_{e}(\nabla e') - \mathcal{L}_{e'}(\nabla e) - \nabla_{\rho_{A}(\nabla e)}e' + \nabla_{\rho_{A}(\nabla e')}e -\nabla[e,e'] = (\nabla^{A}T + 2\operatorname{Alt}\iota_{\rho}R)(e,e'),$$
(18)

for $v, v' \in \mathfrak{X}(M)$ and $e, e' \in \Gamma(A)$.

2.3 Momentum sections and Hamiltonian Lie algebroids

In this section, a bracket-compatible momentum section and a Hamiltonian Lie algebroid, which are a generalization of a momentum map on a symplectic manifold, are reviewed.[8, 9]

A closed 2-form $\omega \in \Omega^2(M)$ on M is called a pre-symplectic form. A pair (M, ω) of a manifold M and a pre-symplectic form ω is called a pre-symplectic manifold. If ω is nondegenerate, (M, ω) is a symplectic manifold.

On a pre-symplectic manifold M, the following three conditions are introduced.

Definition 2.3 [Momentum sections over pre-symplectic manifolds] Suppose that a base manifold (M, ω) is a pre-symplectic manifold, and take a Lie algebroid $(A, [-, -], \rho_A)$ over M.

(S1) A Lie algebroid A is called *pre-symplectically anchored* if ω satisfies

$${}^{A}\nabla\omega = 0. \tag{19}$$

(S2) A section $\mu \in \Gamma(A^*)$ is a ∇ -momentum section if it satisfies[§]

$$(\nabla \mu)(e) = -\iota_{\rho_A(e)}\omega,\tag{20}$$

for $e \in \Gamma(A)$.

[§]Notation of the momentum section such as $\mu(e)$, $(\nabla \mu)(e)$, etc. are in fact pairings of A^* and A, $\langle \mu, e \rangle$, $\langle \nabla \mu, e \rangle$, etc.

(S3) μ is bracket-compatible if it satisfies

$$(^{A}d\mu)(e_{1},e_{2}) = \omega(\rho_{A}(e_{1}),\rho_{A}(e_{2})),$$
 (21)

where $e_1, e_2 \in \Gamma(A)$.

Definition 2.4 A Lie algebroid A over a pre-symplectic manifold with a connection ∇ and a section $\mu \in \Gamma(A^*)$ is called **Hamiltonian**[¶] if Eqs. (19), (20) and (21) are satisfied.

On a trivial bundle, a momentum section is equivalent to a momentum map. Suppose that M has an action of a Lie group G and ω is a symplectic form. For a Lie algebra \mathfrak{g} of G, a trivial bundle $A = M \times \mathfrak{g}$ has an action Lie algebroid structure in Example 2.3. A section $e \in \Gamma(M \times \mathfrak{g})$ is restricted to the constant section, which is identified to an element of \mathfrak{g} . We can take a trivial connection $\nabla = \mathfrak{d}$ on the trivial bundle $M \times \mathfrak{g}$. Then, conditions of Definition 2.3 reduce to the following conditions. Equation (20) is

$$(\mathrm{d}\mu)(e) = -\iota_{\rho_A(e)}\omega,\tag{22}$$

where e is a constant section. Eq. (22) means that $\mu(e)$ is the Hamiltonian function for the Lie algebra action $\rho_A(e)$. Equation (19) is ${}^A\nabla_e\omega = \mathcal{L}_{\rho_A(e)}\omega = 0$ from the definition of the A-connection. This equation is trivially satisfied from $d\omega = 0$ and Eq. (22). Equation (21) is equivalent to

$$\rho_A(e_1)\mu(e_2) = \mu([e_1, e_2]), \tag{23}$$

under (20) and (19), which means that μ is infinitesimally equivariant. Since the section $\mu \in \Gamma(M \times \mathfrak{g}^*)$ is a map $\mu : M \to \mathfrak{g}^*$, therefore, μ is a momentum map on the pre-symplectic manifold M.

A Hamiltonian Lie algebroid over a Poisson manifold is defined as follows.[9]

Definition 2.5 [Momentum sections over Poisson manifolds] Let (M, π) be a Poisson manifold with a Poisson bivector field $\pi \in \Gamma(\wedge^2 TM)$ and $(A, [-, -], \rho_A)$ be a Lie algebroid over M.

[¶]If the condition is satisfied on a neighborhood of every point in M, it is called *locally Hamiltonian*.[8] All the analysis in this paper are applicable in the locally Hamiltonian case.

(P1) A is called *Poisson anchored* if π satisfies

$${}^{A}\nabla\pi = 0. \tag{24}$$

(P2) A section $\mu \in \Gamma(A^*)$ is a ∇ -momentum section if it satisfies

$$\rho_A(e) = -\pi^{\sharp}((\nabla \mu)(e)), \qquad (25)$$

for $e \in \Gamma(A)$.

(P3) μ is called *bracket-compatible* if it satisfies

$$(^{A}d\mu)(e_{1}, e_{2}) = -\pi((\nabla\mu)(e_{1}), (\nabla\mu)(e_{2})), \qquad (26)$$

for $e_1, e_2 \in \Gamma(A)$.

Definition 2.6 A Lie algebroid A over a Poisson manifold with a connection ∇ and a section $\mu \in \Gamma(A^*)$ is called **Hamiltonian** if Eqs. (24), (25) and (26) are satisfied.

If π is nondegenerate, M is a symplectic manifold with $\omega = \pi^{-1}$. A Hamiltonian Lie algebroid over a Poisson manifold is a Hamiltonian Lie algebroid over a symplectic manifold in Definition 2.4.

2.4 Courant algebroids and Dirac structures

In this subsection, a Courant algebroid and a Dirac structure [15, 29] are introduced as preparations in next sections.

Definition 2.7 A Courant algebroid is a vector bundle E over M, which has a nondegenerate symmetric bilinear form $\langle -, - \rangle$, a bilinear operation $[-, -]_D$ on $\Gamma(E)$, and a bundle map called an anchor map, $\rho_E : E \longrightarrow TM$, satisfying the following properties:

1.
$$[e_1, [e_2, e_3]_D]_D = [[e_1, e_2]_D, e_3]_D + [e_2, [e_1, e_3]_D]_D,$$
 (27)

2.
$$\rho_E([e_1, e_2]_D) = [\rho_E(e_1), \rho_E(e_2)],$$
 (28)

3.
$$[e_1, fe_2]_D = f[e_1, e_2]_D + (\rho_E(e_1)f)e_2,$$
 (29)

4.
$$[e_1, e_2]_D = \frac{1}{2} \mathcal{D} \langle e_1, e_2 \rangle,$$
 (30)

5.
$$\rho_E(e_1)\langle e_2, e_3 \rangle = \langle [e_1, e_2]_D, e_3 \rangle + \langle e_2, [e_1, e_3]_D \rangle,$$
 (31)

where $e_1, e_2, e_3 \in \Gamma(E)$, $f \in C^{\infty}(M)$ and \mathcal{D} is a map from $C^{\infty}(M)$ to $\Gamma(E)$, defined as $\langle \mathcal{D}f, e \rangle = \rho_E(e)f$. [29]

 $[-,-]_D$ is called the Dorfman bracket. A Courant algebroid is encoded in the quadruple $(E, \langle -, - \rangle, [-,-]_D, \rho_E).$

Example 2.5 The standard Courant algebroid is the Courant algebroid as defined below on the vector bundle $E = TM \oplus T^*M$.

Three operations of the standard Courant algebroid are defined as follows,

$$\langle X + \alpha, Y + \beta \rangle = \iota_X \beta + \iota_Y \alpha,$$

$$\rho_{T \oplus T^*} (X + \alpha) = X,$$

$$[X + \alpha, Y + \beta]_D = [X, Y] + \mathcal{L}_X \beta - \iota_Y d\alpha + \iota_X \iota_Y H,$$

for $X + \alpha, Y + \beta \in \Gamma(TM \oplus T^*M)$, where X, Y are vector fields, α, β are 1-forms, and $H \in \Omega^3(M)$ is a closed 3-form on M.

Definition 2.8 A Dirac structure L is a maximally isotropic subbundle of a Courant algebroid E, whose sections are closed under the Dorfman bracket. i.e., L is a subbundle of a Courant algebroid satisfying

$$\langle e_1, e_2 \rangle = 0$$
 (isotropic), (32)

$$[e_1, e_2]_D \in \Gamma(L) \quad (\text{closed}), \tag{33}$$

for every $e_1, e_2 \in \Gamma(L)$.

The following proposition is a basic fact for a Dirac structure.

Proposition 2.9 [29] A Dirac structure L is a Lie algebroid.

Example 2.6 Let (M, ω) be a pre-symplectic manifold and $(TM \oplus T^*M, \langle -, - \rangle, [-, -]_D, \rho_{T \oplus T^*})$ be a standard Courant algebroid with H = 0 in Example 2.5. A bundle map $\omega^{\flat} : TM \to T^*M$ is defined by $\omega^{\flat}(X)(Y) = \omega(X, Y)$ for every $Y \in \mathfrak{X}(M)$. A subbundle $L_{\omega} \subset TM \oplus T^*M$ given by

$$L_{\omega} = \operatorname{Gr}(\omega) := \{ X + \omega^{\flat}(X) | X \in \mathfrak{X}(M) \},$$
(34)

is a Dirac structure. In fact, $\langle X + \omega^{\flat}(X), Y + \omega^{\flat}(Y) \rangle = 0$ since $\omega(X, Y) = -\omega(Y, X)$, and the concrete calculation gives

$$[X + \omega^{\flat}(X), Y + \omega^{\flat}(Y)]_{D} = [X, Y] + \omega^{\flat}([X, Y]),$$
(35)

if $d\omega = 0$, which means that L_{ω} is involutive.

Example 2.7 Let (M, π) be a Poisson manifold and $(TM \oplus T^*M, \langle -, -\rangle, [-, -]_D, \rho_{T \oplus T^*})$ be a standard Courant algebroid with H = 0. For a bundle map $\pi^{\sharp} : T^*M \to TM$, a subbundle $L_{\pi} \subset TM \oplus T^*M$ given by

$$L_{\pi} = \operatorname{Gr}(\pi) := \{ -\pi^{\sharp}(\alpha) + \alpha | \alpha \in \Omega^{1}(M) \},$$
(36)

is a Dirac structure. In fact, $\langle -\pi^{\sharp}(\alpha) + \alpha, -\pi^{\sharp}(\beta) + \beta \rangle = 0$ since $\pi(\alpha, \beta) = -\pi(\beta, \alpha)$, and the concrete calculation gives

$$[-\pi^{\sharp}(\alpha) + \alpha, -\pi^{\sharp}(\beta) + \beta]_{D} = -\pi^{\sharp}([\alpha, \beta]_{\pi}) + [\alpha, \beta]_{\pi},$$
(37)

if π is a Poisson bivector field, which means that L_{π} is involutive.

3 Basic curvatures and momentum sections

Let (A, π, ∇, μ) be a Hamiltonian Lie algebroid over a Poisson manifold.

The anchor map ρ_A is a Lie algebroid morphism $\rho_A : A \to TM$, i.e., ρ_A satisfies

$$[\rho_A(e_1), \rho_A(e_2)] = \rho_A([e_1, e_2]), \tag{38}$$

for $e_1, e_2 \in \Gamma(A)$. Using (17), the covariant forms of Eq. (38) is

$$\nabla_{\rho_A(e_1)}\rho_A(e_2) - \nabla_{\rho_A(e_2)}\rho_A(e_1) + \langle \rho_A, {}^AT(e_1, e_2) \rangle = 0.$$
(39)

The Jacobi identity of the Lie bracket [-, -] is equivalent to the equation,

$$\nabla_{\rho_A(e_1)}{}^A T(e_2, e_3) - {}^A T(e_1, {}^A T(e_2, e_3)) - R(\rho_A(e_1), \rho_A(e_2), e_3) + \operatorname{Cycl}(e_1, e_2, e_3) = 0(40)$$

Substituting (P2), Eq. (25), to (39), and using $[\pi, \pi]_S = 0$, we obtain the following formula,

$$\pi^{\sharp} \left[\pi((\nabla \nabla_{(\cdot)} \mu)(e_1), (\nabla \mu)(e_2)) + \pi((\nabla \mu)(e_1), (\nabla \nabla_{(\cdot)} \mu)(e_2)) + (\nabla_{(\cdot)} \pi)((\nabla \mu)(e_1), (\nabla \mu)(e_2)) - \langle^A T(e_1, e_2), \nabla_{(\cdot)} \mu \rangle \right] = 0,$$
(41)

for $X \in \mathfrak{X}(M)$. Here the equation enclosed [-] is regarded a 1-form with respect to (·) and is mapped by π^{\sharp} . On the other hand, the condition (P3), Eq. (26), is equivalent to the equation,

$$\langle \mu, {}^{A}T(e_1, e_2) \rangle = \pi((\nabla \mu)(e_1), (\nabla \mu)(e_2)).$$
 (42)

The covariant derivative of this equation Eq. (42) by ∇ gives the equation,

$$\pi((\nabla\nabla_{(\cdot)}\mu)(e_1), (\nabla\mu)(e_2)) + \pi((\nabla\mu)(e_1), (\nabla\nabla_{(\cdot)}\mu)(e_2)) + (\nabla_{(\cdot)}\pi)((\nabla\mu)(e_1), (\nabla\mu)(e_2)) - \langle^A T(e_1, e_2), \nabla_{(\cdot)}\mu\rangle - \langle^A S((\cdot), e_1, e_2), \mu\rangle = 0.$$

$$(43)$$

Compare (41) and (43) after mapping Eq. (43) by the map π^{\sharp} . Then, π^{\sharp} of the final term in Eq. (43) must be zero, i.e.,

$$\pi^{\sharp} \langle {}^{A}S((\cdot), e_1, e_2), \mu \rangle = 0.$$

$$\tag{44}$$

Note that ${}^{A}S((\cdot), e_1, e_2)$ is a 1-form on M. Therefore, we obtain the following lemma.

Lemma 3.1 In a Hamiltonian Lie algebroid over a Poisson manifold, $\langle {}^{A}S, \mu \rangle \in \ker(\pi^{\sharp})$ for a momentum section μ .

From now on, we assume the equation,

$$\langle {}^{A}S(X,e_{1},e_{2}),\,\mu\rangle = \frac{1}{2} \left[-([\nabla_{X},{}^{A}\nabla^{\text{bas}}_{e_{1}}]\mu)(e_{2}) + ([\nabla_{X},{}^{A}\nabla^{\text{bas}}_{e_{2}}]\mu)(e_{1}) \right] = 0.$$
(45)

for every $X \in \mathfrak{X}(M)$. Here ^Ad is the basic A-connection defined in Eq. (12). This equation is realized by ker(π^{\sharp}) = 0, or sections $e_1, e_2 \in \Gamma(A)$ are restricted to the subspace of $\Gamma(A)$ satisfying Eq. (45). If π is nondegenerate, i.e., $\omega = \pi^{-1}$ is symplectic, it is always satisfied. However we do not specify the condition for Eq. (45) in this paper. Substituting Eq. (45) to Eq. (43), the following identity is satisfied,

$$\pi((\nabla \nabla_X \mu)(e_1), (\nabla \mu)(e_2)) + \pi((\nabla \mu)(e_1), (\nabla \nabla_X \mu)(e_2)) + (\nabla_X \pi)((\nabla \mu)(e_1), (\nabla \mu)(e_2)) - \langle^A T(e_1, e_2), \nabla_X \mu \rangle = 0.$$
(46)

Eq. (46) is equivalent to the following equation, which is useful for us,

$$\pi((\mathrm{d}\nabla_X\mu)(e_1), (\nabla\mu)(e_2)) + \pi((\nabla\mu)(e_1), (\mathrm{d}\nabla_X\mu)(e_2)) + (\mathrm{d}_X\pi)((\nabla\mu)(e_1), (\nabla\mu)(e_2)) + (\nabla_X\mu)([e_1, e_2]) = -\iota_X([(\nabla\mu)(e_1), (\nabla\mu)(e_2)]_{\pi}) + (\nabla_X\mu)([e_1, e_2]) = 0.$$
(47)

Here, $[-, -]_{\pi}$ is the Koszul bracket $\Omega^1(M) \times \Omega^1(M) \to \Omega^1(M)$ defined by

$$[\alpha,\beta]_{\pi} = \mathcal{L}_{\pi^{\sharp}\alpha}\beta - \mathcal{L}_{\pi^{\sharp}\beta}\alpha - d(\pi(\alpha,\beta)).$$
(48)

Eq. (47) is

$$[(\nabla \mu)(e_1), (\nabla \mu)(e_2)]_{\pi} = (\nabla \mu)([e_1, e_2]), \tag{49}$$

which means that $\nabla \mu$ is a Lie algebra morphism from A to T^*M .

The condition (P2), Eq. (25), $-\pi^{\sharp}(\nabla \mu)(e) = \rho_A(e)$ is nothing but the condition for anchor maps in the Lie algebroid morphism, where the anchor map in A is ρ_A and one in T^*M is $-\pi^{\sharp}$. Therefore, $\nabla \mu$ is a Lie algebroid morphism.

We summarize analysis in this subsection. If M is a pre-symplectic manifold, $\langle {}^{A}S, \mu \rangle = 0$ is satisfied and we obtain the following proposition.^{||}

Proposition 3.2 Let (M, π, A, μ) be a Hamiltonian Lie algebroid over a pre-symplectic manifold. Then, $(\nabla \mu)^* : A \to T^*M$ is a Lie algebroid morphism.

For a Poisson manifold M, the corresponding proposition is obtained.

Proposition 3.3 Let (M, π, A, μ) be a Hamiltonian Lie algebroid over a Poisson manifold. Then, if $\langle {}^{A}S, \mu \rangle = 0$, $(\nabla \mu)^{*} : A \to T^{*}M$ is a Lie algebroid morphism.

4 Commentum sections and Lie algebroid morphisms

We analyze the commentum description of momentum sections and Hamiltonian Lie algebroids. The commentum section gives a Lie algebroid morphism from A to a proper vector bundle on M.

4.1 Pre-symplectic case

Let (M, ω) be a pre-symplectic manifold. We define the following bracket on $\mathfrak{X}(M) \oplus C^{\infty}(M)$,

$$[X+f,Y+g]_{TM\oplus\mathbb{R}} = [X,Y] + Xg - Yf + \iota_X \iota_Y \omega,$$
(50)

^{$\|$}For a momentum section $\mu \in \Gamma(A^*)$, notation $\mu(e)$ in fact means that the pairing of A^* and A, $\langle \mu, e \rangle$. After this section, if μ is regarded as the map $\mu^* : \Gamma(A) \to C^{\infty}(M)$ to consider a morphism, it is denoted by μ^* to emphasize it, which is a *commentum* defined by $\mu^*(e) = \langle \mu, e \rangle$.

where $X, Y \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$. The bracket (50) is the \mathbb{R} -bilinear Lie bracket if and only if $d\omega = 0$. Moreover we define the map, $\rho_{TM \oplus \mathbb{R}} : \mathfrak{X}(M) \oplus C^{\infty}(M) \to \mathfrak{X}(M)$,

$$\rho_{TM \oplus \mathbb{R}}(X+f) = X. \tag{51}$$

The space for $\mathfrak{X}(M) \oplus C^{\infty}(M)$ is denoted by $TM \oplus \mathbb{R}$. An element $X + f \in \mathfrak{X}(M) \oplus C^{\infty}(M)$ is regarded as a section on the bundle $TM \oplus \mathbb{R}$. Then, the map (51) is induced from the bundle map $\rho_{TM \oplus \mathbb{R}} : TM \oplus \mathbb{R} \to TM$. Two operations (50) and (51) defines a Lie algebroid on $TM \oplus \mathbb{R}$. The Lie algebroid $(TM \oplus \mathbb{R}, [-, -]_{TM \oplus \mathbb{R}}, \rho_{TM \oplus \mathbb{R}})$ is called the Almeida-Molino Lie algebroid [4].

Let $(A, \rho_A, [-, -]_A)$ be a Lie algebroid over M. For a section $\mu \in \Gamma(A^*)$, a map μ^* : $\Gamma(A) \to C^{\infty}(M)$ is defined by $\langle \mu, e \rangle = \mu^*(e)$. It is regarded that μ^* is induced from the bundle map $\mu^* : A \to M \times \mathbb{R}$. Then, $\rho_A + \mu^*$ is a map $\rho_A + \mu^* : \Gamma(A) \to \mathfrak{X}(M) \oplus C^{\infty}(M)$, which is induced from the bundle map $\rho_A + \mu^* : A \to TM \oplus \mathbb{R}$. We obtain the following proposition to characterize the condition of a momentum section (S3) as a Lie algebroid morphism.

Proposition 4.1 $\rho_A + \mu^*$ is a Lie algebroid morphism from A to $TM \oplus \mathbb{R}$ if and only if μ satisfies the condition (S3), i.e., Eq. (21).

Proof We prove the equation,

$$[(\rho_A + \mu^*)(e_1), (\rho_A + \mu^*)(e_2)]_{TM \oplus \mathbb{R}} = (\rho_A + \mu^*)([e_1, e_2]_A),$$
(52)

for every $e_1, e_2 \in \Gamma(A)$. The identity $[\rho_A(e_1), \rho_A(e_2)]_{TM} = \rho_A([e_1, e_2]_A)$, is satisfied since ρ_A is a Lie algebroid morphism from A to TM from the definition of a Lie algebroid. It is nothing but the $\rho_A([e_1, e_2]_A)$ part in Eq. (52). Since the Lie algebroid differential ^Ad is

$${}^{A}\mathrm{d}\mu(e_{1},e_{2}) = \rho_{A}(e_{1})\mu(e_{2}) - \rho_{A}(e_{2})\mu(e_{1}) - \mu([e_{1},e_{2}]_{A}),$$
(53)

the condition (S3) is equivalent to

$$\rho_A(e_1)\mu(e_2) - \rho_A(e_2)\mu(e_1) + \iota_{\rho_A(e_2)}\iota_{\rho_A(e_1)}\omega = \mu([e_1, e_2]_A),$$
(54)

which is the $\mu^*([e_1, e_2])$ part in Eq. (52). Therefore, (52) is proved, which is the condition (54) for a Lie bracket in the definition of a Lie algebroid morphism. The second condition (55) for the anchor map,

$$\rho_A(e) = \rho_{TM \oplus \mathbb{R}} \circ (\rho_A + \mu^*)(e), \qquad (55)$$

is easily checked. Eq. (52) and (55) shows that $\rho_A + \mu^*$ is a Lie algebroid morphism from A to $TM \oplus \mathbb{R}$.

Next we characterize the condition (S2) in terms of a Lie algebroid morphism.

For a section $\mu \in \Gamma(A^*)$, $\nabla \mu \in \Omega^1(M, A^*)$, which is considered as a bundle map $(\nabla \mu)^*$: $A \to T^*M$ by taking $\langle \nabla_X \mu, e \rangle = (\nabla_X \mu)^*(e)$ for every $e \in \Gamma(A)$ and $X \in \mathfrak{X}(M)$. We consider the map $\rho_A + (\nabla \mu)^* : A \to TM \oplus T^*M$.

 $TM \oplus T^*M$ naturally has a standard Courant algebroid structure with H = 0 in Example 2.5. The pre-symplectic structure on M induces the Dirac structure L_{ω} . Then, the following proposition is obtained.

Proposition 4.2 The map $\rho_A + (\nabla \mu)^* : A \to TM \oplus T^*M$ is a Lie algebroid morphism $\rho_A + (\nabla \mu)^* : A \to L_{\omega}$ if and only if μ satisfies the condition (S2), i.e., Eq. (20).

Proof Assume the condition (S2). For $e_1, e_2 \in \Gamma(A)$, using Eq. (20), (S2), we obtain the inner product,

$$\langle (\rho_A + (\nabla \mu)^*)(e_1), (\rho_A + (\nabla \mu)^*)(e_2) \rangle = \omega(\rho(e_1), \rho(e_2)) + \omega(\rho(e_2), \rho(e_1)) = 0,$$
 (56)

and the Dorfman bracket,

$$[(\rho_{A} + (\nabla \mu)^{*})(e_{1}), (\rho_{A} + (\nabla \mu)^{*})(e_{2})]_{D}$$

$$= [\rho_{A}(e_{1}), \rho_{A}(e_{2})]_{TM} - \iota_{[\rho_{A}(e_{1}), \rho_{A}(e_{2})]_{TM}}\omega + \iota_{\rho_{A}(e_{2})}\iota_{\rho_{A}(e_{1})}d\omega$$

$$= \rho_{A}([e_{1}, e_{2}]_{A}) - \iota_{\rho_{A}([e_{1}, e_{2}]_{A})}\omega$$

$$= \rho_{A}([e_{1}, e_{2}]_{A}) + (\nabla \mu)^{*}([e_{1}, e_{2}]_{A}), \qquad (57)$$

which show $(\rho_A + (\nabla \mu)^*)(e) \in L_{\omega}$ since $d\omega = 0$. The condition (55) for anchor maps are obvious. Therefore, $\rho + (\nabla \mu)^*$ is a Lie algebroid morphism. If we consider the reverse, the condition (S2) is obtained from the Lie algebroid morphism condition.

By combining two Propositions 4.1 and 4.2, we obtain a characterization of the momentum section based on Lie algebroid morphisms.

Theorem 4.3 Let (M, ω) be a pre-symplectic manifold and $(A, \rho_A, [-, -]_A)$ be a Lie algebroid over M. $\mu \in \Gamma(A^*)$ is a bracket-compatible momentum section if and only if $\rho_A + \mu^*$ is a Lie algebroid morphism from A to $TM \oplus \mathbb{R}$ and $\rho_A + (\nabla \mu)^*$ is a Lie algebroid morphism from Ato L_{ω} . The map $\rho_A + (\nabla \mu)^*$ can be considered as a Lie algebroid morphism from A to TM since $L_{\omega} \simeq TM$.

We define a bracket-compatible commentum section.

Definition 4.4 [Commentum sections over pre-symplectic manifolds] Let (M, ω) be a presymplectic manifold and $(A, [-, -], \rho_A)$ be a Lie algebroid over M. $\mu^* : A \to M \times \mathbb{R}$ is a bracket-compatible if $\rho_A + \mu^*$ is a Lie algebroid morphism from A to $TM \oplus \mathbb{R}$. μ^* is a bracketcompatible commentum section if in addition, $\rho_A + (\nabla \mu)^*$ is a Lie algebroid morphism from A to L_{ω} .

4.2 Poisson case

Let (M, π) be a Poisson manifold. We consider the following bilinear bracket on $\Omega^1(M) \oplus C^{\infty}(M)$,

$$[\alpha + f, \beta + g]_{T^*M \oplus \mathbb{R}} = [\alpha, \beta]_{\pi} + \pi^{\sharp}(\alpha)g - \pi^{\sharp}(\beta)f + \pi(\alpha, \beta).$$
(58)

where $\alpha, \beta \in \Omega^1(M)$ and $f, g \in C^{\infty}(M)$. $[-, -]_{\pi}$ is the Koszul bracket defined in Eq. (48). The bracket (58) is a Lie bracket if and only if π is a Poisson bivector field. If $\alpha = dh$ and $\beta = dk$ with $h, k \in C^{\infty}(M)$, the equation (58) reduces to

$$[dh + f, dk + g]_{T^*M \oplus \mathbb{R}} = d(\{h, k\}_M) + \{f, g\}_M,$$
(59)

where $\{f, g\}_M = \pi(\mathrm{d}f, \mathrm{d}g)$ is a Poisson bracket on $C^{\infty}(M)$ defined by π . Therefore, the normal Poisson bracket is given as a special case of Eq. (58).

We define a bundle map, $\rho_{TM\oplus\mathbb{R}}: T^*M\oplus\mathbb{R} \to TM$ as

$$\rho_{TM\oplus\mathbb{R}}(\alpha+f) = \pi^{\sharp}(\alpha).$$
(60)

Operations (58) and (60) give a Lie algebroid structure on $T^*M \oplus \mathbb{R}$.

Similar to Subsection (4.1), we consider a map $\mu^* : \Gamma(A) \to C^{\infty}(M)$ on a Lie algebroid A over M. Then, $(\nabla \mu)^*$ is a map $(\nabla \mu)^* : \Gamma(A) \to \Omega^1(M)$ and $({}^A d\mu)^*$ is a map $({}^A d\mu)^* : \Gamma(A) \times \Gamma(A) \to C^{\infty}(M)$.

A commentum section on a Poisson manifold is defined from Eqs. (25) and (26) as follows.

Definition 4.5 [Commentum sections over Poisson manifolds] Let (M, π) be a Poisson manifold with a Poisson bivector field π and $(A, [-, -], \rho_A)$ be a Lie algebroid over M.

A map $\mu^* : \Gamma(A) \to C^{\infty}(M)$ is a bracket-compatible ∇ -commentum section if it satisfies

(PC2)
$$\rho_A(e) = -\pi^{\sharp}((\nabla \mu)^*(e)),$$
 (61)

(PC3)
$$(({}^{A}d\mu)^{*})(e_{1}, e_{2}) = -\pi((\nabla\mu)^{*})(e_{1}), ((\nabla\mu)^{*})(e_{2})),$$
 (62)

for $e, e_1, e_2 \in \Gamma(A)$.

We give characterizations similar to Propositions 4.2 and 4.1 over a pre-symplectic manifold.

Consider the map $(\nabla \mu)^* - \mu^* : \Gamma(A) \to \Omega^1(M) \oplus C^{\infty}(M)$. which can be regarded as the bundle map, $(\nabla \mu)^* - \mu^* : A \to T^*M \oplus \mathbb{R}$. Then, we obtain the following proposition.

Proposition 4.6 Let μ be a momentum section (PC2) and (PC3), i.e., Eqs. (61) and (62). Equivalently, let μ^* be a commentum section. Assume $\langle {}^{A}S, \mu \rangle = 0$ in Eq. (45). Then, $(\nabla \mu)^* - \mu^*$ is a Lie algebroid morphism from A to $T^*M \oplus \mathbb{R}$.

Proof We prove that the equation

$$[((\nabla\mu)^* - \mu^*)(e_1), ((\nabla\mu)^* - \mu^*)(e_2)]_{T^*M \oplus \mathbb{R}} = ((\nabla\mu)^* - \mu^*)([e_1, e_2]_A),$$
(63)

is satisfied under the Lie bracket (58) in $T^*M \oplus \mathbb{R}$ for every $e_1, e_2 \in \Gamma(A)$.

If $\langle {}^{A}S, \mu \rangle = 0$ is imposed, Eq. (46) is satisfied. The left hand side of the $T^{*}M$ part of Eq. (63) is

$$[(\nabla \mu)^*(e_1), (\nabla \mu)^*(e_2)]_{\pi}$$
(64)

Using Eq. (47), it is equal to $(\nabla \mu)^*([e_1, e_2])$, which is the T^*M part in the right hand side of Eq. (63).

Using (25), the \mathbb{R} part of Eq. (63) is

$$-\rho_A(e_1)\mu(e_2) + \rho_A(e_2)\mu(e_1) - \pi((\nabla\mu)^*(e_1), (\nabla\mu)^*(e_2)),$$
(65)

It is equal to $-\mu^*([e_1, e_2)]$ from Eq. (26).

The morphism for the anchor maps is

$$\rho_A(e) = \rho_{TM \oplus \mathbb{R}} \circ ((\nabla \mu)^* - \mu^*)(e), \qquad (66)$$

which is equivalent to the condition (PC2). Eqs. (63) and (63) shows that $(\nabla \mu)^* - \mu^*$ is the Lie algebroid morphism $A \to T^*M \oplus \mathbb{R}$.

Next a Lie algebroid morphism corresponding to Proposition 4.2 is introduced.

We consider the map $\rho_A + (\nabla \mu)^* : A \to TM \oplus T^*M$. Here $TM \oplus T^*M$ is the standard Courant algebroid with H = 0 in Example 2.5.

Proposition 4.7 Let μ be a commentum section satisfying (PC2) and (PC3). Assume $\langle {}^{A}S, \mu \rangle = 0$. Then, $\rho_{A} + (\nabla \mu)^{*}$ is a Lie algebroid morphism from A to L_{π} .

Proof From the condition (PC2), (61), the inner product is

$$\langle (\rho_A + (\nabla \mu)^*)(e_1), (\rho_A + (\nabla \mu)^*)(e_2) \rangle = \pi((\nabla \mu)^*(e_1), (\nabla \mu)^*(e_2)) + \pi((\nabla \mu)^*(e_2), (\nabla \mu)^*(e_1)) = 0.$$
(67)

Using (PC2) and the π is Poisson, the Dorfman bracket is

$$[(\rho_A + (\nabla\mu)^*)(e_1), (\rho_A + (\nabla\mu)^*)(e_2)]_D = \pi^{\sharp}[(\nabla\mu)^*(e_1), (\nabla\mu)^*(e_2)]_{\pi} - [(\nabla\mu)^*(e_1), (\nabla\mu)^*(e_2)]_{\pi}$$
(68)

Using Eq. (47), this equation Eq. (68) becomes

$$= -\pi^{\sharp}(\nabla\mu)^{*}([e_{1}, e_{2}]_{A}) + (\nabla\mu)^{*}([e_{1}, e_{2}]_{A}) = (\rho + (\nabla\mu)^{*})([e_{1}, e_{2}]_{A}).$$
(69)

and

$$= (\rho + (\nabla \mu)^*)([e_1, e_2]_A).$$
(70)

which gives

$$[(\rho_A + (\nabla \mu)^*)(e_1), (\rho_A + (\nabla \mu)^*)(e_2)]_D = (\rho + (\nabla \mu)^*)([e_1, e_2]_A).$$
(71)

Eq. (67) and (69) show that $(\rho_A + (\nabla \mu)^*)(e)$ is an element of the Dirac structure L_{π} . Eq. (71) means that $(\rho_A + (\nabla \mu)^*)$ is a Lie algebroid morphism between A and L_{π} .

The condition (55) for anchor maps are obvious. Therefore, $\rho + (\nabla \mu)^*$ is a Lie algebroid morphism from A to L_{π} .

We combine two Propositions 4.6 and 4.7.

Theorem 4.8 Let (M, π) be a Poisson manifold and $(A, \rho_A, [-, -]_A)$ be a Lie algebroid over M. Let $\mu^* : \Gamma(A) \to C^{\infty}(M)$ be a bracket-compatible commentum section. If $\langle {}^{A}S, \mu \rangle = 0$, $(\nabla \mu)^* - \mu^*$ is a Lie algebroid morphism from A to $T^*M \oplus \mathbb{R}$ and $\rho_A + (\nabla \mu)^*$ is a Lie algebroid morphism from A to L_{π} .

Under the condition $\langle {}^{A}S, \mu \rangle = 0$, the reverse is proved, i.e., if $(\nabla \mu)^{*} - \mu^{*}$ is a Lie algebroid morphism from A to $T^{*}M \oplus \mathbb{R}$ and $\rho_{A} + (\nabla \mu)^{*}$ is a Lie algebroid morphism from A to L_{π} , $\mu^{*}: \Gamma(A) \to C^{\infty}(M)$ be a bracket-compatible commentum section.

5 Momentum sections as Poisson maps

In this section, we construct a Poisson map by considering a map from $T^*M \oplus \mathbb{R}$ to A^* induced from a momentum section μ . It is an improvement of a "bivector map" in the paper [9] to a Poisson map in some sense. In this section, we concentrate on a Hamiltonian Lie algebroid over a Poisson manifold. Obviously, a Hamiltonian Lie algebroid over a symplectic manifold is a special case.

Definition 5.1 (Poisson map) Let (M_1, π_1) and (M_2, π_2) be Poisson manifolds. A smooth map ψ is a *Poisson map* if $\psi^* : C^{\infty}(M_2) \to C^{\infty}(M_1)$ satisfies

$$\psi^*\{f,g\}_2 = \{\psi^*f,\psi^*g\}_1,\tag{72}$$

for $f, g \in C^{\infty}(M_2)$, where $\{-, -\}_1$ and $\{-, -\}_2$ are Poisson brackets induced from π_1 and π_2 . The condition of a Poisson map is equivalent to the condition for Poisson bivector fields,

$$\psi_* \pi_1 = \pi_2. \tag{73}$$

As explained in Introduction, a momentum map $\mu : M \to \mathfrak{g}^*$ is a Poisson map, where a Poisson structure on M is induced from the symplectic structure, or M is a Poisson manifold. A Poisson structure on \mathfrak{g}^* is the KKS Poisson structure. We generalize it to the momentum section.

For construction of a Poisson map, we can use following fundamental facts. For instance, one can refer to [17] and [31]. The first one is that if A is a Lie algebroid, A^* is a Poisson manifold with a (fiberwise linear) Poisson structure. The second one is as follows.

Proposition 5.2 Let (A_1, M_1) and (A_2, M_2) be two Lie algebroids. A vector bundle morphism $\phi : A_1 \to A_2$ is Lie algebroid morphism if and only if the dual map $\psi : A_2^* \to A_1^*$ is a Poisson map.

Applying Proposition 5.2 to the map $(\nabla \mu)^*$ in Proposition 3.3, we obtain the following proposition.

Proposition 5.3 Let (M, π, A, μ) be a Hamiltonian Lie algebroid over a Poisson manifold. Then, if $\langle {}^{A}S, \mu \rangle = 0$, $\nabla \mu : TM \to A$ is a Poisson map.

However, since the map is not based on μ but $\nabla \mu$, this Poisson map is not what we want.

5.1 Dg-manifolds for Lie algebroids and graded Poisson manifolds

Let (M, π) be a Poisson manifold. We generalize the Lie bracket (58) on $T^*M \oplus \mathbb{R}$ introduced in Section 4.2 to a Poisson bracket. For it, we consider "a space of functions on $T^*M \oplus \mathbb{R}$ ". Similarly we also consider "a space of functions on A^* " and a Poisson bracket on the space. They are graded manifolds for $T^*M \oplus \mathbb{R}$ and A^* . Differential graded manifolds (dg manifolds) corresponding to these spaces are introduced and (graded) Poisson brackets are defined on spaces of functions on these graded manifolds. Dg manifolds are also called Q-manifolds. For reviews of graded manifolds, One can refer to [14, 22, 33] and references therein.

At first, we consider $T^*M \oplus \mathbb{R}$. We introduce the graded manifold $\mathcal{M} = T^*[1](TM \oplus \mathbb{R})$, where [1] means that degree of coordinates is shifted by one. Take local coordinates on $TM \oplus \mathbb{R}$, (x^i, y^i, s) of degree 0, where x^i is a local coordinate on M, y^i is one on T, and sis one on \mathbb{R} . Moreover take local coordinates on the cotangent fiber $T^*[1]$, (ξ_i, η_i, t) of degree one. We consider the space of functions $C^{\infty}(\mathcal{M})$ as a generalization of $\Omega^1(M) \oplus C^{\infty}(M)$. A section of $T^*M \oplus \mathbb{R}$, $\alpha + f \in \Omega^1(M) \oplus C^{\infty}(M)$ is identified to a function $\underline{\alpha} + fs \in C^{\infty}(TM \oplus \mathbb{R})$, where $\underline{\alpha} = \alpha_i(x)y^i$ corresponds to a 1-form $\alpha = \alpha_i(x)dx^i$.

Since \mathcal{M} is a cotangent bundle, there exist the following canonical graded symplectic form of degree one,

$$\omega_{\mathcal{M}} = \delta x^i \wedge \delta \xi_i + \delta y^i \wedge \delta \eta_i + \delta s \wedge \delta t. \tag{74}$$

In order to construct a Lie algebroid structure on $T^*M \oplus \mathbb{R}$, or a graded Poisson structure on $TM \oplus \mathbb{R}$, a dg symplectic structure, or a QP-manifold structure, is defined on \mathcal{M} as follows.

We consider the following function of degree two,

$$\Theta_{\mathcal{M}} = \pi(\xi,\eta) - \iota_y(\mathrm{d}\pi)(\eta,\eta) + \pi(\eta,\eta)s$$

= $\pi^{ij}(x)\xi_i\eta_j - \frac{1}{2}\partial_i\pi^{jk}(x)\eta_j\eta_k y^i + \frac{1}{2}\pi^{jk}(x)\eta_j\eta_k s.$ (75)

Here $\pi = \frac{1}{2}\pi^{ij}(x)\frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j} \in \Gamma(\wedge^2 TM)$ is a local coordinate expression of a bivector field on M. The (graded) Poisson bracket $\{-, -\}_{\mathcal{M}}$ is induced from the symplectic form (74) as usual. Since $\Theta_{\mathcal{M}}$ satisfies $\{\Theta_{\mathcal{M}}, \Theta_{\mathcal{M}}\}_{\mathcal{M}} = 0$ if and only if $\pi = \frac{1}{2}\pi^{ij}(x)\frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}$ is the Poisson bivector field, we obtain a homological vector field $Q_{\mathcal{M}} = \{\Theta_{\mathcal{M}}, -\}$ satisfying $Q_{\mathcal{M}}^2 = 0$. $(\omega_{\mathcal{M}}, \Theta_{\mathcal{M}})$ define a dg symplectic structure (a QP-manifold structure) on \mathcal{M} . The homological function $\Theta_{\mathcal{M}}$ is "a Poisson bivector field" on \mathcal{M} and define a (graded) Poisson bracket on $TM \oplus \mathbb{R}$ by the derived bracket,

$$\{\underline{u}, \underline{v}\}_{TM \oplus \mathbb{R}} := \{\{\underline{u}, \Theta_{\mathcal{M}}\}_{\mathcal{M}}, \underline{v}\}_{\mathcal{M}},$$
(76)

for $\underline{u}, \underline{v} \in C^{\infty}(TM \oplus \mathbb{R})$. For $\underline{u} = \underline{\alpha} + fs \simeq \alpha + f$ and $\underline{v} = \underline{\beta} + gs \simeq \beta + g$, the bracket (76) is equivalent to the Lie bracket (58),

$$\{\underline{\alpha} + fs, \underline{\beta} + gs\}_{TM \oplus \mathbb{R}} = [\alpha + f, \beta + g]_{T^*M \oplus \mathbb{R}}.$$
(77)

Thus, the graded manifold $TM \oplus \mathbb{R}$ is a Poisson manifold with a Poisson bracket (76) corresponding to $T^*M \oplus \mathbb{R}$.

Next, we consider A^* . For $\Gamma(A) \oplus C^{\infty}(M)$, a Poisson bracket is induced from the Lie algebroid structure on A. The Poisson bracket on A^* is concretely defined by

$$\{f, g\}_{A^*} = 0, (78)$$

$$\{a, g\}_{A^*} = \rho_A(a)g, \tag{79}$$

$$\{a,b\}_{A^*} = [a,b]_A, \tag{80}$$

where $f, g \in C^{\infty}(M)$ and $a, b \in \Gamma(A)$.

More generally, this Poisson bracket is induced from a graded Poisson bracket on the space of functions on a dg symplectic manifold. It is known that the graded manifold A[1] is a dg manifold corresponding to the Lie algebroid A [35]. For a vector bundle A over M, A[1] is a graded bundle, of which fiber is shifted by one. Let x^i be a local coordinate on the base manifold M, q^a be a local coordinate on the fiber of A[1]. A vector field of degree one on the shifted vector bundle A[1] is given by

$$Q = \rho_{A_a}{}^i(x)q^q \frac{\partial}{\partial x^i} - \frac{1}{2}C^c_{ab}(x)q^a q^b \frac{\partial}{\partial q^c}, \qquad (81)$$

Require that A[1] is a dg manifold, i.e., Q is a homological vector field such that $Q^2 = \frac{1}{2}[Q,Q] = 0$. This give a Lie algebroid structure on A. Here the anchor map and the Lie bracket on A are given by

$$\rho_A(e_a) := \rho_{Aa}^{\ i}(x)\partial_i, \tag{82}$$

$$[e_a, e_b] := C^c_{ab} e_c, \tag{83}$$

for the basis e_a of A.

The corresponding dg symplectic manifold, the QP-manifold, is constructed on the graded cotangent bundle $\mathcal{N} = T^*[2]A[1]$. We take the canonical graded symplectic form on the cotangent bundle Then, a Hamiltonian function $\Theta_{\mathcal{N}} \in C^{\infty}(\mathcal{N})$ for Q is defined by

$$\delta \Theta_{\mathcal{N}} = -\iota_Q \omega_{\mathcal{N}}, \tag{84}$$

where δ is the differential on the graded manifold \mathcal{N} . Since $Q^2 = 0$, Θ satisfies that

$$\{\Theta_{\mathcal{N}},\Theta_{\mathcal{N}}\}_{\mathcal{N}}=0.$$
(85)

Take local coordinates on $\mathcal{N} = T^*[2]A[1]$, (x^i, q^a, ξ_i, p_a) of degree (0, 1, 2, 1), (x^i, q^a) are local coordinates on A[1] of degree (0, 1) and (ξ_i, p_a) are corresponding fiber coordinates. The graded symplectic form is

$$\omega_{can} = \delta x^i \wedge \delta \xi_i + \delta q^a \wedge \delta p_a. \tag{86}$$

The local coordinate expression of the homological function $\Theta_{\mathcal{N}}$ is

$$\Theta_{\mathcal{N}} = \rho_{A_a^i}(x)\xi_i q^a + \frac{1}{2}C_{ab}^c(x)q^a q^b p_c.$$
(87)

Eq. (85) shows that Θ is regarded as a 'Poisson bivector field' on $A^*[1]$. A Poisson brackets on A[1] is defined by the derived bracket,

$$\{F, G\}_{A^*[1]} := -\{\{F, \Theta\}_{\mathcal{N}}, G\}_{\mathcal{N}},$$
(88)

for $F, G \in C^{\infty}(A^*[1])$.

A section $\alpha = \alpha^a(x)e_a \in \Gamma(A)$ is identified to a degree one function on $A^*[1]$, $\underline{a} = a^a(x)p_a$. For elements $F = \underline{a} + f \simeq a + f$ and $G = \underline{b} + g \simeq b + g$, the Poisson bracket (88) coincides with Eqs. (78)–(80),

$$\{\underline{a} + f, \underline{b} + g\}_{A^*[1]} = \{a + f, b + g\}_{A^*}.$$
(89)

Therefore, Eq. (88) is regarded as the Poisson bracket on $\Gamma(A) \oplus C^{\infty}(M)$.

5.2 Poisson map between dg symplectic manifolds

We construct a Poisson map from $(TM \oplus \mathbb{R}, \{-, -\}_{TM \oplus \mathbb{R}})$ to $(A^*[1], \{-, -\}_{A*[1]})$ induced from a momentum section μ . Obviously, it gives a Poisson map between two ordinary manifolds, $(T^*M \oplus \mathbb{R}, \{-, -\}_{T^*M \oplus \mathbb{R}})$ to $(A^*, \{-, -\}_{A^*})$.

For $\mu \in \Gamma(A^*)$, $\nabla \mu \in \Omega^1(M, A^*)$ is a 1-form taking a value on A^* , and regarded as a map $\nabla \mu : TM \to A^*$. Thus, we have the map $\nabla \mu - \mu : TM \oplus M \to A^*$.

Theorem 5.4 Let (A, π, ∇, μ) be a Hamiltonian Lie algebroid over a Poisson manifold M. If $\langle {}^{E}S, \mu \rangle = 0, \nabla \mu - \mu : TM \oplus \mathbb{R} \to A^{*}[1]$ is a Poisson map.

Proof The statement of theorem is the following equation is satisfied,

$$\{((\nabla\mu)^* - \mu^*)F, ((\nabla\mu)^* - \mu^*)G\}_{TM \oplus \mathbb{R}} = ((\nabla\mu)^* - \mu^*)(\{F, G\}_{A^*[1]}),$$
(90)

for every $F, G \in C^{\infty}(A^*[1])$. We can directly prove by calculating this equation using the derived bracket construction of Poisson brackets of two spaces $T^*[1](TM \oplus \mathbb{R})$ and $T^*[2]A^*[1]$ with homological functions, (75), (76), (87) and (88). Here $F, G \in C^{\infty}(A^*[1])$ are arbitrary functions of x^i and $p_a, F = F(x, p)$ and G = G(x, p). $(\nabla \mu)^* - \mu^*$ corresponds to the element $(\underline{\nabla \mu})^* - \underline{\mu}^* = (\nabla_i \mu_a) y^i q^a - \mu_a q^a$ on the dg manifold. In the derived bracket, we can prove that the following equation is satisfied,

$$\{\{\{\underline{\nabla\mu}^* - \underline{\mu}^*, F\}_{\mathcal{M}}, \Theta_{\mathcal{M}}\}_{\mathcal{M}}, \{\underline{\nabla\mu}^* - \underline{\mu}^*, G\}_{\mathcal{M}}\}_{\mathcal{M}} = \{\underline{\nabla\mu}^* - \underline{\mu}^*, \{\{F, \Theta_{\mathcal{N}}\}_{\mathcal{N}}, G\}_{\mathcal{N}}\}_{\mathcal{N}}.$$
 (91)

Another simpler proof is to use the proposition 5.2 and the result in Subsection 4.2. $\nabla \mu - \mu$ is nothing but the dual of $(\nabla \mu)^* - \mu^*$. In Proposition 4.6, we proved that it $(\nabla \mu)^* - \mu^*$ is the Lie algebroid morphism between A to $T^*M \oplus \mathbb{R}$. Therefore, Theorem 5.4 is obtained that $\nabla \mu - \mu$ is a Poisson map from $TM \oplus \mathbb{R}$ to A^* .

6 Momentum sections as Dirac morphisms

In previous sections, Lie algebroid morphisms and Poisson maps of momentum sections have been realized in Dirac structures L. This suggests a generalization of a Poisson map to a morphism between Dirac manifolds. Moreover we propose Hamiltonian Lie algebroids over Dirac structures.

6.1 Dirac morphisms

We introduce a Dirac morphism [2] between two Dirac structures. It is a generalization of a Dirac map [10, 11] and is related to the morphism between Dirac structures with other names [12].

Let (M, L_M) and (N, L_N) be two Dirac manifolds. A Dirac morphism is defined as follows.

Definition 6.1 Let $\varphi: M \to N$ be a smooth map. φ is called a (forward) Dirac morphism if the map

$$\mathbb{T}\varphi: (TM \oplus T^*M, L_M) \to (TN \oplus T^*N, L_N), \tag{92}$$

has the following property.

For $m \in M$ and $Y + \beta \in L_{N,\varphi(m)}$, there exists a unique $X + \alpha \in L_{M,m}$ such that $n = \varphi(m)$ and $Y = (T_m \varphi) X$, $\alpha = (T_m \varphi)^* \beta$.

There exists the following relation of a Poisson map with a Dirac morphism.[31]

Proposition 6.2 Let (M, π_M) and (N, π_N) be Poisson manifolds. Then, $\varphi : M \to N$ is a Poisson map if and only if $\mathbb{T}\varphi : (TM \oplus T^*M, \operatorname{Gr}(\pi_M)) \to (TN \oplus T^*N, \operatorname{Gr}(\pi_N))$ is a Dirac morphism, Let $\operatorname{Gr}(\pi_M)$ be the graph of the map $\pi_M : T^*M \to TM$.

We apply Proposition 6.2 to our settings.

Let (M, π, A, μ) be a Hamiltonian Lie algebroid over a Poisson manifold. Remember results in Subsection 5.2. From Theorem 5.4, $\nabla \mu - \mu : TM \oplus \mathbb{R} \to A^*$ is a Poisson map. We can take M and N in Proposition 6.2 as $TM \oplus \mathbb{R}$ and A^* . Then, we obtain the following proposition. **Proposition 6.3** Let (M, π, A, μ) be a Hamiltonian Lie algebroid over a Poisson manifold. Then, $\mathbb{T}(\nabla \mu - \mu) : (T(TM \oplus \mathbb{R}) \oplus T^*(TM \oplus \mathbb{R}), \operatorname{Gr}(\pi_{TM \oplus \mathbb{R}})) \to (TA^* \oplus T^*A^*, \operatorname{Gr}(\pi_{A^*}))$ is a Dirac morphism.

6.2 Hamiltonian Lie algebroids over Dirac structures

A definition of a Hamiltonian Lie algebroid over a Dirac structure has been proposed in [25]. In this subsection, we propose another definition based on Lie algebroid morphisms defined in this paper.

Definition 6.4 Let $L \subset TM \oplus T^*M$ be a Dirac structure.

- (D1) Let $v + \gamma : A \to TM \oplus T^*M$ be a map with $v : A \to TM$ and $\gamma : A \to T^*M$. Suppose that $\operatorname{Im}(v + \gamma) = L$ and the map $v + \gamma$ is a Lie algebroid morphism from A to L. Then, A is called *Dirac anchored* if ${}^A\nabla(v + \gamma) : A \times A \to L$ is a Lie algebroid morphism from $A \times A$ to L.
- (D2) A section $\mu \in \Gamma(A^*)$ is called a ∇ -momentum section if $\operatorname{Im}(\rho_A + (\nabla \mu)^*) = L$ and $\rho_A + (\nabla \mu)^* : A \to L$ is a Lie algebroid morphism.
- (D3) μ is called *bracket-compatible* if $\rho_A + (\nabla \mu)^* \mu^* : A \to L \oplus \mathbb{R}$ is a Lie algebroid morphism, where $L \oplus \mathbb{R}$ is regarded as a Dirac structure of the bundle $TM \oplus T^*M \oplus \mathbb{R} \oplus \mathbb{R}$.

Definition 6.5 A Lie algebroid A with a connection ∇ and a section $\mu \in \Gamma(A^*)$ is called **Hamiltonian** if the condition (D1), (D2) and (D3) are satisfied.

We can prove that Hamiltonian Lie algebroids over a pre-symplectic manifold and over a Poisson manifold are Hamiltonian Lie algebroids over Dirac structures in Definition 6.4 and 6.5.

From Propositions 4.1 and 4.2 in Subsection 4.1, we obtain the following proposition.

Proposition 6.6 Let (M, ω, A, μ) be a Hamiltonian Lie algebroid over a pre-symplectic manifold. Then, it is a Hamiltonian Lie algebroid over the Dirac structure $L = L_{\omega}$.

From Propositions 4.6 and 4.7 in Subsection 4.2, we obtain the following statement.

Proposition 6.7 Let (M, π, A, μ) be a Hamiltonian Lie algebroid over a Poisson manifold. If $\langle {}^{A}S, \mu \rangle = 0$, then, it is a Hamiltonian Lie algebroid over the Dirac structure $L = L_{\pi}$.

Acknowledgments

This work was supported by JSPS Grants-in-Aid for Scientific Research Number 22K03323.

References

- C. A. Abad, M. Crainic, Representations up to homotopy of Lie algebroids, J. Reine Angew. Math. 663 (2012), 91-126, arXiv:0901.0319 [math.DG]
- [2] A. Alekseev, H. Bursztyn, E. Meinrenken, Pure Spinors on Lie groups, Astérisque, tome 327 (2009) 131-199, arXiv:0709.1452 [math.DG]
- [3] A. Alekseev and T. Strobl, Current algebras and differential geometry, JHEP 03 (2005), 035 [arXiv:hep-th/0410183 [hep-th]].
- [4] R. Almeida and P. Molino, Suites d'Atiyah, feuilletages et quantification géométrique. (Atiyah sequences, foliations and geometric quantification), Sémin. Géom. Différ., Univ. Sci. Tech. Languedoc 1984/1985, 39-59 (1985)., 1985.
- [5] A. Balibanu, M. Mayrand, Reduction along strong Dirac maps, arXiv:2210.07200 [math.SG]
- [6] A. D. Blaom. Geometric structures as deformed infinitesimal symmetries, Trans. Amer. Math. Soc. 358 (2006) 3651. arXiv:math/0404313 [math.DG]
- [7] C. Blohmann, M. C. B. Fernandes and A. Weinstein, Groupoid symmetry and constraints in general relativity, Commun. Contemp. Math. 15 (2013) 1250061 [arXiv:1003.2857 [math.DG]].
- [8] C. Blohmann, and A. Weinstein, Hamiltonian Lie algebroids, [arXiv:1811.11109 [math.SG]], Mem. Am. Math. Soc., v+101 pp., Providence, RI: American Mathematical Society (AMS) 2023, to appear.

- C. Blohmann, S. Ronchi, A. Weinstein, Hamiltonian Lie algebroids over Poisson manifolds, [arXiv:2304.03503 [math.SG]].
- [10] H. Bursztyn, M. Crainic, Dirac structures, momentum maps, and quasi-Poisson manifolds, The breadth of symplectic and Poisson geometry, Progr. Math. 232 (2005) 1–40, Birkhäuser Boston, Boston, MA
- H. Bursztyn, M. Crainic, Dirac geometry, quasi-Poisson actions and D/G-valued moment maps, Journal of Differential Geometry 82 (2009) 501–566,
- [12] H. Bursztyn, D. Iglesias Ponte and P. Ševera, Courant morphisms and moment maps, Mathematical Research Letters 16 (2009) 215–232.
- [13] A. S. Cattaneo and G. Felder, Poisson sigma models and symplectic groupoids, Prog. Math. 198, 61-93 [arXiv:math/0003023 [math.SG]].
- [14] A. S. Cattaneo, F. Schätz, Introduction to supergeometry, [arXiv:1011.3401 [math-ph]].
- [15] T. Courant. Dirac manifolds, Trans. A. M. S. **319** (1990) 631.
- [16] M. Crainic, and R. L. Fernandes, Lectures on integrability of Lie brackets. Geometry and Topology Monographs 17 (2011) 1-107, Geom. Topol. Publ., Coventry
- [17] M. Crainic, R. L. Fernandes and I. Mărcuţ, Lectures on Poisson geometry, Graduate Studies in Mathematics, 217. American Mathematical Society, Providence, RI, 2021, 479 pp.
- [18] J. P. Dufour and N. T. Zung, Poisson Structures and their normal forms, Birkhauser, Progress in Mathematics, 242 (2005).
- [19] M. Grützmann and T. Strobl, General Yang–Mills type gauge theories for p-form gauge fields: From physics-based ideas to a mathematical framework or From Bianchi identities to twisted Courant algebroids, Int. J. Geom. Meth. Mod. Phys. **12** (2014), 1550009 [arXiv:1407.6759 [hep-th]].
- [20] Y. Hirota and N. Ikeda, Homotopy momentum sections on multisymplectic manifolds, J. Geom. Phys. 182 (2022), 104667 [arXiv:2110.12305 [math.SG]].

- [21] Y. Hirota and N. Ikeda, Geometry of bundle-valued multisymplectic structures with Lie algebroids, [arXiv:2312.02499 [math.SG]].
- [22] N. Ikeda, Lectures on AKSZ Sigma Models for Physicists, Noncommutative Geometry and Physics 4, Workshop on Strings, Membranes and Topological Field Theory: 79-169, 2017, World scientific, Singapore. [arXiv:1204.3714 [hep-th]].
- [23] N. Ikeda, Momentum sections in Hamiltonian mechanics and sigma models, SIGMA 15 (2019), 076 [arXiv:1905.02434 [math-ph]].
- [24] N. Ikeda, Momentum section on Courant algebroid and constrained Hamiltonian mechanics, J. Geom. Phys. 170 (2021), 104350 [arXiv:2104.12091 [math-ph]].
- [25] N. Ikeda, Hamilton Lie algebroids over Dirac structures and sigma models, [arXiv:2309.10996 [math.DG]].
- [26] A. A. Kirillov, Lectures on the Orbit Method, Graduate Studies in Mathematics, vol. 64 (2004), American Mathematical Society.
- [27] C. Klimcik and T. Strobl, WZW Poisson manifolds, J. Geom. Phys. 43 (2002), 341-344
 [arXiv:math/0104189 [math.SG]].
- [28] A. Kotov and T. Strobl, Lie algebroids, gauge theories, and compatible geometrical structures, Rev. Math. Phys. **31** (2018) no.04, 1950015 [arXiv:1603.04490 [math.DG]].
- [29] Z.-J. Liu, A. Weinstein and P. Xu, "Manin triples for Lie bialgebroids," J. Diff. Geom. 45 (1997), 547-574.
- [30] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, LMS Lecture Note Series 124, Cambridge U. Press, 1987.
- [31] E. Meinrencken, Introduction to Poisson geometry, Lecture notes, Winter 2017.
- [32] D. Roytenberg, A Note on quasi Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys. 61 (2002), 123-137 [arXiv:math/0112152 [math.QA]].
- [33] D. Roytenberg, AKSZ-BV formalism and Courant algebroid-induced topological field theories, Lett. Math. Phys. 79 (2007) 143 [arXiv:hep-th/0608150].

- [34] P. Ševera and A. Weinstein, Poisson geometry with a 3 form background, Prog. Theor.
 Phys. Suppl. 144 (2001), 145-154 [arXiv:math/0107133 [math.SG]].
- [35] A. Vaintrob, Lie algebroids and homological vector fields, Uspekhi Mat. Nauk, 52/2 314 (1997) 161.