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Abstract— Physical Human-Machine Interaction plays a piv-
otal role in facilitating collaboration across various domains.
When designing appropriate model-based controllers to assist
a human in the interaction, the accuracy of the human model is
crucial for the resulting overall behavior of the coupled system.
When looking at state-of-the-art control approaches, most
methods rely on a deterministic model or no model at all of the
human behavior. This poses a gap to the current neuroscientific
standard regarding human movement modeling, which uses
stochastic optimal control models that include signal-dependent
noise processes and therefore describe the human behavior
much more accurate than the deterministic counterparts. To
close this gap by including these stochastic human models in
the control design, we introduce a novel design methodology
resulting in a Human-Variability-Respecting Optimal Control
that explicitly incorporates the human noise processes and their
influence on the mean and variability behavior of a physically
coupled human-machine system. Our approach results in an
improved overall system performance, i.e. higher accuracy and
lower variability in target point reaching, while allowing to
shape the joint variability, for example to preserve human
natural variability patterns.

I. INTRODUCTION

Physical Human-Machine Interaction is becoming increas-

ingly relevant as it focuses on machines that intuitively in-

teract with and support humans in various applications. Such

applications are e.g. construction tasks that are too complex

to be fully automated or mobility-assisting or rehabilitating

humans that recover from injuries, thereby playing a crucial

role in the future of manual work [1]. Developments in

these fields are strongly supported by research in shared

control, which focuses on enhancing machine automation

which continuously and parallel to the human interacts with

a system haptically [2]. This aims at creating an improved

interaction experience in which human and machine combine

their strengths [3]. One major challenge in shared control

design lies in the task of parametrizing the automation, which

is either done heuristically or based on a model of the human

behavior.

Early shared control designs, particularly in the automotive

domain, employ heuristically designed feedback controllers

without detailed consideration of human behavior [4], [5].

These solutions proved how haptic assistance can support the

human in its task accomplishment while still keeping the hu-

man in the loop. However, the designs need heuristic tuning

which takes time and is task-specific. Approaches focusing
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on object manipulation or supporting hand movements often

adapt the overall system impedance based on modeling hu-

mans as impedance systems [6]–[10]. These solutions lead to

improved performance but usually adapt the impedance of a

passive system, thereby missing an active assistance support

by the automation. Other approaches involve game-theoretic

controllers, which model human motion based on optimality

principles [11]–[15]. These models are based on observations

from movement sciences and neuroscience [16], [17], leading

to generalizable models on which an automation can be

designed.

All these mentioned designs assume a deterministic human

behavior. However, neuroscientific literature shows that the

human behaves stochastically [18], [19] and adheres to the

minimal intervention principle [17], [20], resulting in a

reduced variability only in areas that are relevant for a suc-

cessful task-completion. This pattern of a high variability in

areas that are not of interest for the human task performance

is termed task-dependent variability and is characteristic for

human movements. The state-of-the-art linear-quadratic sen-

sorimotor (LQS) model represents this variability [21]. The

model includes additive and multiplicative noise processes in

the modeled human action and perception cycle. This leads

to a better accuracy in describing both the mean behavior and

variability patterns [22], [23]. The reason for this superiority

is that noise parameters not only affect variability, but also

the mean behavior [21], [24].

When looking at the state-of-the-art shared control design

approaches, two observations stand out: A) The effect of the

human noise processes on the mean behavior is not reflected,

leading to a suboptimal performance of model-based shared

control designs as they are based on deterministic human

models. B) The control designs do not consider the inherent

human variability but often interpret it as undesired noise,

therefore urging the human to behave deterministically and

thereby restricting the human in its natural high variability

in task-irrelevant areas.

This paper adresses these two research gaps by introduc-

ing a novel approach to design a controller which aims

at assisting a human in physical Human-Machine Inter-

action. This Human-Variability-Respecting Optimal Control

(HVROC) approach implements and parametrizes an optimal

controller as an automation. Research gap A is adressed

by explicitly taking into account the joint mean behav-

ior of a stochastically modeled human and automation in

an optimization-based parametrization. As a basis for this

approach and as a further contribution, we introduce the

recursive calculation of the mean behavior and variance of a
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coupled stochastic human-machine system. Research gap B

is tackled by introducing a variability-pattern shaping of the

joint variance. The resulting controller’s benefits are twofold:

First of all, our HVROC considers the effect of the human

noise processes on the joint mean behavior, enhancing the

overall system performance in task accuracy, speed and goal

point variability. Secondly, our design enables to influence

the resulting variability a) either to mimic the high human

natural variability in task-irrelevent areas b) or restrict it.

Such an adaption is possible due to the newly formulated

relationship between the automation and the resulting mean

and variance of the coupled system. The benefits of our ap-

proach are shown in simulation using two example systems.

II. HUMAN-VARIABILITY-RESPECTING OPTIMAL

CONTROL

In this section we firstly introduce our system model in

Subsection II-A, which is influenced by a human and an

automation. The stochastic human model is described in

Subsection II-B before we present our novel automation

design in Subsection II-C. We thereby focus on point-to-

point (P2P) movements without loss of generality.

A. Human-Machine System Model

We define a system which is manipulated by both a human

and an automation, thereby adhering to the current standart

representation of human biomechanical movement modeling

by [21]:

xt+1 = Axt +BAuA,t +BHuH,t + ξt +

c
∑

i

ε
(i)
t CiuH,t,

(1)

where x ∈ R
n denotes the system state, uH ∈ R

mH and

uA ∈ R
mA the control variables of the human and automa-

tion, respectively. Additionally, we encounter an additive

standard white Gaussian noise process with ξt ∈ R
n and

the human control-dependent noise process
∑

i ε
(i)
t CiuH,t ∈

R
n. The latter can be interpreted as a higher inaccuracy

for faster movements. With A,BA,BH,Ci we introduce

matrices of appropriate dimension and ε =
[

ε
(1)
t . . . ε

(c)
t

]⊺

denotes a standard white Gaussion noise process (cov (ε) =
I). The stochastic process xt is initialized with E{x0} and

cov(x0,x0) = Ω
x
0 . The automation typically does not have

full access to the system states; it’s output equation can be

described as:

yA,t =HAxt, (2)

while the human perception is complemented by the additive

ωt and multiplicative noise process
∑

i ǫ
(i)
t Dixt in the

output equation:

yH,t =HHxt + ωt +

d
∑

i

ǫ
(i)
t Dixt, (3)

where yH ∈ R
rH and yA ∈ R

rA denote the observed output

by the human and the automation, respectively. The state-

dependent noise translates to a higher inaccuracy in percep-

tion, the faster a movement is. ω and ǫ =
[

ǫ
(1)
t . . . ǫ

(d)
t

]⊺

with cov (ǫ) = I denote standard white Gaussian noise

processes. HA, HH and Di are matrices of appropriate

dimension. All mentioned Gaussian noise processes are

independent to each other and to xt. The additive noise

processes in human action and perception are composed

of standard white Gaussian noise processes αt ∈ R
p and

βt ∈ R
q (cov (α,α) = cov (α) = I and cov (β) = I):

ξt = Σ
ξαt and ωt = Σ

ωβt.

B. Human Behavior

When regarding only the human actor in our system

dynamics (1), i.e. uA = 0, the linear-quadratic sensorimotor

(LQS) model for goal-directed human movements as intro-

duced by [21] results. According to that, the human chooses

uH,t such that the performance criterion

JH=E

{

x
⊺

NQH,NxN+
N−1
∑

t=0

(

x
⊺

tQH,txt+u
⊺

H,tRHuH,t

)

}

,

(4)

becomes minimal, with QH,t ∈ R
n×n being symmetric and

positiv semidefinite for t = 0, ..., N − 1 and RH ∈ R
m×m

being symmetric and positive definite. Eq. (4) can be trans-

formed into a form that allows penalizing a deviation from

a reference state (i.e. xt − xref ) by introducing additional

position states px,ref and py,ref with constant dynamics [17],

thus enabling the analyzis of P2P movements from a start

point p0 to an end point pref with pt denoting the position

state.

An approximate solution to this optimal control problem

is presented in [21], resulting in the control law uH,t =
−LH,tx̂H,t. This means that the human acts on the system

based on its estimated system state x̂H,t and the control

matrix LH,t. The state estimation is updated recursively

by a linear Kalman filter x̂H,t+1 = Ax̂H,t + BHuH,t +
KH,t

(

yH,t −HHx̂H,t

)

. Adhering to the derivation by [21]

and [24], the approximate solution for control and filter

matrix can be found by iterating between

LH,t =
(

RH +B⊺

HZ
xH

t+1BH

+
∑

i

C
⊺

i (Z
xH

t+1 +Z
eH

t+1)Ci

)

−1

B
⊺

HZ
xH

t+1A (5)

and

KH,t =AP
eH

t H
⊺

H

(

HHP
eH

t HH +Ω
ω

+
∑

i

Di(P
eH

t +P x̂H

t +P x̂HeH

t +P eHx̂H

t )D⊺

i

)

−1

,

(6)

with the recursive equations for ZxH

t , ZeH

t , P eH

t , P x̂H

t ,

P x̂HeH

t , P eHx̂H

t being provided by [21] and Ω
ω = cov (ω).

According to Lemma 2 in [24], when applying the optimal

control strategy to the system described by (1) and (3) with



uA = 0, the mean E {xt} and variance Ω
x
t can be described

as follows:
[

E {xt+1}
E {x̂H,t+1}

]

=AH,t

[

E {xt}
E {x̂H,t}

]

, (7)

cov

([

xt+1

x̂H,t+1

])

=AH,tcov

([

xt

x̂H,t

])

A
⊺

H,t

+

[

Ω
ξ

0

0 KH,tΩ
ωK

⊺

H,t

]

+

[

Ω̄
x̂H

t 0

0 Ω̄
x

t

]

(8)

with cov(ǫ) = (cov(ǫi, ǫj))i,j=1,...,n for a multivariate ran-

dom variable ǫ ∈ R
n×1, Ωx

t = cov (xt) for a variable x,

Ω̄
x̂H

t =
∑

iCiLH,t,
(

Ω
x̂H

t + E{x̂H,t}E{x̂H,t}
⊺

)

L
⊺

H,tC
⊺

i ,

Ω̄
x

t =
∑

iKH,tDi (Ω
x
t + E{xt}E{xt}

⊺)D⊺

iK
⊺

H,t,

AH,t =

[

A −BHLH,t

KH,tHH A−BHLH,t−KH,tHH

]

(9)

and initial values E{x̂H,0} = x̂H,0 = E{x0} and

cov

([

x0

x̂H,0

])

=

[

Ω
x
0 0

0 0

]

. (10)

C. Human Variability-Respecting Optimal Control

1) Automation: As an automation we use a LQ optimal

controller. The performance criterion for the automation is

defined as:

JA = x⊺

NQA,NxN +

N−1
∑

t=0

(

x
⊺

tQA,txt + u
⊺

A,tRAuA,t

)

,

(11)

with QA,t = diag(qA) for t = 0, ..., N − 1 and RA =
diag(rA) and with qA ∈ R

n×1 being positive semidefinite

and rA ∈ R
mA×1 being positive definite. This results in a

control behavior that is similar to the human and aims at

mimicking the single human behavior.

Eq. (11) can be augmented like in the human case, such

that it allows a penalization of the deviation from a reference

state pref . Similar to the human but deterministic case, a

control law and state estimation can be derived:

uA,t =−LA,tx̂A,t (12)

x̂A,t+1 =Ax̂A,t +BAuA,t

+KA,t(yA,t −HAx̂A,t). (13)

These result from the iterative calculation of:

LA,t =
(

RA +B⊺

AZt+1BA

)

−1

B
⊺

AZt+1A, (14)

KA,t =AP tH
⊺

A

(

HAP tH
⊺

A

)

−1

, (15)

with the equations for Z and P being provided by e.g. [25].

The overall system architecture, picturing the interplay

between the automation, system model (II-A) and the human

model (II-B) is depicted in Fig. 1.

2) Control Objectives: As introduced in Section I, we as-

sume that maintaining human movement characteristics, i.e.

high variability in task-irrelevant areas, in a joint interaction

between a human and an automation leads to an enhanced

human experience. Additionally, we expect an improved

overall performance by considering the effect of the human

noise processes on the mean behavior. Concretely, with our

HVROC design we can find an automation that, compared to

a human-only action, leads to:

1) a) a similarly high or b) strongly constricted variance

in task-irrelevant areas,

2) a smaller variance in reaching the goal point,

3) a smaller mean error in reaching the goal point

in a joint interaction on the system. These goals can be

formalized to:

1a) Ω
p
N/2,HVROC ≅ Ω

p
N/2,human, (16)

1b) Ω
p
N/2,HVROC ≪ Ω

p
N/2,human, (17)

2) Ω
p
N,HVROC ≤ Ω

p
N,human, (18)

3) |E{pN}HVROC − pref | ≤ |E{pN}human − pref |.
(19)

The suffix human and HVROC denote whether the human

alone or both human and controller perform the task. The

task-irrelevant area in our task is defined as the midway area

between the starting point p0 and endpoint pref . Therefore

we measure the variance of the task-irrelevant area at the

time step t = N/2.

Our work is based on the following assumption:

Assumption 1 All parameters describing the human behav-

ior, i.e. cost function QH,t,RH and noise process param-

eters, are identified. Furthermore, these parameters remain

unaltered when an automation additionally acts upon the

control loop.

Remark 1 The parameterset described in Assumption 1 can

be person-specific through personalized identification (e.g.

using the approach by [26]) or be generalized over (groups

of) persons.

3) Mean and Variance of the Coupled Human-Machine

System: Based on the calculation of E {xt} and Ω
x
t of

the human movement in Subsection II-B, we extend the

calculations to the joint interaction given in (1):

Lemma 1 Let the system dynamics be described by (1), (2)

and (3). Let the human control and filter matrices be given

by (5) and (6), let Assumption 1 hold and the automation’s

control and filter matrices be provided by (14) and (15). Then



Biomechanics

xt+1 = Axt + zH,t + zA,t

Human

Estimation

x̂H,t+1 = Ax̂H,t +BHuH,t

+KH,t

(

yH,t −HHx̂H,t

)

Control law

uH,t = −LH,tx̂H,t

yH,tx̂H,t

uH,t

HH

∑

i ǫ
i
tDiωt

+

BH

∑

i ε
i
tCi ξt

+
zH,t

Automation

Estimation

x̂A,t+1 = Ax̂A,t +BAuA,t

+KA,t

(

yA,t −HAx̂A,t

)

Perception

HA

Control law

uA,t = −LA,tx̂A,t

Action

BA

yA,tx̂A,t

uA,t

xt

zA,t

Perception

Action

Fig. 1: Human-Machine System Model

the joint mean E {xt} and variance Ω
x
t are computed by:





E {xt+1}
E {x̂H,t+1}
E {x̂A,t+1}



 = At





E {xt}
E {x̂H,t}
E {x̂A,t}



 , (20)

cov









xt+1

x̂H,t+1

x̂A,t+1







 = At cov









xt

x̂H,t

x̂A,t







A
⊺

t

+





Ω
ξ

0 0

0 KH,tΩ
ωHK

⊺

H,t 0

0 0 0





+





Ω̄
x̂H

t 0 0

0 Ω̄
x

t 0

0 0 0



 (21)

with

At=









A −BHLH,t −BALA,t

KH,tHH A−BHLH,t−KH,tHH 0

KA,tHA 0 A−BALA,t−KA,tHA









,

(22)

Ω̄
x̂H

t =
∑

i

CiLH,t

(

Ω
x̂H

t + E{x̂H,t}E{x̂H,t}
⊺

)

L
⊺

H,tC
⊺

i , (23)

Ω̄
x

t =
∑

i

KH,tDi

(

Ω
x
t + E{xt}E{xt}

⊺

)

D
⊺

iK
⊺

H,t.

(24)

Proof: See Appendix.

These descriptions provide recursive formulas to compute

the mean E {xt} and variance Ω
x
t of the system state that

gets acted upon by a stochastic human and a deterministic

automation.

4) Optimization-based Automation Parametrization:

Based on Lemma 1, a controller can be parametrized which

explicitly considers its effect on the mean and variance of

the coupled human and automation.

With the previously established foundation, we now intro-

duce our procedure, depicted in Fig. 2. On the basis of identi-

fied human parameters, the human-alone mean and variance

for a specific movement can be calculated as described in

Subsection II-B. The resulting movement is regarded as the

natural human behavior.

Using the goals defined in Subsection II-C.2 we formu-

late a parameter optimization problem allowing to shape

the resulting mean and covariance of the joint interaction

compared to the human-alone action:

Proposition 1 Let a human-machine system be defined

by (1). Let Assumption 1 hold. Find the optimal automation’s

cost function parameters q∗A and r∗A that result in a control

law which minimizes the objective function

min
q
A
,rA

JHVROC(qA, rA) =

shighMidVar

(

Ω
p
N/2,HVROC −Ω

p
N/2,human

)2

+ slowMidVar

(

Ω
p
N/2,HVROC

Ω
p
N/2,human

)2

+ sendVar

(

Ω
p
N,HVROC

Ω
p
N,human

)2

+ sref

(

|E{pN}HVROC − pref |

|E{pN}human − pref |

)2

(25)

s.t. qA ≥ 0, rA > 0.

Remark 2 The four weights s =
[

shighMidVar slowMidVar sendVar sref
]

allow to balance

between the four goals given by (16)-(19). Only either

shighMidVar or slowMidVar should be chosen to be non-zero,

depending on whether a high or low variability in the



task-irrelevant area between goal points is desired.

This proposition is solved by a bi-level approach as depicted

in Fig. 2: On the upper level the objective function is

evaluated on basis of the mean and variance of the coupled

system for a given set of qA and rA, which in turn is

calculated by the lower level. This results in the optimal

parameters q∗A, r
∗

A, from which the optimal control matrix

L∗

A,t can be calculated.

A,BH,BA,HH,HA,
QH,t,RH,Ci,Di,Σ

ω,Σξ

(7), (8)

min
q
A
,rA

JHVROC

(

E{pHVROC},E{phuman},

Ω
p
HVROC,Ω

p
human,pref

)

(14), (15) → Lemma 1

qA, rA E{pHVROC},Ω
p
HVROC

pref

s, qA,0, rA,0

(14), (15)

E{phuman},Ω
p
human

q∗A, r
∗

A

L∗

A,t

Fig. 2: Procedure depicting the bi-level optimization struc-

ture.

III. NUMERICAL EXAMPLE

We implement our proposed method on two examples,

both tackling a two-dimensional P2P movement to be per-

formed jointly by a human and an automation. The first

example is inspired by [17], [24] and deals with the short-

distance manipulation of a human hand. In the second case

we simulate a handheld tool which is grasped by the human

hand and which is to be moved over a longer distance.

A. Simulation Parametrization

The system state is defined as x =
[

px py ṗx ṗy fx fy gx gy
]⊺

. Both dimensions

can be described analogously, we therefore only describe

the x dimension from here on. Analogously to [21], px and

ṗx denote the position and velocity of the human hand,

which by itself is modeled as a point mass of mhand = 1kg,

optionally grasping a tool which adds a tool-mass of mtool

to the total point-mass m = mhand + mtool. fx describes

the force exerted on the hand, which results from the

automation’s input uA,x and human muscle force on the

hand resulting from a second-order linear filter gx with the

human neural activation uH,x as input. The human filter

time constants are chosen as τ1 = τ2 = 40ms. With a time

discretization of ∆t = 10ms, we receive dynamic and filter

equations:

px,t+1 = px,t +∆t ṗx,t, (26a)

ṗx,t+1 = ṗx,t +
∆t

m
fx,t, (26b)

fx,t+1 =

(

1−
∆t

τ2

)

fx,t +
∆t

τ2
gx,t + uA,x,t, (26c)

gx,t+1 =

(

1−
∆t

τ1

)

gx,t +
∆t

τ1
uH,x,t. (26d)

The equations for the y-dimension can be described analo-

gously. Using (26a)-(26d), the system matrices A, BA and

BH can be derived. Both the human and the automation

output equations provide insight into the first six system

states: HH =HA =
[

I6×6 06×2

]

.

We set the human cost function parameters to QH,N =

diag(
[

1 1 0.04 0.04 0.0004 0.0004 0 0
]⊺

) and

RH = diag(
[

0.000005 0.000005
]⊺

) in close analogy to

[24].

The scaling matrices for the additive noise processes are

chosen as Σ
ω = diag

([

0.02 0.02 0.2 0.2 1 1
]⊺)

and Σ
ξ = 0. Furthermore, we define the scaling matrices

for the signal-dependent noise processes as C1 = σuB,

C2 = σuB
[

−ψ2 ψ1

]

with σu = 0.5 and D = 0, with

ψ denoting the standard unit vector of R2.

The task is to move the human hand from the starting point

px,0 = py,0 = 0m to the end point pref within N timesteps.

For the human hand example we set px,ref = py,ref =
0.1m, m = mhand = 1kg and N = 42. Within the tool

manipulation example, the goal point px,ref = py,ref = 0.5m
is to be reached within N = 96 timesteps with a mass of

m = mhand +mtool = 10 kg.

The weights of our introduced cost function (25) allow

to influence the shape of the resulting behavior regarding

mean accuracy and variability in the goal point as well

as variability midway between start and end point. In our

example we aim at balancing the priorization between all

three goals, while either shaping the joint variance to be

similar to the human-alone variance or low at t = N/2:
shighvar =

[

1 1 10 0
]⊺

and slowvar =
[

1 1 0 1
]⊺

.

We optimize for the first six weights of QA, thus for

q(1 : 6), as the automation has no controllability over the

neural activation of the system. The optimization algorithm

starts with initial parameters that are adopted from the human

model: q0 =
[

1 1 0.04 0.04 0.0004 0.0004
]⊺

and

r0 =
[

0.000005 0.000005
]⊺

.

B. Results

In this subsection we present the simulation results of

our proposed HVROC in two parametrizations (aiming for

either a) a variance that is similar to the human-alone or

b) a reduced variance for t = N/2) and a linear-quadratic

riccati (LQR) controller that is parameterized similar to

the human as a benchmark example, both in a closed-loop

interaction with a simulated human. The simulated human-

alone behavior is shown for comparison. We look at two

cases: the former deals with jointly manipulating a human

hand and the latter with the manipulation of a handheld tool.



The LQR benchmark controller obtains a state estimation

through a Kalman filter. The cost function parameters

are chosen similarly to the human, with QLQR =

diag(
[

1 1 0.04 0.04 0.0004 0.0004 0 0
]⊺

) for

t = 1 . . .N and RLQR = diag(
[

0.002 0.002
]⊺

). The

resulting joint behavior of the LQR together with the

simulated human is depicted in black in Fig. 3.
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(a) Example 1: Manipulation of a human hand with m = 1kg,
px,ref = 0.1m, N = 42.
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(b) Example 2: Manipulation of a handheld tool with m = 10 kg,
px,ref = 0.5m, N = 96.

Fig. 3: Mean and variance of the position px. Human-

alone behavior is depicted in red. The joint behavior of

our proposed HVROC with the simulated human is shown

in blue; solid and dotted lines represent a high and low

desired variability in the task-irrelevant area, respectively.

Black depicts the joint behavior of the LQR and human.

The joint behavior of the HVROC interacting with the

human is depicted in blue in Fig. 3. Solid and dotted lines

represent a high and low desired variability in the task-

irrelevant area, specified through either weighing shighMidVar

or slowMidVar. Quantitative results are provided in Tbl. I.

Regarding the variability in the task-irrelevant area it can

be observed that the joint variance behaves as intended: a

high variance between the start and goal point, similar to the

human-alone, can be identified in the solid line. A restricted

variance in t = N/2, compared both to human-alone and

LQR, shows for the dotted line.

Looking at the goal point variability, our approach leads

to a reduced position variance at t = N compared to the

human-alone for both examples and also compared to the

LQR in Example 2.

Furthermore, the HVROC exhibits better mean perfor-

mance in reaching the goal point concerning accuracy and

time. Looking at Example 1, HVROC accuracy outperforms

the human-alone by factor 4 and the LQR by factor 10.

TABLE I: Simulation results comparing the HVROC in two

parametrizations with the human-alone and the LQR in two

example scenarios.

Human

alone
HVROC

high var
HVROC

low var
LQR

Example 1: Human hand

cov(px,N/2)
in 10−5m2 2.8 3.0 2.3 2.5

cov(px,N )
in 10−6m2 12.1 9.0 9.6 4.9

|E{px,N} − px,ref |
in mm

2.1 0.4 0.5 5.6

t(|E{px,t} − px,ref |
< 0.05 · px,ref)

37 33 34 -

Example 2: Handheld tool manipulation

cov(px,N/2)
in 10−5m2 16.6 18.1 7.6 9.3

cov(px,N )
in 10−6m2 1.9 0.5 0.7 1.2

|E{px,N} − px,ref |
in mm

15.0 0.03 0.05 11.0

t(|E{px,t} − px,ref |
< 0.05 · px,ref)

78 63 71 76

The improvement is even more visible for Example 2,

where the HVROC approaches reach the goal point with a

remaining error of |E{px,N} − px,ref | = 0.03mm/0.05mm
compared to 15.0mm and 11.0mm for human-alone and

LQR, respectively. Additionally, all HVROC results reach

and stay within a 5% error bandwidth around the goal point

clearly faster then the LQR, with the latter even showing a

stationary error > 5% for Example 1.

In our examples both dimensions are parameterized iden-

tical, therefore the same results can be observed for the y-

dimension.

C. Discussion

Our introduced HVROC allows to find automation pa-

rameters that optimize the joint behavior of a deterministic

automation and a stochastic human. Using the introduced

objective function, the variance of the human-machine inter-

action can be shaped as desired, e.g. to restrict the overall

variance or keep it similar to the human natural behavior

of being elevated in task-irrelevant areas. Further work may

analyze the effect of different variability patterns on the

human experience.

Additionally, the joint mean behavior of the overall system

is improved using the HVROC. As mentioned by [21], [24],

the human noise parameters influence its mean behavior,

which regular controller designs do not take into consider-

ation. Our approach however, explicitly takes into account

the effect which the human noise parameters exert on the

joint mean, leading to an improved accuracy and improved

speed in reaching the goal point. It must be noted that the

presented choice of objective function weights only represent

one sample choice. Other weights may be chosen according

to the desired importance on accuracy or variability patterns.

Furthermore, other objective functions that consider the joint

behavior may be defined.



The comparison to the LQR shows the need for our

optimally and variability-respecting parameterized HVROC:

the LQR shows worse overall performance in accuracy and

speed and a strong intervention in human natural variability.

IV. CONCLUSION

In this paper we propose a novel control approach for

physical Human-Machine Interaction. State-of-the-art solu-

tions are often model-based, and therefore generalizable,

however, they are exclusively based on deterministic models

of the human behavior. This results in a mismatch to neuro-

scientific literature which models the human stochastically.

Based on these stochastic human models, we introduce

formulations that allow the computation of the mean and

variance of a coupled human-machine system. The resulting

formulas are then used as a basis for an optimization-based

parametrization of the automation. The benefits of using the

stochastic model are twofold: For once, the overall perfor-

mance of the joint interaction is enhanced, since the effect of

human noise processes on the mean behavior is incorporated

in the control design. Additionally, our controller design

allows the shaping of the resulting joint variance: The human

natural variability can be adjusted depending on the user’s

preference.

APPENDIX: PROOF OF LEMMA 1

Proof: Extending (7) by the automations systems esti-

mation (13) and substituting (12) and (2), (20) results.

Calculating the variance of the extended system state

including xt+1, x̂H,t+1 and x̂A,t+1, we derive:

cov
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
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
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(27)

by exploiting the zero-mean and independence to each other

of εt, ǫt, ξt, ωH,t and ωA,t as well as their independence

to xt, x̂H,t and x̂A,t. Analogously to [24] we can further

simplify each element of the matrix of the second summand

of (27) due to above mentioned independencies as well as

E
{

ε
(i)
t ε

(j)
t

}

= E
{

ǫ
(i)
t ǫ

(j)
t

}

= δij (δij = 1 for i = j, δij =

0 for i 6= j) and E
{

ε
(i)
t ǫ

(j)
t

}

= 0 (∀i, j):
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
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We apply E
{

x̂H,tx̂
⊺

H,t

}

= Ω
x̂H

t + E {x̂H,t}E {x̂H,t}
⊺

in

(28) and E {xtx
⊺

t } = Ω
x
t +E {xt}E {xt}

⊺
in (31), resulting

in




Ω̄
x̂H

t 0 0

0 Ω̄
x

t 0

0 0 0



 (32)

for the second summand of (27). Due to the independence

of ξt, ωH,t and ωH,t, the third summand reduces to





Ω
ξ

0 0

0 KH,tΩ
ωHK

⊺

H,t 0

0 0 0



 , (33)

leading to the simplification of (27) to (21).
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