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Abstract

In this paper, we introduce a suite of models for price-aware automated market making platforms

willing to optimize their quotes. These models incorporate advanced price dynamics, including stochastic

volatility, jumps, and microstructural price models based on Hawkes processes. Additionally, we address

the variability in demand from liquidity takers through models that employ either Hawkes or Markov-

modulated Poisson processes. Each model is analyzed with particular emphasis placed on the complexity

of the numerical methods required to compute optimal quotes.

Keywords: AMM, DeFi, stochastic optimal control, Heston-Bates model, Stein-Stein model, Hawkes

processes, Markov-modulated Poisson processes.

1 Introduction

Market makers, including both human agents and algorithms, are key participants in financial markets stand-
ing ready to buy and sell securities or currency pairs. They are crucial in facilitating transactions by bridging
the gap between buyers and sellers, whose requests or orders may not coincide due to asynchronous submissions.

The challenges faced by market makers, and the broader microeconomics of market making, have been rigor-
ously examined since the 1980s from two perspectives. The first is information asymmetries, initially explored
by Copeland and Galai [16] and subsequently by Glosten and Milgrom [18]. The second perspective focuses
on inventory management, as initially investigated by Ho and Stoll [23, 24].

In the literature concerning information asymmetries, the bid-ask spread is primarily viewed as an informa-
tional phenomenon. Faced with the risk of adverse selection by informed traders, market makers – even those
who are risk-neutral – must maintain a bid-ask spread to sustain their viability. This body of literature of-
ten employs metaphorical (toy) models to elucidate the fundamental informational factors that drive bid-ask
spreads.

When holding inventory, market makers are confronted with risks arising from uncertainties about future prices
and the trading willingness of other market participants. Within this context, the bid-ask spread is utilized as
a premium to compensate for the risks incurred while holding inventory. Quantitative models in the inventory
management literature are often designed to maximize the expected profit and loss (PnL) of market makers,
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while also managing inventory levels to remain as close to zero as possible, primarily through the strategic set-
ting of their quotes. The body of literature on inventory management has seen significant advancements since
Avellaneda and Stoikov’s 2008 article [1], which reinvigorated the modeling framework originally introduced by
Ho and Stoll nearly three decades earlier. Within the quantitative finance community, researchers have built
upon the foundational elements of Ho and Stoll’s seminal works, enriching models with increasingly sophisti-
cated features over the years. These enhancements include the integration of alpha signals, varying order sizes,
client tiering strategies, the internalization-versus-externalization dilemma, consideration of market impact,
introduction of uncertainty in parameters, and attempts to address the challenges of adverse selection (see
[2, 4, 8, 12, 14, 15, 19, 21]). Furthermore, there has been an effort to extend these models to multi-asset set-
tings, alongside the development of sophisticated numerical and approximation techniques (see [3, 7, 8, 20, 22]).

These market making models have shown effectiveness in over-the-counter (OTC) markets, such as those for
corporate bonds and foreign exchange. With the recent rise of decentralized finance (DeFi) and the emergence
of Automated Market Makers (AMMs) in cryptocurrency markets – which provide alternatives to centralized
exchange platforms based on limit order books – it appears promising that these models could be adapted
to optimize price-aware AMMs.1 Price-aware AMMs mark a new generation in the DeFi arena. Unlike the
classical Constant Function Market Makers (CFMMs), which leave price discovery to liquidity takers, includ-
ing arbitrageurs, and stay passive in the price formation process, price-aware AMMs utilize current market
estimates to inform their pricing strategies. A leading study in this new direction is [6], which also coined the
concept of efficient market making strategies. In [6], however, the model assumes log-normal price dynamics
and static liquidity, which do not optimally represent the characteristics of many cryptocurrency pairs. This
paper aims therefore to exhibit a suite of models extending that introduced in [6] by incorporating more com-
plex price dynamics and dynamic liquidity.

In the literature on market making, asset prices are commonly modeled using Brownian motions or geometric
Brownian motions, sometimes with a drift or a stochastic alpha component. There are exceptions, however.
For instance, [17] examines a multidimensional Ornstein-Uhlenbeck dynamics suitable for cointegrated assets,
and [27] attempts to integrate stochastic volatility into market making models. Our paper explores the effects
of employing models with price jumps and stochastic volatility on market making equations. Our primary
focus is on dynamics from the option pricing literature, particularly the Heston-Bates model (see [5]) and
the Stein-Stein model with jumps (see [29]). We demonstrate that while these models necessitate the addi-
tion of a state variable, they do not preclude the use of the quadratic Hamiltonian approximation technique
introduced in [7] to approximate value functions. However, the resulting Riccati equations are replaced by
nonlinear parabolic partial differential equations. We also show that the quadratic Hamiltonian approximation
technique can be applied to several price models based on Hawkes processes recently introduced in the market
microstructure literature.

Besides price dynamics, we address the impact of stochastic liquidity, diverging from the common assump-
tion in most market making models of a constant flow of liquidity takers for fixed bid-ask spread and skew.
Given the stochastic nature of liquidity and the observed autocorrelation in trade signs, Hawkes processes
represent a natural choice beyond traditional Poisson processes (see, for instance, [25]). However, employing
Hawkes processes presents a challenge as it conflicts with the quadratic Hamiltonian approximation technique,
which reduces computational complexity. As an alternative, we propose Markov-modulated Poisson processes
(MMPPs), as explored in the recent paper [9].

In this paper, we present a comprehensive suite of models for automated market makers. Our primary focus
is on detailing the Hamilton-Jacobi-Bellman equations that characterize the value function of price-aware
automated market makers and the associated optimal quotes, exploring different models for price and liquidity
dynamics. Section 2 introduces the general modeling framework that underpins all the models we discuss.
Then, Section 3 explores various models for price dynamics, while Section 4 examines two ways to model
stochastic liquidity.

1Such adaptations must take into account specific characteristics like the use of the buy-and-hold (Hodl) benchmark and the
requirement for inventories to remain nonnegative.
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2 General modelling framework

In this paper, we consider a filtered probability space (Ω,F ,P;F = (Ft)t≥0) satisfying the usual conditions.
All the random variables and stochastic processes are defined on this probability space.

We consider a two-currency automated market maker which offers quotes to liquidity takers (LTs) based on a
reference price2 and markups3. Throughout this paper, the two currencies will be referred to as currency 0 and
currency 1, with currency 0 serving as the accounting currency. The process (St)t∈R+ denotes the reference
price, expressing the value of currency 1 in terms of currency 0.

Our goal in all the models presented below is to develop efficient markups for liquidity providers (LPs) as
defined in [6]. Specifically, we seek to find markups that maximize the expected excess Profit and Loss (PnL)
of LPs relative to the Hodl benchmark,4 while ensuring that the variance of this excess PnL remains below a
predetermined level.

Regarding transactions, we consider the same kind of models as in [6]. Transaction sizes are labelled in the
accounting currency and transaction prices are decomposed into two parts: one part corresponding to the
reference exchange rate and another part corresponding to a markup (that might very rarely be a discount)
that is accounted in currency 0, whatever the side of the transaction, for the sake of simplicity. More precisely,
if a liquidity taker wants to sell z coins of currency 0 at time t, then z/St coins of currency 1 will be offered
to them and zδ0,1(t, z) extra coins of currency 0 will be asked as a markup. Symmetrically, if a liquidity taker
wants to buy z coins of currency 0 at time t, then z/St coins of currency 1 will be asked and zδ1,0(t, z) out of
the total of z coins of currency 0 will not be transferred to them.

We assume that the markups
(

δ0,1, δ1,0
)

belong to

A :=

{

(

δ0,1, δ1,0
)

: Ω× [0, T ]× R
∗
+ 7→ R

2

∣

∣

∣

∣

(

δ0,1, δ1,0
)

is P ⊗ B(R∗
+)-measurable

}

,

where P denotes the σ-algebra of F-predictable subsets of Ω×[0, T ] and B(R∗
+) denotes the Borelian sets of R∗

+.

To simplify the analysis, we accumulate these markups in a process (Xt)t∈[0,T ], separated from the pool
reserves, whose dynamics is

dXt =

∫

z∈R
∗

+

zδ0,1(t, z)J0,1(dt, dz) +

∫

z∈R
∗

+

zδ1,0(t, z)J1,0(dt, dz),

with X0 = 0, where J0,1(dt, dz) and J1,0(dt, dz) are two R
∗
+-marked point processes modelling respectively

transactions through which the AMM sells currency 1 and receives currency 0 (for J0,1(dt, dz)) and transac-
tions through which the AMM sells currency 0 and receives currency 1 (for J1,0(dt, dz)).

The dynamics of the reserves are then given by:

dq0t =

∫

z∈R
∗

+

z
(

J0,1(dt, dz)− J1,0(dt, dz)
)

and dq1t =

∫

z∈R
∗

+

z

St

(

J1,0(dt, dz)− J0,1(dt, dz)
)

.

2This reference price may be derived from an off-chain market feed or from an on-chain price oracle, depending on the setup.
3The markups are typically computed offchain whenever the computational complexity becomes high. The underlying algo-

rithm can be public or private depending on the setup.
4The excess PnL relative to Hodl represents the PnL of a representative liquidity provider between two liquidity provision or

redemption events, compared to the PnL that would have been realized had the LP remained outside the pool. Other benchmarks
and decompositions of LPs’ PnL have been proposed in the literature. For CFMMs, a notable decomposition is presented in [13],
introducing the concept of predictable loss. In a specific model, [26] introduced the related concept of loss-versus-rebalancing and
regarded it as a benchmark, albeit an extreme one due to its assumption of back-to-back trading. In the context of price-aware
AMMs, the relevant benchmark remains Hodl. However, the idea of reducing risk by enabling AMMs to trade on other platforms
is highly relevant. This strategy is reminiscent of the classical internalization versus externalization trade-off in traditional market
making (see [3, 4]).
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We assume that the processes J0,1(dt, dz) and J1,0(dt, dz) have known intensity kernels given respectively by
(ζ0,1t (dz))t∈R+ and (ζ1,0t (dz))t∈R+ , verifying

ζ0,1t (dz) = Λ0,1
(

t, z, δ0,1(t, z)
)

1{q1t−≥ z
St

}m(dz) and ζ1,0t (dz) = Λ1,0
(

t, z, δ1,0(t, z)
)

1{q0t−≥z}m(dz),

where:

• Λ0,1 : (t, z, δ) ∈ R+ × R
∗
+ × R 7→ R

∗
+ and Λ1,0 : (t, z, δ) ∈ R+ × R

∗
+ × R 7→ R

∗
+ are intensity functions

decreasing in δ and satisfying the classical technical assumptions of intensity functions in the market
making literature (see [8]);

• the indicator functions represent the impossibility for the AMM to propose exchange rates for transactions
that cannot occur because reserves are too low in the demanded currency;

• m is a measure on R+ (typically Lebesgue or discrete).

In the standard literature on OTC market making (see [4] or [8], for instance), these intensity functions (which
correspond to the demand curve of LTs) are assumed of the logistic type. In our general framework where
liquidity may not be constant, we consider

Λ0,1(t, z, δ) = λ0,1
t φ0,1(z)f0,1(z, δ) and Λ1,0(t, z, δ) = λ1,0

t φ1,0(z)f1,0(z, δ)

where:

• λ0,1
t and λ1,0

t describe the height of the demand curve;

• φ0,1(z) and φ1,0(z) are the probability density functions (with respect to m) of the size of trade inquiries;

• f0,1 : (z, δ) ∈ R
∗
+ × R 7→ 1

1+ea
0,1(z)+b0,1(z)δ

and f1,0 : (z, δ) ∈ R
∗
+ × R 7→ 1

1+ea
1,0(z)+b1,0(z)δ

describe the
logistic shape of the demand curve, in particular the sensitivity to the markups which may depend on
sizes.

If we mark the reserve of currency 1 with the reference exchange rate, the total value associated with the
markups and the reserves in the pool at time T is given by XT +q0T +q1TST . To evaluate the PnL of a liquidity
provider compared to that of an agent who would have held the coins outside of the AMM (Hodl benchmark),
we need to subtract the current value of the initial reserves, i.e., q00 + q10ST . Therefore, the excess PnL with
respect to Hodl at time T is expressed as:

ΠT = XT +
(

q0T − q00
)

+
(

q1T − q10
)

ST

=

∫ T

0

∫

z∈R
∗

+

zδ0,1(t, z)J0,1(dt, dz) +

∫ T

0

∫

z∈R
∗

+

zδ1,0(t, z)J1,0(dt, dz)

+

∫ T

0

∫

z∈R
∗

+

z
(

J0,1(dt, dz)− J1,0(dt, dz)
)

+

∫ T

0

(q1t − q10)dSt

+

∫ T

0

∫

z∈R
∗

+

z
(

J1,0(dt, dz)− J0,1(dt, dz)
)

=

∫ T

0

∫

z∈R
∗

+

zδ0,1(t, z)J0,1(dt, dz) +

∫ T

0

∫

z∈R
∗

+

zδ1,0(t, z)J1,0(dt, dz) +

∫ T

0

(q1t − q10)dSt. (1)

Given a time horizon T , we can define efficient market making strategies as those maximising the expected
value of the above excess PnL, subject to an upper bound on its variance. These strategies correspond to
those maximizing expressions of the form

E[ΠT ]−
γ

2
V[ΠT ],

for γ spanning R+. Traditional optimization problems of this form are known to suffer from time inconsistency
due to the variance term. To address this issue, we adopt very close but alternative objective functions that
penalize risk. In Eq. (1), risk originates from two main sources: the stochastic nature of trade arrivals and
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price fluctuations. Existing literature on market making (such as [20] or more recently [4]) suggests that price
risk is the dominant factor. Consequently, our subsequent analysis focuses on mitigating price risk. To work
with a time-consistent objective function, we replace the variance of ΠT in the original optimization problems

with the quadratic variation of
∫ T

0
(q1t − q10)dSt, i.e.,

T
∫

0

(q1t − q10)
2d〈St〉. This modification leads to the following

objective functions (for γ ≥ 0):

E

[ T
∫

0

{

∫

z∈R
∗

+

(

zδ0,1(t, z)Λ0,1(t, z, δ0,1(t, z))1{q1t−≥ z
St

} + zδ1,0(t, z)Λ1,0(t, z, δ1,0(t, z))1{q0t−≥z}

)

m(dz)

}

dt

+

T
∫

0

(q1t − q10)dSt −
γ

2

T
∫

0

(q1t − q10)
2d〈St〉

]

.

In the presence of the penalty term γ
2

T
∫

0

(q1t − q10)
2d〈St〉 – at least for γ > 0 – the market making strategy is

naturally inclined to adjust prices such that the reserves remain close to their initial values. Therefore, it is
justified, following the approach by [6], to simplify the problem by omitting the indicator functions.5 This
removal of indicator functions also reduces the dimensionality of the problem, as it decreases the number of
state variables required. The stochastic optimal control problems are then formulated (for γ ≥ 0) as follows:

sup
(δ0,1,δ1,0)∈A

E

[ T
∫

0

{

∫

z∈R
∗

+

(

zδ0,1(t, z)Λ0,1(t, z, δ0,1(t, z)) + zδ1,0(t, z)Λ1,0(t, z, δ1,0(t, z))
)

m(dz)

}

dt

+

T
∫

0

(q1t − q10)dSt −
γ

2

T
∫

0

(q1t − q10)
2d〈St〉

]

. (2)

The nature and dimensionality of the stochastic optimal control problems (2) are influenced by two types of
assumptions: (i) assumptions regarding the dynamics of (St)t, and (ii) assumptions concerning the dynamics of
liquidity, specifically (λ0,1

t )t and (λ1,0
t )t. Section 3 is dedicated to discussing models for the dynamics of (St)t.

In Section 4, we explore dynamic models for liquidity.

3 Efficient market making strategies with advanced price models

3.1 Introduction

The recent paper [6] introduces efficient price-aware market making strategies within a framework assuming
constant liquidity and log-normal price distributions. In this section, we retain the assumption of constant
liquidity, meaning that λ0,1

t = λ0,1 and λ1,0
t = λ1,0 are held constant,6 but we broaden our analysis to include

models beyond log-normal price distributions. To effectively integrate a dynamic price model into our optimal
control framework and avoid the curse of dimensionality, it is crucial to employ continuous-time price models
that are both Markovian and low-dimensional.

In the field of derivatives pricing, the Heston model is among the most well-known stochastic volatility mod-
els. It employs a Cox-Ingersoll-Ross (CIR) process to model the square of the volatility. This model has been
further extended to incorporate jumps in price dynamics, resulting in what is commonly referred to as the
Heston-Bates model. In Section 3.2, we explore the stochastic optimal control problems (2) within the context
of Heston-Bates price dynamics. Another seminal model in the option pricing literature is the Stein-Stein
model, which uses an Ornstein-Uhlenbeck process to model volatility. Section 3.3 examines the stochastic op-
timal control problems (2) within the Stein-Stein framework, specifically in its Schöbel and Zhu extension [28],
to which we have added jumps. In addition to models from the derivatives pricing literature, continuous-time

5In practical applications, requests that would deplete the reserves on one side of the pool can simply be prohibited.
6Throughout Section 3, we omit the time variable in the intensity functions Λ0,1 and Λ1,0.
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models have also been proposed in the market microstructure literature. Section 3.4 examines the stochastic
optimal control problems (2) within the framework of a Hawkes model for price dynamics. Section 3.5 proposes
an extension with Z-Hawkes processes following a microstructural model proposed in [10].

3.2 Introducing stochastic volatility and jumps through the Heston-Bates model

3.2.1 Model, Hamilton-Jacobi-Bellman equation and optimal markups

In this section, we consider for the price process (St)t∈R+ the following model:
{

dSt = µStdt+
√
νtStdW

S
t + St

∫

η∈R
ηJ̄(dt, dη)

dνt = k(ν̄ − νt)dt+
√
νtξdW

ν
t

where:

• µ ∈ R is a known deterministic drift;

• (νt)t∈R+ is the instantaneous variance process with values in R+;

• J̄ is a marked point process with constant-in-time kernel λ̄ζ(dη) where λ̄ is the rate of jumps and ζ the
probability measure of jump sizes in relative value (assumed to be such that

∫

η∈R
ηζ(dη) = 0);

• k > 0 is the rate of mean reversion of the instantaneous variance;

• ξ > 0 measures the stochasticity of the instantaneous variance process;

• ν̄ > 0 is the long-term instantaneous variance;

•
(

WS
t ,W ν

t

)

t∈R+
is a 2-dimensional standard Brownian motion independent of J̄ with d〈WS ,W ν〉t = ρdt

for ρ ∈ [−1, 1].

In this framework, it is interesting to introduce Yt = (q1t −q10)St. We have indeed that (Yt, νt)t∈R+ is Markovian
since

dYt = µYtdt+
√
νtYtdW

S
t + Yt

∫

η∈R

ηJ̄(dt, dη) +

∫

z∈R
∗

+

z
(

J1,0(dt, dz)− J0,1(dt, dz)
)

and (2) writes

sup
(δ0,1,δ1,0)∈A

E

[ T
∫

0

{

∫

z∈R
∗

+

(

zδ0,1(t, z)Λ0,1(z, δ0,1(t, z)) + zδ1,0(t, z)Λ1,0(z, δ1,0(t, z))
)

m(dz)

}

dt

+

T
∫

0

µYtdt−
γ

2

T
∫

0

(

νt + λ̄η̄2
)

Y 2
t dt

]

, (3)

where η̄ =
(

∫

η∈R
η2ζ(dη)

)
1
2

.

For a given γ, we associate with (3) a value function θ : [0, T ] × R × R+ → R and the following Hamilton-
Jacobi-Bellman equation:










































0 = ∂tθ(t, y, ν) + µy (1 + ∂yθ(t, y, ν))− γ
2

(

ν + λ̄η̄2
)

y2 + 1
2νy

2∂2
yyθ(t, y, ν)

+k(ν̄ − ν)∂νθ(t, y, ν) +
1
2νξ

2∂2
ννθ(t, y, ν) + ρνyξ∂2

yνθ(t, y, ν)

+λ̄
∫

η∈R
(θ(t, y(1 + η), ν)− θ(t, y, ν))ζ(dη)

+

∫

R
∗

+

(

zλ0,1φ0,1(z)H0,1
(

z, θ(t,y,ν)−θ(t,y−z,ν)
z

)

+ zλ1,0φ1,0(z)H1,0
(

z, θ(t,y,ν)−θ(t,y+z,ν)
z

))

m(dz),

θ(T, y, ν) = 0,

(4)
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where

H0,1 : (z, p) ∈ R
∗
+ × R 7→ sup

δ

f0,1(z, δ)(δ − p) = sup
δ

1

1 + ea0,1(z)+b0,1(z)δ
(δ − p)

and

H1,0 : (z, p) ∈ R
∗
+ × R 7→ sup

δ

f1,0(z, δ)(δ − p) = sup
δ

1

1 + ea1,0(z)+b1,0(z)δ
(δ − p).

Using the same ideas as in [20], we see that for i 6= j ∈ {0, 1}, the supremum in the definition of Hi,j(z, p) is
reached at a unique δ̄i,j(z, p) given by

δ̄i,j(z, p) = (f i,j)−1
(

z,−∂pH
i,j(z, p)

)

where for all z, (f i,j)−1(z, .) denotes the inverse function of f i,j(z, .). Moreover, the markups that maximize
our modified objective function are obtained in the following form

δ0,1∗(t, z) = δ̄0,1
(

z,
θ(t, Yt−, νt)− θ(t, Yt− − z, νt)

z

)

(5)

and

δ1,0∗(t, z) = δ̄1,0
(

z,
θ(t, Yt−, νt)− θ(t, Yt− + z, νt)

z

)

. (6)

3.2.2 Discussion and numerical methods

Under Heston-Bates dynamics for the price, computing the optimal markups primarily involves solving the
partial integro-differential equation (4) to derive the value function θ, which depends on time and two state
variables: the spread to Hodl y and the instantaneous variance ν. Then, one can substitute the current value
of y and an estimate of the current value of ν (which is not directly observable) into Eqs. (5) and (6) to
determine the optimal markups.

However, the value function θ cannot be determined in closed form and must instead be approximated numer-
ically. This approximation can be achieved using a finite difference scheme on a rectangular grid, employing
classical numerical methods such as operator splitting, discrete approximation of the integral terms, and an
implicit scheme for the differential terms. It is therefore feasible to base a market making strategy on the
numerical resolution of Eq. (4). However, when |ρ| is close to 1, the use of an isotropic 9-point stencil is
recommended to handle the high correlation scenarios more effectively.

Another possibility consists in using a quadratic Hamiltonian approximation as suggested in [7] to reduce
the dimensionality of the problem. We can indeed approximate the Hamiltonian functions H0,1 and H1,0 by
quadratic functions:

Ȟ0,1 : (z, p) 7→ α0,1
0 (z) + α0,1

1 (z)p+
1

2
α0,1
2 (z)p2 and Ȟ1,0 : (z, p) 7→ α1,0

0 (z) + α1,0
1 (z)p+

1

2
α1,0
2 (z)p2.

A natural choice for the functions Ȟ0,1 and Ȟ1,0 derives from Taylor expansions around p = 0.

We then denote by θ̌ the approximation of θ associated with the functions Ȟ0,1 and Ȟ1,0, i.e. θ̌ solves










































0 = ∂tθ̌(t, y, ν) + µy
(

1 + ∂y θ̌(t, y, ν)
)

− γ
2

(

ν + λ̄η̄2
)

y2 + 1
2νy

2∂2
yy θ̌(t, y, ν)

+k(ν̄ − ν)∂ν θ̌(t, y, ν) +
1
2νξ

2∂2
νν θ̌(t, y, ν) + ρνyξ∂2

yν θ̌(t, y, ν)

+λ̄
∫

η∈R
(θ̌(t, y(1 + η), ν)− θ̌(t, y, ν))ζ(dη)

+

∫

R
∗

+

(

zλ0,1φ0,1(z)Ȟ0,1
(

z, θ̌(t,y,ν)−θ̌(t,y−z,ν)
z

)

+ zλ1,0φ1,0(z)Ȟ1,0
(

z, θ̌(t,y,ν)−θ̌(t,y+z,ν)
z

))

m(dz),

θ̌(T, y, ν) = 0.

(7)
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The interest of this quadratic approximation is that Eq. (7) has a solution in the form of a quadratic polynomial
in y, i.e. θ̌(t, y, ν) = −A(t, ν)y2 − B(t, ν)y − C(t, ν), where (t, ν) 7→ A(t, ν) ∈ R, (t, ν) 7→ B(t, ν) ∈ R and
(t, ν) 7→ C(t, ν) ∈ R solve a system of PDEs. As the value of C is irrelevant for what follows, we only report
here the equations for A and B:







































































































∂tA(t, ν) = 2A(t, ν)2

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
2 (z) + λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz)− (2µ+ ν + λ̄η̄2)A(t, ν)

− (2ρνξ + k(ν̄ − ν)) ∂νA(t, ν)− 1
2νξ

2∂2
ννA(t, ν) − γ

2

(

ν + λ̄η̄2
)

,

∂tB(t, ν) = µ (1−B(t, ν)) − (ρνξ + k(ν̄ − ν)) ∂νB(t, ν)− 1
2νξ

2∂2
ννB(t, ν)

+2A(t, ν)

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
1 (z)− λ1,0φ1,0(z)α1,0

1 (z)
)

m(dz)

−2A(t, ν)2

∫

R
∗

+

z2
(

λ0,1φ0,1(z)α0,1
2 (z)− λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz)

+2A(t, ν)B(t, ν)

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
2 (z) + λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz),

A(T, ν) = 0,

B(T, ν) = 0.

(8)

The PDE system (8) can be solved numerically far more easily than Eq. (4). Indeed, the dimensionality
of the problem has been reduced and there is no more cross derivatives terms, hence no more geometric
problem related to the numerical grid. Furthermore, the system is triangular. One can first solve numerically
the equation for A which is a nonlinear parabolic PDE with one state variable whose only nonlinear term
is of order 0. An implicit scheme is therefore perfectly suited to approximate A. Once A is approximated
numerically, B can be approximated numerically very easily since it is the solution of a linear parabolic PDE
with one state variable. Once we have A and B, approximations of the optimal markups can be computed by
replacing θ by θ̌ in Eqs. (5) and (6). We thereby obtain

δ̌0,1∗(t, z) = δ̄0,1
(

z, A(t, νt) (z − 2Yt−)−B(t, νt)
)

(9)

and

δ̌1,0∗(t, z) = δ̄1,0
(

z, A(t, νt) (z + 2Yt−) +B(t, νt)
)

. (10)

3.3 A Stein-Stein volatility model with jumps

3.3.1 Model, Hamilton-Jacobi-Bellman equation and optimal markups

Stochastic volatility models were initially introduced in the 1990s as extensions of the Black-Scholes model,
designed to capture the volatility smile or skew observed in option prices. The Heston model describes the
dynamics of the instantaneous variance using a square-root (CIR) process, whereas the Stein-Stein model
utilizes an Ornstein-Uhlenbeck process to model the instantaneous volatility. In the subsequent discussion,
we explore an extension of the Stein-Stein model in two directions: (i) the extension à la Schöbel and Zhu
[28], which permits any correlation coefficient between the Brownian motions driving the price and volatility
processes, and (ii) the addition of price jumps.

Mathematically, the price process (St)t∈R+ has the following dynamics:

{

dSt = µStdt+ σtStdW
S
t + St

∫

η∈R
ηJ̄(dt, dη),

dσt = k(σ̄ − σt)dt+ ξdW σ
t

where:

• µ ∈ R is a known deterministic drift;
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• (σt)t∈R+ is the instantaneous volatility process with values in R;

• J̄ is a marked point process with constant-in-time kernel λ̄ζ(dη) where λ̄ is the rate of jumps and ζ the
probability measure of jump sizes in relative value (assumed to be such that

∫

η∈R
ηζ(dη) = 0);

• k > 0 is the rate of mean reversion of the instantaneous volatility;

• ξ > 0 measures the stochasticity of the instantaneous volatility process;

• σ̄ > 0 is the long-term instantaneous volatility;

•
(

WS
t ,W σ

t

)

t∈R+
is a 2-dimensional standard Brownian motion independent of J̄ with d〈WS ,W σ〉t = ρdt

for ρ ∈ [−1, 1].

Like in the Heston-Bates case, it is interesting in this framework to introduce Yt = (q1t −q10)St. We have indeed
that (Yt, σt)t∈R+ is Markovian since

dYt = µYtdt+ σtYtdW
S
t + Yt

∫

η∈R

ηJ̄(dt, dη) +

∫

z∈R
∗

+

z
(

J1,0(dt, dz)− J0,1(dt, dz)
)

and (2) writes

sup
(δ0,1,δ1,0)∈A

E

[ T
∫

0

{

∫

z∈R
∗

+

(

zδ0,1(t, z)Λ0,1(z, δ0,1(t, z)) + zδ1,0(t, z)Λ1,0(z, δ1,0(t, z))
)

m(dz)

}

dt

+

T
∫

0

µYtdt−
γ

2

T
∫

0

(

σ2
t + λ̄η̄2

)

Y 2
t dt

]

, (11)

where η̄ =
(

∫

η∈R
η2ζ(dη)

)
1
2

.

For a given γ, we associate with (11) a value function θ : [0, T ] × R × R → R and the following Hamilton-
Jacobi-Bellman equation:










































0 = ∂tθ(t, y, σ) + µy (1 + ∂yθ(t, y, σ)) − γ
2

(

σ2 + λ̄η̄2
)

y2 + 1
2σ

2y2∂2
yyθ(t, y, σ)

+k(σ̄ − σ)∂σθ(t, y, σ) +
1
2ξ

2∂2
σσθ(t, y, σ) + ρσyξ∂2

yσθ(t, y, σ)

+λ̄
∫

η∈R
(θ(t, y(1 + η), σ)− θ(t, y, σ))ζ(dη)

+

∫

R
∗

+

(

zλ0,1φ0,1(z)H0,1
(

z, θ(t,y,σ)−θ(t,y−z,σ)
z

)

+ zλ1,0φ1,0(z)H1,0
(

z, θ(t,y,σ)−θ(t,y+z,σ)
z

))

m(dz),

θ(T, y, σ) = 0,

(12)
where H0,1 and H1,0 are defined as above.

Using the same ideas as in [20] and with the same notations as above, we find that the markups that maximize
our modified objective function are

δ0,1∗(t, z) = δ̄0,1
(

z,
θ(t, Yt−, σt)− θ(t, Yt− − z, σt)

z

)

(13)

and

δ1,0∗(t, z) = δ̄1,0
(

z,
θ(t, Yt−, σt)− θ(t, Yt− + z, σt)

z

)

. (14)
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3.3.2 Discussion and numerical methods

Under Stein-Stein dynamics with jumps for the price, computing the optimal markups primarily involves solv-
ing the partial integro-differential equation (12) to obtain the value function θ. The nature of this equation
closely mirrors that of the Heston-Bates case, and the number of state variables remains the same, with the
instantaneous volatility σ replacing the instantaneous variance ν. Subsequently, one can substitute the cur-
rent value of y and an estimate of the current value of the instantaneous volatility σ (which is not directly
observable) into Eqs. (13) and (14) to determine the optimal markups.

As with the Heston-Bates model, θ cannot be found in closed form and must be approximated numerically. The
considerations applicable to the Heston-Bates case are also relevant here. In particular, the quadratic Hamil-
tonian approximation technique introduced in [7] is applicable: we obtain a simpler PDE when approximating
the Hamiltonian functions H0,1 and H1,0 by the quadratic functions

Ȟ0,1 : (z, p) 7→ α0,1
0 (z) + α0,1

1 (z)p+
1

2
α0,1
2 (z)p2 and Ȟ1,0 : (z, p) 7→ α1,0

0 (z) + α1,0
1 (z)p+

1

2
α1,0
2 (z)p2.

Let us introduce θ̌ the approximation of θ associated with the functions Ȟ0,1 and Ȟ1,0. θ̌ then solves










































0 = ∂tθ̌(t, y, σ) + µy
(

1 + ∂y θ̌(t, y, σ)
)

− γ
2

(

σ2 + 2λ̄η̄2
)

y2 + 1
2σ

2y2∂2
yy θ̌(t, y, σ)

+k(σ̄ − σ)∂σ θ̌(t, y, σ) +
1
2ξ

2∂2
σσ θ̌(t, y, σ) + ρσyξ∂2

yσ θ̌(t, y, σ)

+λ̄
∫

η∈R
(θ̌(t, y(1 + η), ν)− θ̌(t, y, ν))ζ(dη)

+

∫

R
∗

+

(

zλ0,1φ0,1(z)Ȟ0,1
(

z, θ̌(t,y,σ)−θ̌(t,y−z,σ)
z

)

+ zλ1,0φ1,0(z)Ȟ1,0
(

z, θ̌(t,y,σ)−θ̌(t,y+z,σ)
z

))

m(dz),

θ̌(T, y, σ) = 0,

(15)
As in the Heston-Bates case, Eq. (15) has a solution in the form of a polynomial of degree 2 in y: θ̌(t, y, σ) =
−A(t, σ)y2 − B(t, σ)y − C(t, σ), where (t, σ) 7→ A(t, σ) ∈ R, (t, σ) 7→ B(t, σ) ∈ R and (t, σ) 7→ C(t, σ) ∈ R

solve a system of PDEs. As the value of C is irrelevant for what follows, we only report here the equations for
A and B:






































































































∂tA(t, σ) = 2A(t, σ)2

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
2 (z) + λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz)− (2µ+ σ2 + λ̄η̄2)A(t, σ)

− (2ρσξ + k(σ̄ − σ)) ∂σA(t, σ)− 1
2ξ

2∂2
σσA(t, σ) − γ

2

(

σ2 + λ̄η̄2
)

,

∂tB(t, σ) = µ (1−B(t, σ))− (ρσξ + k(σ̄ − σ)) ∂σB(t, σ) − 1
2ξ

2∂2
σσB(t, σ)

+2A(t, σ)

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
1 (z)− λ1,0φ1,0(z)α1,0

1 (z)
)

m(dz)

−2A(t, σ)2

∫

R
∗

+

z2
(

λ0,1φ0,1(z)α0,1
2 (z)− λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz)

+2A(t, σ)B(t, σ)

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
2 (z) + λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz),

A(T, σ) = 0,

B(T, σ) = 0.

(16)

The PDE system (16) can be approximated very easily using an implicit scheme. Once A and B are obtained,
approximations of the optimal strategies can be computed by replacing θ by θ̌ in Eqs. (13) and (14). We
thereby obtain

δ̌0,1∗(t, z) = δ̄0,1
(

z, A(t, σt) (z − 2Yt−)−B(t, σt)
)

(17)

and

δ̌1,0∗(t, z) = δ̄1,0
(

z, A(t, σt) (z + 2Yt−) +B(t, σt)
)

. (18)
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3.4 Beyond stochastic volatility models: the use of a simple Markovian Hawkes

framework

3.4.1 Model, Hamilton-Jacobi-Bellman equation and optimal markups

Beyond stochastic volatility models, there exists a rich landscape of alternative frameworks for price dynamics,
especially those emerging from the field of market microstructure. One prominent category of these models
extensively utilizes Hawkes processes to capture the self-exciting nature of market events and their influence on
asset prices. These models provide a distinct perspective on price evolution in financial markets and can more
effectively capture certain stylized facts, like time reversal asymmetries, compared to traditional stochastic
volatility models (see [11]).

In what follows, we propose one of the simplest pure jump models, which relies on Hawkes processes for the
price dynamics. Mathematically, the dynamics of (St)t∈R+ writes as follows:7

dSt = St

∫

η∈R

ηJ̄(dt, dη)

where J̄ is a marked point process with dynamic kernel λ̄tζ(dη) with ζ the probability measure of jump sizes
in relative value (assumed to be such that

∫

η∈R
ηζ(dη) = 0) and (λ̄t)t∈R+ following the dynamics8

dλ̄t = −β(λ̄t − λ̄∞)dt+ βn

∫

η∈R

J̄(dt, dη)

with λ̄0 higher than the long-term limit λ̄∞ in the absence of jumps, β > 0 controlling the memory of the
process and n ∈ (0, 1) corresponding to the percentage of price moves that are purely endogenous.

As above, we introduce Yt = (q1t − q10)St and observe that the pair (Yt, λ̄t)t∈R+ is Markovian since

dYt = Yt

∫

η∈R

ηJ̄(dt, dη) +

∫

z∈R
∗

+

z
(

J1,0(dt, dz)− J0,1(dt, dz)
)

.

and (2) writes therefore as

sup
(δ0,1,δ1,0)∈A

E

[ T
∫

0

{

∫

z∈R
∗

+

(

zδ0,1(t, z)Λ0,1(z, δ0,1(t, z)) + zδ1,0(t, z)Λ1,0(z, δ1,0(t, z))
)

m(dz)

}

dt

− γ

2

T
∫

0

λ̄tη̄
2Y 2

t dt

]

, (19)

where η̄ =
(

∫

η∈R
η2ζ(dη)

)
1
2

.

For a given γ, we associate with (19) a value function θ : [0, T ]× R × R
∗
+ → R and the following Hamilton-

Jacobi-Bellman equation:






















0 = ∂tθ(t, y, λ̄)− γ
2 λ̄η̄

2y2 − β(λ̄ − λ̄∞)∂λ̄θ(t, y, λ̄) + λ̄
∫

η∈R
(θ(t, y(1 + η), λ̄+ βn)− θ(t, y, λ̄))ζ(dη)

+

∫

R
∗

+

(

zλ0,1φ0,1(z)H0,1
(

z, θ(t,y,λ̄)−θ(t,y−z,λ̄)
z

)

+ zλ1,0φ1,0(z)H1,0H1,0
(

z, θ(t,y,λ̄)−θ(t,y+z,λ̄)
z

))

m(dz),

θ(T, y, λ) = 0,

(20)
where H0,1 and H1,0 are defined as above.

7In this model, we consider zero drift.
8Power law kernels may be more realistic than exponential ones, but they do not lead to Markovian setups.
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Using the same ideas as in [20] and with the same notations as above, we find that the markups that maximize
our modified objective function are

δ0,1∗(t, z) = δ̄0,1
(

z,
θ(t, Yt−, λ̄t−)− θ(t, Yt− − z, λ̄t−)

z

)

(21)

and

δ1,0∗(t, z) = δ̄1,0
(

z,
θ(t, Yt−, λ̄t−)− θ(t, Yt− + z, λ̄t−)

z

)

. (22)

3.4.2 Discussion and numerical methods

Under the Hawkes dynamics specified for the price, computing the optimal markups primarily requires solving
a partial integro-differential equation – here (20) – to derive the value function θ. This function depends on
time and two state variables: the spread to Hodl y and the intensity λ̄. Subsequently, one can substitute
the current values of y and λ̄ into Eqs. (21) and (22) to determine the optimal markups. It is important
to note that there are two different approaches for determining the current value of λ̄. The first approach
starts with an initial value λ̄0 (whose influence diminishes over time) and treats λ̄ as an observable variable
that evolves in real-time with market dynamics. The second approach uses statistical methods to estimate the
current value of λ̄ based on recent historical price data. In this scenario, λ̄ is not treated as an observable vari-
able, but rather similarly to how instantaneous volatility was treated in the case of stochastic volatility models.

It is possible to approximate θ numerically and subsequently make a market making strategy rely on the
resolution of Eq. (20). However, to reduce the dimensionality of equations by 1, one can again use the
quadratic Hamiltonian approximation technique, although it leads to more complex equations than in the case
of stochastic volatility models because of the nonlocal term in λ̄. Let us indeed define θ̌ as the approximation
of θ associated with the functions

Ȟ0,1 : (z, p) 7→ α0,1
0 (z) + α0,1

1 (z)p+
1

2
α0,1
2 (z)p2 and Ȟ1,0 : (z, p) 7→ α1,0

0 (z) + α1,0
1 (z)p+

1

2
α1,0
2 (z)p2.

θ̌ solves






















0 = ∂tθ̌(t, y, λ̄)− γ
2 λ̄η̄

2y2 − β(λ̄− λ̄∞)∂λ̄θ̌(t, y, λ̄) + λ̄
∫

η∈R
(θ̌(t, y(1 + η), λ̄ + βn)− θ̌(t, y, λ̄))ζ(dη)

+

∫

R
∗

+

(

zλ0,1φ0,1(z)Ȟ0,1
(

z, θ̌(t,y,λ̄)−θ̌(t,y−z,λ̄)
z

)

+ zλ1,0φ1,0(z)Ȟ1,0
(

z, θ̌(t,y,λ̄)−θ̌(t,y+z,λ̄)
z

))

m(dz),

θ̌(T, y, λ̄) = 0.

(23)
As above, Eq. (23) has a solution of the form θ̌(t, y, λ̄) = −A(t, λ̄)y2 − B(t, λ̄)y − C(t, λ̄), where (t, λ̄) 7→
A(t, λ̄) ∈ R, (t, λ̄) 7→ B(t, λ̄) ∈ R and (t, λ̄) 7→ C(t, λ̄) ∈ R solve a system of PDEs, but this time with nonlocal
terms. As the value of C is irrelevant for what follows, we only report the equations for A and B:







































































































∂tA(t, λ̄) = 2A(t, λ̄)2

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
2 (z) + λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz)− γ
2 λ̄η̄

2

+β(λ̄− λ̄∞)∂λ̄A(t, λ̄)− λ̄
(

A(t, λ̄+ βn)(1 + η̄2)−A(t, λ̄)
)

,

∂tB(t, λ̄) = β(λ̄− λ̄∞)∂λ̄B(t, λ̄)− λ̄
(

B(t, λ̄+ βn)−B(t, λ̄)
)

+2A(t, λ̄)

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
1 (z)− λ1,0φ1,0(z)α1,0

1 (z)
)

m(dz)

−2A(t, λ̄)2

∫

R
∗

+

z2
(

λ0,1φ0,1(z)α0,1
2 (z)− λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz)

+2A(t, λ̄)B(t, λ̄)

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
2 (z) + λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz),

A(T, λ̄) = 0,

B(T, λ̄) = 0.

(24)
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The triangular system of PDEs with nonlocal terms (24) can be approximated using an implicit scheme. Once
A and B are obtained, approximations of the optimal strategies can be computed by replacing θ by θ̌ in
Eqs. (21) and (22). We thereby obtain

δ̌0,1∗(t, z) = δ̄0,1
(

z, A(t, λ̄t−) (z − 2Yt−)−B(t, λ̄t−)
)

(25)

and

δ̌1,0∗(t, z) = δ̄1,0
(

z, A(t, λ̄t−) (z + 2Yt−) +B(t, λ̄t−)
)

. (26)

3.5 Extension to quadratic Hawkes processes

3.5.1 Model, Hamilton-Jacobi-Bellman equation and optimal markups

Extensions of Hawkes processes have been proposed in the market microstructure literature to model intraday
effects such as the Zumbach effect. In particular, [10] introduced what they termed Z-Hawkes, which are
low-rank quadratic Hawkes processes. Inspired by this approach, we consider in this section that the price
process (St)t∈R+ is a pure jump process,9 i.e.

dSt = St

∫

η∈R

ηJ̄(dt, dη)

where J̄ is a marked point process with dynamic kernel λ̄tζ(dη) where ζ is the probability measure of jump
sizes in relative value (assumed to be such that

∫

η∈R
ηζ(dη) = 0), but where the process (λ̄t)t∈R+ is now defined

by
λ̄t = λ̄∞ + ht + ξ2t

where

dht = −κhtdt+ κnH

∫

η∈R

J̄(dt, dη),

dξt = −ωξtdt+
√
2nZω

∫

η∈R

sign(η)J̄(dt, dη)

with κ, ω, nH , nZ > 0 and nH + nZ < 1.10

Introducing as above Yt = (q1t − q10)St, we see that

dYt = Yt

∫

η∈R

ηJ̄(dt, dη) +

∫

z∈R
∗

+

z
(

J1,0(dt, dz)− J0,1(dt, dz)
)

.

Subsequently, the triplet (Yt, ht, ξt)t∈R+ is Markovian.

The stochastic optimal control problems (2) then write

sup
(δ0,1,δ1,0)∈A

E

[ T
∫

0

{

∫

z∈R
∗

+

(

zδ0,1(t, z)Λ0,1(z, δ0,1(t, z)) + zδ1,0(t, z)Λ1,0(z, δ1,0(t, z))
)

m(dz)

}

dt

− γ

2

T
∫

0

(λ̄∞ + ht + ξ2t )η̄
2Y 2

t dt

]

, (27)

where η̄ =
(

∫

η∈R
η2ζ(dη)

)
1
2

.

9Here again, we consider zero drift.
10This model is an extension of the model of Section 3.4 since we recover it when ξ0 = ω = 0.
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For a given γ, we associate with (27) a value function θ : [0, T ] × R × R
∗
+ × R → R and the following

Hamilton-Jacobi-Bellman equation:














































0 = ∂tθ(t, y, h, ξ)− γ
2 (λ∞ + h+ ξ2)η̄2y2 − κh∂hθ(t, y, h, ξ)− ωξ∂ξθ(t, y, h, ξ)

+(λ̄∞ + h+ ξ2)
(

∫

η>0
(θ(t, y(1 + η), h+ κnH , ξ +

√
2nZω)− θ(t, y, λ))ζ(dη)

+
∫

η<0(θ(t, y(1 + η), h+ κnH , ξ −
√
2nZω)− θ(t, y, λ))ζ(dη)

)

+

∫

R
∗

+

(

zλ0,1φ0,1(z)H0,1
(

z, θ(t,y,λ)−θ(t,y−z,λ)
z

)

+ zλ1,0φ1,0(z)H1,0
(

z, θ(t,y,λ)−θ(t,y+z,λ)
z

))

m(dz),

θ(T, y, λ) = 0,

(28)
where H0,1 and H1,0 are defined as above.

Using the same ideas as in [20] and with the same notations as above, we find that the optimal markups are
given by

δ0,1∗(t, z) = δ̄0,1
(

z,
θ(t, Yt−, ht−, ξt−)− θ(t, Yt− − z, ht−, ξt−)

z

)

(29)

and

δ1,0∗(t, z) = δ̄1,0
(

z,
θ(t, Yt−, ht−, ξt−)− θ(t, Yt− + z, ht−, ξt−)

z

)

. (30)

3.5.2 Discussion and numerical methods

Under the specified dynamics for the price, computing the optimal markups largely entails solving the partial
integro-differential equation (28) to determine the value function θ, which is dependent on time and three
state variables: the spread to Hodl y, and the intensity drivers h and ξ.11 Due to its high dimensionality,
this equation poses significant challenges for numerical solutions. However, the dimensionality can be reduced
by one using the quadratic Hamiltonian approximation technique, though this approach still results in more
complex equations compared to those found in stochastic volatility models. Let us indeed define θ̌ as the
approximation of θ associated with the functions

Ȟ0,1 : (z, p) 7→ α0,1
0 (z) + α0,1

1 (z)p+
1

2
α0,1
2 (z)p2 and Ȟ1,0 : (z, p) 7→ α1,0

0 (z) + α1,0
1 (z)p+

1

2
α1,0
2 (z)p2.

θ̌ then solves














































0 = ∂tθ̌(t, y, h, ξ)− γ
2 (λ∞ + h+ ξ2)η̄2y2 − κh∂hθ̌(t, y, h, ξ)− ωξ∂ξθ̌(t, y, h, ξ)

+(λ̄∞ + h+ ξ2)
(

∫

η>0
(θ̌(t, y(1 + η), h+ κnH , ξ +

√
2nZω)− θ̌(t, y, λ))ζ(dη)

+
∫

η<0
(θ̌(t, y(1 + η), h+ κnH , ξ −√

2nZω)− θ̌(t, y, λ))ζ(dη)
)

+

∫

R
∗

+

(

zλ0,1φ0,1(z)Ȟ0,1
(

z, θ̌(t,y,h,ξ)−θ̌(t,y−z,h,ξ)
z

)

+ zλ1,0φ1,0(z)Ȟ1,0
(

z, θ̌(t,y,h,ξ)−θ̌(t,y+z,h,ξ)
z

))

m(dz),

θ̌(T, y, h, ξ) = 0.

(31)
As above, Eq. (31) has a quadratic solution of the form θ̌(t, y, h, ξ) = −A(t, h, ξ)y2 − B(t, h, ξ)y − C(t, h, ξ),
where (t, h, ξ) 7→ A(t, h, ξ) ∈ R, (t, h, ξ) 7→ B(t, h, ξ) ∈ R and (t, h, ξ) 7→ C(t, h, ξ) ∈ R solve a system of PDEs
with nonlocal terms. As the value of C is irrelevant for what follows, we only report the equations for A and B:

11Similar to the intensity in the classical Hawkes model, h and ξ can be regarded as observable variables.
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∂tA(t, h, ξ) = 2A(t, h, ξ)2

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
2 (z) + λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz)− γ
2 (λ∞ + h+ ξ2)η̄2

+κh∂hA(t, h, ξ) + ωξ∂ξA(t, h, ξ)

−(λ∞ + h+ ξ2)
((

∫

η>0(1 + η)2ζ(dη)
)

A(t, h+ κnH , ξ +
√
2nZω)

+
(

∫

η<0
(1 + η)2ζ(dη)

)

A(t, h+ κnH , ξ −√
2nZω)−A(t, h, ξ)

)

,

∂tB(t, h, ξ) = κh∂hB(t, h, ξ) + ωξ∂ξB(t, h, ξ)

−(λ∞ + h+ ξ2)
((

∫

η>0
(1 + η)ζ(dη)

)

B(t, h+ κnH , ξ +
√
2nZω)

+
(

∫

η<0(1 + η)ζ(dη)
)

B(t, h+ κnH , ξ −
√
2nZω)−B(t, h, ξ)

)

+2A(t, h, ξ)

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
1 (z)− λ1,0φ1,0(z)α1,0

1 (z)
)

m(dz)

−2A(t, h, ξ)2

∫

R
∗

+

z2
(

λ0,1φ0,1(z)α0,1
2 (z)− λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz)

+2A(t, h, ξ)B(t, h, ξ)

∫

R
∗

+

z
(

λ0,1φ0,1(z)α0,1
2 (z) + λ1,0φ1,0(z)α1,0

2 (z)
)

m(dz),

A(T, h, ξ) = B(T, h, ξ) = 0.

(32)

The triangular system of PDEs with nonlocal terms (32) can be approximated using an implicit scheme. Once
A and B are obtained, approximations of the optimal strategies can be computed by replacing θ by θ̌ in Eqs.
(29) and (30). We thereby obtain

δ̌0,1∗(t, z) = δ̄0,1
(

z, A(t, ht−, ξt−) (z − 2Yt−)−B(t, ht−, ξt−)
)

(33)

and

δ̌1,0∗(t, z) = δ̄1,0
(

z, A(t, ht−, ξt−) (z + 2Yt−) +B(t, ht−, ξt−)
)

. (34)

3.6 Conclusion on advanced price dynamics models

In this section, we have addressed two stochastic volatility models from the derivatives pricing literature and
two Hawkes-based models from the market microstructure literature. Utilizing these models to compute opti-
mal quotes for a price-aware automated market maker (AMM) requires solving a partial differential equation
(PDE). Once the quadratic Hamiltonian approximation technique is applied, for the first three models, these
PDEs involve time and one spatial dimension, enabling the use of fast numerical methods. However, this task
becomes more complex with models such as the quadratic Hawkes model, which presents greater computa-
tional challenges to be used in practice.

Like all automated market makers, price-aware AMMs can offer swaps across a vast spectrum of cryptocur-
rencies. The selection of an appropriate model for determining price dynamics is crucial and depends on the
specific cryptocurrency pair involved. For instance, pools involving a stablecoin and a major cryptocurrency
might utilize a different model than pools for two independent cryptocurrencies, or pairs of cryptocurrencies
that are highly correlated due to shared risk factors.

For each cryptocurrency pair, there is a significant trade-off between the simplicity of the model and its capacity
to realistically capture market dynamics. This trade-off not only influences the computational efficiency of
the AMM but also affects its effectiveness in accurately reflecting the inherent market dynamics of each asset
pair, and thus its ability to manage risk appropriately.
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4 Efficient market making strategies with varying liquidity

4.1 Introduction

In most academic papers on market making, liquidity at the bid and the offer is assumed to be constant.
However, this simplification can be detrimental when fluctuations in liquidity are significant. In reality, liquid-
ity experiences fluctuations: there are periods of high liquidity as well as periods of low liquidity. Moreover,
there may be times when buyers significantly outnumber sellers, or vice versa, underscoring the fundamental
role of market makers. Despite the practical relevance of these variations, they have largely been overlooked
in the existing literature on market making. Notable exceptions include the MRR model discussed in [11],
which explores autocorrelation in the signs of trades, and the more recent paper [9], which employs a Markov-
modulated Poisson process to capture these dynamics.

Our objective in this section is twofold. First, we examine the use of Hawkes processes for modeling liquidity
dynamics – an approach that might seem natural to many scholars and practitioners. However, this method
leads to equations of high dimensionality, thereby making the use of Hawkes processes for modeling liquidity
impractical for the stochastic optimal control problems at hand. Second, we suggest that Markov-modulated
Poisson processes represent a compelling alternative, capable of capturing the stochastic dynamics of liquidity
while avoiding the dimensionality issues that hamper models based on Hawkes processes.12

4.2 Hawkes models for liquidity and the curse of dimensionality

4.2.1 Model, Hamilton-Jacobi-Bellman equation and optimal markups

Throughout Section 3, we assumed λ0,1
t and λ1,0

t were constant. Instead, it is natural to assume that (λ0,1
t )t∈R+

and (λ1,0
t )t∈R+ are stochastic processes impacted by trades themselves. In a typical Hawkes setting,13 we can

assume that
{

dλ0,1
t = −κ(λ0,1

t − λ0,1
∞ )dt+ κm

∫

z∈R
J0,1(dt, dz)

dλ1,0
t = −κ(λ1,0

t − λ1,0
∞ )dt+ κm

∫

z∈R
J1,0(dt, dz)

with κ > 0 and 0 < m < 1.

Assuming that the price process is a geometric Brownian motion with drift,14 i.e. dSt = µStdt + σStdWt,
Yt = (q1t − q10)St has the dynamics

dYt = µYtdt+ σYtdWt +

∫

z∈R
∗

+

z
(

J1,0(dt, dz)− J0,1(dt, dz)
)

and we see therefore that (Yt, λ
0,1
t , λ1,0

t )t∈R+ is Markovian.

The stochastic optimal control problems (2) write therefore

sup
(δ0,1,δ1,0)∈A

E

[ T
∫

0

{

∫

z∈R
∗

+

(

zδ0,1(t, z)Λ0,1(t, z, δ0,1(t, z)) + zδ1,0(t, z)Λ1,0(t, z, δ1,0(t, z))
)

m(dz)

}

dt

+

T
∫

0

µYtdt−
γ

2
σ2

T
∫

0

Y 2
t dt

]

. (35)

For a given γ, we associate with (35) a value function θ : [0, T ] × R × R
∗
+ × R

∗
+ → R and the following

12Deterministic fluctuations of liquidity, such as those linked to intraday patterns, can be incorporated without increasing
modeling complexity.

13More complex settings can be considered but they all suffer from the curse of dimensionality.
14The extensions of Section 3 can of course be considered but we go back to the simplest price model for the sake of parsimony.
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Hamilton-Jacobi-Bellman equation:











































0 = ∂tθ(t, y, λ
0,1, λ1,0) + µy

(

1 + ∂yθ(t, y, λ
0,1, λ1,0)

)

− γ
2σ

2y2 + 1
2σ

2y2∂2
yyθ(t, y, λ

0,1, λ1,0)

−κ(λ0,1 − λ0,1
∞ )∂λ0,1θ(t, y, λ0,1, λ1,0)− κ(λ1,0 − λ1,0

∞ )∂λ1,0θ(t, y, λ0,1, λ1,0)

+

∫

R
∗

+

(

zλ0,1φ0,1(z)H0,1
(

z, θ(t,y,λ
0,1,λ1,0)−θ(t,y−z,λ0,1+κm,λ1,0)

z

)

+zλ1,0φ1,0(z)H1,0
(

z, θ(t,y,λ
0,1,λ1,0)−θ(t,y+z,λ0,1,λ1,0+κm)

z

))

m(dz),

θ(T, y, λ0,1, λ1,0) = 0,

(36)

where H0,1 and H1,0 are defined as in Section 3.

Using the same ideas as in [20] and with the same notations as above, we find that the markups that maximize
our modified objective function are

δ0,1∗(t, z) = δ̄0,1

(

z,
θ(t, Yt−, λ

0,1
t− , λ1,0

t− )− θ(t, Yt− − z, λ0,1
t− , λ1,0

t− )

z

)

(37)

and

δ1,0∗(t, z) = δ̄1,0

(

z,
θ(t, Yt−, λ

0,1
t− , λ1,0

t− )− θ(t, Yt− + z, λ0,1
t− , λ1,0

t− )

z

)

. (38)

4.2.2 Curse of dimensionality

The principal challenge with the above model is its dimensionality. In the basic geometric Brownian setting for
prices, solving the optimal stochastic control problems (35) necessitates a value function with time and three
state variables. Incorporating the models from Section 3 would increase the number of state variables to four
or even five. Relying on such high-dimensional equations for a market making strategy is highly problematic.
Moreover, the situation becomes even more critical as the quadratic Hamiltonian approximation technique, of-
ten utilized in Section 3, does not provide a means to reduce this dimensionality. This limitation arises because
assuming the value function to be quadratic in y does not result in linear terms in y when computing finite dif-
ferences in the Hamiltonian terms, due to simultaneous jumps in both the y variable and the intensity variables.

While liquidity models based on Hawkes processes may offer a good statistical representation, they prove
inadequate for our stochastic optimal control problems. The next section presents an alternative approach that
effectively sidesteps the complications associated with Hawkes processes, thereby providing a more tractable
solution for incorporating varying liquidity into our quoting strategies.

4.3 Markov-modulated Poisson processes as a reasonable alternative

4.3.1 Model, Hamilton-Jacobi-Bellman equation and optimal markups

The main challenge with the liquidity model based on Hawkes processes is the simultaneity of trades and
changes in intensities. To disentangle these two aspects and thus circumvent the curse of dimensionality, we can
adopt a framework involving Markov-modulated Poisson processes, as proposed in [9]. This approach implies
that the process (λ0,1

t , λ1,0
t )t∈R+ is a continuous-time Markov chain, taking values in a finite set {λ1, . . . , λp}2

– where p is small, typically 2 or 3, to represent low, high, and possibly medium levels of liquidity. The
transitions between these states are governed by a rate matrix Q ∈ Mp2 .15

15In what follows, we shall order the states in lexicographic order, i.e.

(λ1, λ1), . . . , (λ1, λp), . . . , (λp, λ1), . . . , (λp, λp).
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Assuming that the price process is a geometric Brownian motion with drift, i.e. dSt = µStdt + σStdWt,
Yt = (q1t − q10)St has the dynamics

dYt = µYtdt+ σYtdWt +

∫

z∈R
∗

+

z
(

J1,0(dt, dz)− J0,1(dt, dz)
)

and we see therefore that (Yt, λ
0,1
t , λ1,0

t )t∈R+ is Markovian as above.

The stochastic optimal control problems (2) writes (35) as above but the nature of the value function and
the Hamilton-Jacobi-Bellman are different. For a given γ, the value function is a function θ : [0, T ] × R ×
{λ1, . . . , λp} × {λ1, . . . , λp} → R and the associated Hamilton-Jacobi-Bellman equation is















































0 = ∂tθ(t, y, λj0,1 , λj1,0 ) + µy
(

1 + ∂yθ(t, y, λj0,1 , λj1,0 )
)

− γ
2σ

2y2 + 1
2σ

2y2∂2
yyθ(t, y, λj0,1 , λj1,0 )

+
∑

1≤k0,1,k1,0≤p

Q(j0,1−1)p+j1,0,(k0,1−1)p+k1,0θ(t, y, λk0,1 , λk1,0 )

+

∫

R
∗

+

(

zλj0,1φ
0,1(z)H0,1

(

z,
θ(t,y,λj0,1 ,λj1,0 )−θ(t,y−z,λj0,1 ,λj1,0 )

z

)

+zλj1,0φ
1,0(z)H1,0

(

z,
θ(t,y,λj0,1 ,λj1,0 )−θ(t,y+z,λj0,1 ,λj1,0 )

z

))

m(dz),

θ(T, y, λj0,1 , λj1,0 ) = 0,

(39)

for all λj0,1 , λj1,0 ∈ {λ1, . . . , λp}, where H0,1 and H1,0 are defined as in Section 3.

Using the same ideas as in [20] and with the same notations as above, we find that the markups that maximize
our modified objective function are

δ0,1∗(t, z) = δ̄0,1

(

z,
θ(t, Yt−, λ

0,1
t− , λ1,0

t− )− θ(t, Yt− − z, λ0,1
t− , λ1,0

t− )

z

)

(40)

and

δ1,0∗(t, z) = δ̄1,0

(

z,
θ(t, Yt−, λ

0,1
t− , λ1,0

t− )− θ(t, Yt− + z, λ0,1
t− , λ1,0

t− )

z

)

. (41)

4.3.2 Discussion and numerical methods

Under the above dynamics for the intensities, computing the optimal markups primarily involves solving the
partial integro-differential equations (39) to derive the value function θ, which depends on time and three state
variables: the spread to Hodl y, and the two intensities λ0,1 and λ1,0. While this setup may appear similar
to the liquidity model based on Hawkes processes, here the significant difference is that the two intensities
take a very limited number of values, p each. Notably, there are no partial derivative terms with respect to
the intensities. Consequently, Eq. (39) should be regarded as a system of partial integro-differential equations
in two dimensions: time and the spread to Hodl (y). This simplification effectively removes the issue of high
dimensionality, and one could even consider extending the price model using those discussed in Section 3.

Once θ is computed using for instance operator splitting and an implicit scheme on a set of p2 rectangular
grids, one can plug the current value of y and an estimate16 of the current value of (λ0,1, λ1,0) in Eqs. (37)
and (38) to get the optimal markups.

Interestingly, the quadratic Hamiltonian approximation technique works very well here and it leads to a system
of ODEs when prices are log-normal (we would obtain PDEs with the price models of Section 3). Let us indeed
define θ̌ as the approximation of θ associated with the functions

Ȟ0,1 : p 7→ α0,1
0 + α0,1

1 p+
1

2
α0,1
2 p2 and Ȟ1,0 : p 7→ α1,0

0 + α1,0
1 p+

1

2
α1,0
2 p2.

16See [9] for estimation techniques.
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θ̌ solves for all λj0,1 , λj1,0 ∈ {λ1, . . . , λp}


















































0 = ∂tθ̌(t, y, λj0,1 , λj1,0 ) + µy
(

1 + ∂y θ̌(t, y, λj0,1 , λj1,0 )
)

− γ
2σ

2y2 + 1
2σ

2y2∂2
yyθ̌(t, y, λj0,1 , λj1,0 )

+
∑

1≤k0,1,k1,0≤p

Q(j0,1−1)p+j1,0,(k0,1−1)p+k1,0 θ̌(t, y, λk0,1 , λk1,0 )

+

∫

R
∗

+

(

zλj0,1φ
0,1(z)Ȟ0,1

(

z,
θ̌(t,y,λ

j0,1 ,λj1,0 )−θ̌(t,y−z,λ
j0,1 ,λj1,0 )

z

)

+zλj1,0φ
1,0(z)Ȟ1,0

(

z,
θ̌(t,y,λj0,1 ,λj1,0 )−θ̌(t,y+z,λj0,1 ,λj1,0 )

z

))

m(dz),

θ̌(T, y, λj0,1 , λj1,0 ) = 0.

(42)

Eq. (42) has a solution of the form θ̌(t, y, λj0,1 , λj1,0 ) = −A(t, λj0,1 , λj1,0 )y
2−B(t, λj0,1 , λj1,0 )y−C(t, λj0,1 , λj1,0 ),

where (t, λj0,1 , λj1,0 ) 7→ A(t, λj0,1 , λj1,0 ) ∈ R, (t, λj0,1 , λj1,0 ) 7→ B(t, λj0,1 , λj1,0 ) ∈ R and (t, λj0,1 , λj1,0 ) 7→
C(t, λj0,1 , λj1,0 ) ∈ R solve a system of ODEs. As the value of C is irrelevant for what follows, we only report
the equations for A and B:


























































































































∂tA(t, λj0,1 , λj1,0 ) = 2A(t, λj0,1 , λj1,0 )
2

∫

R
∗

+

z
(

λj0,1φ
0,1(z)α0,1

2 (z) + λj1,0φ
1,0(z)α1,0

2 (z)
)

m(dz)− γ
2σ

2

− ∑

1≤k0,1,k1,0≤p

Q(j0,1−1)p+j1,0,(k0,1−1)p+k1,0A(t, λk0,1 , λk1,0),

∂tB(t, λj0,1 , λj1,0 ) = −
∑

1≤k0,1,k1,0≤p

Q(j0,1−1)p+j1,0,(k0,1−1)p+k1,0B(t, λk0,1 , λk1,0 )

+2A(t, λj0,1 , λj1,0 )

∫

R
∗

+

z
(

λj0,1φ
0,1(z)α0,1

1 (z)− λj1,0φ
1,0(z)α1,0

1 (z)
)

m(dz)

−2A(t, λj0,1 , λj1,0 )
2

∫

R
∗

+

z2
(

λj0,1φ
0,1(z)α0,1

2 (z)− λj1,0φ
1,0(z)α1,0

2 (z)
)

m(dz)

+2A(t, λj0,1 , λj1,0 )B(t, λj0,1 , λj1,0 )

×

∫

R
∗

+

z
(

λj0,1φ
0,1(z)α0,1

2 (z) + λj1,0φ
1,0(z)α1,0

2 (z)
)

m(dz),

A(T, λj0,1 , λj1,0 ) = 0,

B(T, λj0,1 , λj1,0 ) = 0,

(43)

for all λj0,1 , λj1,0 ∈ {λ1, . . . , λp}.

The system of ODEs (43) can be solved straightforwardly. Once A and B are obtained, approximations of the
optimal strategies can be computed by replacing θ by θ̌ in Eqs. (40) and (41). We thereby obtain

δ̌0,1∗(t, z) = δ̄0,1
(

z, A(t, λ0,1
t− , λ1,0

t− ) (z − 2Yt−)−B(t, λ0,1
t− , λ1,0

t− )
)

(44)

and

δ̌1,0∗(t, z) = δ̄1,0
(

z, A(t, λ0,1
t− , λ1,0

t− ) (z + 2Yt−) +B(t, λ0,1
t− , λ1,0

t− )
)

. (45)

Conclusion

In this paper, we introduced a comprehensive suite of models tailored for price-aware automated market makers
designed to optimize their quoting strategies. Our exploration spanned a variety of advanced price dynamics,
including stochastic volatility, price jumps, and microstructural models based on Hawkes processes. However,
the adoption of these sophisticated models brings challenges, particularly in terms of higher computational
costs, which must be considered as they can restrict practical application. Additionally, we addressed issues
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related to liquidity modeling, specifically the challenges associated with the use of Hawkes processes and pro-
posed a viable alternative through Markov-modulated Poisson processes.

The selection of an appropriate model, whether for prices or liquidity dynamics, depends on the specific cryp-
tocurrency pair involved and ultimately lies in the hands of the developers of these AMMs. They must balance
the benefits of detailed, complex modeling against computational efficiency and the operational constraints
of their systems. The analyses presented in this paper should illuminate the path forward for the industry,
guiding the integration of these advanced models into practical, real-world applications.
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