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EVEN AND ODD COMPOSITIONS WITH RESTRICTED PARTS

JIA HUANG

Abstract. A result of Legendre asserts that the difference between the numbers of (length)
even and odd partitions of n into distinct parts is 0, 1, or −1; this also follows from Euler’s
pentagonal number theorem. We establish an analogous result for compositions and obtain
some generalizations that are related to various entries in the On-Line Encyclopedia of
Integer Sequences.

1. Introduction

A composition of n is a sequence α = (α1, . . . , αℓ) of positive integers with size |α| :=
α1+· · ·+αℓ = n; the parts of α are α1, . . . , αℓ, and the length of α is ℓ(α) := ℓ. We often drop
parentheses and commas when writing a composition whose parts are single digit numbers.
A partition of n is a composition of n whose parts are decreasing. A composition/partition
is even (or odd, resp.) if its length is even (or odd, resp.). There are 2n−1 compositions of
n since they correspond to binary sequences of length n − 1. On the other hand, although
there are recursive and asymptotic formulae, no closed formula is known for the number of
partitions of n.

Compositions and partitions have been extensively studied due to their significance in
discrete mathematics, number theory, representation theory, and many other areas. This
paper is motivated by the following result of Legendre [6].

Theorem 1.1 (Legendre). The number of even partitions of n into distinct parts minus the
number of odd partitions of n into distinct parts equals (−1)j if n = j(3j ± 1)/2 for some
integer j ≥ 0 or 0 otherwise.

For example, there is only one even partition (31) and only one odd partition (4) among all
partitions of n = 4 (4, 31, 22, 211, 1111), giving a difference of 0, and there are exactly two
even partitions (41, 32) and one odd partition (5) among all partitions of n = 5 = 2(3j − 1)
(5, 41, 32, 311, 221, 2111, 11111), giving a difference of 1 = (−1)j, where j = 2.

Although Theorem 1.1 is often attributed to Legendre, it can be derived from the following
result of Euler, which is known as Euler’s pentagonal number theorem since the pentagonal
numbers are given by j(3j − 1)/2 for j = 1, 2, . . ..

Theorem 1.2 (Euler). One has (1−x)(1−x2)(1−x3) · · · = 1−x−x2+x5+x7−· · · , i.e.,
∞∏

n=1

(1− xn) = 1 +

∞∑

j=1

(−1)j
(
xj(3j+1)/2 + xj(3j−1)/2

)
.

Given the subtle differences between partitions and compositions in not only their defini-
tions and enumerative results as mentioned before but also many other aspects (an algebraic
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manifestation is given by the representation theory of the 0-Hecke algebra [4] compared with
the well-known representation theory of the symmetric group), it is natural to ask for an anal-
ogous result of Legendre’s theorem for compositions. However, the number of even composi-
tions of n with distinct parts minus the number of odd compositions of n with distinct parts
is given by the sequence 1,−1,−1, 1, 1, 3,−3,−1,−7,−11, 7, 3, 15, 35, 71,−35, 25,−57, . . .,
which does not resemble Legendre’s theorem; see the On-line Encyclopedia of Integer Se-
quences (OEIS) [11, A339435]. To remedy this, we recall another famous result of Euler.

Theorem 1.3 (Euler). The number of partitions of n into distinct parts equals the number
of partitions of n into odd parts.

The number of even partitions of n into odd parts minus the number of odd parti-
tions pf n into odd parts is given by another known sequence 1,−1, 1,−2, 2,−3, 4,−5, 6,
−8, 10,−12, 15,−18, 22,−27, 32,−38, . . . in OEIS [11, A081360]. In fact, this is simply a
signed version of the number of partitions of n into odd parts [11, A000009] since the length
of a partition of n into odd parts has the same parity as n. Nevertheless, Euler’s theorem
on partitions of n into distinct/odd parts opens a door for us to think about other related
restrictions on the parts of a composition. In particular, the following composition analogue
of Euler’s partition theorem comes to our mind.

Theorem 1.4 (Cayley—Stanley). The number of compositions of n with odd parts equals
the number of compositions of n+ 1 with parts greater than one.

Cayley [2] showed that the first number in Theorem 1.4 equals the Fibonacci number Fn

defined by the recursive relation Fn := Fn−1 +Fn−2 for n ≥ 2 with initial conditions F0 := 1
and F1 := 1, and the second number in Theorem 1.4 also equals Fn by Stanley [12]. Recently,
Sills [10] provided a bijective proof for Theorem 1.4. Motivated by Theorem 1.4, we provide
the following extension of Legendre’s theorem to compositions, which involves a periodic
sequence 1, 1, 0,−1,−1, 0, . . . of 0, 1, and −1 with period 6 [11, A010892].

Theorem 1.5. Define bn := cn,o − cn,e, where cn,o (or cn,e, resp.) is the number of odd
(or even, resp.) compositions of n + 1 with parts greater than one. Then bn = (−1)j if
n ∈ {3j + 1, 3j + 2} or bn = 0 otherwise.

We also obtain some generalizations of Theorem 1.5, which are outlined below; note that
we have “odd minus even” instead of “even minus odd” to make the difference as simple as
possible in our results.

In Section 2, we establish a result which includes Theorem 1.5 as a special case. This gives
a signed version of an earlier result by Munagi [7, Theorem 1.2] (see also Theorem 2.2), which
generalized Theorem 1.4 in a similar way as the well-known generalization (Theorem 2.1) of
Euler’s partition theorem due to Glaisher.

In Section 3, we provide a composition analogue of an extension (Theorem 3.1) of Le-
gendre’s theorem obtained recently by Nyirenda [8] using extra congruence restrictions on the
parts of a partition. A special case (Corollary 3.5) of our result resembles Legendre’s Theorem
as it involves a periodic sequence whose jth term is (−1)j if n ∈ {3rj+ s+1, 3rj+ r+ s+1}
for some integer j ≥ 0 or 0 otherwise, where r > s ≥ 0, and this also implies Theorem 1.5
when (r, s) = (1, 0).

By relaxing the restriction on the parts of a partition, Franklin obtained a further gen-
eralization (Theorem 4.1) of Glaisher’s theorem. In our recent work [5], we obtained an
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analogous result for compositions, which includes Munagi’s result as a special case. In Sec-
tion 4, we obtain a signed version of this result together with another variation, giving new
interpretations for two entries in OEIS [11].

Lastly, we ask some questions for future research in Section 5 based on various Legendre-
type results of Andrews [1] and Nyirenda—Mugwangwavari [9] on partitions with initial
repetitions.

2. A signed version of Munagi’s Theorem

First, we recall a well-known result of Glaisher, which specializes to Euler’s partition
theorem when k = 2.

Theorem 2.1 (Glaisher). Given an integer k ≥ 1, the number of partitions of n with no
part occurring k or more times equals the number of partitions of n with no parts divisible
by k.

Similarly, Munagi [7, Theorem 1.2] generalized Theorem 1.4, the composition analogue of
Euler’s theorem, to the following result using the zigzag graphs of compositions.

Theorem 2.2 (Munagi). The number of compositions of n with parts congruent to 1 modulo
k equals the number of compositions of n + k − 1 with parts no less than k.

Now we provide a signed version of Theorem 2.2 and prove it in two ways, one using a
generating function and the other using a bijection.

Theorem 2.3. For k, n ≥ 1, let bk,n := ck,n,o − ck,n,e, where ck,n,o (or ck,n,e, resp.) is the
number of odd (or even, resp.) compositions of n + k − 1 with parts no less than k. Then

bk,n =
∑

0≤j≤(n−1)/k

(−1)j
(
n− 1− j(k − 1)

j

)

.

Analytic Proof. We have

1−
∑

n≥1

bk,nx
n+k−1 =

∑

ℓ≥0

(
−xk − xk+1 − · · ·

)ℓ
=

∑

ℓ≥0

(−xk)ℓ

(1− x)ℓ

=

(

1−
−xk

1− x

)−1

=
1− x

1− x+ xk

= 1− xk
∑

i≥0

(
x− xk

)i

= 1−
∑

i≥0

xk+i
i∑

j=0

(
i

j

)

(−xk−1)j .

For n ≥ 1, extracting the coefficient of xn+k−1 gives the desired formula for bk,n. �

Combinatorial Proof. There is a bijection from compositions of n+ k − 1 with length j + 1
and parts no less than k to compositions of n − j(k − 1) with length j + 1 by subtracting

k− 1 from each part of a composition. There are exactly
(
n−1−j(k−1)

j

)
many compositions of

n−j(k−1) with length j+1 since each of these compositions can be obtained by inserting j
bars between n− j(k−1) dots with no two bars adjacent to each other. The desired formula
for bk,n follows immediately. �
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Taking k = 2 in Theorem 2.3 gives Theorem 1.5, which is a composition analogue of
Legendre’s theorem. The sequence bk,n can also be determined by bk,n = 1 for n = 1, . . . , k
and dk,n = bk,n−1 − bk,n−k for n > k; see the special cases for k = 2 [11, A010892], k = 3 [11,
A050935], and k = 4 [11, A099530] in OEIS. Theorem 2.3 can be viewed as a signed version
of Theorem 2.2 since by either of the above proofs, we can remove (−1)j in the formula of
bk,n given by Theorem 2.3 and recover a closed formula by Munagi [7] for the number ak,n
of compositions of n+ k− 1 with parts no less than k (the formula of ak,n can also be found
in our earlier work [5, Eq. (1)] and for k = 4, in OEIS [11, A003269]).

3. A further restriction by congruence on parts

In this section, we generalize Theorem 2.3 by further imposing a congruence condition
on the already restricted parts of the compositions. This is in the spirit of the following
extension (slightly rephrased) of Legendre’s theorem by Nyirenda [8].

Theorem 3.1 (Nyirenda). Let de(n, r) (or do(n, r), resp.) denote the number of partitions
of n into an even (or odd, resp.) number of distinct parts, all of which are congruent to 0
or 2r ± 1 modulo 4r. Then

de(n, r)− do(n, r) =

{

(−1)j if n = j(2rj ± 1) for some integer j ≥ 0;

0 otherwise.

Let ce(n, r) (or co(n, r), resp.) denote the number of partitions of n into an even (or odd,
resp.) number of distinct parts, all of which are congruent to 0 or ±r modulo 2r + 1. Then

ce(n, r)− co(n, r) =

{

(−1)j if n = j((2r + 1)j ± 1))/2 for some integer j ≥ 0;

0 otherwise.

We provide an analogue of Theorem 3.1 for compositions with two proofs.

Theorem 3.2. Given integers k, n ≥ 1 and r > s ≥ 0, let br,sk,n := cr,sk,n,o − cr,sk,n,e, where cr,sk,n,o

(or cr,sk,n,e, resp.) is the number of odd (or even, resp.) compositions of n + k − 1 with parts
no less than k and congruent to k + s modulo r. Then

br,sk,n =
∑

ri+j(k+s)=n−1−s

(−1)j
(
i+ j

i

)

.

Analytic Proof. We have

1−
∑

n≥1

br,sk,nx
n+k−1 =

∑

ℓ≥0

(
−xk+s − xk+r+s − xk+2r+s + · · ·

)ℓ

=
∑

ℓ≥0

(−xk+s)ℓ

(1− xr)ℓ
=

(

1−
−xk+s

1− xr

)−1

=
1− xr

1− xr + xk+s
= 1− xk+s

∑

i≥0

(
xr − xk+s

)i

= 1−
∑

i≥0

xk+ri+s

i∑

j=0

(−1)j
(
i

j

)

xj(k+s−r).
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Extracting the coefficient of xn+k−1 and replacing i with i+ j gives the desired formula for
br,sk,n. �

Remark 3.3. The above proof is valid even though the exponent of xj(k+s−r) could be zero
(when k = r − s) or negative (when k < r − s). Alternatively, one can deal with the cases
k = r− s and k > r− s separately using similar techniques and obtain the same formula for
br,sk,n.

Combinatorial Proof. The allowed parts (no less than k and congruent to k+s modulo r) are
k+ s, k+ r+ s, k+2r+ s, . . .. Dividing each part minus k+ s− r by r gives a bijection from
compositions of n+ k − 1 with exactly j + 1 parts, each less than k and congruent to k + s,
to compositions of i+ j+1 of length j+1, where r(i+ j+1)+(k+ s− r)(j+1) = n+k−1,
i.e., ri + j(k + s) = n − 1 − s. The number of compositions of i + j + 1 of length j + 1 is
(
i+j
j

)
. Therefore the desired formula for br,sk,n holds. �

Theorem 3.2 recovers Theorem 2.3 when (r, s) = (1, 0). The following is another special
case as mentioned in Remark 3.3.

Corollary 3.4. Suppose r > s ≥ 0 and k = r − s. Then br,sk,n = 1 if n = s + 1 and br,sk,n = 0
if n 6= s+ 1.

Proof. This can be derived from the formula of br,sk,n in Theorem 3.2 or by using the generating
function

1− xr

1− xr + xk+s
= 1− xr

in the proof of Theorem 3.2 when k = r − s. �

We give one more corollary of Theorem 3.2 below, which resembles Legendre’s theorem
and recovers Theorem 1.5 when (k, r, s) = (2, 1, 0).

Corollary 3.5. Given integers r > s ≥ 0 and k = 2r − s, we have dr,sk,n = (−1)j if n ∈
{3rj + s+ 1, 3rj + r + s+ 1} for some integer j ≥ 0 or dr,sk,n = 0 otherwise.

Proof. Suppose k = 2r − s. It follows from the proof of Theorem 3.2 that

1−
∑

n≥1

br,sk,nx
n+k−1 =

1− xr

1− xr + x2r
=

1− x2r

1 + x3r

=
∑

i≥0

(−1)ix3ri −
∑

j≥0

(−1)jx2r+3rj .

Extracting the coefficient of xn+k−1 after replacing i with j + 1 for i ≥ 1 gives the desired
formula for dr,sk,n. �

By Corollary 3.5, if k = 2r− s then the sequence (dr,sk,n : n ≥ 1) has period 6r and, upon a

backward shift of r terms, its generating function becomes (1−xr + x2r)−1. This generating
function is the inverse of the 6rth cyclotomic polynomial at least when k + s = 2r = 4, 6, 8;
see OEIS [11, A014021, A014027, A014033].



6 JIA HUANG

4. A relaxation for restricted parts

The following result of Franklin recovers Glaisher’s theorem (Theorem 2.1) when m = 0.

Theorem 4.1 (Franklin). Given integers k ≥ 1 and m ≥ 0, the number of partitions of n
with m distinct parts each occurring k or more times equals the number of partitions of n
with exactly m distinct parts divisible by k.

In our recent work [5], we obtained a composition analogue of Franklin’s theorem.

Theorem 4.2 (Huang). For any integers k ≥ 1 and m ≥ 0, the number of compositions of
n with exactly m parts not congruent to 1 modulo k, each of which is greater than k, equals
the number of compositions of n + k − 1 with exactly m parts less than k, each of which is
preceded by a part at least k and followed by either the last part or a part greater than k.

Theorem 4.2 recovers Munagi’s theorem when m = 0. Our proof for Theorem 4.2 was
based on the bijective proof of Theorem 1.4 by Sills [10]. We also established two closed
formulae [5, Theorem 1.7] for the two equal numbers in Theorem 4.2:

a
(m)
k,n =

∑

λ⊆(k−2)m

i+(k+1)m+jk+|λ|=n

(
i

m

)(
i+ j − 1

j

)

mλ(1
m)

=
∑

i+(k+1)m+jk+ℓ(k−1)+h=n

(−1)ℓ
(
i

m

)(
i+ j − 1

j

)(
m

ℓ

)(
m+ h− 1

h

)

.

Here λ ⊆ rd means λ is a partition with no more than d parts, each at most r, and mλ(1
d) is

the specialization of the monomial symmetric function indexed by the partition λ evaluated
at the vector (1, . . . , 1

︸ ︷︷ ︸

d

), i.e., with mi denoting the number of parts of the partition λ ⊆ rd

that are equal to i for i = 0, 1, . . . , r,

mλ(1
d) =

(
m

m0, . . . , mr

)

=
m!

m0! · · ·mr!
.

Now we provide a signed version of the above formulae of the number a
(m)
k,n .

Theorem 4.3. Let b
(m)
k,n := c

(m)
k,n,o − c

(m)
k,n,e, where c

(m)
k,n,o (or c

(m)
k,n,e, resp.) is the numbers of odd

(or even, resp.) compositions of n + k − 1 with exactly m parts less than k, each of which
is preceded by a part at least k and followed by either the last part or a part greater than k.
Then

b
(m)
k,n =

∑

λ⊆(k−2)m

i+(k+1)m+jk+|λ|=n

(−1)j
(

i

m

)(
i+ j − 1

j

)

mλ(1
m)

=
∑

i+(k+1)m+jk+ℓ(k−1)+h=n

(−1)ℓ+j

(
i

m

)(
i+ j − 1

j

)(
m

ℓ

)(
m+ h− 1

h

)

.

Proof. Both the analytic and combinatorial proofs of the above formulae of a
(m)
k,n given in our

previous work [5, Theorem 1.7] were based on the interpretation of a
(m)
k,n as the number of

the first kind of compositions in Theorem 4.2. However, we can apply the bijective proof of
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Theorem 4.2 [5, Theorem 1.6] to the combinatorial proof of the above formulae of a
(m)
k,n and

obtain that the length of each of the second kind of compositions in Theorem 4.2 is given by

2m+ j + 1, where m and j are as in the above formulae of a
(m)
k,n . Thus we have the desired

formulae for b
(m)
k,n . �

Theorem 4.3 provides a new interpretation for a known sequence [11, A281862], which

coincides with b
(m)
k,n when k = m = 2. We also have a variation of b

(m)
k,n with simplified

restrictions on the parts of a composition.

Theorem 4.4. Let b̄
(m)
k,n := c̄

(m)
k,n,o − c̄

(m)
k,n,e, where c̄

(m)
k,n,o (or c̄

(m)
k,n,e, resp.) is the number of odd

(or even, resp.) compositions of n+ k − 1 with exactly m parts less than k. Then

b̄
(m)
k,n =

∑

i+j+(k−1)(ℓ+i−m−1)=n

(−1)i+ℓ+1

(
i+ j − 1

j

)(
i

m

)(
m

ℓ

)

Proof. We have

−
∑

n≥1−k

b̄
(m)
k,n x

n+k−1ym =
∑

i≥0

(
−y(x+ x2 + · · ·+ xk−1)− xk − xk+1 − · · ·

)i

=
∑

i≥0

(
−xy(1− xk−1)

1− x
+

−xk

1− x

)i

=
∑

i≥0

(
−xy + xky − xk

1− x

)i

=
∑

i≥0

(−x)i
∑

j≥0

(
i+ j − 1

j

)

xj

i∑

m=0

(
i

m

)

ym(1− xk−1)mx(k−1)(i−m)

=
∑

i,j≥0

(−x)i
(
i+ j − 1

j

)

xj
i∑

m=0

(
i

m

)

ym
m∑

ℓ=0

(
m

ℓ

)

(−xk−1)ℓx(k−1)(i−m).

Extracting the coefficient of xn+k−1ym gives the desired formula for b̄
(m)
k,n . �

We find a sequence in OEIS [11, A122918] that coincides with (−1)nb̄
(m)
k,n when m = 2 and

k = 1.

5. Questions

Andrews [1] defined a partition of n to have initial k-repetitions if every part less than j is
repeated at least k times whenever a part j is repeated at least k times; taking k = 1 in this
definition gives partitions without gaps, which were first studied by Fine [3]. Andrews [1]
established the following results on partitions with initial k-repetitions.

• The number of partitions of n with initial k-repetitions equals the number of par-
titions of n into parts indivisible by 2k and by Glaisher’s theorem, also equals the
number of partitions of n with no parts occurring 2k or more times.
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• Let De(m,n) (or Do(m,n), resp.) denotes the number of partitions of n with initial
2-repetitions and with m different parts, of which an even (or odd, resp.) number
have multiplicity one. Then

De(m,n)−Do(m,n) =

{

(−1)j , if m = j, n = j(j + 1)/2, j ≥ 0;

0, otherwise.

Since the last result resembles Legendre’s theorem, we ask for a composition analogue, which
may require an appropriate definition of compositions with “initial k-repetitions.” If this
could be done, it would also be interesting to search for composition analogues of various
Legendre-type theorems obtained recently by Nyirenda and Mugwangwavari [9] based on
work of Andrews [1].
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