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ON THE PRE-COMMUTATIVE ENVELOPES OF COMMUTATIVE ALGEBRAS

H. ALHUSSEIN1),2),3) AND P. KOLESNIKOV4)

Abstract. We prove that every nilpotent commutative algebra can be embedded into a pre-

commutative (Zinbiel) algebra with respect to the anti-commutator operation. For finite-di-

mensional algebras, the nilpotency condition is necessary for a commutative algebra to have a

pre-commutative envelope.

1. Introduction

The classical Poincaré–Birkhoff–Witt Theorem (PBW-Theorem) for Lie algebras gave rise

to a series of generalizations to various multiplication changing functors between varieties of

algebras. Namely, suppose V and W are two (linear) operads governing the varieties of algebras

called V-algebras and W-algebras, respectively. A morphism of operads ω : W → V induces

a functor from the variety of V-algebras to the variety of W-algebras: B 7→ B(ω), B ∈ V . Such

functors are called multiplication changing ones (see, e.g., [1]). One of the most common

examples is given by the morphism of operads (−) : Lie → As such that x1x2 7→ x1x2 − x2x1.

The corresponding functor between varieties As → Lie transforms an associative algebra A

into its commutator Lie algebra A(−).

Hereinafter we do not distinguish notations for multilinear varieties of algebras and their

governing operads. For an operad V and a nonempty set X, denote by V〈X〉 the free V-algebra

generated by X.

Every multiplication changing functor has left adjoint functor which sends an arbitrary W-

algebra A to its universal enveloping V-algebra Uω(A). If A is a W-algebra generated by a set

X relative to defining relations R ⊂ W〈X〉 then Uω(A) is the V-algebra generated by the same

set X relative to the relations ω(R) ⊂ V〈X〉.

The canonical homomorphism i : A → Uω(A) may not be injective in general. Moreover,

Uω(A) carries a natural ascending filtration relative to degrees in i(A), and its associated graded

algebra gr Uω(A) is also a V-algebra. As it was proposed in [1], let us say the triple (V,W, ω) to

have the PBW-property if i is injective and

gr Uω(A) ≃ Uω(A(0))

as V-algebras, where A(0) stands for the W-algebra on the space A with trivial (zero) operations.

Many combinatorial and homological properties of V- and W-algebras are closely related if

(V,W, ω) has the PBW-property, see, e.g. [1, 2].

A series of operation-transforming functors are related with so called dendriform splitting of

varieties. The term “dendriform algebra” was introduced by J.-L. Loday [3] in the associative

context, but it can be defined for an arbitrary variety (see, e.g., [4, 5]). Namely, for every

multilinear variety V of algebras there is a variety denoted pre V . The defining identities of

pre V can be calculated by means of a routine procedure (called splitting) described in [4]

or [5], see also [6].

In particular, for every pre V-algebra A with operations ≻ and ≺ the same space A relative to

the operation

ab = a ≻ b + a ≺ b, a, b ∈ A, (1.1)
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is a V-algebra. Thus we have a morphism of operads ε : V → pre V which maps x1x2 to

x1 ≻ x2+ x1 ≺ x2. The corresponding operation-changing functor between varieties of algebras

is also denoted ε, so that if A ∈ pre V then A(ε) ∈ V .

The corresponding left adjoint functor was previously studied for V = Lie [7] and V = As

[8]. In both cases, the triple (pre V,V, ε) has the PBW-property.

In this paper, we consider the triple (pre Com,Com, ε), where Com is the variety of associa-

tive and commutative algebras. In this case, the operad pre Com corresponds to the variety of

Zinbiel algebras [3], linear spaces with one bilinear multiplication satisfying the identity

x(yz) = (xy)z + (yx)z. (1.2)

(This operad is Koszul dual to the operad governing the class of Leibniz algebras, the term

“Zinbiel” is motivated by this observation.)

The functor εmentioned above is natural to denote (+) is this particular case: every pre Com-

algebra Z turns into a commutative algebra relative to the operation

a ∗ b = ab + ba, a, b ∈ Z.

It turns out that the case V = Com essentially differs from the cases V = Lie or As. It is not

hard to see that not every commutative algebra A embeds into its universal enveloping U(+)(A),

so there is no hope for the PBW-property to hold for the triple (pre Com,Com, (+)).

It was shown in [9, 10] that a finite-dimensional pre-commutative algebra is nilpotent. On

the other hand, it is easy to see that if a finite-dimensional commutative algebra A embeds

into a pre-commutative algebra then A must be nilpotent. Our results, in particular, show the

converse: every nilpotent commutative algebra A embeds into an appropriate pre-commutative

algebra.

For a trivial algebra A (with zero multiplication) we compute the Gröbner–Shirshov basis of

its universal enveloping Zinbiel algebra which may be considered as a “pre-algebra analogue”

of the symmetric algebra of a linear space.

2. Dendriform splitting and Zinbiel algebras

Let V be a class of all algebras satisfying a given set Σ of multilinear identities (i.e., V

is a variety defined by Σ). Each identity f ∈ Σ is an element from the free non-associative

(magmatic) algebra M〈x1, x2, . . .〉 which is homogeneous of degree n = deg f and multilinear

in the variables x1, . . . , xn. (For simplicity, we consider algebras with one binary product.)

For example, the class Perm is defined by two identities

(x1x2)x3 − x1(x2x3), x1(x2x3) − x2(x1x3),

these are left-commutative associative algebras also known as Perm-algebras [11].

Construct a class of algebras pre V with two binary products as follows [6]. A linear space

A equipped with two operations denoted ≺ and ≻ belongs to pre V if and only if for every

Perm-algebra P the space P ⊗ A equipped with multiplication

(p ⊗ a)(q ⊗ b) = pq ⊗ (a ≻ b) + qp ⊗ (a ≺ b), p, q ∈ P, a, b ∈ A,

belongs to the class V .

In particular, if P = k then it follows immediately from the definition that a pre V-algebra A

relative to the operation (a, b) 7→ ab given by (1.1) is an algebra from V .

The passage from a variety V to pre V described above is equivalent to the procedure of

splitting described in [4] in terms of Manin products for operads. The equivalence of these two

approaches [6] was proved by means of the notion of a Rota–Baxter operator. This notion is

also essential for our study.
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Definition 2.1 (see, e.g., [12]). A linear operator R defined on an algebra A over a field k is

called a Rota-Baxter operator (RB-operator) of weight zero if it satisfies the relation

R(x)R(y) = R(R(x)y + xR(y)), x, y ∈ A.

An algebra A with a Rota-Baxter operator is called a Rota–Baxter algebra (RB-algebra).

A Rota–Baxter operator is a formalization of integration. For example, if A is an arbitrary

algebra over a field of characteristic zero, and A[[t]] is the algebra of formal power series over

A then the linear map

R : A[[t]]→ A[[t]],
∑

n≥0

antn 7→
∑

n≥0

an

n + 1
tn+1,

is a Rota–Baxter operator. Similarly, if we restrict to the subalgebra tA[[t]] of all series without

free term then

R :
∑

n≥1

antn 7→
∑

n≥1

an

n
tn+1

is also a Rota–Baxter operator.

Proposition 2.2 ( [4]). Let A be an algebra from a variety V equipped with a Rota–Baxter

operator R : A→ A. Then the same space A with new operations

a ≻ b = R(a)b, a ≺ b = aR(b),

for a, b ∈ A, is a pre V-algebra denoted AR.

Example 2.3. Let V = Lie be the class of Lie algebras. Then for every (A,≺,≻) ∈ pre Lie the

skew-symmetry of Lie algebras implies a ≻ b = −b ≺ a for all a, b ∈ A. Hence, one operation

is enough to describe the structure of a pre-Lie algebra. It follows from the Jacobi identity that

the operation ≻ satisfies the identity

(x1 ≻ x2) ≻ x3 − (x2 ≻ x1) ≻ x3 − x1 ≻ (x2 ≻ x3) + x2 ≻ (x1 ≻ x3)

i.e., is left-symmetric, and the operation ≺ satisfies the opposite right-symmetric identity.

Example 2.4. Let V = Com be the class of associative and commutative algebras. Then for

every (Z,≺,≻) ∈ pre Com the commutativity implies a ≻ b = b ≺ a for all a, b ∈ Z. Again, one

operation is enough to describe the structure of a pre-commutative algebra. It follows from the

associativity of P ⊗ Z, P ∈ Perm that the operation ≻ satisfies the identity (1.2):

(x1 ≻ x2) ≻ x3 + (x2 ≻ x1) ≻ x3 − x1 ≻ (x2 ≻ x3),

and the operation ≺ satisfies the opposite one.

Definition 2.5 ( [3]). An algebra Z with one binary operation is said to be a Zinbiel algebra if

a(bc) = (ab)c + (ba)c.

for all a, b, c ∈ Z.

Hence, a Zinbiel algebra is the same as a pre-commutative algebra in terms of the opera-

tion ≻. Similarly, the class of all pre-associative algebras coincides with the variety of dendri-

form algebras defined in [3].

As it was mentioned above, every pre-associative algebra Z turns into an associative and

commutative algebra Z(+) with respect to anti-commutator.
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Example 2.6. Let X be a nonempty set, X∗ be the set of all (associative) words in the alphabet

X (excluding the empty word), and let F = kX∗ be the formal linear span of X∗ (this is the

semigroup algebra of the free semigroup generated by X). Define a product on F as follows:

(x1 . . . xn)(y1 . . . ym+1) =
∑

σ∈S n,m

σ(x1 . . . xny1 . . . ym)ym+1, xi, y j ∈ X,

where S n,m ⊂ S n+m is the set of all (n,m)-shuffle permutations from the symmetric group S n+m,

and σ(u), u ∈ Xn+m, stands for the word obtained by corresponding permutation of letters.

Then F is a pre-commutative algebra, the corresponding F(+) is the well-known shuffle alge-

bra structure on the tensor algebra of the space kX.

The algebra from Example 2.6 is the free pre-commutative algebra generated by a set X [3],

its basis consists of right-normed monomials

(. . . ((x1x2)x3) . . . xn)xn+1, xi ∈ X, i ≥ 0. (2.1)

The purpose of this paper was to determine if the nilpotence of a commutative algebra A is

sufficient for A to be embeddable into an appropriate pre-commutative algebra. As a result,

we obtain a more general sufficient condition, but start with the trivial case when A has zero

multiplication. In this case, it is possible to compute an analogue of the PBW-basis of U(+)(A)

by means of the Gröbner–Shirshov bases technique for non-associative algebras.

3. Composition–Diamond Lemma for non-associative algebras

The Gröbner–Shirshov bases method for nonassociative algebras goes back to the paper by

A. Kurosh [13], it is closely related with the general Knuth–Bendix algorithm. An essential

advance in this technique for Lie algebras was obtained by A. Shirshov [14], for associative

and commutative algebras the Gröbner bases technique is widely used after [15].

In this section, we recall the basics of the Gröbner–Shirshov bases method for non-associative

algebras according to [16, Section 5].

Let k be a field, X be a nonempty set, and let M〈X〉 stand for the free non-associative algebra

generated by X. Suppose the set X is equipped with a well order ≤, and let X∗∗ denote the set of

all non-associative words in the alphabet X (excluding the empty word). The set X∗∗ is a linear

basis of M〈X〉, it inherits the order ≤ on X in a way described below.

For any u ∈ X∗∗, denote by |u| the length of u. Define the weight wt (u) of u ∈ X∗∗ as

follows: for u = x ∈ X put wt (u) = (1, x) ∈ Z+ × X, for u = (u1u2), put wt (u) = (|u|, u2, u1) ∈

Z+ × X∗∗ × X∗∗. Extend the initial order ≤ on X to the order on X∗∗ by induction on the length:

u ≤ v ⇐⇒ wt (u) ≤ wt (v) (3.1)

lexicographically. That is, if |u| < |v| then u < v, if |u| = |v| = 1 then this is just the order on

X, if |u| = |v| = l > 1 then we present both u = (u1u2), v = (v1v2), where |ui|, |vi| < l, and then

compare the factors, for which the order is already defined by induction. This is a monomail

order, i.e.,

u ≤ v⇒ wu ≤ wv, uw ≤ vw,

for all u, v,w ∈ X∗∗.

Every 0 , f ∈ M〈X〉 may be presented as f =
∑n

i=1 αiui, where each αi ∈ k, αi , 0, ui ∈ X∗∗,

and u1 > u2 > · · · > un. The leading monomial f̄ of f , 0 is then u1. If α1 = 1, then f is said

to be a monic polynomial.

Definition 3.1. Let f , g ∈ M〈X〉 be monic polynomials. Assume there exists a word u ∈

(X ∪ {⋆})∗∗ (where ⋆ is a formal new letter not in X) such that w = f̄ is obtained from u

by replacing ⋆ with ḡ, i.e., f̄ = u|⋆=ḡ. Then the polynomial ( f , g)u = f − u|⋆=g is called
4



a composition of inclusion of f and g with respect to w. The word w as above is called an

ambiguity.

Let S ⊆ M〈X〉 be a nonempty set of monic polynomials relative to a monomial order ≤ on

X∗∗. A polynomial h ∈ M〈X〉 is said to be trivial modulo (S ,w), where w ∈ X∗∗ is a fixed word,

if there exist a finite number of ui ∈ (X ∪ {⋆})∗∗ such that

h =
∑

i

αiui|⋆=si
, si ∈ S , αi ∈ k,

where ui|⋆=s̄i
< w for all i. We denote this property of h as

h ≡ 0 (mod S ,w).

Definition 3.2. [14, 16, 17] A set S of monic polynomials from M〈X〉 is called a Gröbner–

Shirshov basis (GSB) if for every f , g ∈ S we have ( f , g)u ≡ 0 (mod (S , f̄ )) provided that such

a composition exists. In other words, all compositions of elements from S are trivial.

Theorem 3.3 (Composition–Diamond Lemma for non-associative algebras, [16]). Let X∗∗ be

be equipped with a well monomial order ≤. For a set S ⊆ M〈X〉 of monic polynomials, the

following statements are equivalent.

(i) S is a Gröbner–Shirshov basis in M〈X〉.

(ii) If f , 0, belongs to the ideal I(S ) of M〈X〉 generated by S then f̄ = u|⋆=s̄ for some s ∈ S ,

u ∈ (X ∩ {⋆})∗∗.

(iii) The set

Irr (S ) = {a ∈ X∗∗|a , u|⋆=s̄, for neither s ∈ S , u ∈ (X ∩ {⋆})∗∗}

is a linear basis of the algebra M〈X | S 〉 := M〈X〉/I(S ).

If a subset S of M〈X〉 is not a Gröbner–Shirshov basis, then we can add to S all nontrivial

compositions of polynomials from S , and by continuing this process (maybe infinitely) many

times, we eventually obtain a Gröbner–Shirshov basis S comp. Such a process is called the

Shirshov algorithm.

Let X be a nonempty set equipped with a well order ≤. Let us extend this order to a monomial

order on X∗∗ as described by (3.1). Then the free pre-commutative algebra F = F(X) is defined

by the following family of relations:

a(bc) − (ab)c − (ba)c; a, b, c ∈ X∗∗. (3.2)

The leading monomial is a(bc) since |bc| > |c|.

Theorem 3.4. The set of all polynomials (3.2) is a Gröbner–Shirshov basis.

Hence, the set Irr (S ) which consists of all right-normed monomials (2.1) is indeed a linear

basis of the free pre-commutative algebra F = M〈X | S 〉.

4. Universal pre-commutative envelopes of commutative algebras

Let A be an associative and commutative algebra. Denote by ∗ the multiplication in A. If

A contains a non-zero idempotent e = e ∗ e then A cannot be embedded into an algebra of the

form Z(+), where Z is a pre-commutative (Zinbiel) algebra. Indeed, if ϕ : A → Z(+) is such an

embedding and x = ϕ(e), then x = ϕ(e) = ϕ(e ∗ e) = 2xx. The identity (1.2) implies

x(xx) = 2(xx)x = xx,

so xx = 2xx and x = 0, a contradiction.

Hence, the universal pre-commutative envelope U = U(+)(A) of a commutative algebra A

does not necessalily contains A as a subalgebra of U(+).
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Let us consider the simplest case when A is an algebra with trivial (zero) multiplication.

Even in this case, finding the structure of U(+)(A) requires certain computations. We will find

here an analogue of the Poincaré–Birkhoff–Witt basis for the pre-commutative envelope of an

algebra A such that A ∗ A = 0 by means of the GSB method.

Theorem 4.1. Let X be a basis of an algebra A such that A2
= 0, and let ≤ be a well order on

X. Then the following polynomials form a GSB of the universal enveloping pre-commutative

algebra U(+)(A):

(R1) fabc = a(bc) − (ab)c − (ba)c, a, b, c ∈ X∗∗;

(R2) gxy = xy + yx, x, y ∈ X, x < y;

(R2′) ux = xx, x ∈ X;

(R3) taxy = (ax)y + (ay)x, x, y ∈ X, a ∈ X∗∗, x < y, the length of a is even;

(R3′) taxx = (ax)x, x ∈ X, a ∈ X∗∗, the length of a is even.

Proof. All compositions among the relations of type (R1) are trivial: they were considered in

Theorem 3.4. Hence, we may consider other relations from S only with words of the form

a = [z1, z2, . . . , zm] ∈ X∗∗, zi ∈ X,

where [. . .] denotes left-normed bracketing: [z1, z2, . . . , zm] = (((z1z2)z3) . . .)zm.

First, let us prove that (R3) and (R3′) follow from the defining relations (R1), (R2), (R2′) of

U(+)(A). Suppose a = [z1, z2, . . . , zm] as above, and m is even. Proceed by induction on m ≥ 2.

If m = 2 then

agxy = (z1z2)(xy) + (z1z2)(yx)

= [z1, z2, x, y] + [z1, x, z2, y] + [x, z1, z2, y] + [z1, z2, y, x] + [z1, y, z2, x] + [y, z1, z2, x]

= (ax)y + (ay)x + (gz1xz2)y + (gz1yz2)x,

so (ax)y + (ay)x follows from (R1), (R2), and (R2′). Suppose

agxy = [z1, z2, . . . , zm](xy) + [z1, z2, . . . , zm](yx),

and

[z1, z2, . . . , zm](xy) ≡ [x, z1, z2, . . . , zm, y] + [z1, x, z2, . . . , zm, y]

+ · · · + [z1, z2, . . . , x, zm, y] + [z1, z2, . . . , zm, x, y]

modulo the relations (R1). All terms except the last one form the pairs like

[z1, z2, . . . , z2l, x, z2l+1, . . . , zm, y] + [z1, z2, . . . , z2l, z2l+1, x, . . . , zm, y], l = 1, . . . , (m − 2)/2,

each of them is a corollary of (R1), (R2), and (R2′) by induction. Hence, a(xy) + a(yx) and

(ax)y + (ay)x both belong to the ideal generated by (R1), (R2), and (R2′).

Relations of the form (R3′) are proved similarly.

Now denote by S the set of polynomials in the statement and prove that all their compositions

are trivial.

The only potentially nontrivial compositions ( f , g)u of inclusion are the following:

(C1–2) f = faxy, g = gxy, u = (a⋆), a ∈ X∗∗ is left-normed;

(C1–2′) f = faxx, g = ux, u = (a⋆), a ∈ X∗∗ is left-normed;

(C1–3) f = fa(bx)y, g = tbxy, u = (a⋆), a, b ∈ X∗∗ are left-normed;

(C1–3′) f = fa(bx)x, g = tbxx, u = (a⋆), a, b ∈ X∗∗ are left-normed.
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Consider the composition (C1–2):

( f , g)u = faxy − agxy = a(xy) − (ax)y − (xa)y − a(xy) − a(yx)

= −(ax)y − (xa)y − (ay)x − (ya)x.

Here a = [z1, z2, . . . , zm].

Assume m is an even number. Then

faxy − agxy = −(xa)y − (ya)x − taxy = −(x[z1, z2, . . . , zm])y − (y[z1, z2, . . . , zm])x − taxy

≡ −
∑

σ∈S 1,m−1

(

σ([x, z1, . . . , zm−1, zm])y + σ([y, z1, . . . , zm−1, zm])x
)

= −[gx,z1
, z2, . . . , zm, y] −

m−2
2
∑

l=1

[z1, . . . , z2l, x, z2l+1, . . . , zm, y] − [z1, . . . , z2l, z2l+1, x, z2l+2, . . . , zm, y]

− [gyz1
, z2, . . . , zm, y] −

m−2
2
∑

l=1

[z1, . . . , z2l, y, z2l+1, . . . , zm, x] − [z1, . . . , z2l, z2l+1, y, z2l+2, . . . , zm, x]

≡ −

m−2
2
∑

l=1

[((a2l x)z2l+1 + (a2lz2l+1)x), z2l+2, . . . , zm, y]−

m−2
2
∑

l=1

[((a2ly)z2l+1 + (a2lz2l+1)y), z2l+2, . . . , zm, x]

= −

m−2
2
∑

l=1

[ta2l,x,z2l+1
, z2l+2, . . . , zm, y] −

m−2
2
∑

l=1

[ta2l,y,z2l+1
, z2l+2, . . . , zm, x] ≡ 0 (mod S , a(xy)).

Here a2l = [z1, . . . , z2l] is a left-normed word of even length.

Now assume m is an odd number. Then, similarly, rewrite the composition into left-normed

form to obtain

faxy−agxy = −[z1, z2, . . . , zm, x, y]−[z1, z2, . . . , zm, y, x]−(x[z1, z2, . . . , zm])y−(y[z1z2, . . . , zm])x

≡ −[z1, z2, . . . , zm, x, y] − [x, z1, . . . , zm, y] −

m−1
∑

l=1

[al, x, zl+1, . . . , zm, y]

− [z1, z2, . . . , zm, y, x] − [y, z1, . . . , zm, x] −

m−1
∑

l=1

[al, y, zl+1, . . . , zm, x]

≡ −

m
∑

l=2

[al, x, zl+1, . . . , zm, y] −

m
∑

l=2

[al, y, zl+1, . . . , zm, x]

= −

m−1
2
∑

i=1

[a2i, x, z2i+1, . . . , zm, y] − [a2i, z2i+1, x, z2i+2, . . . , zm, y]

−

m−1
2
∑

i=1

[a2i, y, z2i+1, . . . , zm, x] − [a2i, z2i+1, y, z2l+2, . . . , zm, x]

= −

m−1
2
∑

i=1

(

[ta2ixz2i+1
, z2i+2, . . . , zm, y] + [ta2iyz2i+1

, z2i+2, . . . , zm, x]
)

≡ 0 (mod S , a(xy)).

Here, as above, al = [z1, . . . , zl].
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Therefore, all compositions of type (C1–2) are trivial. For (C1–2′), the same computations

show triviality of such compositions.

To complete the proof, we need the following

Lemma 4.2. Let a = [x1, x2, . . . , xm], b = [y1, y2, . . . , yk] ∈ X∗∗, m ≥ 1 is odd and k ≥ 2 is even.

Then there exist ui ∈ X∗∗, si ∈ S , αi ∈ k such that

ab =
∑

i

αiui|⋆=si
,

where ui|⋆=s̄i
≤ ab for all i.

We will say ab is trivial if such a presentation exists.

Proof. For m = 1, k = 2 we have

ab = x1(y1y2) = fx1y1y2
+ gx1y1

y2.

Assume k > 2 and the statement is true for m = 1 and for all words shorter than k. Then present

b = [bk−2, yk−1, yk] and write

ab = x1((bk−2yk−1)yk) ≡ [x1, bk−2, yk−1, yk] + [bk−2, x1, yk−1, yk] + [bk−2, yk−1, x1, yk]

= [(x1bk−2), yk−1, yk] + ((bk−2x1)yk−1 − (bk−2yk−1)x1)yk.

Hereinafter ≡ means the reduction by means of the relations fabc. The first summand in the

right-hand side is trivial by induction, the second one is equal to tbk−2x1yk−1
yk, so it is also trivial.

Next, assume m > 1 and k = 2. Then present a = [am−2, xm−1, xm], am−2 is of odd length, and

write

ab = [am−2, xm−1, xm](y1y2)

≡ [(am−2xm−1), xm, y1, y2] + [(am−2xm−1), y1, xm, y2] + [y1, (am−2xm−1), xm, y2]

= t(am−2xm−1),xm ,y1
+ [(y1(am−2xm−1)), xm, y2]

The second summand is trivial by induction (the case m = 1), hence, the entire expression is

trivial.

Finally, assume m > 1, k > 2, and the lemma is true for all words a, b such that either a

shorter than m or for b shorter than k. Then present a = am−1xm, where am−1 is of even length,

b = [y1, . . . , yk], calculate (am−1xm)[y1, . . . , yk], and re-arrange the summands to get

ab = (am−1xm)[y1, . . . , yk] ≡

k
∑

j=1

k
∑

i= j

[y1, . . . , y j−1, am−1, y j, . . . , yi−1, xm, yi, . . . , yk]

=

k/2−1
∑

p=0

k
∑

i=2p+1

[y1, . . . , y2p, am−1, y2p+1, . . . , yi−1, xm, yi, . . . , yk]

+

k/2−1
∑

p=0

k
∑

i=2p+2

[y1, . . . , y2p, y2p+1, am−1, y2p+2, . . . , yi−1, xm, yi, . . . , yk]. (4.1)
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The first group of summands in the right-hand side of (4.1) may be presented as

k/2−1
∑

p=0

[up,2p, xm, y2p+1, . . . , yk] + [up,2p, y2p+1, xm, y2p+2, . . . , yk]

+ [up,2p+2, xm, y2p+3, . . . , yk] + [up,2p+2, y2p+3, xm, y2p+4, . . . , yk] + . . .

+ · · · + [up,k−2, xm, yk−1, yk] + [up,k−2, yk−1, xmyk]

= [t[up,2pxmy2p+1
, y2p+2, . . . , yk]+[t[up,2p+2xmy2p+3

, y2p+4, . . . , yk]+· · ·+t[up,k−2xmyk−1
yk ≡ 0 (mod S , ab),

where up,i = [y1, . . . , y2p, am−1, y2p+1, . . . , yi]. All summands in the second group contain factors

of the form

[y1, . . . , y2p+1]am−1

which are trivial by induction (the length of am−1 is even). �

Proceed to the compositions of type (C1–3). Consider fa(bx)y, tbxy ∈ S , the length of b is even.

Then for w = (a⋆) we have

( fa(bx)y, tbxy)w = fa(bx)y − atbxy = a((bx)y) − (a(bx))y − ((bx)a)y − a((bx)y) − a((by)x)

= −((ab)x)y − ((ba)x)y − ((bx)a)y − ((ab)y)x − ((ba)y)x − ((by)a)x

Suppose m is even. Then both ab, ba are linear combinations of words which have even length.

If ab + ba =
∑

j≥0

α ju j, α j ∈ k, then

((ab)x)y + ((ba)x)y + ((ab)y)x + ((ba)y)x ≡
∑

j≥0

α jtu jxy ≡ 0 (mod S , a((bx)y)).

The remaining terms in the composition are ((by)a)x+((bx)a)y. They both contain factors (bx)a

or (by)a that are trivial by Lemma 4.2.

Suppose m is an odd number. Then, modulo Lemma 4.2, the remaining terms of the compo-

sition are

h = [b, a, x, y] + [b, x, a, y] + [b, a, y, x] + [b, y, a, x].

Let us rewrite h as follows:

[b, a, x, y]+ [b, x, a, y]+ [x, b, a, y]+ [b, a, y, x]+ [b, y, a, x]+ [y, b, a, x]− [x, b, a, y]− [y, b, a, x]

≡ (ba)(xy) + (ba)(yx) − [(xb, a, y] − [(yb), a, x] = (ba)uxy − [(xb, a, y] − [(yb), a, x].

All summands are trivial by Lemma 4.2, and all monomials here are smaller than a((bx)y) since

b is a non-empty word.

In a similar way, the composition (C1–3′) is also trivial. �

Corollary 4.3. If A is a linear space with an ordered basis X then the set

{[x1, x2, x3, x4, . . . , xn−1, xn] | xi ∈ X, n ≥ 1, x1 > x2, x3 > x4, . . . }

(with no restrictions on xn if n is odd) is a linear basis of the algebra U(+)(A) if A is considered

as an algebra with zero multiplication.

In other words, the universal pre-commutative envelope of a trivial algebra A is isomorphic

as a linear space to

T (A ∧ A) ⊗ (A ⊕ A ∧ A),

where T (A ∧ A) is the tensor algebra of the space A ∧ A.

The following example shows that structure of U(+)(A) essentially depends on the multipli-

cation in A even if An
= 0 for some n ≥ 3.
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Example 4.4. Suppose A is a commutative nilpotent algebra with a multiplication ∗, and let

X = {x1, x2, . . . , xn} be a basis of A such that xi ∗ x j = xi+ j or zero, if i + j > n. Namely,

A ≃ tk[t]/(tn+1), xi = ti
+ (tn+1). Then the defining relations of U(+)(A) are

(1) a(bc) = (ab)c + (ba)c, a, b, c ∈ X∗∗;

(2) xix j + x jxi = xi+ j, i + j ≤ n, xi, x j ∈ X;

(3) xix j + x jxi = 0, i + j > n, xi, x j ∈ X.

In order to get a GSB, we have to add the following nonassociative polynomials:

xix j =
j

i + j
xi+ j, i + j ≤ n, xi, x j ∈ X;

xix j = 0, i + j > n, xi, x j ∈ X.

Indeed, since xi(x1x1) = 1
2
xix2 and xi(x1x1) = (xix1+x1 xi)x1 = xi+1x1, we have xix2 = 2xi+1x1.

By induction on j ≥ 2, assume that xix j = jxi+ j−1x1 for all i, then

xix j+1 = xi(x jx1 + x1x j) = xi+ jx1 + xi+1x j = xi+ j x1 + jxi+ jx1 = ( j + 1)xi+ jx1.

Next,

xi+ j = xix j + x jxi = jxi+ j−1 x1 + ixi+ j−1x1 = (i + j)xi+ j−1 x1.

Therefore, xix j = jxi+ j−1x1 =
j

i+ j
xi+ j for all i, j such that i + j ≤ n.

Finally, suppose i + j > n and j + 1 ≤ n, then

xi(x jx1) =
1

j + 1
xix j+1, xi(x jx1) = (xix j + x jxi)x1 = 0

Hence, xix j+1 = x j+1xi = 0. Similarly, it can be obtained that xixn = xnxi = 0 for i + 1 < n.

Therefore, in this particular case we have U(+)(A)(+) ≃ A in contrast to the case when A has

zero multiplication.

5. Embedding of nilpotent algebras into Zinbiel algebras

The main purpose of this section is to prove that a nilpotent commutative algebra embeds

into its universal enveloping Zinbiel algebra although there is no PBW-property.

Let us say that an algebra A has a positive filtration if there is a descending chain of subspaces

A = F1A ⊃ F2A ⊃ · · · ⊃ FnA ⊃ Fn+1A ⊃ . . .

such that F iA · F jA ⊆ F i+ jA and
⋂

n≥1

FnA = 0.

For example, if A is a nilpotent algebra then such a filtration exists: F iA = Ai, i = 1, 2, . . . .

For every algebra with a positive filtration one may construct its associated graded algebra

in the ordinary way:

gr A =
⊕

n≥1

FnA/Fn+1A, (a + F i+1A)(b + F j+1A) = ab + F i+ j+1A,

for a ∈ F iA, b ∈ F jA. The linear space A is naturally isomorphic to the space gr A. If the

isomorphism preserves multiplication then we say the filtered algebra A is graded.

Theorem 5.1. For every commutative algebra A with a positive filtration there exists a Zinbiel

algebra B such that A is a subalgebra of B(+).

Proof. First, choose a basis X of the space A agreed with the filtration, i.e.,

X = X1 ∪ X2 ∪ . . . ,
10



where
⋃

i≥k Xi is a basis of FkA for k ≥ 1. Denote by ∗ the multiplication in A. If x ∈ Xk and

y ∈ Xm then x ∗ y belongs to the linear span of Xk+m ∪ Xk+m+1 ∪ . . ., so there is a unique (finite)

presentation

x ∗ y = (x ∗ y)k+m + (x ∗ y)k+m+1 + . . . ,

where (x ∗ y)i is in the linear span of Xi.

Next, consider the set

X̂ = {x
(k)

i
| x ∈ Xk, k ≥ 1, i ≥ k}

and construct the polynomial algebra k[X̂]. This algebra is graded: the degree function of a

monomial is given by

deg x
(k1)

i1
x

(k2)

i2
. . . x

(km)

im
= i1 + · · · + im. (5.1)

Consider the set Ŝ of the following elements in k[X̂]:

sl(x, y) =
∑

i+ j=l

x
(k)

i
y

(m)

j
−

l
∑

p=m+k

(x ∗ y)
(p)

l

where x ∈ Xk, y ∈ Xm, k,m ≥ 1, l ≥ k + m.

Since all polynomials in Ŝ are homogeneous relative to the degree function (5.1), the algebra

Â = k[X̂]/(Ŝ ) inherits the grading:

Â =
⊕

n≥1

Ân,

where Ân is spanned by the images of all monomials u such that deg u = n.

It was shown in [18] that, in noncommutative setting, the set Ŝ is a Gröbner basis in k[X̂]

relative to a certain ordering of monomials. In the commutative case, the same statement re-

mains valid. In particular, every linear linear form (a nontrivial linear combination of elements

from X) is nonzero in Â.

Finally, consider the algebra of formal power series (without constant terms) tÂ[[t]] equipped

with the following Rota–Baxter operator:

R :
∑

n≥1

fntn 7→
∑

n≥1

1

n
fntn, fn ∈ Â. (5.2)

Define the linear mapping

ϕ : A→ tÂ[[t]]

as follows: for x ∈ Xk, let

ϕ(x) =
∑

i≥k

ix
(k)

i
ti.

This is an injective map since the set X̂ is linearly independent in Â.

The commutative algebra tÂ[[t]] equipped with the Rota–Baxter operator (5.2) is a Zinbiel

algebra: B = tÂ[[t]]R. It is straightforward to check that ϕ is a homomorphism of algebras.

Indeed, let x ∈ Xk, y ∈ Xm, then

R(ϕ(x))ϕ(y) =
∑

i≥k

x
(k)

i
ti
∑

j≥m

jy
(m)

j
t j
=

∑

l≥k+m

∑

i+ j=l

jx
(k)

i
y

(m)

j
tl,

and, similarly,

ϕ(x)R(ϕ(y)) =
∑

l≥k+m

∑

i+ j=l

ix
(k)

i
y

(m)

j
tl,

so

R(ϕ(x))ϕ(y) + ϕ(x)R(ϕ(y)) =
∑

l≥k+m

∑

i+ j=l

lx
(k)

i
y

(m)

j
tl
=

∑

l≥k+m

l

( l
∑

p=k+m

(x ∗ y)
(p)

l

)

tl.
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On the other hand,

ϕ(x ∗ y) =
∑

p≥k+m

ϕ((x ∗ y)(p)) =
∑

p≥k+m

∑

l≥p

l(x ∗ y)
(p)

l
tl
=

∑

l≥k+m

l
∑

p=k+m

l(x ∗ y)
(p)

l
tl.

Hence, R(ϕ(x))ϕ(y) + ϕ(x)R(ϕ(y)) = ϕ(x ∗ y) as required. �

Corollary 5.2. Every commutative algebra with positive filtration embeds into its universal

enveloping Zinbeil algebra.

Proof. Suppose i : A → U(+)(A) is the canonical homomorphism from A to its universal

enveloping Zinbiel algebra. Then for every Zinbiel algebra B and for every homomorphism

ϕ : A → B(+) there exists a unique homomorphism ψ : U(+)(A) → B of Zinbiel algebras such

that ψ(i(a)) = ϕ(a) for every a ∈ A. If i was not injective then so is ϕ, but at least one injective

ϕ exists by Theorem 5.1. �

Corollary 5.3. Suppose A is a finite-dimensional commutative algebra. Then algebra A is

embedded into a Zinbiel algebra if only if A is nilpotent.

Proof. If A is nilpotent then use Theorem 5.1 applied to the standard positive filtration. Con-

versely, if A is not nilpotent If A is not nilpotent then it contains a non-zero idempotent, e.g.,

lifted from the identity element of A/rad (A). The presence of an idempotent prevents an em-

bedding of A into a pre-commutative algebra. �
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