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Introduction

Context and origin of the notes. These notes are based on a seminar which
took place in the autumn of 2022 at the Mathematical Institute of the University
of Leiden. Its goal was to understand the recent preprint [EL21] by J. Evans
and Y. Lekili, a follow-up of the papers [LU21, FU11], in which the symplectic
cohomology of the Milnor fiber for specific classes of isolated singularities has been
calculated.

What attracted us to this paper is first of all the interplay between the algebra-
geometric and symplectic techniques, a relatively new feature, perhaps going back
to the article [McL16] by M. McLean. In [EL21] the algebraic geometry is related
to threefold singularity theory as taken up in the 1980ies and 1990ies by M. Reid, J.
Kollàr e.a., but which still is an active area of research. The symplectic techniques
involve quite disparate inputs, about which more later on. The basic relation with
singularities comes from the natural symplectic structure on the Milnor fiber of an
isolated hypersurface singularity and the natural contact structure on its link.

The main motivating question is: ”what implications have symplectic and con-
tact invariants for algebra-geometric phenomena of a singularity?” Note that sym-
plectic and contact invariants are (much) finer than topological invariants, but
much harder to calculate. Only recently this has been achieved for several classes
of isolated hypersurfaces, in particular in the above mentioned papers.

One of the striking new results of [EL21] is the computation of contact in-
variants for the link of some of these singularities. As a result, contact structures
for certain diffeomorphic links in dimension 5 could be distinguished using these
invariants.

On the algebra-geometric side there is a (largely conjectural) interplay between
symplectic invariants and the existence of a so-called small resolution. For sev-
eral threefold singularities a precise conjecture in this direction has been resolved,
another striking result of [EL21].

Some historical background. Singularity theory in complex and differen-
tial geometry is a fairly old and well-established branch of mathematics. See
e.g. [AVGL98, Mil63]. In differential geometry the object of study consists of
the critical points of a function 𝑓 : 𝑀 → R, where 𝑀 is some differential manifold.
A point 𝑚 ∈ 𝑀 is critical if 𝑑𝑓(𝑚) = 0. Considering second order derivatives one
introduces the Hessian at 𝑚, a certain real quadratic form. Then 𝑚 is said to be
non-degenerate if the Hessian at 𝑓 is non-degenerate. If all critical points of 𝑓 are
non-degenerate, then 𝑓 is called a Morse function. Choosing a metric on 𝑀, one
associates to the Morse function 𝑓 its gradient vector field ∇(𝑓). The Betti num-
bers of 𝑀 can now be estimated, and in some cases calculated, following the flow
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2 INTRODUCTION

of ∇(𝑓), using the indices of the Hessians at the various critical points of 𝑓. See for
instance [Mil63].

Associating to an index 𝑘 critical point a 𝑘-cell, the free Z-module on these
cells can be made into a homological complex by defining the boundary operators
using the flow of ∇(𝑓). This idea is due to S. Smale [Sma60] and others as ex-
plained in R. Bott [Bot88]. See [Hut02] for an introduction to these ideas. In
section 5.3.A, the reader finds a summary of it as a warm-up for a variant called
symplectic cohomology. The essential ingredient here is Floer (co)homology named
after A. Floer [Flo88]. Originally Floer’s approach played an important role for
the understanding of the topology of 3- and 4-manifolds. A. Floer and H. Hofer
in [FH94], and A. Floer, K. Cieliebak, H. Hofer in [CFH95] extended these ideas
to the symplectic world. Taking limits in various ways the resulting symplectic
(co)homology groups comes in different flavors depending on the precise context of
the applications. Whatever version one chooses, these groups are notably hard to
calculate.

Very recently it has been realized that for singularities defined by functions
𝑤𝐴 : C𝑛+1 → C with a critical point at 0, coming from invertible matrices 𝐴 =

(𝑎𝑖𝑗) ∈ GL𝑛+1 (C) (see Eqn. (1.1)), one can define Hochschild cohomology of the
associated category of matrix factorizations. On the other hand, these singulari-
ties give rise to certain Fukaya categories and their mirror-duals related to their
symplectic geometry as sketched in Section 8.2 of these notes. Homological mirror
symmetry in this case consists in replacing 𝐴 by its transpose and conjecturally the
Hochschild cohomology of the category of matrix factorizations for 𝐴 is the same as
the symplectic cohomology for the Milnor fiber of the singularity {𝑤𝐴T = 0}. This
prediction from homological mirror symmetry has been proven for several kinds of
these singularities, cf. Proposition 8.8. Since Hochschild cohomology is amenable to
explicit calculation, in these cases symplectic cohomology for the Milnor fiber of the
corresponding IHS can be calculated as well. Moreover, there is an extra algebraic
structure present on Hochschild cohomology, that of a Gerstenhaber algebra. One
of the main results of [EL21] states that this leads to a contact invariant for the
link of large classes of such singularities.

About the seminar. Special attention was given to so called small resolutions
of special singularities. See Section 3.3 for the algebra-geometric background and
and 3.5 for the above mentioned (conjectural) relation with symplectic geometry. It
turns out that this area presents a fascinating source of examples for the interplay
of algebraic geometry and symplectic geometry.

Evans and Lekili use the above discussed recent techniques from homological
mirror-symmetry in their paper. The participants in the seminar have various
backgrounds and specializations in algebraic geometry and/or symplectic geometry
but were not familiar with all of these techniques. In the seminar the required
results from these fields were then treated as a black box, with the exception of the
elaborate input from matrix factorizations.

Such an ambitious program with inputs from rather disparate field makes access
difficult. So the idea arose to work out the talks to make the results from [EL21]
more accessible to both algebraic and symplectic geometers. This unavoidably
implies that some chapters might be well known to either one of these groups, but
the participants of the lectures all felt that such a text would serve the greater
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goal of introducing the mathematical community to this exiting and challenging
intersection of two fields dealing with singularities from totally different angles.

The resulting notes presented here entirely reflect my view as an algebraic
geometer well versed in the older differential geometric literature, but a dilettant
in matters of symplectic geometry and the finer points of matrix factorizations,
especially their categorical aspects.

The writing up of these notes proceeded in parallel with a project on cDV-type
singularities related to small resolutions by three of the speakers of the seminar,
and whose outcome is the recent preprint [APZ24]. I could not resist explaining
(at the end of Section 3.5) some of the enticing new results they obtained.

Acknowledgement. In writing this extended version I have had several long ex-

planatory discussions with the participants of the seminar, N. Adaglou, F. Pasquotto,

A. Sauvaget and A. Zanardini for which I want to thank them. I also want to thank

Thomas Dyckerhoff for explaining some points of [Dyc11] and M. Hablicsek for help with

Hochschild cohomology of dg-categories.
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List of Notation

Symbol meaning page

IHS isolated hypersurface singularity 7
𝑤𝐴 = 0 invertible polynomial IHS 8
L𝑋,𝑥 link of the singularity germ (𝑋,𝑥) 8
F𝑓 = F𝑋,𝑥 Milnor fiber of

the singularity germ (𝑋,𝑥), 𝑋 = {𝑓 = 0} 8
𝜇(𝑤) = 𝜇(𝑋,𝑥) Milnor number of

the singularity germ (𝑋,𝑥), 𝑋 = {𝑓 = 0} 9
Jac𝑤 Jacobian ring of 𝑤 ∈ C[𝑥1, . . . ,𝑥𝑚+1] 9
𝑇 ∗𝑈 total space of

the cotangent bundle of the manifold 𝑈 13
𝜆can,𝜔can canonical 1 and 2 form on 𝑇 ∗𝑈 13
𝜔𝐶𝑛 canonical symplectic form on C𝑛 13
SH∗ (F𝑋,𝑥) symplectic cohomology of the germ (𝑋,𝑥) 15
HH∗ (𝐴,Γ𝐴) Hochschild cohomology associated to

the matrix 𝐴 and group Γ𝐴 16
𝐴1,2𝑘, 𝛼1,𝑘 cDV-singularity 𝐴1 (2𝑘) and its link 18
Bl𝑉 (𝑊) blow up of smooth variety 𝑊 in subvariety 𝑉 19
𝑇𝑈 , 𝑇

∗
𝑈 tangent, resp. cotangent bundle of 𝑈 28

𝜔𝑍 , 𝐾𝑋 canonical sheaf, canonical divisor of 𝑋 28
Cl𝑥 (𝑋), 𝜌(𝑥) local class group of (𝑋,𝑥) and its rank 34
𝜄𝑌 contraction against vector field 𝑌 37
L𝑌 Lie derivative in direction of vector field 𝑌 38
𝑅𝛼 Reeb vector field for contact form 𝛼 40
Cyl(𝑀𝛼) symplectization of contact manifold (𝑀,𝛼) 41

𝑊 symplectic completion of Liouville domain 𝑊 43
Sp(𝑉), Sp(2𝑛) symplectic group of 𝑉 ≃ R2𝑛 45
𝜇(𝜓) Maslov index of path 𝜓 in Sp(2𝑛) 46
𝜇CZ (𝐻,𝒙) Conley–Zehnder index

of smooth curve 𝒙 of Hamiltonian flow of 𝐻 47

𝐶Morse
∗ 𝑀 Morse chain groups of manifold 𝑀 49

𝐻Morse
∗ (𝑀),𝐻∗

Morse(M) Morse (co)homology of manifold 𝑀 50

CF∗ (𝐻) Floer chain groups of Hamiltonian 𝐻 50

HF∗ (𝑊,𝐻) Floer cohomology of Hamiltonian 𝐻
on completion of Liouville domain 𝑊 51

SH∗ (𝑊)<𝑎 symplectic cohomology of 𝑊
w.r. periodic orbits of periods < 𝑎 51

SH∗ (𝑊) symplectic cohomology of 𝑊 52
CF±∗ (𝐻) positive/negative Floer

chain groups of Hamiltonian 𝐻 53

SH𝑘
± (𝑊) positive/negative Floer

cohomology of 𝑊 53
𝑚𝑑(𝑋,𝑥) minimal discrepancy

the singularity germ (𝑋,𝑥) 54
hmi(L𝑋,𝑥 , 𝜉),hmi(L𝑋,𝑥 , 𝜉) (highest) minimal index of the link

of the singularity germ (𝑋,𝑥) 55
𝑁• (𝒇) Koszul sequence for 𝑅-regular sequence 62
{𝒇,𝒈} Koszul matrix factorization w.r. to 𝒇, 𝒈 63
𝐶 (𝑅) category of complexes over 𝑅 63
𝐶𝑑𝑔 (𝑅) dg-category of complexes over 𝑅 64
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Symbol meaning page

[𝐴] homotopy category of 𝐴 64
𝑀𝑎𝑡𝑓

𝑅,𝑤
,𝑀𝑎𝑡𝑓∞

𝑅,𝑤
category of matrix factorisations of 𝑤 ∈ 𝑅 64

𝑀stab stabilization of 𝑀 66
𝑋𝑜-module 𝑀 𝑀 with action of 𝑋 from the right 68

𝐶 ”completion” of category 𝐶 67
∆ diagonal of 𝑅 in 𝑅 ⊗𝑘 𝑅, 𝑅 = 𝑘[[𝑥1, . . . ,𝑥𝑚]] 68
HH∗ (𝐴) Hochschild cohomology of algebra 𝐴 70
𝐴𝑜, 𝐴𝑒 opposite and enveloping algebra of 𝐴 70

𝐶bar
∗ (𝐴) bar-complex of algebra 𝐴 70

𝐴𝑜, 𝐴𝑒 opposite and enveloping dg-category of 𝐴 71
∆𝐴 diagonal/identity functor of dg-category 𝐴 72

𝑀𝑎𝑡𝑓
𝑤,Γ,𝜒

category of equivariant matrix

factorizations of 𝑤 w.r. to (Γ,𝜒) 73
𝐺𝐴 kernel of character 𝜒𝐴 : Γ𝐴 → C∗ 81
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𝐴𝛾 , 𝐵𝛾 , 𝐶𝛾 sets of 𝛾-monomials 82, 83

𝐺𝐴 auxiliary group 85





CHAPTER 1

Overall view

I shall work over the complex numbers and use the analytic topology unless mentioned

otherwise.

1.1. The protagonists

A complex variety 𝑉 is a subset of C𝑁 given by the vanishing of a finite number
of holomorphic functions. One assumes throughout that 𝑉 has just one singularity
at the origin 0 ∈ C𝑁 . Such isolated singularities are investigated in appropriately
small balls centered at 0. Special attention is given to isolated hypersurface singu-
larities, abbreviated IHS in what follows. Explicitly,

Definition 1.1. An 𝑚-dimensional analytic hypersurface

𝑉 (𝑓) := {𝒙 = (𝑥1, . . . ,𝑥𝑛+1) ⊂ C𝑚+1 | 𝑓(𝑥1, . . . ,𝑥𝑚+1) = 0}, 𝑓(0) = 0

has an isolated singularity at 0 if there is an open neighborhood 𝑈 ⊂ C𝑚+1 of 0
such that 0 is the only zero of ∇𝑓 in 𝑈 along 𝑉 (𝑓).

Examples 1.2. 1. The type 𝐴𝑛 singularities or double point singularities on

curves: 𝑥2 − 𝑦𝑛+1 = 0, 𝑛 ≥ 1. For odd 𝑛 these have two branches 𝑥 = ±𝑦 1
2
(𝑛+1) (the

red curve) and for 𝑛 odd only one (the black curve). The latter are the so-called
cusps.

Figure 1. Double points.
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8 1. OVERALL VIEW

2. The triple point curve singularities 𝐷𝑛 (given by 𝑦(𝑥2 − 𝑦𝑛−2) = 0, 𝑛 ≥ 4), and
the three 𝐸-types 𝑥3 + 𝑦4 = 0, 𝑥(𝑥2 + 𝑦3) = 0 and 𝑥3 + 𝑦5 = 0, respectively 𝐸6,𝐸7

and 𝐸8.
3. The du Val surface singularities are obtained from the 𝐴-𝐷-𝐸-types by
adding the square of a new variable. Adding more squares of new variables, then
gives IHS of higher dimension, likewise called ”of 𝐴-𝐷-𝐸-type”.
4. The compound du Val threefold singularities, abbreviated cDV-singularities:
𝑔(𝑥, 𝑦, 𝑧) + 𝑡ℎ(𝑥, 𝑦, 𝑧, 𝑡) by definition are such that the hyperplane 𝑡 = 0 gives a du
Val surface singularity.
5. Singularities associated to invertible matrices. Consider the polynomial in
C[𝑥1, . . . ,𝑥𝑚+1] given by

(1.1) 𝑤𝐴 (𝒙) :=
∑︁
𝑘

𝑥
𝑎𝑘,1
1 𝑥

𝑎𝑘,2
2 · · · 𝑥𝑎𝑘,𝑚+1𝑚+1 , 𝐴 = (𝑎𝑖𝑗) ∈ GL𝑚+1 (C).

If 𝑤𝐴 = 0 has an IHS at 0, one speaks of an invertible polynomial IHS. This is
the case for instance if 𝐴 is diagonal with exponents ≥ 2. Note that the equations∑

𝑗 𝑎𝑖𝑗𝑑𝑖 = 𝑑, 𝑑 ∈ Q, 𝑖 = 1, . . . ,𝑚 + 1, have a unique solution over the rationals.
Clearing denominators, there is a unique solution (𝑑1, . . . ,𝑑𝑚+1,𝑑) with 𝑑 a positive
integer and with gcd(𝑑1, . . . ,𝑑𝑚+1,𝑑) = 1. If 𝐴 is diagonal, the IHS is called a
Brieskorn–Pham singularity .

The polynomial 𝑤𝐴 is a so-called weighted homogeneous polynomial of
type (𝑑, [𝑑1, . . . ,𝑑𝑚+1]), which means that if 𝑡 ∈ C∗ acts on C𝑚+1 by multiplying 𝑥𝑗
by 𝑡𝑑𝑗 , the induced action on polynomials sends 𝑤𝐴 to 𝑡𝑑𝑤𝐴. The associated integer
𝛼(𝑤𝐴) = 𝑑−∑𝑑𝑗 is called the amplitude of 𝑤𝐴. Its sign plays an important role in
the theory: If 𝛼(𝑤𝐴) < 0 one calls 𝑤𝐴 a log-Fano type polynomial, if 𝛼(𝑤𝐴) = 0, it
is of log-Calabi–Yau type , while a log-general type polynomial has 𝛼(𝑤𝐴) > 0.

1.2. Links and Milnor fibrations

For an 𝑚-dimensional isolated singularity (𝑋,𝑥) ⊂ (C𝑚+1, 0), not necessarily a
hypersurface singularity, the link is defined as the (2𝑚 − 1)-dimensional manifold
which is obtained by intersecting 𝑋 with a small enough sphere centered at 0:

L𝑋,𝑥 := 𝑋 ∩ 𝑆2𝑚+1 (0, 𝜀), 0 < 𝜀 ≪ 1.

For all small enough 𝜀 the oriented diffeomorphism type of this manifold does not
change.

In the hypersurface case 𝑋 = {𝑓 = 0} ⊂ C𝑚+1 the map

𝑆2𝑚+1 (0, 𝜀) − L𝑋,𝑥

𝜑𝑓
−−→ 𝑆1, 𝜑𝑓 (𝒙) = 𝑓(𝒙)/|𝑓(𝒙) |

is well defined. J. Milnor shows [Mil68, Thm. 4.8] that 𝜑𝑓 is a differentiable locally
trivial fiber bundle with smooth 2𝑚-dimensional fibers. The general fiber is called
the Milnor fiber F𝑓 = F𝑋,𝑥 of the germ (𝑋,𝑥) given by 𝑓 = 0. The topology of
this fibration is well-understood especially if 𝑓 is a polynomial.

In these notes, I shall mostly use the letter 𝑤 for polynomial
singularities.

Theorem 1.3 ([Mil68, §5]). The Milnor fiber F𝑤 and the link L𝑤 of an isolated
𝑚-dimensional singularity of a polynomial singularity 𝑤 = 0 have the following
properties:
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1. F𝑤 is (orientably) parallelizable, i.e its tangent bundle admits an orienta-
tion preserving trivialization;

2. F𝑤 has the homotopy type of a wedge of 𝑚-spheres; in particular, its middle
homology 𝐻𝑚 (F𝑤), 2𝑚 = dimF𝑤, is free of rank 𝜇(𝑤);

3. Each fiber of the Milnor fibration 𝜑𝑤 has the link L𝑤 as its boundary;
4. If 𝑚 ≥ 2, then L𝑤 is (𝑚 − 2)-connected, that is, it is connected and its

homotopy groups 𝜋𝑘 (L𝑤) vanish for 𝑘 = 1, . . . ,𝑚 − 2;
5. F𝑤 is (𝑚 − 1)-connected.

The number 𝜇(𝑤) = 𝜇(𝑋,𝑥) of 𝑚-spheres in this theorem is called the Milnor
number of the singularity germ (𝑋,𝑥) given by 𝑤 = 0. It can also be calculated
algebraically as the dimension of the Jacobian ring Jac𝑤 of 𝑤 ∈ C[𝑥1, . . . ,𝑥𝑚+1]:

(1.2) 𝜇(𝑤) = dim Jac𝑤, Jac𝑤 = C[𝑥1, . . . ,𝑥𝑚+1]/𝐽 (𝑤), 𝐽 (𝑤) =
(
𝜕𝑤

𝜕𝑥1
, . . . ,

𝜕𝑤

𝜕𝑥𝑚+1

)
.

Using S. Smale’s technique of surgery there is a sharper statement in the case
𝑚 ≠ 2. This sharper statement implies the existence of certain types of Morse
functions on the Milnor fiber which play a crucial role later (cf. the statement of
Corollary 7.7).

Let me first give a short explanation of this technique. One starts with an 𝑚-
dimensional manifold with boundary (𝑊, 𝜕𝑊) and such that 𝜕𝑊 contains 𝑆𝑘−1 ×
𝐵𝑚−𝑘. More precisely, one assumes that there exists a smooth map

𝑆𝑘−1 × 𝐵𝑚−𝑘 𝜑
−→ 𝜕𝑊.

Here 𝐵𝑠 ⊂ R𝑠 denotes the unit ball in R𝑠. One attaches a 𝑘-handle 𝐻𝑘 = 𝐵𝑘×𝐵𝑚−𝑘 to
𝑊 by taking first the disjoint union of 𝑊 and 𝐻𝑘 and then glues 𝑆𝑘−1×𝐵𝑚−𝑘 ⊂ 𝜕𝐻𝑘

to 𝜕𝑊 using 𝜑. At the same time 𝐵𝑘 × 𝑆𝑚−𝑘−1, the other part of the boundary of
𝐻𝑘, replaces the image of 𝜑 in 𝜕𝑊:

(𝑊′, 𝜕𝑊′) =
(
𝑊 ∪𝜑 𝐻𝑘, (𝜕𝑊 − Im(𝜑)) ∪ 𝐵𝑘 × 𝑆𝑚−𝑘−1

)
.

Then 𝑊′ said to be obtained from 𝑊 by attaching the 𝑘-handle 𝐻𝑘 and 𝜕𝑊′ is ob-
tained from 𝜕𝑊 by an elementary surgery of type (𝑘,𝑚−𝑘). An𝑚-manifold with
boundary obtained by successively attaching handles (possibly of varying types) is
called a handlebody .

In the present setting the Milnor fiber is (𝑚 − 1)-connected and the link (𝑚 −
2)-connected and in this situation Smale’s result [Sma62, Theorem 1.2] applies,
yielding:

Theorem 1.4 ([Mil68, Thm. 6.6]). If 𝑚 ≠ 2 the Milnor fiber of an isolated
𝑚-dimensional singularity having Milnor number 𝜇 is obtained from the 𝑚-ball by
attaching 𝜇 disjoint 𝑚-handles.

This indeed refines Milnor’s result: Attaching an 𝑚-handle to the 2𝑚-ball gives
a manifold which is homeomorphic to the product 𝑆𝑚 ×𝐷𝑚 which has the 𝑚-sphere
as a deformation retract and attaching 𝜇 disjoint 𝑚-handles has a wedge of 𝜇 such
𝑚-spheres as deformation retract. In Figure 2 the right hand picture is supposed
to have connected boundary (the handles are all open at the back, making a large
knot-like boundary). It represents the Milnor fiber of an irreducible 1-dimensional
singularity (see Section 2.3 for some background). However, in case the singularity
has 𝑘 branches the boundary has 𝑘 connected components.
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Figure 2. Elementary surgery on 𝑆1 of type (1, 1) and a typical
Milnor fiber in (complex) dimension 1 viewed as a handlebody.

Before explaining the consequence for Morse functions, let me first recall the
definition:

Definition 1.5. Let 𝑀 be a smooth 𝑛-dimensional manifold, and 𝑓 : 𝑀 → R
a smooth function. A point 𝑝 ∈ 𝑀 is a critical point if 𝑑𝑓(𝑝) = 0 and it is a
non-degenerate critical point (of index 𝑟) if locally in a neighbourhood 𝑈 of 𝑝
coordinates 𝑥1, . . . ,𝑥𝑛 can be found centered at 𝑝 so that 𝑓(𝑥) = −∑𝑟

𝑗=1 𝑥
2
𝑗 +

∑𝑛
𝑗=𝑟+1 𝑥

2
𝑗

in 𝑈. The function 𝑓 is a Morse function if all critical points of 𝑓 are non-
degenerate. The flow lines of the gradient vector field of 𝑓 is called the flow
associated to the Morse function 𝑓.

In a precise sense ”most” smooth functions are More functions so that small
perturbations of any smooth function gives a Morse function. The critical points of
Morse functions and their indices can be used to describe a manifold by means of
attaching handles which gives some information about the topology of the manifold.
See [Mil63] for more information and many examples. Sometimes the information
is ideal: there exists a so-called perfect Morse function with precisely1 𝑏𝑟 (𝑀)
critical points of index 𝑟 for all 𝑟. This is the case for Milnor fibers of isolated
hypersurface singularities:

Corollary 1.6. In case the complex dimension 𝑚 is different from 2, there
exists a Morse function on the Milnor fiber with a minimum (index 0) and 𝜇 non-
degenerate critical points of index 𝑚.

Proof. One starts off with the 2𝑚 ball 𝑊0 with Morse-function 𝑓0 : 𝑊0 →
[−3,−1] given by 𝑓0 = −1−2∑2𝑚

𝑗=1 𝑥
2
𝑗 and then one consecutively attaches 𝑚-handles

as follows.
By [Mil65, Thm. 3.12] an elementary surgery of type (𝑚,𝑚) applied to 𝜕𝑊0

is given by a manifold 𝑊0→1 with ”lower” boundary 𝜕𝑊0 and Morse function 𝑓01 :
𝑊0→1 → [−1, 1] having one non-degenerate critical point of index 𝑚 and being
−1 on 𝜕𝑊0 and 1 on the ”upper” boundary of 𝑊0→1. Let 𝑊1 = 𝑊0 ∪𝑊0→1 be the
(2𝑚)-fold obtained from 𝑊0 by attaching the 𝑚-handle produced by the elementary
surgery. The functions 𝑓0 and 𝑓1 are both 0 on 𝜕𝑊0 and by construction (see the

1𝑏𝑟 (𝑀) = rank𝐻𝑟 (𝑀) is the 𝑟-th Betti number of 𝑀.
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Figure 3. Handlebody with flow associated to the Morse function.

proof of [Mil65, Thm. 3.12]) 𝑓1 glues differentiably to 𝑓0 without critical points
near this boundary and so gives a Morse function 𝑓1 : 𝑊1 → [−1, 1]. A further
elementary surgery of type (𝑚,𝑚) applied to the upper boundary of 𝑊0→1 gives the
manifold 𝑊2 which is obtained from 𝑊1 by attaching an 𝑚-handle and which has a
Morse function with one more critical point of index 𝑚 on the attached 𝑚-handle.
Continuing in this manner one obtains a Morse function 𝑓𝜇 on the Milnor fiber with
one critical point of index 0 and 𝜇 critical points of index 𝑚, one for each attached
handle. □

Example 1.7. 1. One can show that the link of the cusp 𝑥2 − 𝑦3 = 0 is
homeomorphic to a trefoil-knot given parametrically by 𝑥 = (2 + cos 3𝑡) cos 2𝑡,
𝑦 = (2 + cos 3𝑡) sin 2𝑡, 𝑧 = sin 3𝑡.

Figure 4. Disc bundle on trefoil knot (By Jim Belk - Own work,
Public Domain,
https://commons.wikimedia.org/w/index.php?curid=7903214)
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The Jacobian ring is spanned by 1 and 𝑦 and so the Milnor number equals 2. The
Milnor fiber is diffeomorphic to a torus minus a disc spanning the trefoil knot.
Hence the Milnor fiber contracts to the union of a latitudinal and longitudinal
circle, i.e. a wedge of two circles.
2. Consider the singularity 𝑧21 + 𝑧22 + 𝑧23 = 0. Its link can be calculated in real
coordinates 𝑥1, 𝑦1,𝑥2, 𝑦2,𝑥3, 𝑦3 given by 𝑧𝑗 = 𝑥𝑗 + 𝒊𝑦𝑗 . Indeed the equation gives∑

𝑗 𝑥
2
𝑗 −𝑦2𝑗 = 0,

∑
𝑗 𝑥𝑗𝑦𝑗 = 0 and the sphere condition gives

∑
𝑥2
𝑗 +𝑦2𝑗 = 𝜀2. Hence the

link is given in R3 × R3 by the equations
∑
𝑥2
𝑗 =

∑
𝑦2𝑗 = 1

2 𝜀
2, 𝒙 · 𝒚 = 0 which gives

the subset of the tangent bundle to 𝑆2 consisting of tangent vectors of fixed length
1
2

√
2𝜀. This is also called the Stiefel manifold St(3, 2). Similarly, for

∑𝑛+1
𝑗=1 𝒛

2
𝑗 = 0

one obtains the bundle of tangent vectors to 𝑆𝑛 of fixed length, the Stiefel manifold
St(𝑛+1, 2), an 𝑆𝑛−1-bundle over 𝑆𝑛. This is not always a product, but for 𝑛 = 1, 3, 7
it is (see [Ste51, §8.5 and §27], see also [Ada62]).

There is another way to view the Milnor fibration by considering a complex
valued function 𝑓 defining an IHS at 0 on a small enough ball 𝐵 = 𝐵 (0, 𝜀). In a
small enough disc ∆(0, 𝑟) the sets 𝐹 (𝒙, 𝑡) := {𝑓(𝒙) = 𝑡} ∩ 𝐵 for 𝑡 ≠ 0 are open
subsets of 𝑛-dimensional algebraic varieties without singularities while 𝐹 (𝒙, 0) is of
course the defining IHS. Milnor shows in [Mil68, §5] that this yields an alternative
incarnation of the Milnor fibration over the punctured disc. A more precise result
of Lê states:

Theorem 1.8 ([Lê77]). For 0 < 𝑟 ≪ 𝜀 ≪ 1, the family of (open) complex
manifolds {𝑓(𝒙) = 𝑡} ∩ �̄� (0, 𝜀) over the punctured disc ∆(0, 𝑟) − {0} is a locally
trivial fiber bundle with fibers diffeomorphic to the Milnor fiber. Their boundaries
are all diffeomorphic to the link L𝑓.

1.3. Enter: the associated symplectic and contact structure

The Milnor fiber of an IHS has a canonical symplectic structure and its boundary,

the link, inherits a canonical contact structure. This is briefly explained in this section.

For more on these notions I refer to Chapter 4 and to the book [MS17] by D. McDuff

and D. Salamon.

Definition 1.9. 1. A real 2-form 𝜔 on a smooth manifold is non-degenerate
if the skew form it defines on every tangent space is non-degenerate.
2. A symplectic structure on a smooth manifold 𝑁 is given by a closed non-
degenerate real 2-form 𝜔. A symplectic manifold is a smooth manifold equipped
with a symplectic structure. A symplectomorphism 𝑓 : (𝑁1,𝜔1) → (𝑁2,𝜔2) be-
tween symplectic manifolds 𝑁1,𝑁2, is a diffeomorphism such that 𝑓∗𝜔2 = 𝜔1. Two
manifolds are called symplectomorphic if there is a symplectomorphism between
them.
3. A contact structure on a smooth manifold 𝑀 of odd dimension 2𝑛 − 1 is a
field 𝜉 of codimension 1 hyperplanes in the tangent bundle of 𝑀 which defines a
maximally non-integrable distribution. This means that at every point 𝑚 ∈ 𝑀 two
vector fields tangent to 𝜉 can be found whose Lie bracket is non-zero. A contact
manifold is an odd-dimensional manifold admitting a contact structure. A contac-
tomorphism is a diffeomorphism between contact manifolds preserving the contact
structures. Two manifolds are called contactomorphic if there is a contactomor-
phism between them.
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A one-form 𝛼 such that Ker(𝛼) = 𝜉 is called a contact form . Locally in a chart

with coordinates 𝑥1, . . . ,𝑥2𝑛−1 such a form exists: if
∑︁

𝑎𝑗 (𝑥1, . . . ,𝑥2𝑛−1)
𝑑

𝑑𝑥𝑗
= 0 is

a field of tangent hyperplanes, 𝛼 =
∑

𝑗 𝑎𝑗𝑑𝑥𝑗 is a corresponding contact form. It is
clearly unique up to multiplying with a function. This can be done globally, if 𝜉⊥

can be oriented, i.e., if the normal vector field
∑︁

𝑎𝑗
𝑑

𝑑𝑥𝑗
can be scaled locally so

that it glues to give a global normal vector to the field 𝜉 of hyperplanes. This is
called a co-orientation . The corresponding form 𝛼 is said to be induced by the
chosen co-orientation. Note that if 𝛼 is induced from a co-orientation, then −𝛼 is
induced from the opposite co-orientation.

The contact structure being maximally non-integrable is equivalent to 𝛼 ∧
(𝑑𝛼)𝑛 ≠ 0. The non-uniqueness of the contact form of course holds globally: if
two forms 𝛼,𝛼′ have 𝜉 as its kernel, 𝛼′ = 𝑓 · 𝛼 where 𝑓 is a nowhere zero function.
Then 𝑓 > 0 precisely when both forms come from the same co-orientation.

Examples 1.10 (Symplectic manifolds). 1. The total space 𝑇 ∗𝑈 of the
cotangent bundle

𝜋 : 𝑇 ∗𝑈 → 𝑈, 𝑈 a smooth manifold.

Since the 1-forms on 𝑈 are the sections of the cotangent bundle, there is a canonical
1-form 𝜆can on 𝑇 ∗𝑈 defined by

(1.3) 𝜆can (𝑢,𝛼𝑢) = 𝛼𝑢, 𝑢 ∈ 𝑈,𝛼𝑢 ∈ 𝑇 ∗𝑢 (𝑈),

and hence a canonical exact 2 form 𝜔can := 𝑑𝜆can. In a chart 𝑉 with coordinates
𝑥1, . . . ,𝑥𝑛, their differentials at 𝑢 form a basis for the cotangent space and so, if
𝛼𝑢 is a cotangent vector, 𝛼𝑢 =

∑
𝑗 𝑦𝑗𝑑𝑥𝑗 . The 𝑦𝑗 give coordinate functions on each

cotangent space 𝑇 ∗𝑝𝑈,𝑝 ∈ 𝑉, and so, together with the 𝑥𝑗 give a chart on 𝜋−1𝑉.
The canonical 1-form in this chart is given by

∑
𝑗 𝑦𝑗𝑑𝑥𝑗 and so

𝜔can :=
∑︁
𝑗

𝑑𝑦𝑗 ∧ 𝑑𝑥𝑗

is non-degenerate and defines a symplectic structure.
As a special case, consider 𝑇 ∗R𝑛. If one identifies 𝑇 ∗R𝑛 with C𝑛 by sending

(𝑥𝑗 , 𝑦𝑗) to 𝑧𝑗 = 𝑥𝑗 + 𝒊𝑦𝑗 , the canonical two-form
∑

𝑗 𝑑𝑦𝑗 ∧ 𝑑𝑥𝑗 to becomes

(1.4) 𝜔C𝑛 :=
1

2
𝒊
∑︁
𝑗

𝑑𝑧𝑗 ∧ 𝑑�̄�𝑗 = 𝑑
( 1
2
𝒊
∑︁

𝑧𝑗 ∧ 𝑑�̄�𝑗︸             ︷︷             ︸
𝜆

)
.

In other words (𝑇 ∗R𝑛,𝜔can) ≃ (C𝑛,𝜔C𝑛 ).
2. Kähler manifolds A Kähler form on a complex manifold is a closed real 2-

form of type (1, 1) and a pair (𝑋,𝜔) consisting of a complex manifold 𝑋 equipped
with a Kähler form 𝜔 is a Kähler manifold. In local (complex) coordinates 𝑧1, . . . , 𝑧𝑛
one has 𝜔 = 1

2 𝒊
∑

𝑖,𝑗 ℎ𝑖,𝑗𝑑𝑧𝑖 ∧ 𝑑𝑧𝑗 with ℎ := (ℎ𝑖,𝑗) a hermitian matrix (since the form

is real). The non-degeneracy of 𝜔 is equivalent to det(ℎ) ≠ 0, i.e. ℎ is a metric. This
metric is called the associated Kähler metric. Here are some concrete examples:
• C𝑛 with its standard hermitian metric. This is the symplectic manifold (C𝑛,𝜔C𝑛 )
of example 1.
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• P𝑛 with the so-called Fubini–Study metric

𝜔FS :
𝒊

2𝜋
𝜕𝜕 log ∥𝒛∥2, 𝒛 = (𝑧0 : · · · : 𝑧𝑛), ∥𝒛∥2 =

∑︁
𝑗

|𝑧𝑗 |2.

Since a submanifold 𝑌 ⊂ 𝑋 of a Kähler manifold (𝑋,𝜔) inherits a Kähler structure
𝜔|𝑌 from the the one on 𝑋, all open or closed submanifolds of a Kähler manifold
are Kähler. In particular this holds for projective manifolds, that is, submanifolds
of P𝑛.
3. Milnor fibers. The Milnor fiber of an IHS with equation {𝑓(𝒛) = 0} with

an isolated singularity at 0 ∈ C𝑛+1 carries a symplectic structure coming from
the Kähler form on C𝑛+1. Specifically, consider the the Milnor fibration 𝑓 : 𝐵 −
𝐵 ∩ {𝑓−10} → ∆∗ (𝑟) as in Theorem 1.8. If 𝐵𝑜 is the interior of 𝐵, the manifold
𝐵0 − 𝐵0 ∩ {𝑓−10} as an open subset of the Kähler manifold C𝑛+1 is Kähler and so
are the submanifolds 𝑓−1𝑡 which are copies of the Milnor fiber F𝑓.

Examples 1.11 (Contact manifolds). 1. Odd dimensional unit spheres.
As above, identify the symplectic manifold 𝑇 ∗R𝑛 with (C𝑛,𝜔C𝑛 ). The real unit
(2𝑛 − 1)-sphere can be identified with ∥𝒛∥ = 1. The canonical 1-form on 𝑇 ∗R𝑛 in
complex coordinates is given by

𝛼 :=
𝒊

2
(
∑︁
𝑗

𝑧𝑗𝑑�̄�𝑗 − �̄�𝑗𝑑𝑧𝑗) =
∑︁
𝑗

𝑥𝑗𝑑𝑦𝑗 − 𝑦𝑗𝑑𝑥𝑗 , 𝑧𝑗 = 𝑥𝑗 + 𝒊𝑦𝑗 .

At a point 𝒑 ∈ 𝑆2𝑛−1 the (real) tangent space 𝑇𝑝𝑆
2𝑛−1 can be viewed as 𝒑⊥. The

(almost) complex structure on R2𝑛 (which gives the identification with C𝑛) is the
operator 𝐽 : 𝑇𝑝R

2𝑛 → 𝑇𝑝R
2𝑛 sending (· · · ,𝑥𝑗 , 𝑦𝑗 , · · · ) to (· · · ,−𝑦𝑗 ,𝑥𝑗 , · · · ). The

smallest complex subspace of 𝒑⊥ is given by

𝜉𝒑 := 𝑇 C𝒑 R
2𝑛 = {𝑋 ∈ 𝑇𝑝R2𝑛 | 𝑋 · 𝒑 = 𝐽𝑋 · 𝒑 = 0}.

Almost by definition, 𝑋 ∈ 𝜉𝑝 belongs to Ker𝛼𝑝 and conversely. Indeed, writing
𝑋 = (· · · ,𝑋𝑗 ,𝑌𝑗 , . . . ), and 𝛼𝒑 =

∑
𝑗 𝑥𝑗𝑑𝑌𝑗 − 𝑦𝑗𝑑𝑋𝑗 , one has 𝛼𝒑 (𝑋) = 𝒑 · 𝑋 = 0, while

𝛼𝒑 (𝐽𝑋) = 𝒑 ·𝐽𝑋 = 0. The converse is clear because of dimension reasons. Using that
𝑑(𝒛 ·𝒛) = ∑

𝑑𝑧𝑗𝑧𝑗+�̄�𝑗𝑑𝑧𝑗 = 0 on the sphere, one verifies easily that 𝛼∧(𝑑𝛼)𝑛 |𝑆2𝑛−1 ≠ 0
and so 𝜉 is a contact structure on the sphere.

The unit sphere can have other contact structures. See for instance [Eli92].
The contact structures on 𝑆3 have been classified. Up to isotopy there is exactly
one contact structure on the boundary 𝜕𝑀 = 𝑆3 of a symplectic 4-manifold 𝑀 with
an exact symplectic form 𝑑𝛼, 𝛼 |𝜕𝑀 the standard contact form on 𝑆3. Such a contact
manifold is said to have a symplectic filling (see Definition 1.12 below). All others,
called overtwisted , are classified by 𝜋2 (𝑆3) ≃ Z.
2. As a generalization of the foregoing, the unit sphere bundle 𝑆 (𝑇 ∗𝑈) in the

total space of the cotangent bundle 𝑇 ∗𝑈 of a Riemannian manifold (𝑈, 𝑔) is a
contact manifold with the form 𝜆can (see (1.3)) restricted to the unit sphere bundle
as its contact form.

In the local coordinates on 𝑉 of the first example above of a symplectic mani-
fold, the form

∑
𝑗 𝑦𝑗𝑑𝑥𝑗 has as its kernel at (𝒙,𝒚) the collection of tangent vectors∑︁

𝑢𝑗
𝜕

𝜕𝑦𝑗
+
∑︁

𝑣𝑗
𝜕

𝜕𝑥𝑗
for which

∑
𝑦𝑗𝑣𝑗 = 0. This gives a hyperplane in the tangent

space at (𝒙,𝒚) of 𝑆 (𝑇 ∗𝑈) ⊂ 𝑇 ∗𝑈. In particular, for 𝑈 = R𝑛 the product R𝑛 × 𝑆𝑛−1
receives a contact structure.
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3. Links. Up to diffeomorphism the link of an isolated hypersurface singularity
(𝑋,𝑥) is the boundary of its Milnor fiber. As in the first example above, a complex
structure on an even dimensional differentiable manifold𝑀 gives an almost complex
structure 𝐽 on the tangent bundle of 𝑀, i.e., a bundle morphism 𝐽 on 𝑇𝑀 for which
𝐽2 = −id. As in that example, one can give L𝑋,𝑥 = 𝜕F𝑋,𝑥∩𝑆 (0, 𝜀) the contact structure
𝑇 (L𝑋,𝑥) ∩ 𝐽 (𝑇 (L𝑋,𝑥)). Alternatively, the contact form is the restriction to the link
of the form 𝜆C𝑛+1 := 1

2 (
∑𝑛+1

𝑗=1 𝑥𝑗𝑑𝑦𝑗 − 𝑦𝑗𝑑𝑥𝑗) for which 𝑑𝜆C𝑛+1 =
∑

𝑗 𝑑𝑥𝑗 ∧ 𝑑𝑦𝑗 = 𝜔C𝑛+1 .

The last example exhibits a so-called symplectic filling of a contact structure:

Definition 1.12. A contact structure (𝑀, 𝜉) admits a symplectic filling
(𝑁,𝛼) if the following conditions hold simultaneously:

(1) 𝜕𝑁 = 𝑀;
(2) a contact form 𝜆 for 𝜉 exists such that 𝑑𝜆 = 𝛼 |𝑀 .

Summarizing, I have now shown:

Proposition 1.13. The Milnor fiber of an IHS (𝑋,𝑥) carries a symplectic
structure which gives a symplectic filling of the contact structure on (L𝑋,𝑥, 𝜆C𝑛+1 |L𝑋,𝑥 ),
where 𝜆C𝑛+1 = 1

2 (
∑𝑛+1

𝑗=1 𝑥𝑗𝑑𝑦𝑗 − 𝑦𝑗𝑑𝑥𝑗), and 𝑧𝑗 = 𝑥𝑗 + 𝒊𝑦𝑗, 𝑗 = 1, . . . ,𝑛 + 1 are the

standard coordinates on C𝑛+1.

The Milnor fiber as a symplectic filling of the link L𝑋,𝑥 is also called a Milnor
filling of L𝑋,𝑥. The classical invariants of the Milnor fiber F𝑋,𝑥 of 𝑓 are of
topological and differentiable nature and except for low dimensions do not in general
give information on the symplectic structure. An invariant which does is the so-
called symplectic cohomology algebra SH∗ (F𝑋,𝑥) treated in more detail in § 5.3.
This algebra has a rich structure – as will be shown later –, but in general is very
hard to calculate. In Section 1.5 classes of IHS will be given where one – thanks to
a flurry of recent activities – does have a detailed knowledge of this algebra.

1.4. When are IHSs considered equal?

In complex algebraic geometry two IHS s given by holomorphic functions 𝑓.𝑓′ :
𝑈 → C, 𝑈 ⊂ C𝑛+1 with an isolated critical point at 0 are considered to be equivalent
if 𝑓 transforms to 𝑓′ after a biholomorphic coordinate change valid in a small enough
neighborhood of 0 ∈ 𝑈. Clearly, such singularities have symplectomorphic Milnor
fibers and and contactomorphic links.

There are weaker equivalences which play a role in symplectic geometry, notably
the one induced by deformations of singularities:

Definition 1.14. A function 𝑓(𝒙, 𝑡) : C𝑛+1 ×𝑈 → C, 𝑈 ∈ C open, polynomial
in 𝒙 and depending smoothly on 𝑡 is called a smooth deformation of IHSs if

• for all 𝑡 ∈ 𝑈 the hypersurface 𝑓(𝒙, 𝑡) = 0 has an isolated singularity at
0 ∈ C𝑛+1;
• the Milnor fibers of 𝑓(𝒙, 𝑡) = 0 and their links deform smoothly with 𝑡.

The singularities are then called deformation equivalent.

What this concept makes interesting is that there are smooth deformations of
IHSs which are not equivalent..
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Example 1.15. Consider the so-called 2-dimensional hyperbolic 𝑇𝑝,𝑞,𝑟-singularity
given by:

𝑓𝑎 = 𝑥𝑝 + 𝑦𝑞 + 𝑧𝑟 + 𝑎𝑥𝑦𝑧, 𝑎 ∈ C×, 1

𝑝
+ 1

𝑞
+ 1

𝑟
< 1.

For all non-zero 𝑎 ∈ C the polynomial 𝑓𝑎 = 0 has an isolated singularity at the
origin with Milnor number equal to 𝜇(𝑓) = 𝑝 + 𝑞 + 𝑟 − 1. This is the case since the
Jacobian ring is spanned by 1 together with the monomials 𝑥𝑘, 𝑘 = 1, . . . ,𝑝 − 1, 𝑦ℓ,
ℓ = 1, . . . , 𝑞 − 1, 𝑧𝑚, 𝑚 = 1, . . . , 𝑟 − 1, together with 𝑥𝑦𝑧. Note that the family is
smooth in 𝑎 ∈ C but for 𝑎 = 0 the Milnor number is always different: its is equal to
(𝑝−1) (𝑞−1) (𝑟−1) (a basis of the Jacobian ring is given by the monomials 𝑥𝛼𝑦𝛽𝑧𝛾 ,
0 ≤ 𝛼 ≤ 𝑝 − 2, 0 ≤ 𝛽 ≤ 𝑞 − 2, 0 ≤ 𝛾 ≤ 𝑟 − 2). For 𝑎 ≠ 0 the Milnor fibers and links
deform smoothly with 𝑎 . It is classical that the parameter 𝑎 is a modulus, i.e. the
complex structure of the singularity varies with 𝑎 ; the example is one of Arnold’s
unimodal singularities as discussed in [AVGL98, Ch. 2.3].

1.5. Symplectic invariants for isolated normal singularities

1.5.A. Using Hochschild cohomology. I shall now discuss briefly very re-
cent results concerning the IHS given by Eqn. 1.1. The symplectic cohomology
SH∗ (F𝑤𝐴T ) of the Milnor fiber of the ”mirror” 𝑤𝐴T is conjecturally equal to a cer-
tain algebra which is in an explicit way associated to the pair (𝐴,Γ𝐴) where Γ𝐴 is
the finite extension of C∗ given by

Γ𝐴 := {𝒕 := (𝑡0, . . . , 𝑡𝑛+1) ∈ (C×)𝑛+2 | 𝑡𝑎𝑘 ,11 · · · 𝑡𝑎𝑘 ,𝑛+1𝑛+1 = 𝑡0 · · · 𝑡𝑛+1, 𝑘 = 1, . . . ,𝑛 + 1}.

In these notes this algebra will be denoted HH∗ (𝐴,Γ𝐴). It is a so-called Hochschild
algebra, the definition of which will be given in Chapter 6 after having explained
the required techniques from the theory of matrix factorizations.

Here I just explain some of the crucial features and ingredients. The character

𝜒𝐴 : Γ𝐴 −−−→ C∗, 𝒕 ↦→ 𝑡0 · · · 𝑡𝑛+1

has a finite kernel, showing that Γ𝐴 is indeed a finite extension of C∗. The invert-
ible matrix 𝐴 is similar to a diagonal matrix diag(𝑑1, . . . ,𝑑𝑛+1) with 𝑑1 |𝑑2 | · · · |𝑑𝑛+1.
These positive integers are the elementary divisors of the finite abelian group
Ker(𝜒𝐴).

The group Γ𝐴 acts on the polynomial 𝑤𝐴 by multiplying 𝑥𝑗 by 𝑡𝑗 . Then
𝒕(𝑤𝐴) = 𝜒𝐴 (𝒕) · 𝑤𝐴. So 𝑤𝐴 is a semi-invariant for the Γ𝐴-action with character
𝜒𝐴. This set-up makes it possible to apply the theory of so-called Γ𝐴-equivariant
matrix factorizations explained in Section 6.6 . It turns out that this theory yields
the algebra HH∗ (𝐴,Γ𝐴) that I mentioned, and, as will be detailed below has been
calculated for several classes of matrices 𝐴.

As I noted before, conjecturally SH∗ (F𝑤𝐴T ) and HH∗ (𝐴,Γ𝐴) are isomorphic,
and so, if this is the case, the latter gives computable symplectic invariants. For
the present status of the conjectural isomorphism I refer to Section 8.2, especially
Proposition 8.8. For now it suffices to mention that it holds in all cases treated in
[EL21] and so in particular for the diagonal cDV-singularities which are treated in
more detail in these notes (here 𝐴 = 𝐴T so here the situation is self-mirrored).
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1.5.B. Contact invariants. One calls an isolated normal singularity topo-
logically smooth if its link is diffeomorphic to the standard sphere. In dimension
2 a renown result of D. Mumford implies that an isolated normal surface singularity
is topologically smooth if and only if it is smooth. See § 2.4. This ceases to be
true in higher dimensions as shown by E. Brieskorn [Bri66], e.g. the singularity
𝑥2 + 𝑦2 + 𝑧2 + 𝑤3 = 0 is topological smooth but not smooth.

There are only a few results about the contact structure on the link of an
isolated singularity in higher dimension:

(1) A result of I. Ustilovski [Ust99] states that for each 𝑚 > 0 there are
infinitely many isolated singularities for which its link is diffeomeorphic
to 𝑆4𝑚+1 but which are not mutually contactomorphic.

(2) M. Kwon and O. van Koert [KvK16] have shown that the contact struc-
ture of the Brieskorn–Pham singularities

∑
𝑗 𝑧

𝑎𝑗 = 0 determines whether
the singularity is canonical in the sense of M. Reid (see Definition 3.1).
In other words, a Brieskorn–Pham singularity presenting a canonical sin-
gularity is a property of the canonical contact structure of the link.

(3) Work of M. Mclean [McL16] characterizing isolated normal Gorenstein
singularities {𝑤 = 0} for which 𝐻1 (L𝑤) is torsion, in terms of contact
invariants. He also has shown that Mumford’d theorem can be extended to
isolated normal singularities of dimension 3 if one replaces ”topologically
smooth” by ”contactomorphic to the standard 5-sphere”. See § 5.4 for an
exposition of his results.

The Hochschild algebra HH∗ (𝐴,Γ𝐴) discussed in the previous subsection is gen-
erated by certain monomials in the polynomial ring C[𝑥0, . . . ,𝑥𝑛+1,𝑥−10 , . . . ,𝑥−1𝑛+1],
where the 𝑥−1𝑗 are given degree −1.2 These degrees determine the cohomological

degree. Unlike ordinary cohomology, this will be seen to imply that Hochschild
cohomology can have (even infinitely many) negative degrees.

The C∗-action on C[𝑥0, . . . ,𝑥𝑛+1] which for 𝑡 ∈ C× multiplies only 𝑥0 by 𝑡 does
not affect the polynomial 𝑤𝐴 but gives a second grading on HH∗ (𝐴,Γ𝐴). As men-
tioned above, the Hochschild cohomology HH∗ (𝐴,Γ𝐴) is spanned by certain mono-

mials 𝑥𝑏00 · · · 𝑥
𝑏𝑛+1
𝑛+1 (𝑥−10 )𝑐0 · · · (𝑥−1𝑛+1)𝑐𝑛+1 . The second grading on HH𝑑 (𝐴,Γ𝐴) is then

given by the total degree 𝑎0 = 𝑏0− 𝑐0 of 𝑥0 of such a monomial. Conventionally this
gives a class in HH𝑑−𝑛𝑎0,𝑛𝑎0 (𝐴,Γ𝐴), but sometimes a different scaling is preferable,
changing 𝑛𝑎0 to 𝑚𝑎0 for some 𝑚 ∈ Z. This torus-action on HH∗ (𝐴,Γ𝐴), yielding the
second grading, has a counterpart on symplectic cohomology which under rather
restrictive conditions is shown to be a contact invariant for the contact structure on
the link, as will be explained in Section 8.2. The basic underlying structure which
makes this possible is that of a Gerstenhaber algebra, whose definition is given in
Section 7.1.

Example 1.16. Consider the first non-trivial example of a cDV-singularity

𝐴1 (2𝑘) : 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2𝑘 = 0.

This example has Milnor number 2𝑘 − 1 since the Jacobian ring is generated by
1,𝑤, . . . ,𝑤2𝑘−2. Hence the topological structure depends on 𝑘. In Example 1.7.2
one saw that for 𝑘 = 1 the link is diffeomorphic to 𝑆2 × 𝑆3. Below it will be shown

2This is slightly imprecise since there is no cancellation between the 𝑥𝐽 -variables and the

𝑥−1𝑗 -variables. In Section 6.6 this will be remedied.
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that this is also true for 𝑘 ≥ 2. See example 2.17. The contact structures turn out
to depend on 𝑘. The dimensions of the symplectic cohomology groups are given by

dim(SH𝑑 (𝐴1 (2𝑘))) =


0 𝑑 ≥ 4

2𝑘 − 1 𝑑 = 3

0 𝑑 = 2

1 𝑑 ≤ 1.

The induced contact structure on the link of 𝐴1 (2𝑘) will be denoted 𝛼1,𝑘. Using
monomials representing the generators, one calculates the second grading which
shows that the links are mutually not contactomorphic. This is explained in Sec-
tion 8.4.B. The result is summarized in Table 8.3.

Remark 1.17. The link of the singularity of 𝐴1 (2𝑘) is the Brieskorn manifold
Σ(2, 2, 2, 2𝑘), equipped with the contact structure defined by the contact form

𝛼𝑘 =
𝒊

4

2∑︁
𝑗=0

(𝑧𝑗𝑑�̄�𝑗 − �̄�𝑗𝑑𝑧𝑗) +
𝒊𝑘

4
(𝑧3𝑑�̄�3 − �̄�3𝑑𝑧3).

That the contact structures 𝛼1,𝑘 (on 𝑆2 × 𝑆3) are all pairwise non-isomorphic, was
already shown in [Ueb16] using positive symplectic cohomology.

1.5.C. Relation with small resolutions. The kind of singularities coming
up in these notes are also investigated in algebraic geometry. The hypersurface
singularities from Section 1.1 are examples of singular points on an affine variety.
The main tool from algebraic geometry to study singularities is called desingular-
ization. This is discussed in some detail in Chapter 3 with an eye towards the
class of the cDV-singularities from Example 1.2.4. As will be explained there, al-
though one generally needs to replace a singularity by a divisor in order to obtain
a smooth variety, sometimes glueing in lower-dimensional varieties already yield
smooth varieties. The process leading to it is then called a small resolution.

It is a natural question whether this can be detected on the level of symplectic
geometry. For several examples of cDV-singularities this has been affirmed and has
led to a precise conjecture, stated and explained in Section 3.5.



CHAPTER 2

Classical results on the topology of isolated
singularities

Introduction

In this chapter classical topological concepts related to isolated singularities
will be reviewed:

• the monodromy operator for the Milnor fibration,
• knots and 1-dimensional singularities,

Furthermore some basic results are reviewed

• Mumford’s result implying that smoothness of a normal surface singularity
can be phrased in terms of its link and so it is a purely topological property,
• Milnor’s characterization of the link in terms of the monodromy operator,
• The implication of Smale’s differential topological classification of 5-manifolds
for links of 3-dimensional IHS.

2.1. Central notions

Definition 2.1. Let (𝑊,𝑥) be a germ of a complex analytic variety.
1. The point 𝑥 ∈ 𝑊 is normal if the local ring O𝑥 (𝑊) of germs of holomorphic
functions at 𝑥 is integrally closed in its quotient ring. A smooth point is always
normal, but singular points may or may not be normal. For instance isolated curve
singularities are not normal. Reducible surfaces are singular in non-normal points,
forming the intersection of two of their components. Isolated surface singularities
need not be normal.
2. A resolution of (𝑊,𝑥) is a proper morphism 𝜎 : (𝑊,𝐸) → (𝑋,𝑥), 𝐸 a subvariety
of 𝑊, such that 𝑊 is non-singular and 𝜎 : 𝑊 − 𝐸 ∼−→ 𝑊 − 𝑥 is biholomorphic. 𝐸 is
is called the exceptional locus.
3. If the exceptional locus has codimension ≥ 2, i.e. if it is not a divisor, the
resolution is called a small resolution. These do exist: see § 3.3.
4. A singularity (𝑊,𝑥) is rational if for one (and hence for every) resolution
𝜎 : 𝑌 → 𝑊, the higher direct images 𝑅𝑘𝜎∗ (O𝑌), 𝑘 ≥ 1, vanish (this only affects
their stalks at 𝑥).

Example 2.2. The simplest example of a resolution is a blow up of C𝑛 in a
dimension 𝑚 subspace 𝑉. To define the blow up in 𝑉 one can use the smooth
variety 𝐺𝑚𝑉 of all linear subspaces of C𝑛 of dimension 𝑚 + 1 passing through 𝑉, a
variety isomorphic to P𝑛−𝑚−1:

𝑞 : Bl𝑉 (C𝑛) → C𝑛, Bl𝑉 (C𝑛) = {(𝑊,𝑥) ∈ 𝐺𝑚𝑉 × C𝑛 | 𝑥 ∈ 𝑉},
where 𝑞 is the projection onto the second factor. The exceptional divisor 𝑞−1𝑉 in
this case is isomorphic to P𝑛−𝑚−1 × 𝑉. If 𝑋 is a complex manifold, the blow up

19
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Bl𝑍 (𝑋) in a smooth subvariety 𝑍 ⊂ 𝑋 can be defined locally just as in the linear
setting, and then glue the results.

A special case of H. Hironaka’s desingularization theorem [Hir64, Hir77],
reads as follows:

Theorem 2.3 (Hironaka). Let 𝑋 be an algebraic subvariety of C𝑁 having an
isolated singularity at 𝑝. Then there is a sequence of successive blow ups 𝜎𝑗 , 𝑗 =

1, . . . , 𝑟, along smooth subvarieties, say 𝜎 = 𝜎𝑟◦ · · · ◦ 𝜎1 : C̃𝑁 → C𝑁 , such that

• The proper transform 𝑊 of 𝑋 in C̃𝑁 is smooth;
• the exceptional locus 𝐸′ ⊂ 𝐶𝑁 is a hypersurface with strict normal cross-
ings, that is, the irreducible components of 𝐸′ are smooth and either do
not intersect or cross normally i.e., there are local coordinates (𝑧1, . . . , 𝑧𝑛)
on C̃𝑁 so that 𝐸 is given in this coordinate patch by 𝑧1 · · · 𝑧𝑘 = 0;
• The irreducible components of 𝐸′ meet 𝑊 transversally so that the ex-
ceptional locus 𝐸 = 𝐸′ ∩ 𝑊 is a hypersurface in 𝑊 with strict normal
crossing.

Example 2.4. By Example 2.2, the blow up of C𝑛 at 0 is defined as Bl0 (C𝑛) =
{(ℓ,𝑥) ∈ P𝑛−1 × C𝑛 | 𝑥 ∈ ℓ}. If 𝑋 ⊂ C𝑛, Bl0 (𝑋) is the closure of 𝑋 − 0 in Bl0 (C𝑛). If
0 ∈ 𝑋 is a singularity and Bl0 (𝑋) is smooth, this gives an embedded resolution.

As an example, consider the threefold 𝑋 ⊂ C4 with equation 𝑥1𝑥4 − 𝑥2𝑥3 = 0
which is singular at the origin 0. It is the cone Cone(𝑄) over a quadratic surface
𝑄 ⊂ P3 with the same homogeneous equation. Now 𝑄 ≃ P1 × P1 as one can see as
follows. In inhomogeneous coordinates the point (𝜆, 𝜆′) ∈ P1 × P1 can be identified
with 𝑝𝜆,𝜆′ = (𝜆𝜆′ : 𝜆 : 𝜆′ : 1) ∈ 𝑄 ⊂ P3. With this description one easily sees that

Bl0 (Cone(𝑄)) = {(𝜆, 𝜆′,𝑥) ∈ P1 × P1 × C4 | 𝑥 ∈ 0𝑝𝜆,𝜆′} → Cone(𝑄)
is an embedded resolution of Cone(𝑄) with exceptional divisor 𝐸 = 𝑄 × 0 ⊂ P3 ×C4.
See also Atiyah’s example in § 3.3.B where a different kind of resolution is given.

It is important to realize that Milnor fibrations only arise for hypersur-
faces {𝑓 = 0} of a (germ of a ) smooth variety 𝑋 where the function 𝑓 : 𝑋 → 𝐷,
𝐷 = {𝑧 ∈ C | |𝑧 | < 𝛿} has an isolated critical point at 𝑥. The nearby fibers
𝑓−1𝑡, 𝑡 ≠ 0 are smooth and therefore one calls such singularities smoothable .
Mumford [Mum73] was the first to give an example of a non-smoothable isolated
singularity. See also [Gre20] for a nice overview.

Example 2.5. Start with a smooth elliptic curve 𝐶 ⊂ P𝑛 of degree ≥ 10.
Suppose also that the embedding of 𝐶 is projectively normal, e.g. the restriction
homomorphism 𝐻0 (P𝑛,O(𝑘)) → 𝐻0 (𝐶,O(𝑘)) is surjective for all 𝑘 ≥ 0. If 𝑝 :
C𝑛+1 − {0} → P𝑛 is the defining projection, the closure of 𝑝−1𝐶 in C𝑛+1, the so-
called cone on 𝐶, has an isolated singular point in 0 which is not smoothable. This
is the first and easiest example from H. Pinkham’s thesis [Pin74].

2.2. Monodromy

For a locally trivial fiber bundle over the circle, say 𝜋 : 𝐸 → 𝑆1 ⊂ C, a
topological monodromy operator can be defined on any given fiber of 𝜋, say on
𝐹 = 𝜋−1 (1). This can be done by lifting the loop 𝑡 ↦→ exp(2𝜋𝒊𝑡) on the base 𝑆1

to a path starting at a given point 𝑒 ∈ 𝐹 and letting ℎ(𝑒) ∈ 𝐹 be the endpoint.
Doing this in a coherent way defines a self-homeomorphism of 𝐹, the topological
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monodromy operator . It induces a linear isomorphism ℎ∗ on 𝐻∗ (𝐹) and on
𝐻∗ (𝐹), the associated monodromy-operator. An important tool in this regard is
the so-called Wang sequence (cf. [Mil68, p. 67]):

(2.1) · · · → 𝐻𝑗+1 (𝐸) → 𝐻𝑗 (𝐹)
ℎ∗−id−−−−−→ 𝐻𝑗 (𝐹) → 𝐻𝑗 (𝐸) → · · ·

For the Milnor fibration of an 𝑚-dimensional singularity one has 𝐸 = 𝑆2𝑚+1 − L𝑤,
and so the Wang sequence is useful to calculate the homology of the Milnor fiber.

The case 𝑛 = 1. In the curve case L𝑤 is a true link, so homeomorphic to a
disjoint union of 𝑟 circles. Hence 𝐻0 (L𝑤) ≃ 𝐻1 (L𝑤) ≃ Z𝑟. By the Alexander duality
theorem 𝐻𝑗 (𝑆2𝑚+1 − L𝑤) ≃ 𝐻2𝑚+1−𝑗 (𝑆2𝑚+1, L𝑤) (see e.g. [Hat02, Thm. 3.46]), and
then the long exact sequence for the pair (𝑆3, L𝑤) gives

(2.2) 𝐻𝑗 (𝑆3 − L𝑤) =


Z for 𝑗 = 0,

Z𝑟 for 𝑗 = 1,

Z𝑟−1 for 𝑗 = 2,

0 for 𝑗 ≥ 3.

Since the Milnor fiber only has homology in ranks 0 and 𝑚 = 1, and since ℎ∗ = id
on 𝐻0 (F𝑤), in this case the Wang sequence reduces to

0 // 𝐻2 (𝑆3 − L𝑤) // 𝐻1 (F𝑤)
ℎ∗−id
// 𝐻1 (F𝑤) // 𝐻1 (𝑆3 − L𝑤) // 𝐻0 (F𝑤) // 0

0 // Z𝑟−1 // Z𝜇 // Z𝜇 // Z𝑟 // Z // 0

From this, one sees:

Lemma 2.6. For an isolated plane curve singularity having 𝑟 branches, one has
dim(Ker(ℎ∗ − id)) = dim(Coker(ℎ∗ − id)) = 𝑟 − 1.

The case 𝑚 ≥ 2. Here a similar approach as for 𝑚 = 1 together with Poincaré
duality gives an isomorphism 𝐻𝑗+1 (𝑆2𝑚+1−L𝑤) ≃ 𝐻𝑗 (L𝑤). Hence the Wang sequence
becomes:

0→ 𝐻𝑚 (L𝑤) → 𝐻𝑚 (F𝑤)
ℎ∗−id−−−−−→ 𝐻𝑚 (F𝑤) → 𝐻𝑚−1 (L𝑤) → 0,

and one deduces:

Proposition 2.7. The monodromy of the Milnor fiber of 𝑤 relates to the ho-
mology of the link as follows:

𝐻𝑗 (L𝑤) =
{
Ker(ℎ∗ − id) for 𝑗 = 𝑚

Coker(ℎ∗ − id) for 𝑗 = 𝑚 − 1.

Remark 2.8. 1. Since 𝐻𝑚 (F𝑤) has no torsion, also 𝐻𝑚 (L𝑤) is without torsion.
2. Since L𝑤 is (𝑚 − 2)-connected, for 𝑚 ≥ 2 it is connected, and for 𝑚 ≥ 3
simply connected. In that case, by the Hurewicz theorem ([Hat02, Thm. 4.32]),

𝐻𝑗 (L𝑤) = 0 for 0 ≤ 𝑗 ≤ 𝑚 − 2 and hence also for 𝑚 + 2 ≤ 𝑗 ≤ 2𝑚 − 2. So the only
interesting homology then is in the ”middle” ranks 𝑚 − 1,𝑚.
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2.3. Singularities of plane curves

The topology of the Milnor fiber and of the link of isolated curve singularities has

been widely studied by L. Neuwirth [Neu63] and J. Stallings [Sta62]. For a treatment of

plane curve singularities and their topology using Puiseux-expansions, see e.g. the book

[BK86] of E. Brieskorn and H. Knörrer.

A curve singularity (𝑊, 0) ⊂ (C3, 0) given by one equation 𝑓(𝑥, 𝑦) = 0 gives
a normal singularity if and only if 𝑓 is irreducible in the local ring O0 (𝑊) of
holomorphic functions at 0. For example, the double points 𝐴2𝑛−1, given by
𝑦2−𝑥2𝑛 = (𝑦−𝑥𝑛) (𝑦+𝑥𝑛) are non-normal while the cuspidal points 𝐴2𝑛 are normal.
The resolution of 𝐴2𝑛−1 is given by the disjoint union of the two branches 𝑦−𝑥𝑛 = 0
and 𝑦 + 𝑥𝑛 = 0. The resolution of the cusps are irreducible smooth curves, e.g.
𝑥2 − 𝑦3 = 0 becomes smooth after blowing up the origin.

The main results concerning irreducible curve singularities can be summarized
as follows:

Proposition 2.9. Let (𝑊, 0) be an irreducible local curve singularity. Then

(1) its link is a knot k embedded in 𝑆3;
(2) the commutator of 𝜋1 (𝑆3 − k) is a finitely generated free group of rank 𝜇,

the Milnor number of the singularity;
(3) 𝜇 is even and the Milnor fiber of the singularity is a once-punctured ori-

entable surface of genus 𝜇/2.

Examples 2.10. 1. Coming back to Example 1.7.1, the cusp singularity, we
see that indeed 𝜇 = 2 is even and the Milnor fiber which is a torus minus a 2-disc is
homeomorphic to a once-punctured torus. The higher cusp singularities 𝑦2 − 𝑥2𝑔+1

have Milnor number 2𝑔 which gives a once-punctured oriented surface of genus 𝑔.
2. The curve 0 = 𝑥𝑝 − 𝑦𝑝𝑞 =

∏
𝜔,𝜔𝑝=−1 (𝑥 − 𝜔𝑦𝑞) having 𝑝 branches has as its link 𝑝

unknotted circles in a torus. See [Mil68, p. 82].

2.4. Surface singularities

Suppose one has an isolated surface singularity (𝑊,𝑥). D. Mumford [Mum61]
has shown that being singular at 𝑥 is a purely topological property:

Theorem 2.11. 1. Suppose that 𝑥 is a normal singularity, then the link of 𝑥
is simply connected if and only if 𝑥 is a smooth point of 𝑊.
2. If a neighborhood of 𝑥 in 𝑊 is homeomorphic to an open 4-ball, then (𝑊,𝑥) is
smooth.

Since a topological threefold is simply connected if and only if it is homeo-
morphic to the 3-sphere, this implies that the link of 𝑥 is homeomorphic to the
3-sphere if and only if 𝑥 is smooth. In view of the now proven Poincaré conjec-
ture [Per02, Per03a, Per03b] stated in 1904 by H. Poincaré [Poi96], this even
holds if one replaces ”topological” with ”differentiable”.

I shall give an outline of Mumford’s proof which is based on three properties
for surfaces:

1. For a normal surface singularity (𝑊,𝑥) there is a unique resolution 𝜋 :
(𝑊,𝐸) → (𝑊,𝑥) with the property that 𝑊 is minimal in the sense that
𝐸 does not contain a smooth rational component of self-intersection −1.
Such a resolution is called the minimal resolution of (𝑊,𝑥).
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2. If 𝐸 ⊂ 𝑊′ is a divisor in a smooth surface𝑊′, then after blowing up𝑊′ one
may assume that all components of 𝑊 are smooth and two components
are either disjoint or meet transversally.

3. For any resolution of (𝑊,𝑥) the exceptional divisor is a connected set of
smooth curves whose intersection matrix is negative definite.

The components of 𝐸 can be represented by their ”dual graph” Γ𝐸 whose ver-
tices are the components of 𝐸, and an edge connects two vertices if and only if
the components intersect. The idea is now to consider the link in a resolution 𝑊′

obtained from the minimal resolution by further blowing up so that 2 holds. The
new exceptional divisor, which for simplicity is still denoted 𝐸, admits a tubular
neighborhood T(𝐸) ⊂ 𝑊′ whose boundary maps differentiably to the link of the
surface singularity. So the link can be identified with 𝜕T(𝐸). The advantage is
that T(𝐸) has 𝐸 as a deformation retract since it is a circle bundle over 𝐸. If
𝜑 : T(𝐸) → 𝐸 is the retraction, there is an induced surjective homomorphism
𝜑∗ : 𝜋1 (𝜕T(𝐸)) → 𝜋1 (𝐸). So, if 𝜕T(𝐸) is simply connected, all components of 𝐸
must be rational curves and there are no loops in the dual graph Γ𝐸 . Assuming
that Γ𝐸 is a (non-empty) simple tree (every 𝐸𝑖 intersects at most two other 𝐸𝑗),
property 3 can be shown to imply that 𝜋1 (𝐸) is a non-trivial cyclic group and so
this is excluded. If Γ𝐸 is not a simple tree, the argument is more complicated and
Mumford uses a group theoretical property as well as an analysis of the blowing-up
process just used (leading to the exceptional divisor 𝐸).

One cannot weaken the hypothesis to 𝑏1 (𝜕T(𝐸)) = 0, as shown by the following
example:

Example 2.12. Take 𝑥 to be the origin of the hypersurface 𝑊 with equation
𝑥𝑟3 = 𝑥

𝑝
1 +𝑥

𝑞
2 where 𝑝, 𝑞, and 𝑟 are pairwise relatively prime. Note that the projection

(𝑥1,𝑥2,𝑥3) ↦→ (𝑥1,𝑥2)/
√︁
|𝑥1 |2 + |𝑥2 |2 induces a map from 𝑆5 − {(0, 0,𝑥3) | |𝑥3 | = 1}

to 𝑆3 and since the line 𝑥 = 𝑦 = 0 meets 𝑊 only in the origin, the link L𝑊 can be
projected to the 3-sphere 𝑆3 = {|𝑥 |2 + |𝑦 |2 = 1} in C2. This exhibits the link as an
𝑟-fold cyclic covering of 𝑆3 branched along the torus knot 𝑥

𝑝
1 + 𝑥

𝑞
2 = 0, By results

of H. Seifert [Sei33, p. 222], 𝐻1 (L𝑊) = 0. The fundamental group 𝜋1 (L𝑊) must be
non-trivial by Mumford’s result, since the origin is singular. So it is a non-trivial
perfect group, that is, its abelianization 𝐻1 (L𝑊) is trivial.

The case (𝑝, 𝑞, 𝑟) = (2, 3, 5) is special, since this gives a quotient singularity 𝑥

obtained by letting the dihedral icosahedral group �̃� act on C2. The action restricts
to 𝑆3 ⊂ C2 whose quotient under the action gives the link of 𝑥. Recalling that
an 𝑛-dimensional topological manifold is a homology 𝑛-sphere if it has the same
homology as 𝑆𝑛, the just constructed link is called the Poincaré homology 3-
sphere. See [Mil68, p. 65] for more details.

2.5. IHS in dimensions ≥ 3

By Theorem 1.3.4, a link L𝑤 is simply connected and has dimension 2𝑚− 1 ≥ 5
and so, if L𝑤 is a homology sphere, it is homeomorphic to a sphere by the generalized
Poincaré conjecture, which for these dimensions is a classic result due to S. Smale
and J. Stallings.

Assuming that 𝑚 ≥ 2, J. Milnor has found a criterion to determine whether L𝑤
is a topological sphere using the monodromy-operator:
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Theorem 2.13 ([Mil68, Thm 8.5]). Assume 𝑚 ≥ 3. Then L𝑤 is a topological
sphere if and only if det(id − ℎ∗) = ±1.

Proof. By the preceding remarks, it suffices to show that 𝐻𝑗 (L𝑤) = 0 for
𝑗 ≠ 0, 2𝑚 − 1. By Remark 2.8.2 and Proposition 2.7 this follows as soon as ℎ∗ − id
is invertible which is the case if and only det(ℎ∗ − id) = ±1. □

The Brieskorn–Pham polynomials. There is an important class of exam-
ples for which one can compute the characteristic polynomial of ℎ∗ quite easily,
namely the diagonal polynomial singularities, also called Brieskorn–Pham sin-
gularities:

(2.3) 𝑧𝑎11 + · · · + 𝑧
𝑎𝑚+1
𝑚+1 = 0, 𝑎1, . . . , 𝑎𝑚+1 ≥ 2.

The result in this case, due to E. Brieskorn [Bri66] and P. Pham [Pha65] (see
also [Mil68, §9]) is as follows:

Theorem 2.14. For the singularity (2.3) the characteristic polynomial of the
monodromy operator ℎ∗ has 𝜇 = (𝑎1 − 1) (𝑎2 − 1) · · · (𝑎𝑚+1 − 1) characteristic roots
of the form 𝜔1𝜔2 · · ·𝜔𝑚+1, where 𝜔𝑗 is any 𝑎𝑗-th root of unity other than 1.

Example 2.15. The generalized trefoil knot 𝑓 = 0, where 𝑓 = 𝑥2
1 + · · · + 𝑥2

𝑚 +
𝑥3
𝑚+1 = 0,𝑚 ≥ 3. Here the relevant roots are (−1)𝑚 exp(2𝜋𝒊/3) and (−1)𝑚 exp(4𝜋𝒊/3).

The characteristic polynomial thus is 𝑡2 − 𝑡 + 1 for 𝑚 odd, and 𝑡2 + 𝑡 + 1 for 𝑚 even.
One deduces from Theorem 2.13 that for all odd 𝑚 the link is a topological (2𝑚−1)-
sphere. For 𝑚 = 3 the link is also diffeomorphic to 𝑆5, but for 𝑚 = 5 one gets an
exotic sphere.

Classifying cDV-singularities in dimension 3. In this survey germs of
isolated hypersurface singularities in a fixed complex space are called isomorphic
if there is a local biholomorphic coordinate change under which the singularities
correspond. In general it is quite difficult to obtain such a classification. For
three-dimensional cDV-singularities there are some partial results. In particular, by
[Mar96, Prop. 1.3], any weighted homogenous IHS of 𝑐𝐴𝑛-type is isomorphic to one
of three classes of singularities of invertible polynomial type, whose corresponding
matrix is given by

©«
2 0 0 0
0 2 0 0
0 0 ∗ 1
0 0 0 𝑛

ª®®®¬
©«
2 0 0 0
0 2 0 0
0 0 ∗ 1
0 0 1 𝑛

ª®®®¬
©«
2 0 0 0
0 2 0 0
0 0 ∗ 0
0 0 0 𝑛

ª®®®¬(2.4)

chain type loop type Fermat type.

These are investigated in the preprint [APZ24] which resulted from the seminar
for which the notes are elaborated in the present paper.

Links of IHS of dimension 3. In this case the link is a simply connected
compact 5-dimensional oriented manifold. Moreover, it is the boundary of the Mil-
nor fiber which is 2-connected. Such 5-dimensional manifolds have been classified
by S. Smale:

Theorem 2.16 ( [Sma62, Thm. 2.1]). Let 𝑀 be a simply connected ori-
ented compact 5-manifold which is the boundary of a 2-connected manifold. Then
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𝐻2 (𝑀) = 𝐹⊕(𝑇 ⊕𝑇 ), where 𝐹 is free and 𝑇 is torsion. Moreover 𝑀 is homeomorphic
to

(1) 𝑆5 if 𝐻2 (𝑀) = 0;
(2) the connected sum 𝑀𝐹 of 𝑏2 (𝑀) copies of 𝑆3×𝑆2 if 𝐻2 (𝑀) ≠ 0 and is free;
(3) the connected sum 𝑀𝐹#𝑀𝑇 if 𝐻2 (𝑀) has torsion. 𝑀𝑇 = 𝑀𝑑1# · · ·#𝑀𝑑𝑘 is

uniquely determined by the elementary divisors 𝑑1 |𝑑2 | · · · |𝑑𝑘 of the torsion
group 𝑇 . 1

This result holds in particular for links of 3-dimensional IHSs.

This theorem shows for example that the generalized trefoil knot for 𝑚 = 3 as
in Example 2.15 is indeed diffeomorphic to 𝑆5.

Example 2.17. The generalized double point links for 𝑤 = 𝑧21 + 𝑧22 + 𝑧23 +
𝑧2𝑘4 = 0 have Milnor number 𝜇 = 2𝑘 − 1 and so the characteristic roots for ℎ∗ are
−𝜌, . . . ,−𝜌2𝑘−1, where 𝜌 is a primitive 2𝑘-th root of unity. Since −𝜌𝑘 = 1, ℎ∗− id has
1-dimensional kernel and so 𝑏2 (L𝑤) = 𝑏3 (L𝑤) = 1. To determine the possible torsion
in 𝐻2, one needs an integral representation T for the monodromy operator ℎ∗ . This
can be done as explained in [Dim92, p. 94–95] resulting in a (2𝑘 − 1) × (2𝑘 − 1)
matrix of the shape

T =

©«

0 0 . . . 0 1
−1 0 . . . 0 1
0 −1 . . . 0 1
...

. . .
. . .

...

0 . . . 0 −1 1

ª®®®®®®¬
.

Then T− 𝐼 can be reduced by integral elementary row-operations into the diagonal
matrix 𝑑𝑖𝑎𝑔(1, 1, . . . , 1, 0) which again shows that 𝑏2 (L𝑤) = 1, but even more: there
is no torsion in 𝐻1 (L𝑤). Applying Smale’s result, one deduces that L𝑤 is diffeo-
morphic to 𝑆2 × 𝑆3, which is independent of 𝑘. Replacing 2𝑘 with 2𝑘 + 1, a similar
argument shows that L𝑤 is diffeomorphic to the 5-sphere. In other words: the link
does not determine the singularity .

1To avoid misunderstanding the notation, 𝐻2 (𝑀𝑇 ) = 𝑇 ⊕ 𝑇 . For example, for all 𝑞, one has
𝐻2 (𝑀𝑞) = Z/𝑞Z ⊕ Z/𝑞Z.





CHAPTER 3

On compound du Val singularities

In this chapter (𝑋,𝑥) is a germ of a complex-algebraic variety 𝑋 with an isolated singularity

at 𝑥, but not necessarily an IHS.

Introduction

The ambiance for this chapter has changed to complex algebraic geometry. The
following topics will be briefly treated:

• the canonical divisor of a singular variety;
• discrepancies of a resolution;
• small resolutions of 3-dimensional IHS and how to construct these for
cDV singularities according to Brieskorn, Pinkham et al.,
• the purely algebraic concept of the local class group in relation to the link
and to small resolutions.

3.1. The canonical divisor

A Weil divisor on 𝑋 is a finite formal sum
∑
𝑛𝑖𝐷𝑖, 𝑛𝑖 ∈ Z, where the 𝐷𝑖

are codimension 1 subvarieties of 𝑋. A meromorphic function 𝑓 defines the divisor
(𝑓) = (𝑓)0−(𝑓)∞, where (𝑓)0, respectively (𝑓)∞ is the divisor of zeroes, respectively
poles of 𝑓. Such divisors are the principal divisors.

The set of Weil divisors form an abelian group. The principal divisors form
a subgroup therein. A Cartier divisor is a global section of the quotient sheaf
M×𝑋/O×𝑋 , where M𝑋 is the sheaf of meromorphic functions on 𝑋. Alternatively, a
Cartier divisor is given by a collection {𝑈𝑗 ,𝑓𝑗} of non-zero meromorphic functions
𝑓𝑗 on 𝑈𝑗 , where {𝑈𝑗} is an open cover of 𝑋 such that the functions 𝑓𝑗 and 𝑓𝑘 in
𝑈𝑗 ∩ 𝑈𝑘 coincide up to multiplication with a non-zero holomorphic function. The
Cartier divisors on 𝑋 form a multiplicative group in an obvious way.

On a smooth variety 𝑋 there is no difference between Cartier and Weil divisors.
Since a codimension 1 subvariety on a singular variety 𝑋 need not be the zero-locus
of a function (think of a line on a cone), a Weil divisor need not be a Cartier divisor.
However, the second description of a Cartier divisor shows that the divisors {𝑓𝑖 = 0}
on 𝑈𝑖 glue to give a Weil divisor on 𝑋. So a Cartier divisor determines a Weil divisor.

Another central concept is the so-called canonical sheaf 𝜔𝑋 of a variety 𝑋
having normal singularities, and its associated Weil divisor 𝐾𝑋 , the canonical
divisor of 𝑋. To define these, recall that, on an 𝑛-dimensional smooth variety
𝑈 the canonical sheaf 𝜔𝑈 is associated to the canonical bundle 𝐾𝑈 = Λ𝑛𝑇 ∗𝑈 . The
sections are the regular, or – in the analytic setting – holomorphic 𝑛-forms. If
one allows poles, one speaks of rational, respectively meromorphic 𝑛-forms. With
𝑋0 ⊂ 𝑋 the open subvariety of smooth points in 𝑋, one defines the canonical sheaf

27
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𝜔𝑋 as the sheaf associated to presheaf given by

𝑈 ↦→ {rational 𝑛 forms 𝑠 on 𝑈, regular on 𝑈 ∩ 𝑋0}.

It is instructive and useful to know how the canonical divisor of a smooth variety
𝑋 behaves under the simplest bimeromorphic map, the blow up 𝜎 : 𝑌 = Bl𝑋 (𝑍) → 𝑋
in a smooth subvariety 𝑍, as defined in Example 2.2. In terms of the exceptional
divisor 𝐸 the canonical divisors of 𝑋 and 𝑌 are related by the formula

(3.1) 𝐾𝑌 = 𝜎∗𝐾𝑋 + (𝑛 −𝑚 − 1)𝐸.

This can be shown by a local calculation. See e.g. [GH78, p. 608].

3.2. Discrepancies

Let me now proceed to the behavior of the canonical divisors on singular vari-
eties under desingularization. Here one makes use of the following basic concepts:

Definition 3.1. A germ (𝑋,𝑥) of a normal algebraic variety is a canonical
(resp. terminal) singularity if the following two conditions hold simultaneously:

(1) for some integer 𝑟 ≥ 1 the Weil divisor 𝑟𝐾𝑋 is Cartier; the smallest such 𝑟
is called the index of 𝑋;

(2) for any resolution 𝜎 : 𝑌 → 𝑋 with exceptional divisor
∑

𝑖 𝐸𝑖 (which may
be zero) one has

𝑟𝐾𝑌 = 𝜎∗ (𝑟𝐾𝑋) +
∑︁

𝑎𝑖𝐸𝑖

with all 𝑎𝑖 ≥ 0 (resp. > 0); the 𝑎𝑖 are called the discrepancies.
𝑟−1 min

𝑖
{𝑎𝑖} is the minimal discrepancy for 𝜎.

If only (1) holds, the singularity is called Q-Gorenstein and then 𝑟𝐾𝑌 = 𝜎∗ (𝑟𝐾𝑋) +∑
𝑎𝑖𝐸𝑖 where some of the 𝑎𝑖 are possibly negative. If 𝑟 = 1 one has a Gorenstein

singularity . Notice that 𝜎∗ (𝑟𝐾𝑋) · 𝐶 = 0 for any curve 𝐶 in the exceptional set.
Hence (𝑟𝐾𝑌 −

∑
𝑎𝑖𝐸𝑖) · 𝐶 = 0 for such curves 𝐶. A singularity which satisfies this

property is called numerically Gorenstein .

A resolution 𝜎 : 𝑌 → 𝑋 is called crepant if all its discrepancies vanish, i.e.,
𝜎∗𝐾𝑋 = 𝐾𝑌 , as in Example 3.3 below when 𝑘 = 2, or for a small resolution (see
Definition 2.1.4.

Example 3.2. For an A-D-E surface singularity (𝑋,𝑥) there exists a resolution
𝜎 : 𝑌 → 𝑋 with 𝐾𝑌 = 𝜎∗𝐾𝑋 . For a proof see e.g. [Dur79]. So these singularities
are canonical. The converse lies deeper. See for example [Rei87, (4.9) (3)]. Note
that a smooth point can also be called a canonical singularity. If one blows up once,
the minimal discrepance becomes 1, and this is upper bound for discrepancies in
the surface case.

The following example shows that discrepancies can have any sign.

Example 3.3. Consider a hypersurface 𝑋 = {𝑓(𝑥, 𝑦, 𝑧) = 0} in C3 with an
ordinary 𝑘-fold point at the origin. Let 𝑈 be one affine chart of the blow up of C3

with coordinates (𝑢, 𝑣,𝑤) where the blow up 𝜎 : 𝑈 → C3 is given by 𝑤 = 𝑧,𝑥 =

𝑢𝑤, 𝑦 = 𝑣𝑤. Then

𝜎∗𝑓 = 𝑓(𝑢𝑤, 𝑣𝑤,𝑤) = 𝑤𝑘 · 𝑔(𝑢, 𝑣,𝑤),
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where 𝑔 = 0 is the equation of 𝑌 in 𝑈. Here 𝑤 = 0 is the equation of the exceptional
divisor in 𝑈. The canonical differential on 𝑋 is given by

𝜔𝑋 = Res𝑋
𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧

𝑓
=
𝑑𝑦 ∧ 𝑑𝑧

𝑓𝑥
.

Note that 𝑔𝑢 = 𝑤−𝑘+1 · (𝑓𝑥). Now near a point 𝑃 ∈ 𝑈∩𝐸 be a point where 𝜕𝑔/𝜕𝑢 ≠ 0,
in coordinates 𝑣,𝑤, write

𝜎∗ (𝜔𝑋) = 𝑤 · 𝑑𝑣 ∧ 𝑑𝑤
𝑓𝑥

= 𝑤 · 𝑑𝑣 ∧ 𝑑𝑤
𝑤𝑘−1 · (𝑔𝑢)

= 𝑤2−𝑘 · 𝑑𝑣 ∧ 𝑑𝑤
𝑔𝑢

= 𝑤2−𝑘Res𝑌
𝑑𝑢 ∧ 𝑑𝑣 ∧ 𝑑𝑤

𝑔

= 𝑤2−𝑘 · 𝜔𝑌 .

So on 𝑌 the canonical differential of 𝑋 has divisor (2 − 𝑘)𝐸. In terms of divisors,
𝐾𝑌 = 𝜎∗𝐾𝑋 + (2 − 𝑘)𝐸, i.e., the discrepancy equals 2 − 𝑘. It is 1 for a smooth point,
0 for an ordinary double point and < 0 if the multiplicity is ≥ 3.

The next example shows that one can also have fractional discrepancies.

Example 3.4. Take the quotient 𝑋 = C2/𝜇3, where 𝜇3 is the cyclic group of
cube roots of unity acting linearly on C2 by sending (𝑥, 𝑦) ∈ C2 to (𝜌𝑥, 𝜌𝑦), 𝜌 ∈ 𝜇3.
By considering the invariant quadrics, one easily sees that 𝑋 is the affine cone in
C4 over the twisted cubic curve. Since 𝜌(𝑑𝑥 ∧ 𝑑𝑦) = 𝜌2 (𝑑𝑥 ∧ 𝑑𝑦 the 3-canonical
form (𝑑𝑥∧𝑑𝑦)3 is invariant. Up to a unit this form gives a generator of 3𝐾𝑋 which
one sees as follows. If 𝜋 : C2 → 𝑋 ⊂ C4 is the quotient map, using 𝑢0,𝑢1,𝑢2,𝑢3 as
coordinates, with 𝜋∗𝑢0 = 𝑥3,𝜋∗𝑢1 = 𝑥2𝑦,𝜋∗𝑢2 = 𝑥𝑦2,𝜋∗𝑢3 = 𝑦3, one finds that

𝑠 =
(𝑑𝑢0 ∧ 𝑑𝑢1)⊗3

𝑢4
0

, 𝜋∗𝑠 = unit · (𝑑𝑥 ∧ 𝑑𝑦)3.

This shows that this singularity has index 3. Next, blowing up C4 at the origin
gives a resolution 𝜎 : 𝑌 → 𝑋 of 𝑋. Consider the (𝑧, 𝑡)-chart in 𝑌 with 𝜎(𝑧, 𝑡) =
(𝑧, 𝑧𝑡, 𝑧𝑡2, 𝑧𝑡3) = (𝑢0,𝑢1,𝑢2,𝑢3) ∈ 𝑋. Then

𝜎∗𝑠 =
(𝑑𝑧 ∧ 𝑧 · 𝑑𝑡)⊗3

𝑧4
=
(𝑑𝑧 ∧ 𝑑𝑡)⊗3

𝑧
,

and so 3𝐾𝑌 = 3𝜎∗𝐾𝑋 − 𝐸 as divisors, where 𝐸 is the exceptional curve. Hence the
discrepancy equals −1/3 in this case.

Remark 3.5. Surface singularities have a unique minimal resolution and so
it makes sense to define the minimal discrepancy for the singularity as the
minimal discrepancy of such a resolution. In higher dimension in general no minimal
resolution exists. Moreover, resolutions exist where the exceptional locus is not
divisorial, the so-called small resolutions to be discussed in § 3.3. These have to be
discarded if one wants to make sense of the minimal discrepancy.

Note that for any resolution of singularities 𝑌 → 𝑋, again blowing up 𝑌 in
a smooth subvariety of codimension 𝑐 contained in an exceptional divisor 𝐸 ⊂ 𝑌
and with discrepancy 𝑘 > 0 creates a new exceptional component 𝐹 in 𝑍 with
discrepancy 𝑘 +𝑛− 1− 𝑐 ≥ 𝑘 (since 𝑘𝐸 contributes 𝑘𝐹 to the new canonical divisor)
and so the minimal discrepancy does not change.
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Using this remark, one can compare different resolutions using suitable blowings
up and then show that the minimal discrepancy is the same for all resolutions.
See [Kol92, Ch. 17]. This then by definition is the minimal discrepancy of the
singularity. This also applies to smooth points (𝑋,𝑥). The preceding discussion
shows that their minimal discrepancy equals dim𝑋 − 1

A terminal singularity (which is not a smooth point) turns out to have minimal
discrepancy in the interval (0, 1]. See Section 5.4.

3.3. Small resolutions of cDV-singularities

3.3.A. More on cDV’s. First recall the definition.

Definition 3.6. A 3-dimensional hypersurface singularity (𝑋,𝑥), 𝑋 = {𝑓 = 0}
is a compound du Val singularity (cDV for short) if 𝑓 is analytically equivalent
to 𝑔(𝑥, 𝑦, 𝑧) + 𝑡ℎ(𝑥, 𝑦, 𝑧, 𝑡) ∈ C[𝑥, 𝑦, 𝑧, 𝑡], where 𝑔 = 0 is the equation of a du Val
(surface) singularity and ℎ is an arbitrary polynomial. In other words, a cDV point
is a threefold singularity such that some hyperplane section is a du Val surface
singularity.

In dimension 3 M. Reid characterized index 1 cDV’s:

Theorem 3.7 ([Rei83, Thm 1.1]). Isolated terminal threefold singularities of
index one are exactly the isolated cDV singularities.

Remark 3.8. 1. A cDV-singularity need not be isolated, for instance 𝑥𝑦 = 𝑧2𝑡
has as its singularity locus the line 𝑥 = 𝑦 = 𝑧 = 0.
2. The general hyperplane section of a Du Val singularity of a cDV given by
𝑔(𝑥, 𝑦, 𝑧) + 𝑡ℎ(𝑥, 𝑦, 𝑧, 𝑡) may have a different type of singularity than the singularity
given by 𝑔 = 0. For example, taking 𝑥𝑦 − 𝑧2𝑡 = 0, the hyperplane 𝑧 = 𝑡 gives a
singularity 𝑥𝑦 = 𝑧3 which is equivalent to the 𝐴2-singularity 𝑥2 + 𝑦2 + 𝑧3 = 0, while
setting 𝑡 = 0 gives 𝑥𝑦 = 0, an 𝐴1-singularity.

Remark 3.9. It is known (cf. [Rei83, p. 363] for a proof in dimension 3)
that any canonical singularity of index one is rational (cf. Definition 2.1.4). So in
particular, a cDV-singularity is rational .

3.3.B. Atiyah’s example of a small resolution([Ati58]). In Example. 2.4,
the resolution of the threefold 𝑋 ⊂ C4 with equation 𝑥1𝑥4 = 𝑥2𝑥3 = 0 has been
performed by blowing up the origin in C3, using that 𝑋 = Cone(𝑄), the cone
over the quadratic hypersurface 𝑄 ⊂ P3. In inhomogeneous coordinates the point
(𝜆, 𝜆′) ∈ P1×P1 can be identified with 𝑝𝜆,𝜆′ = (𝜆𝜆′ : 𝜆 : 𝜆′ : 1) ∈ 𝑄 ⊂ P3. It was shown
that Bl0 (Cone(𝑄)) = {(𝜆, 𝜆′,𝑥) ∈ P1×P1×C4 | 𝑥 ∈ 0𝑝𝜆,𝜆′} → Cone(𝑄) is a resolution
of singularities of Cone(𝑄) with exceptional divisor 𝐸 = 𝑄 × 0 ⊂ P3 ×C4. Now as in
Example 3.3 one shows that in this case 𝐾𝑌 = 𝑝∗𝐾𝑋 + 𝐸 and so the singularity is
terminal of index 1 and has discrepancy 1. The quadric has two systems of lines

𝑎ℓ : 𝑥1 = ℓ𝑥2, 𝑥3 = ℓ𝑥4,

𝑎ℓ′ : 𝑥1 = ℓ′𝑥3, 𝑥2 = ℓ′𝑥4.

The blow up Bl0 (𝑄) admits a projection into P1 ×C4, where P1 is either one of the
first two factors above.Their images are

𝑌 :={(𝜆,𝑥) | 𝑥 ∈ 0𝑎ℓ} ⊂ P1 × C4,
𝑌′ :={(𝜆′,𝑥) | 𝑥 ∈ 0𝑎ℓ′} ⊂ P1 × C4.
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Projecting 𝑌,𝑌′ into C4 of course gives Cone(𝑄). The projections to either one
of the P1 exhibit 𝑌 and 𝑌′ as the total space of a plane bundle with fiber over 𝜆,
respectively 𝜆′, given by the plane 0𝑎ℓ, respectively 0𝑎ℓ′ . In particular 𝑌 and 𝑌′

are smooth. The fiber over 𝑥 ∈ C4 of the induced projection 𝜋 : 𝑌 → Cone(𝑄) is
the pair (0𝑥,𝑥) if 𝑥 ≠ 0 and 𝜋−10 = P1 × 0. In other words, 𝜋 is a small resolution,
and similarly for the projection 𝜋′ : 𝑌′→ Cone(𝑄).

The three resolutions fit into the commutative diagram

𝑄 = P1 × P1

{{ $$

_�

��
Bl0 (Cone(𝑄))

��

xx &&
P1
� � // 𝑌

𝜋 &&

𝑌′

𝜋′xx

P1?
_oo

Cone(𝑄).

(3.2)

The transition from 𝑌 to 𝑌′ is a birational map known as a flop.

3.3.C. Constructions of small resolutions for cDV-singularities. There
is a general procedure to construct small resolutions for isolated cDV-singularities:
one starts from a smooth threefold 𝑋 fibered as a family 𝑋𝑡 of surfaces over a 𝑡-
parameter disc, where 𝑋𝑡 is smooth for 𝑡 ≠ 0 and 𝑋0 is an isolated ADE-surface
singularity. Now this surface singularity can be resolved. Replacing 𝑡 by a power
equips 𝑋 with a cDV-singularity at 0, but resolving the fiber 𝑋0 does not in general
resolve the threefold singularity. However, E. Brieskorn [Bri68] has shown that this
does occur provided one chooses the power of 𝑡 suitably, and then one of course
obtains a small resolution of the threefold singularity:

Theorem 3.10 ([Bri68, Satz 2]). Let ∆ ⊂ C the unit disc with coordinate 𝑡,
and let 𝑋 ⊂ C3 × ∆ be a smooth 3-fold with equation 𝑓(𝑥, 𝑦, 𝑧, 𝑡) = 0 such that the
projection 𝑋 → ∆ is surjective and smooth over ∆ − {0}. Assume that 𝑋0, the fiber
over 0, has an isolated 𝐴𝐷𝐸-type surface singularity. Then the singular threefold
𝑓(𝑥, 𝑦, 𝑧, 𝑡𝑚) = 0 has a cDV-singularity at 0. It admits a small resolution if and
only if 𝑚 is multiple of the so-called Coxeter number of the surface singularity,
given below.

Type Coxeter number

𝐴𝑛 𝑛 + 1
𝐷𝑛 2𝑛 − 2
𝐸6 12
𝐸7 18
𝐸8 30

Example 3.11. 𝑥2 + 𝑦2 + 𝑧𝑛+1 + 𝑡 = 0 is a smooth variety passing through
0 = (0, 0, 0, 0) but 𝑥2 + 𝑦2 + 𝑧𝑛+1 + 𝑡𝑚(𝑛+1) = 0 has a cDV-singularity at 0. It admits a
small resolution for all natural numbers 𝑚. Note that for 𝑛 = 𝑚 = 1 one recaptures
Atiyh’s example above. See also Example 3.13 for a more detailed explanation in
Brieskorn’s set-up.
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Brieskorn’s construction uses a so-called semi-universal unfolding of a given
ADE-surface singularity. Roughly speaking, this is a family from which all defor-
mations of the singularity can be obtained by pulling back. The construction of
the semi-universal unfolding is quite simple. Instead of the jacobian ring Jac𝑓 of
𝑓 = 0, one uses a monomial basis for the C-algebra 𝑅𝑓 := Jac𝑓/(𝑓), the Tjurina
algebra . It turns out that each monomial provides a deformation parameter. For
the ADE-singularities, 𝑓 ∈ Jac𝑓 and so one can work with the Jacobian ring itself.

Example 3.12. For 𝐴𝑛 singularities 𝑓 = 𝑥2 + 𝑦2 + 𝑧𝑛+1 = 0, 𝑛 ≥ 1 the ring
𝑅𝑓 has as a monomial basis {1, 𝑧, 𝑧2, . . . , 𝑧𝑛−1}. The semi-universal unfolding is the
relative hypersurface X ⊂ C3 × C𝑛 over C𝑛 given by the equation

𝑓𝒕 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧𝑛+1 + 𝑔(𝑧, 𝒕), 𝑔(𝑧, 𝒕) =
𝑛−1∑︁
𝑗=0

𝑡𝑗𝑧
𝑗 , 𝒕 = (𝑡0, . . . , 𝑡𝑛−1).

Hence the parameter space is an 𝑛-dimensional complex vector space with coor-
dinates 𝑡0, . . . , 𝑡𝑛−1. The universal unfolding admits a finite cover defined by the
factorization into linear factors of the augmented deformation polynomial:

𝐹 (𝑧, 𝒕) := 𝑧𝑛 +
𝑛−1∑︁
𝑗=0

𝑡𝑗𝑧
𝑗 =

∏
𝑗

(𝑧 + 𝑎𝑗), 𝒕 = (𝑡0, . . . , 𝑡𝑛−1).

Indeed, setting 𝑡𝑗 = 𝜎𝑗+1 (𝑎1, . . . , 𝑎𝑛), 𝑡 = 0, . . . ,𝑛−1, where 𝜎𝑘 is the 𝑘-th elementary
function in the 𝑎𝑗 defines a ramified cover

𝒕 : 𝐵 = C𝑛 → 𝐵 = C𝑛, 𝒂 = (𝑎1, . . . , 𝑎𝑛) ↦→ 𝒕(𝒂) = (𝜎1 (𝒂), . . . ,𝜎𝑛 (𝒂)).
The branch locus ∆ ⊂ 𝐵 is the locus where at least two roots coincide and is called
the discriminant locus. Pulling back the universal unfolding X→ 𝐵 to 𝐵 gives
X×𝐵 𝐵 → 𝐵 described by the equation

ℎ(𝑥, 𝑦, 𝑧,𝒂) = 𝑓(𝑥, 𝑦, 𝑧) − 𝐹 (𝑡𝑗 (𝒂)) = 0, 𝒂 = (𝑎1, . . . , 𝑎𝑛).
This family has singular fibers over the discriminant locus.

To pass to threefolds, one gives a holomorphic map 𝜑 : (∆, 0) → (𝐵, 0) and lifts

X to 𝐵. Concretely, one writes 𝒂(𝑡) = (𝑎1 (𝑡), . . . , 𝑎𝑛 (𝑡)) as a holomorphic map with
𝒂(0) = 0, and then substitutes in ℎ(𝑥, 𝑦, 𝑧,𝒂) = 0. The new family gives a threefold
𝑋 fibered over the unit disc, say 𝜋 : 𝑋 → ∆, as summarized in the commutative
diagram

X

��
𝑋

𝜋

��

??

𝐵

𝒕

��
∆

𝜑
//

𝒂

??

𝐵.

In the present situation, one assumes that 𝜑(∆) meets the discriminant locus only
in 0, intersecting it transversally. Due to branching, 𝑋 has an isolated quotient
singularity located in the fiber 𝜋−1 (0). This is also a singularity of this fiber.
E. Brieskorn exhibits a resolution of 𝑋 resolving at the same time the singularity
of the fiber. Hence the exceptional set is contained in the fiber over 0. In other
words, this gives a small resolution of 𝑋.
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Example 3.13. The semi-universal unfolding of 𝑥2 + 𝑦2 + 𝑧2 = 0 is given by
𝑥2 + 𝑦2 + 𝑧2 + 𝑡 = 0 which gives a smooth threefold. The augmented deformation
polynomial is 𝑧2 + 𝑡 = (𝑧 + 𝑎1) (𝑧 + 𝑎2) which gives a (2 : 1)-cover branched in the
locus 𝑡 = 0. Indeed, this is exactly the locus in the 𝑡-parameter where the fiber
is singular. Branching in it gives 𝑥2 + 𝑦2 + 𝑧2 + 𝑡2 = 0, a threefold with a singular
point in (0, 0, 0, 0). There are two resolutions corresponding to the 2-roots of the
polynomial 𝑧2 + 𝑡2 = 0. These are exactly the two small resolutions described by
the diagram (3.2).

Remark 3.14. Root systems come up in the procedure outlined above, since
for any 𝐴𝐷𝐸-singularity the cover 𝐵 can be interpreted as the complex root-space
of the corresponding root system and 𝐵 → 𝐵 as the quotient under the action of
the Weyl group. Observe for instance that for 𝐴𝑛-type double points the covering
group is the symmetric group 𝔖𝑛 acting as a permutation group on the roots of the
extended deformation polynomial 𝐹 which is indeed isomorphic to the Weyl group
of the root system 𝐴𝑛. Subgroups of the Weyl group give intermediate resolutions
of the 𝐴𝑛-surface singularity and one can show that the total space remains smooth
only if the result is again a cDV-threefold singularity of 𝐴-type.

As shown in [Bri68], any cDV-singularity admitting a small resolution can be
gotten from a similar procedure as in the case of an 𝐴𝑛-type cDV.

Using a general method due to H. Pinkham [Pin83], S. Katz [Kat91] found a
systematic way to find other cDV singularities of 𝐴𝑛-type and of 𝐷𝑛-type admitting
a small resolution. The statement is easiest to give for the first type:

Theorem 3.15 ([Kat91, Thm. 1.1]). A cDV-singularity of 𝐴𝑛-type given by
𝑥2 + 𝑦2 + 𝑔(𝑡, 𝑧) = 0 admits a small resolution with a chain of 𝑛 smooth rational
curves intersecting transversally if and only if 𝑔(𝑡, 𝑧) = 0 is a singularity with 𝑛 + 1
distinct branches at the origin.

For the 𝐷𝑛-type singularity Katz shows that the (on (𝑛 − 1) parameters de-
pending) semi-universal unfolding of the 𝐷𝑛 surface-singularity 𝑥2 + 𝑦2𝑧 − 𝑧𝑛−1 = 0
leads to the family of threefold singularities

(3.3) 𝑥2 + 𝑦2𝑧 − [𝑧𝑛−1 +
𝑛−2∑︁
𝑗=0

𝜑𝑗 (𝑡)𝑧𝑗] = 0,

which depends on the 𝑛− 1 analytic functions 𝜑𝑗 (𝑡), 𝑗 = 0, . . . ,𝑛− 2, each vanishing
at 0. The associated family of curves

𝐹 (𝑧, 𝑡) = 0, 𝐹 (𝑧, 𝑡) := 𝑧𝑛 + 𝑧 · ©«
𝑛−2∑︁
𝑗=0

𝜑𝑗 (𝑡)𝑧𝑗
ª®¬ + 𝑡2,

is then used to describe some (but not all) cases where the corresponding cDV-
singularity has a small deformation:

Theorem 3.16 ([Kat91, Thm. 1.2]). For any choice of germs of analytic
functions 𝜑0, . . . ,𝜑𝑛−2 vanishing at 0 the cDV-singularity given by (3.3) admits a
small resolution in case the associated curve 𝐹 (𝑧, 𝑡) = 0 has 𝑛 smooth branches each
tangent to 𝑧 = 0 with multiplicity 2. The resulting exceptional set consists of 𝑛
smooth rational curves whose graph is of type 𝐷𝑛.
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3.4. Local class groups, links and small resolutions

A useful algebraic (or analytic) invariant of an isolated singularity (𝑋,𝑥) is its
local class group:

Definition 3.17. 1. The local class group 1 Cl𝑥 (𝑋) := Cl(O𝑋,𝑥) at a
point 𝑥 ∈ 𝑋 is the quotient group of the Weil divisors modulo the Cartier
divisors of (𝑋,𝑥). Its rank is denoted by 𝜌(𝑥).

2. (𝑋,𝑥) is locally factorial , respectively locally Q-factorial , if the group
Cl𝑥 (𝑋) is zero, respectively torsion, or, equivalently, if 𝜌(𝑥) = 0.

The following general result of H. Flenner ([Fle81, Satz 61]) relates the local
class group to the link:

Proposition 3.18. For an isolated rational singularity (𝑋,𝑥), the local class
group Cl𝑥 (𝑋) is isomorphic to 𝐻2 (L𝑋,𝑥).2

This can be used in conjunction with the following criterion [GW18, Thm.
5.7] by A. Grassi et. al. which treats the case Cl𝑥 (𝑋) ⊗ Q = 0:

Theorem 3.19. Let (𝑋,𝑥) be a rational IHS such that its link L𝑋,𝑥 has finite
fundamental group. Then L𝑋,𝑥 is a rational homology sphere if and only if (𝑋,𝑥)
is locally Q-factorial.

By J. Milnor’s result 1.3.4, for dim𝑋 = 𝑚 ≥ 3 the link of an IHS is simply
connected. Using Proposition 2.7, one deduces:

Corollary 3.20. Suppose (𝑋,𝑥) is an isolated rational IHS of dimension 𝑚 ≥
3. Then the following conditions are equivalent:

(i) (𝑋,𝑥) is locally Q-factorial.
(ii) The link of (𝑋,𝑥) is homeomorphic to the (2𝑚 − 1)-sphere.
(iii) det(ℎ∗ − id) = ±1, where ℎ∗ is the monodromy operator.

This equivalence holds in particular for isolated cDV-singularities.

For 3-dimensional isolated singularities there is a relation with small resolutions
(see Definition 2.1.4):

Theorem 3.21 ([GW18, Coroll.4.10]). Let (𝑋,𝑥) be a germ of an isolated
terminal threefold-singularity. If (𝑋,𝑥) is locally analytically Q-factorial, then 𝑋
does not admit a small resolution. Conversely, if 𝑋 is not locally analytically Q-
factorial, then there exists a small partial resolution 𝑌 → 𝑋 such that 𝑌 has at
worst Q-factorial singularities.

I next discuss topological implications of the existence of a small resolution
culminating in Theorem 3.25 below. First some easy observations:

Lemma 3.22. Let (𝑌,𝐸) → (𝑋,𝑥) be a resolution of an IHS in dimension ≥ 3
and let 𝑇𝐸 be a tubular neighbourhood of 𝐸. Then

(3.4) 𝐻∗ (L𝑋,𝑥) ≃ 𝐻∗ (𝜕𝑇𝐸) ≃ 𝐻∗ (𝑇𝐸 − 𝐸).

1The stalk at 𝑥 of the structure sheaf O𝑋 is usually denoted O𝑋,𝑥.
2Here it is not necessary that the singularity is a hypersurface singularity.
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Proof. Viewing 𝑋 as a hypersurface of the ball 𝐵2𝑚+2 = {𝒛 ∈ C𝑚+1 | |𝒛∥2 ≤ 𝜀},
one may identify its boundary 𝜕𝑋 with 𝑆2𝑚+1 ∩ 𝑋 = L𝑋,𝑥. Since 𝑋 − {𝑥} = 𝑌 − 𝐸
and 𝜕𝑋 = 𝜕𝑌, the link can be considered as the boundary of 𝑌. The tubular
neighborhood 𝑇𝐸 of 𝐸 is a disc bundle over 𝐸 and its boundary, the sphere bundle
𝜕𝑇𝐸 can also be viewed as a submanifold of 𝑌 and 𝜕𝑇𝐸 is a homeomorphic copy of
𝜕𝑌. On the other hand, 𝜕𝑇𝐸 is a deformation retract of 𝑇𝐸 −𝐸. See for example the
discussion in [DH88, §1]. In homology this induces the stated isomorphisms. □

If 𝑚 = 3, one deduces:

Proposition 3.23. If (𝑋,𝑥) is a 3-dimensional IHS admitting a small res-
olution (𝑌,𝐸), 𝐸 a curve, then 𝐻2 (L𝑋,𝑥) is free, of rank equal to the number of
irreducible components of 𝐸.

Proof. Observe that Lefschetz duality for the manifold 𝑇𝐸 and the compact
subset 𝐸 states that

𝐻𝑘 (𝑇𝐸 , 𝑇𝐸 − 𝐸)
∼−→ 𝐻2𝑚−𝑘 (𝐸), 𝑚 = dim 𝑇𝐸 = dim𝑋, 𝑘 ∈ Z.

In our case 𝑚 = 3 and dimC 𝐸 = 1 so that 𝐻𝑘 (𝑇𝐸 , 𝑇𝐸 − 𝐸) = 0 for 𝑘 = 1, 2 and the
long exact sequence for the pair (𝑇𝐸 , 𝑇𝐸 − 𝐸) shows that
(3.5) 𝐻2 (𝑇𝐸 − 𝐸) ≃ 𝐻2 (𝑇𝐸) ≃ 𝐻2 (𝐸).
The last isomorphism holds since 𝐸 is a deformation retract of 𝑇𝐸 . If 𝐸 has ℓ
irreducible components, then 𝐻2 (𝐸) ≃ Zℓ and so Equations (3.4), (3.5) complete
the proof. □

These topological properties are related to algebraic properties of the local class
group via H. Flenner’s result, Proposition 3.18, stating that 𝐻2 (L𝑋,𝑥) = Cl𝑥 (𝑋).
Hence, since 𝐻3 (L𝑋,𝑥) ≃ 𝐻2 (L𝑋,𝑥) is without torsion (cf. Proposition 2.7) and has
the same rank as 𝐻2 (L𝑋,𝑥), one deduces:

Corollary 3.24. If (𝑋,𝑥) is an isolated 3-dimensional rational singularity
with a small resolution whose exceptional set consists of ℓ irreducible components,
then Cl𝑥 (𝑋) ≃ Zℓ.

In particular, (𝑋,𝑥) is locally factorial if and only if (𝑋,𝑥) is locally Q-factorial
if and only if ℓ = 0, i.e., (𝑋,𝑥) does not admits a small resolution.

Combining Proposition 3.23, Corollary 3.24, Theorem 2.16 and Proposition 2.7,
one deduces:

Theorem 3.25. If (𝑋,𝑥) is a rational 3-dimensional IHS admitting a small
resolution whose exceptional set consists of ℓ ≥ 1 irreducible components. Then

(i) 𝐻2 (L𝑋,𝑥) ≃ 𝐻3 (L𝑋,𝑥) is free of rank ℓ;
(ii) Cl𝑥 (𝑋) ≃ Zℓ;
(iii) L𝑋,𝑥 is diffeomorphic to a connected sum of ℓ copies of 𝑆2 × 𝑆3

(iv) 1 has multiplicity ℓ as a root of the characteristic polynomial of the mon-
odromy ℎ∗.

3.5. Small resolutions and symplectic cohomology

The definition of symplectic cohomology and its symplectic invariance is post-
poned to Chapter 5. In particular the Milnor fiber of an isolated cDV singularity
(𝑋,𝑥) having a natural symplectic structure, carries the symplectic cohomology
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SH• (F𝑋,𝑥,C) as a symplectic invariant. Here it is important to note that contrary
to ordinary cohomology, there might be non-zero groups in infinitely many negative
degrees.

Surprisingly, conjecturally there is a strong relation between the occurrence
of symplectic cohomology in these negative degrees and the occurrence of small
resolutions as stated as [EL21, Conjecture 1.4]:

Conjecture 3.26. Let (𝑋,𝑥) be an isolated cDV singularity. Then (𝑋,𝑥)
admits a small resolution whose exceptional set has ℓ irreducible components if
and only if SH• (F𝑓,C) has rank ℓ in every negative degree.

By Theorem 3.25 in dimension three this conjecture is equivalent to:

Conjecture 3.27. Suppose (𝑋,𝑥) be an 3-dimensional isolated cDV singular-
ity. Then (𝑋,𝑥) admits a small resolution if and only if

rank(SH−𝑘 (F𝑋,𝑥)) = 𝑏2 (L𝑋,𝑥) = 𝑏3 (L𝑋,𝑥) = 𝜌(𝑥), for all 𝑘 > 0.

In particular, if SH−𝑘 (F𝑋,𝑥) = 0 for some 𝑘 > 0, the conjecture implies that (𝑋,𝑥)
admits no small resolution.

In [EL21], Conjecture 3.26 has been verified for the following cDV singularities:

(a) 𝑥2 + 𝑦2 + 𝑧𝑛+1 + 𝑡𝑘(𝑛+1) = 0, 𝑘,𝑛 ≥ 1, 𝑐𝐴𝑛

(b) 𝑥2 + 𝑦2 + 𝑧𝑡(𝑧𝑛−1 + 𝑡𝑘(𝑛−1)) = 0, 𝑘,𝑛 ≥ 1, 𝑐𝐴𝑛

(c) 𝑥2 + 𝑦3 + 𝑧3 + 𝑡6𝑘 = 0 𝑐𝐷4

(d) 𝑥2 + 𝑦3 + 𝑧4 + 𝑡12𝑘 = 0 𝑐𝐸6

(e) 𝑥2 + 𝑦3 + 𝑧5 + 𝑡30𝑘 = 0 𝑐𝐸8

Observe that apart from case (b), the existence of small resolutions follows from
E. Brieskorn’s result 3.10. For case (b), note that the hyperplane 𝑧 = 𝑎𝑡 gives
indeed an 𝐴𝑛-singularity and that the curve 𝑧𝑡(𝑧𝑛−1 + 𝑡𝑘(𝑛−1)) = 0 has 𝑛 + 1 distinct
branches so that there exists a small resolution by Theorem 3.15.

As an outcome of the seminar on which the present notes are based, the conjec-
ture also has been proved for all cDV singularities of 𝐴-type, i.e. those enumerated
in (2.4). See [APZ24].

Among the new results, I want to mention the following two which concern
contact structures on 𝑆5 and on connected sums of 𝑆2 × 𝑆3:

Theorem 3.28 ([APZ24, Theorem E]). Two invertible 𝑐𝐴𝑛 singularities in
standard form (2.4) have contactomorphic links if and only they are deformation
equivalent. In particular, their Milnor numbers are the same. In case one of them
admits a small resolution, then so does the other and both have the same number
of exceptional curves.

By [KN08] the link of a Fermat-type polynomial 𝑥2
1+𝑥2

2+𝑥𝑚3 +𝑥𝑛4 is diffeomorphic
to #ℓ𝑆

2 ×𝑆3 if ℓ := gcd(𝑚,𝑛) −1 ≥ 1 and diffeomorphic to 𝑆5 if ℓ = 0. In case ℓ ≥ 1
this confirms Theorem 3.15 together with Theorem 3.25 since then this singularity
admits a small resolution with ℓ exceptional curves. Note that the Milnor number
of such a singularity equals (𝑛 − 1) (𝑚 − 1).

Theorem 3.29 ([APZ24, Theorem F]). Two Fermat type singularities (of the
above type) define the same contact structure on #ℓ𝑆

2×𝑆3 if and only if both admit
a small resolution and both have the same Milnor number. If ℓ = 0 the resulting
contact structures on 𝑆5 are the same if and only if the Milnor number is the same.
In particular, this gives infinitely many contact structures on 𝑆5.



CHAPTER 4

Basics of symplectic and contact geometry

Introduction

In this chapter some central notions in symplectic and contact geometry are
discussed:

• Liouville fields,
• contact manifolds, their symplectic completions and Liouville domains,
• Reeb vector fields and the linearized return map,
• symplectic fillings of isolated singularities.

4.1. More on symplectic geometry

4.1.A. Basic notions. Recall from Section 1.3 of Chapter 1 that a symplec-
tic manifold 𝑁 is an even-dimensional smooth manifold equipped with a closed
non-degenerate real 2-form 𝜔, the symplectic form. The non-degeneracy of 𝜔 means
that the natural map1

(4.1) 𝜑𝜔 : 𝑇𝑁 → 𝑇 ∗𝑁 , 𝑋 ↦→ 𝑖𝑋𝜔

is an isomorphism. This observation implies that any smooth function 𝐻 : 𝑁 → R
defines a so-called Hamiltonian vector field 𝑋𝐻 on 𝑁 determined by

𝜄𝑋𝐻𝜔 = −𝑑𝐻 ⇐⇒ 𝜔(𝑋𝐻 ,−) = −𝑑𝐻 (−).
Using that 𝜔 is closed, this allows to define a Lie-algebra structure on smooth
functions on 𝑁, given by the Poisson bracket :

{𝐹,𝐺} := 𝜔(𝑋𝐹 ,𝑋𝐺) = 𝑑𝐹 (𝑋𝐻).
See e.g. [MS17, Exercise 3.5] for a proof of the Jacobi identity.

Example 4.1. Identify C𝑛 with complex coordinates 𝑧𝑗 = 𝑥𝑗+𝒊𝑦𝑗 with R2𝑛 with
real coordinates (𝑥1, . . . ,𝑥𝑛, 𝑦1, . . . , 𝑦𝑛). The symplectic form given by 𝑑(∑𝑥𝑗𝑑𝑦𝑗 −
𝑦𝑗𝑑𝑥𝑗) = 2

∑
𝑑𝑥𝑗∧𝑑𝑦𝑗 associates to the function 𝐻 = ∥𝑧∥2 =

∑
𝑥2
𝑗 +𝑦2𝑗 the Hamilton-

ian field 𝑋𝐻 =

𝑛∑︁
𝑗=1

𝑦𝑗
𝑑

𝑑𝑥𝑗
−𝑥𝑗

𝑑

𝑑𝑦𝑗
. If one identifies tangent vectors

∑︁
(𝑝𝑗

𝑑

𝑑𝑥𝑗
+𝑞𝑗

𝑑

𝑑𝑦𝑗
)

on R2𝑛 at a point 𝒑 = (𝑝1, . . . ,𝑝𝑛, 𝑞1, . . . , 𝑞𝑛) with the corresponding points of
C𝑛, this can also be written as 𝑋𝐻 (𝒑) = 𝐽 (𝒑), where 𝐽 (𝑝1, . . . ,𝑝𝑛, 𝑞1, . . . , 𝑞𝑛) =

(−𝑞1, . . . ,−𝑞𝑛,𝑝1, . . . ,𝑝𝑛) is coming from the usual complex structure on C𝑛 identi-
fied as above with R2𝑛. If one uses instead any function of ∥𝑧∥2, say ℎ(∥𝑧2∥, one
sees that

𝑋ℎ (𝒑) = ℎ′(∥𝒑∥2) · 𝐽 (𝒑).

1As usual, 𝜄𝑋 denotes contraction against the vectorfield 𝑋.
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Note that 𝑑𝐻 (𝑋𝐻) = 𝑖𝑋𝐻𝜔(𝑋𝐻) = 𝜔(𝑋𝐻 ,𝑋𝐻) = 0 and so the vector field 𝑋𝐻

is tangent to the level sets {𝐻 = constant}. The vector field 𝑋𝐻 generates the
Hamiltonian flow , a 1-parameter group 𝜙𝑡𝐻 of diffeomorphisms of 𝑁 determined
by

𝑑

𝑑𝑡
𝜙𝑡𝐻 = 𝑋𝐻◦𝜙

𝑡
𝐻 , 𝜙0

𝐻 = id, 𝑡 ∈ (−𝜀, 𝜀).

On compact 𝑁 this flow is complete, that is, it exists for all ”time” 𝑡. Moreover,
one has:

Lemma 4.2. (1) The diffeomorphisms 𝜙𝑡𝐻 are symplectomorphisms;
(2) For every symplectomorphism 𝜓 of (𝑁,𝜔), the Hamiltonian vector field of

𝐻◦𝜓 is the pull back 𝜓∗𝑋𝐻 of the Hamiltonian vector field for 𝐻;
(3) The Lie bracket preserves Hamiltonian vector fields: [𝑋𝐹 ,𝑋𝐺] = 𝑋{𝐹,𝐺}.

4.1.B. Liouville fields. Assume that (𝑁,𝜔) is a symplectic manifold equipped
with a Liouville field , i.e. a vector field 𝑌 on 𝑁 which preserves 𝜔 in the sense
that L𝑌𝜔 = 𝜔, where L𝑌 is the Lie derivative. It then follows that

𝜔 = L𝑌𝜔
𝐶𝑎𝑟𝑡𝑎𝑛′𝑠

=
𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝑑(𝑖𝑌𝜔) + 𝑖𝑌 (𝑑𝜔) = 𝑑(𝑖𝑌𝜔),

since 𝜔 is closed. Hence 𝜔 is exact. This shows that the existence of a Liouville
field is a strong property.

Example 4.3. 1. Consider an affine hypersurface 𝑉 ⊂ C𝑛+1. The metric
form of the standard metric 𝜌(𝑧) = ∥𝒛∥2 on C𝑛+1 reads

𝜔 =
∑︁
−1
2
𝒊𝑑𝑧𝑗 ∧ 𝑑𝑧𝑗 =

∑︁
𝑑𝑥𝑗 ∧ 𝑑𝑦𝑗 =

1

2
𝑑
(∑︁

𝑥𝑗𝑑𝑦𝑗 − 𝑦𝑗𝑑𝑥𝑗︸                 ︷︷                 ︸
𝜆

)
,

which is a real valued exact symplectic form. Recall (cf. Chapter 1, Example 1.10.2)
that it is a Kähler form and that the restriction to the non-singular part 𝑉ns of 𝑉
is also a Kähler form.

Assume that for some 𝑐 > 0 one has 𝑉<𝑐 = 𝑉 ∩ 𝜌−1 [0, 𝑐) ⊂ 𝑉ns and that the
boundary 𝑉𝑐 is a submanifold. Then the 1-form 𝜆 restricts to 𝑉𝑐 equipping it with
a contact form. The vector field

𝑌𝜆 =
1

2
©«
∑︁
𝑗

𝑥𝑗
𝑑

𝑑𝑥𝑗
+ 𝑦𝑗

𝑑

𝑑𝑦𝑗

ª®¬
(defined on an open neighborhood of 𝑉𝑐) is a Liouville field since 𝑑(𝜄𝑌𝜆𝜔) = 𝜔. It is
indeed a radial vector field transversal to 𝑉𝑐 =

∑
𝑥2
𝑗 + 𝑦2𝑗 = 𝑐 (since ∇(𝑉𝑐) = 4𝑌𝜆).

2. The total space 𝑁 = 𝑇 ∗𝑈 of the cotangent bundle of a smooth manifold
𝑈 is a symplectic manifold (cf. Chapter 1, Example 1.10.1). Here 𝜔 = 𝜔can = 𝑑𝜆can
is exact. The (2𝑛 − 1)-form 𝜆can ∧ (𝑑𝛼)𝑛−1 in local coordinates 𝑥1, 𝑦1 . . . ,𝑥𝑛, 𝑦𝑛 can
be given as a multiple of

𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛 ∧
∑︁
𝑗

(−1)𝑗 (𝑦𝑗𝑑𝑦1 ∧ · · · ∧ 𝑑𝑦𝑗 ∧ · · · ∧ 𝑑𝑦𝑛,

which restricts non-degenerately to the subvariety
∑
𝑦2𝑗 = 𝑟2 and hence is a contact

form on this subvariety.
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This can be done more intrinsically by picking a Riemannian metric 𝑔 on 𝑈
inducing an associated norm ∥ − ∥𝑢 on each cotangent space 𝑇 ∗𝑢𝑈. Defining

𝑇 ∗≤𝑟𝑈 = {𝑉 ∈ 𝑇 ∗𝑢𝑈 | ∀𝑢 ∈ 𝑈, ∥𝑉∥ ≤ 𝑟}, 𝑆∗𝑟𝑈 = 𝜕𝑇 ∗≤𝑟𝑈,

the sphere bundle 𝑆∗𝑟𝑈 is diffeomorphic to the local model above given by the
equation

∑
𝑦2𝑗 = 𝑟2. Note that 𝑟 is a function in the 𝑈-variable 𝑢 alone.

Observe that the isomorphism 𝜙𝜔 : 𝑇𝑁 → 𝑇 ∗𝑁 defined in (4.1) associates to
the form 𝜆can a vector field 𝑌𝜆. This vector field preserves 𝜔can since

L𝑌𝜆 (𝜔can) = 𝑑◦𝑖𝑌𝜆𝜔can + 𝑖𝑌𝜆◦𝑑(𝜔can) = 𝑑𝜆can = 𝜔can

and hence is a Liouville field. Note that in local coordinates 𝑌𝜆 =
∑(−1)𝑗𝑦𝑗 𝑑

𝑑𝑦𝑗
and

so 𝑌𝜆 is a vector field transversal to the sphere bundle
∑
𝑦2𝑗 = 𝑟2.

4.2. More on contact geometry

4.2.A. Gray stability. A central and useful result in contact geometry reads
as follows:

Theorem 4.4. [Gray’s stability theorem] Let 𝑀 be a smooth compact manifold
admitting a smooth family 𝜉𝑡, 𝑡 ∈ [0, 1] of contact structures. Then there is an
isotopy of 𝑀, giving a smooth family of diffeomorphisms 𝐹𝑡 : 𝑀 → 𝑀 such that
(𝐹𝑡)∗𝜉0 = 𝜉𝑡 for all 𝑡 ∈ [0, 1].

For a proof we refer to [Gei08, Section 2.2]. This result states that the contact
structure (or its contact form) can be smoothly varied without changing the con-
tactomorphism class of the contact manifold. This turns out to be crucial in order
to define meaningful contact invariants. As an example, relevant for these notes,
see e.g. [KvK16, Prop. 2.5] on contact forms on the link of an IHS defined by
weighted homogeneous hypersurfaces. It is instructive to go through the elementary
proof of this result.

A vector field 𝑋 on 𝑀 is called a contact field if L𝑋𝛼 = 𝑔 ·𝛼 for some function
𝑔 on 𝑀. These fields are characterized as follows:

Criterion 4.5. A vector field 𝑋 on 𝑀 is a contact field if and only if for some
function 𝐻 : 𝑀 → R one has

𝜄𝑋𝛼 = 𝐻(4.2)

𝜄𝑋 (𝑑𝛼) = 𝑑𝐻 + (𝜄𝑌𝑑𝐻)𝛼, 𝑌 = 𝑋𝛼.(4.3)

Proof. If the above relations holds, take 𝑔 = 𝜄𝑌 (𝑑𝐻). Then it follows directly
that L𝑋𝛼 = 𝑔𝛼 and so 𝑋 is a contact field. Conversely, if L𝑋𝛼 = 𝑔 ·𝛼, take 𝐻 = 𝜄𝑋𝛼.
Then

𝜄𝑋 (𝑑𝛼) = L𝑋𝛼 − 𝑑(𝜄𝑋𝛼)
= 𝑔 · 𝛼 − 𝑑𝐻.

So it suffices to show that 𝑔 = 𝜄𝑌𝐻. To see this, note that 𝑑𝛼(𝑋,𝑌) = 0 since
𝑌 = 𝑋𝛼 is the Reeb vector field and hence, evaluating the above equation on 𝑌
gives 0 = 𝑔 · 𝛼(𝑌) − 𝑑𝐻 (𝑌) = 𝑔 − 𝜄𝑌 (𝑑𝐻). □

Corollary 4.6. For the constant function 𝑎 on (𝑁,𝛼) the field 𝑎𝑋𝛼 is the
corresponding contact field.
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4.2.B. Reeb vector fields and their flow. Let (𝑀, 𝜉) be a contact structure
with contact form 𝛼. There is a unique vector field 𝑅𝛼, the Reeb vector field
characterized by

(1) 𝑅𝛼 contracts to 0 against 𝑑𝛼, i.e., 𝜄𝑅𝛼 (𝑑𝛼) = 𝑑𝛼(𝑅𝛼,−) = 0;
(2) 𝛼(𝑅𝛼) = 1.

Since there is a unique direction in which 𝑑𝛼 contracts to 0, this explains (1) while
(2) is a normalization. The first item implies that 𝑅𝛼 is everywhere transversal to
the field 𝜉 of hyperplanes defining the contact structure. The flow 𝜑𝑡 induced by
this vector field preserves 𝛼 (and hence the contact structure) since

L𝑌𝛼 = 𝑑𝑖𝑌𝛼 + 𝑖𝑌𝑑𝛼 = 𝑑(𝛼(𝑌)) + 0 = 0, 𝑌 = 𝑅𝛼.

Remark 4.7. Note that the Reeb vector field for 𝑓 · 𝛼 might be very different
from the one for 𝛼. So the contact form admits admits Reeb vector fields for each
of the contact forms.

Examples 4.8. 1. Recall (cf. Example 1.11.(1)) that the unit sphere 𝑆2𝑛−1 ⊂
C𝑛 admits the contact form 𝛼 =

∑
𝑗 𝑥𝑗𝑑𝑦𝑗 − 𝑦𝑗𝑑𝑥𝑗 . The contact hyperplane at

𝒑 ∈ 𝑆2𝑛−1 is the subset of the tangent vectors 𝑋 at 𝒑 orthogonal to 𝒑 and to
𝐽𝒑 where 𝐽 is the standard almost complex structure on 𝑇𝒑R

2𝑛 = R2𝑛 given by
𝐽 (· · · ,𝑥𝑗 , 𝑦𝑗 , · · · ) = (· · · ,−𝑦𝑗 ,𝑥𝑗 , · · · ). The Liouville field

𝑌 =
∑︁
𝑖

𝑥𝑖
𝑑

𝑑𝑥𝑖
+ 𝑦𝑖

𝑑

𝑑𝑦𝑖

at a point 𝒑 ∈ C𝑛 gives the radial vector
#  »
0𝒑 and at 𝒑 ∈ 𝑆2𝑛−1 this vector is

orthogonal to 𝜉𝒑 and is outward pointing. Identifying tangent vectors with the
corresponding vectors in R2𝑛, one has 𝑌𝒑 = 𝒑.

The field 𝑅𝛼 =
∑−𝑦𝑗 𝑑

𝑑𝑥𝑗
+𝑥𝑗 𝑑

𝑑𝑦𝑗
has value 𝐽 (𝒑) at 𝒑 ∈ 𝑆2𝑛−1 which is tangent to

𝑆2𝑛−1 but does not belong to the contact field (since 𝐽2 (𝒑) = −𝒑 is not a tangent
vector). On 𝑆2𝑛−1 the identity

∑2𝑛
𝑗=1 𝑥

2
𝑗 + 𝑦2𝑗 = 0 implies that 𝜄𝑅𝛼

∑
𝑑𝑥𝑗 ∧ 𝑑𝑦𝑗) =

−∑𝑥𝑗𝑑𝑥𝑗 + 𝑦𝑗𝑑𝑦𝑗 = 0 and since 𝜄𝑅𝛼𝛼 =
∑
𝑥2
𝑗 + 𝑦2𝑗 = 1, 𝑅𝛼 is the Reeb field. Its flow

𝐹𝑡 : 𝑆
2𝑛−1 → 𝑆2𝑛−1 is given in complex coordinates 𝑧𝑗 = 𝑥𝑗 + 𝒊𝑦𝑗 , 𝑗 = 1, . . . ,𝑛 by

(4.4) 𝐹𝑡 (𝑧1, . . . , 𝑧𝑛) = 𝑒𝒊𝑡 · (𝑧1, . . . , 𝑧𝑛).
Since ¤𝐹𝑡 (𝒑) = 𝒊𝐹𝑡 (𝒑) = 𝐽𝐹𝑡 (𝒑), the tangent vector at 𝒑, coincides with the value of
𝑅𝛼 at 𝐹𝑡 (𝒑).
2. On R2𝑛+1 with coordinates (𝑥1, . . . ,𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡) the standard contact struc-
ture is the one with contact form 𝛼 := 𝑑𝑡 − ∑

𝑦𝑗𝑑𝑥𝑗 . Note that 𝛼 ∧ (𝑑𝛼)𝑛 is
the volume form on R2𝑛+1 and so is indeed non-degenerate. The kernel of 𝛼
is the field of hyperplanes spanned at (𝑡,𝒙,𝒚) by the vectors 𝑑/𝑑𝑦1, . . . ,𝑑/𝑑𝑦𝑛,
𝑑/𝑑𝑥1 + 𝑦1 · 𝑑/𝑑𝑡, . . . ,𝑑/𝑑𝑥𝑛 + 𝑦𝑛 · 𝑑/𝑑𝑡. In other words, this is the field of hyper-
planes

(𝑡′,𝒙′,𝒚′) ↦→ {𝑡 − (
∑︁
𝑗

𝑦′𝑗)𝑥 = 0}.

Note that 𝑑𝛼 =
∑
𝑑𝑥𝑗 ∧ 𝑑𝑦𝑗 does not contain 𝑑𝑡 and so 𝑑/𝑑𝑡 is the Reeb vector

field. It is everywhere transversal to the field of hyperplanes.

Since 𝑅𝛼 is everywhere transversal to the field 𝜉 of hyperplanes, one has a direct
sum splitting 𝑇𝑝𝑀 = (𝑅𝛼)𝑝 ⊕ 𝜉𝑝 and this splitting is preserved by the flow 𝜑𝑡 of the
Reeb vector field.
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4.2.C. Symplectization of a contact manifold. A contact manifold 𝑀
gives rise to a symplectic manifold, the cylinder

Cyl(𝑀𝛼) = (𝑀 × (−∞,∞),𝜔), 𝜔 = 𝑒𝑡 (𝑑𝛼 − 𝛼 ∧ 𝑑𝑡) = 𝑑(𝑒𝑡𝛼),
which is called the symplectization of (𝑀, 𝜉). The Liouville field on it is the
vector field 𝑑/𝑑𝑡. One also uses the radial coordinate 𝑟 = 𝑒𝑡 instead of 𝑡 and this
gives a symplectomorphism with (𝑀 × (0,∞),𝑑(𝑟𝛼)). The Liouville field becomes
𝑟−1𝑑/𝑑𝑟 and the positive end corresponds to 𝑟 > 1.

Remark 4.9. The symplectic structure on Cyl(𝑀𝛼) is constructed from a given
contact form 𝛼. As explained in Section 1.3, the contact structure allows an entire
family of contact forms 𝑓 · 𝛼 where 𝑓 is a positive differentiable function on 𝑀.
However, all of the symplectizations are symplectomorphic, an explicit symplecto-
morphism being iven by

𝜑 : Cyl(𝑀𝑓𝛼) → Cyl(𝑀𝛼), (𝑥, 𝑡) ↦→ (𝑥, 𝑡 log 𝑓(𝑥)),
since 𝜑∗ (𝑒𝑡𝛼) = 𝑓𝑒𝑡𝛼 = 𝑒𝑡 (𝑓𝛼).

The following relation between contact fields on (𝑀,𝛼) and Hamiltonian fields
on (𝑀 × (0,∞),𝑑(𝑟𝛼)) is very useful for what follows:

Lemma 4.10. Let 𝐻 : 𝑀 → R be a function determining the contact field
𝑋𝐻 as in Criterion 4.5. Then Hamiltonian field of the function 𝐻 = 𝑟 · 𝐻 on
(𝑀 × (0,∞),𝑑(𝑟𝛼)) is given by 𝑋𝐻 (𝑥, 𝑟) = 𝑋𝐻 (𝑥) + 𝑑𝑌𝐻, where 𝑌 = 𝑋𝛼 is the Reeb
field and 𝑑𝑌𝐻 ∈ R is identified with the tangent vector 𝑑𝑌𝐻 · 𝑑/𝑑𝑟.

Proof. One calculates

𝑑(𝑟𝛼) (𝑋𝐻) = (𝑑𝑟 ∧ 𝛼 + 𝑟𝑑𝛼) (𝑋𝐻 + 𝑑𝑌𝐻)
= 𝑑𝑟 ∧ 𝜄𝑋𝐻𝛼 + 𝑟𝜄𝑋𝐻 (𝑑𝛼) +

(𝑑𝑌𝐻) · 𝛼 + 𝑟 · 0
(4.2),(4.3)

= 𝐻𝑑𝑟 + 𝑟𝑑𝐻 − (𝜄𝑌𝑑𝐻) · 𝛼 + (𝑑𝑌𝐻) · 𝛼
= 𝑑(𝑟𝐻) = 𝑑𝐻. □

In a similar way one shows:

Addition 4.11. The Hamiltonian field of the function ℎ(𝑟) on (𝑀 ×R+,𝑑(𝑟𝛼))
induces for all 𝑟 ∈ R+ the field ℎ′(𝑟)𝑅𝛼 on 𝑀 × 𝑟. In particular, the coordinate
function 𝑟 induces the Reeb field on 𝑀 × 𝑟.

4.2.D. Liouville fields and contact strucures. Symplectic manifolds equipped
with Liouville vector field induce a contact structure on any smooth hypersurface
transverse to the field:

Proposition 4.12 ([MS17, Prop. 3.57]). Let (𝑁,𝜔) be a symplectic manifold
containing a compact hypersurface 𝑆 (i.e. a submanifold of 𝑁 of codimension 1).
Then there exists a Liouville field 𝑌 in a neighborhood of 𝑆 which is transverse to 𝑆
if and only if there exists a contact form 𝛼 on 𝑆 such that 𝑑𝛼 = 𝜔|𝑆. If 𝜔 is given,
in fact 𝛼 = 𝑖𝑌𝜔 defines a contact form on every hypersurface transverse to 𝑌.

Such 𝑆 is called a hypersurface of contact type . The Liouville flow 𝜓𝑡,
associated to 𝑌 maps 𝑆 to the positive (negative) side of 𝑆 for positive (neg-
ative) time 𝑡. The contact structure on 𝑆 depends on 𝑌. Suppose 𝑌′ is another
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Liouville field. Then 𝑑(𝜄𝑌′−𝑌𝜔) = 0. In case 𝑏1 (𝑁) = 0, this implies 𝜄𝑌′−𝑌𝜔 = 𝑑𝐻 for
some Hamiltonian function on 𝑁. In other words, 𝑌′ − 𝑌 = 𝑋𝐻 , the Hamiltonian
vector field associated to 𝐻 on 𝑁. The converse is also clear. Consequently, the
collection of Liouville fields is convex. But then by Gray’s Stability Theorem 4.4
one concludes:

Lemma 4.13. The contact structures on a hypersurface of contact type resulting
from the various Liouville fields are all contactomorphic.

Suppose that there exists a symplectic manifold (𝑁,𝜔) containing a smooth
hypersurface 𝑆 of contact type such that the negative side is contained in a compact
manifold 𝑊 ⊂ 𝑁 with boundary 𝜕𝑊 = 𝑆. The resulting contact manifold (𝑀,𝛼),
𝜔|𝑆 = 𝑑𝛼 is said to be symplectically fillable and 𝑊 is a symplectic filling.

Examples 4.14. 1. Cotangent bundles. If 𝑁 = 𝑇 ∗𝑈, 𝑈 a smooth 𝑛-
dimensional manifold, the Liouville vector field points outwards of the associated
ball-bundle 𝑊 = 𝑇 ∗≤𝑟𝑈. The complement of 𝑊 is contactomorphic to the symplectic
cylinder cylinder on 𝑆 = 𝜕𝑊 and so 𝑆 is symplectically fillable with 𝑊.
2. Milnor fibers. The fibers of the Milnor fibration of an IHS given by a hy-
persurface {𝑓(𝒛) = 0} in C𝑛+1 (with singularity at the origin) all have a symplectic
structure induced by the Kähler structure on C𝑛+1 (see Example 1.10(3)).

According to Example 1.11(3) the link of the singularity which is the com-
mon boundary of these fibers, admits a contact structure with contact form 𝜆 =
1
2 (
∑𝑛+1

𝑗=1 𝑥𝑗𝑑𝑦𝑗 − 𝑦𝑗𝑑𝑥𝑗) |L𝑓 and an outwards pointing Liouville field. The (closed)

Milnor fiber then can be viewed as symplectic filling of the link (L𝑓,−𝜆). The link
is the boundary L𝑓 × {0} of a ”positive cylindrical end” L𝑓 × [0,∞) glued to the
Milnor fiber (in 𝑡-coordinates).

The above examples are Liouville domains:

𝑌𝑌 𝑌 𝑌

𝑊

Cyl≥0 (𝑆𝛼)

𝜕𝑊 = 𝑆𝛼

Figure 1. A Liouville domain 𝑊 with its symplectic completion 𝑊.

Definition 4.15. A Liouville domain is a compact symplectic manifold
(𝑊,𝜔) with boundary 𝑆 = 𝜕𝑊 and Liouville field 𝑌 defined in a neighborhood of 𝑆
and which points outward of 𝑆. Then 𝑆 = 𝜕𝑊 is called a symplectically convex
boundary of 𝑊.

The flow of the Liouville field gives a suitable neighborhood 𝑈 of 𝑆 in 𝑊 a
cylinder-like structure, say

𝐺 : 𝑆 × [−𝛿, 0] ∼−→ 𝑈 ⊂ 𝑊.



4.3. STRONGLY MILNOR FILLABLE LINKS 43

Hence (𝑆 × [−𝛿, 0],𝐺∗ (𝑒𝑡 · 𝑑𝛼)) then becomes a compact subset of Cyl(𝑊𝛼). So
using 𝐺 the domain 𝑊 can be glued along 𝑆 × {0} to the positive cylindrical end

Cyl≥0 (𝑆𝛼) = 𝑆𝛼 × [0,∞) (in 𝑡-coordinates) which by definition gives 𝑊, the sym-
plectic completion of 𝑊 illustrated in Figure 1.

Remark 4.16. By Remark 4.9 two contact forms on 𝑆 giving the same contact
structure on the cylindrical ends give symplectomorphic cylindrical ends. For each
𝜀 > 0 the symplectomorphism restricted to 𝑡 ≥ 𝜀 extends to a neighborhood of 𝑆 in
the symplectic filling by replacing 𝑓(𝑥) for 0 < 𝑡 < 𝜀 by a positive function 𝑔(𝑥, 𝑡)
with lim𝑡→0 𝑔(𝑥, 𝑡) = 1 and lim𝑡→𝜀 𝑔(𝑥, 𝑡) = 𝑓(𝑥). In particular 𝜔 does not change
on 𝑊 under the symplectomorphism.

So the contact form 𝛼 on 𝑆 × {0} is induced by the Liouvillle field, but the
contact form on 𝑆 × {𝑡}, 𝑡 ≥ 𝜀 can be supposed to be equal to 𝑓 · 𝛼, 𝑓 any positive
function on 𝑆 and so is not necessarily induced by a Liouville field.

On a Liouville domain (𝑊,𝜔) the Liouville vector field 𝑌 preserves 𝜔 and points
outwards from its boundary 𝑆 = 𝜕𝑊 while the Reeb field for 𝛼 = 𝜄𝑌𝜔|𝑆 is tangent
to 𝑆 but is not contained in the contact field 𝜉. So one gets a direct sum splitting

(4.5) 𝑇𝑝𝑊 = (𝑅𝛼)𝑝 ⊕ 𝜉𝑝 ⊕ 𝑌𝑝, 𝑝 ∈ 𝑆 = 𝜕𝑊.

Observe that 𝜔 restricts non-degenerately to the span of (𝑅𝛼)𝑝 and 𝑌𝑝, since
𝜔(𝑌,𝑅𝛼) = 𝛼(𝑅𝛼) = 1. A periodic flow of 𝑅𝛼 induces a flow of the contact field
𝜉 which preserves its symplectic structure. So a trivialization of 𝑇𝑊 along a closed
orbit of the flow induced by 𝑅𝛼 preserves 𝜉 induces a curve in the symplectic group
𝜓 : [0, 𝑇 ] → Sp(2𝑛 − 2) starting at 𝐼2𝑛−2. If 𝛾 is a periodic orbit of period 𝑇 , then
𝜓(𝑇 ) is called the linearized return map.

Example 4.17 (The standard sphere 𝑆2𝑛−1). This is a continuation of the
calculations of Example 4.8.1. Observe that the contact field 𝜉 of 𝑆2𝑛−1 at the
point 𝑒1 is given by the 2𝑛 − 2 tangent vectors 𝑒3, . . . , 𝑒2𝑛. Rephrased in terms of
the complex basis {𝑒1, 𝑒3, . . . , 𝑒2𝑛−1}, this subspace can be written 𝜉𝑒1 = C𝑒3 + C𝑒5 +
· · · + C𝑒2𝑛−1. The tangent map (or linearization) of the Reeb flow 𝐹𝑡 : 𝒙 ↦→ 𝑒𝒊𝑡𝒙 is
the linear map 𝜓(𝑡) : C𝑛 → C𝑛 given by multiplication by 𝑒𝒊𝑡 and its restriction to
the subspace 𝜉𝑒𝒊𝑡𝑒1 ⊂ 𝑇𝑒𝒊𝑡𝑆

2𝑛−1 is likewise multiplication by 𝑒𝒊𝑡. This is a symplectic
matrix as it should, and the linearized return map is its value at 2𝜋 which is the
identity.

4.3. Strongly Milnor fillable links

These notes are mainly devoted to the symplectic and algebraic geometry of
isolated hypersurface singularities and for those the link is the boundary of the
Milnor fiber. For isolated singularities of varieties that cannot be embedded as
hypersurfaces in C𝑁 there is an alternative filling. To explain this, let 𝑋 ⊂ C𝑁 be
an algebraic subvariety and assume that (𝑋,𝑥) is an isolated normal singularity. If
𝑆 (𝑥, 𝛿) is the euclidean sphere in C𝑁 with center 𝑥 and small enough radius 𝛿, the
intersection 𝐿𝑥 = 𝑋 ∩ 𝑆 (𝑥, 𝛿) is diffeomorphic to the link of 𝑥 in 𝑋. If 𝜔 = 𝑑𝜆 is the
standard Kähler form on C𝑁 (see Eqn. (1.4)), then 𝜆 gives 𝐿𝑥 a contact structure.

The idea is to regard a tubular neighborhood of the exceptional set in a resolu-
tion of singularities of 𝑥 as a substitute for the Milnor filling. By Hironaka’s results
recalled in Section 2.1, there is a ”good” embedded resolution

𝜎 : (𝑋,𝐸) → (𝑋,𝑥)
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for which 𝐸 = ∪𝑖∈𝐼𝐸𝑖 is a hypersurface whose components 𝐸𝑖 form a normal crossing
divisor. Since 𝜎 is a resolution of the singularity at 𝑥, the inverse image under 𝜎 of
the link embeds diffeomorphically in 𝑋 −𝐸 and the link (with its contact structure)

admits a special type of filling in 𝑋, called a strong Milnor filling in the following
sense:

Theorem 4.18. Let 𝐵 (𝑥, 𝛿) be the euclidean ball in C𝑁 with center 𝑥 and radius
𝛿 and set

𝑊 = 𝜎−1 (𝑋 ∩ 𝐵 (𝑥, 𝛿)).
Then for small enough 𝛿, its boundary 𝜕𝑊, is diffeomorphic to the link of 𝑥 in 𝑋
and 𝑊 is a symplectic filling of the link.

Outline of the Proof. Clearly, for 𝛿 small enough, 𝜕𝑊 is contactomorphic
to the link 𝐿𝑥 = L𝑋,𝑥 with contact structure induced from the standard contact
structure on the 2𝑁 − 1-sphere.

A single blow up 𝑝 : C̃𝑁 → C𝑁 in the point 𝑥 has a Kähler metric of the form
𝜂 := 𝑝∗𝜔+𝜀 ·𝜏, where 𝜔 = 𝑑𝜆 is the standard Kähler form on C𝑁 (see Eqn. (1.4)) and
𝜏 is a closed (1, 1)-form which is strictly positive along the fibers of 𝐸 = 𝑝−1𝑥 → 𝑥
and zero outside a compact neighborhood of 𝑥. For a proof see e.g [Voi02, Prop.
3.24]. Assuming for simplicity that one blow up resolves 𝑋, then𝑊 is a submanifold

of C̃𝑁 and 𝜂 restricts to a Kähler form on 𝑊. The form 𝜂 restricts to 𝑝∗𝜔 near
the boundary, i.e., near the link of the singularity, provided 𝜀 is small enough. But
since 𝜔 = 𝑑𝜆 for some 1-form 𝜆, on the link one has 𝜂 = 𝑑𝛼 where 𝛼 = 𝑝∗𝜆. This
is the contact form defining the contact structure on the link. The general case is
slightly more complicated. Details are left to the reader. □

Remark 4.19. There is an alternative procedure due to McLean as explained
in the proof of [McL16, Lemma 5.25]. This approach is better suited to make
a comparison between minimal discrepancy and symplectic phenomena near the
contact boundary. The alternative construction gives a contact form on the link
which is isotopic to the classical contact structure on the link considered above. So,
by Gray’s stability theorem, Theorem 4.4, the two contact structures are contacto-
morphic.



CHAPTER 5

Hamiltonian and Reeb dynamics, symplectic
cohomology

Introduction

The main goal of this chapter is to give a basic idea of symplectic cohomology.
This requires to introduce (in Sections 5.1–5.2) the Conley–Zehnder index of a
periodic orbit of a Hamiltonian flow. After the definition of symplectic cohomology
in Section 5.3 (assuming some deep results in global analysis), I shall

• extract contact invariants from symplectic cohomology for a certain type
of boundary of a Liouville domain, namely a so-called dynamically convex
boundary.
• give an overview of McLean’s results which relate the algebraic notion of
minimal discrepancy and the symplectic notion of highest minimal index
of periodic orbits of the Reeb flow(=Hamilton flow restricted to the link).
Applied to the link of a cDV singularity, these results will be shown to de-
termine whether the singularity is canonical or terminal (Theorem 5.19).
Another important result for 3-dimensional singularities is the character-
ization of smoothness in terms of contact invariants (cf. Corollary 5.22).

5.1. The Maslov index

This index is an an integer associated to a loop in the symplectic group based
at the identity. It is a (based) homotopy invariant. To explain the definition, let
(𝑉,𝜔) be an even dimensional real vector space 𝑉 equipped with a non-degenerate
skew form 𝜔. By definition the symplectic group is given by

Sp(𝑉) := {𝑇 ∈ GL (𝑉) | 𝜔(𝑇 𝑥, 𝑇 𝑦) = 𝜔(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑉}.

A symplectic basis {𝑒1, . . . , 𝑒𝑛,𝑓1, . . . ,𝑓𝑛} for 𝑉 is one for which 𝜔(𝑒𝑖 , 𝑒𝑗) = 0, 𝜔(𝑓𝑖 ,𝑓𝑗) =
0 and 𝜔(𝑒𝑖 ,𝑓𝑗) = −𝜔(𝑓𝑗 , 𝑒𝑖) = 𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, . . . ,𝑛. In other words, this is a basis in
which 𝜔 is represented by the matrix

𝐽𝑛 =

(
0𝑛 id𝑛
−id𝑛 0𝑛

)
.

In such a basis the symplectic transformations are given by the symplectic matrices
{𝑀 ∈ R2𝑛×2𝑛 | 𝑀T𝐽𝑛𝑀 = 𝐽𝑛}. These have polar decomposition given by

𝑀 = 𝑃𝑄, 𝑃 = (𝑀𝑀𝑇 ) 12 , 𝑄 = 𝑃−
1
2𝑀 ∈ O(2𝑛) ∩ Sp(2𝑛).

Hence 𝑄 can be written as 𝑄 =

(
𝑋 −𝑌
𝑌 𝑋

)
which leads to a homomorphism

𝜌 : Sp(2𝑛) → 𝑆1 ⊂ C, 𝜌(𝑀) = det(𝑋 + 𝒊𝑌).

45
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So a path 𝜓 : 𝐼 = [0, 1] → Sp(2𝑛) projects to a path 𝜌◦𝜓 in the circle. Closed paths
based at 𝜓(0) = 𝐼2𝑛 then give closed path on 𝑆1. Such a loop has a winding number
which defines the Maslov index of the loop. It does not depend on the chosen
symplectic basis and it is invariant under homotopies preserving the base point. It
also is additive under concatenation of loops which shows that 𝜋1 (Sp(𝑉), 𝐼2𝑛) ≃ Z.

For non-closed paths whose end point is a matrix with no eigenvalues equal to
1 the above definition can be modified. The idea is to extend the path in a careful
way so that 𝜌 gives a closed path on the circle. The choice of path makes use of
the the Maslov cycle , the hypersurface Σ ⊂ Sp(2𝑛) consisting of matrices with
eigenvalue 1, i.e.,

Σ = {𝑀 ∈ Sp(2𝑛) | det(𝑀 − 𝐼) = 0}.

To explain the procedure, first note that Σ divides Sp(2𝑛) in two connected compo-
nents determined by the sign of det(𝑀 − 𝐼). One chooses matrices, say 𝐾± in each
of these components with the property that its square under 𝜌 projects to 1 ∈ 𝑆1.

For instance, one may take 𝐾+ =

(
−𝐼𝑛 0𝑛
0𝑛 −𝐼𝑛

)
, respectively 𝐾− = 𝑄, 𝑄 =

(
𝐷 0
0 𝐷−1

)
with 𝐷 = diag(𝑎 ,−1. . . . ,−1), 𝑎 > 0, 𝑎 ≠ 1. By assumption the endpoint 𝜓(1) of
the path belongs to a connected component of Sp(2𝑛) − Σ and so this point can
be connected within this component to the appropriate point 𝐾± yielding a path

𝜓 : [0, 2] → Sp(2𝑛). So now 𝑡 ↦→ 𝜌2 (𝜓(𝑡)) is loop on the circle. It winding number
is the searched for Maslov index for non-closed paths,

(5.1) 𝜇(𝜓) = deg(𝑡 ↦→ 𝜌2 (𝜓(𝑡))) ∈ Z.

Note that this excludes the case where 𝜓 itself is a loop at 𝐼2𝑛. The definition of
𝜇 can be extended to all paths in such a way that its value does not change under
homotopies leaving endpoints fixed. This property together with a few more char-
acterizes the 𝜇-invariant, the obvious one being the additivity under concatenation.
See [RS93] where it is also shown ([RS93, Remarks 4.10 and 5.3–5.5]) that for
loops at 𝐼2𝑛 one gets twice the original Maslov index and that it coincides with the
above defined 𝜇-index for non-closed paths.

In particular there is freedom to move the path in such a way tha the Maslov
index becomes susceptible to calculation, for example by deforming it to become
non-degenerate in the following sense.

Definition 5.1. A path 𝜓 : [0, 𝑇 ] → Sp(2𝑛) starting at 𝐼2𝑛 is said to be
non-degenerate if

• 𝜓 meets Σ transversally;
• at an intersection point the so-called crossing quadratic form (see below)
is non-degenerate.

The crossing quadratic form at an intersection point 𝜓(𝑡0) ∈ Σ is the quadratic
form 𝑄(𝜓, 𝑡0) on (𝑉,𝜔) which defined by

𝑄(𝜓, 𝑡0) (𝑣) = 𝜔(𝑣,𝑑𝜓/𝑑𝑡 |𝑡0 (𝑣)).

If the crossing form is non-degenerate it can be diagonalized over R such that
diagonal entries are non-zero. Denote its signature (# of positive enties - # of neg-
ative entries) by sgn(𝑝). It turns out that the Maslov index of any non-degenerate
path 𝜓 : [0, 1] → Sp(2𝑛), closed or non-closed is expressible in terms of these
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signatures:

(5.2) 𝜇(𝜓) = 1

2
sgn 𝜓(0) + 1

2
sgn 𝜓(1) +

∑︁
0<𝑡∗<1

sgn 𝜓(𝑡∗).

This is a half-integer and an integer for paths with end points not on the Maslov
cycle or for loops. See e.g. e [MS17, p. 45–47] or in [RS93] for a proof. The fol-
lowing example shows that for non-degenerate paths the 𝜇-index can be calculated
in a straightforward fashion. See also Example 5.5.

Example 5.2. Consider the path 𝜓(𝑡) =

(
cos(2𝜋𝑎 · 𝑡) sin(2𝜋𝑎 · 𝑡)
− sin(2𝜋𝑎 · 𝑡) cos(2𝜋𝑎 · 𝑡)

)
, 𝑡 ∈

[0, 1], 𝑎 ∈ Q+. This path intersects Σ when 𝑎𝑡 ∈ Z. If 𝑎 is not an integer this is

the case for 𝑡∗ = (⌊𝑎⌋ − 𝑘)/𝑎 , 𝑘 = 0, . . . , ⌊𝑎⌋. Since ¤𝜓(𝑡∗) = 𝐽 =

(
0 1
−1 0

)
, one finds

𝜔(𝑣, 𝐽𝑣) = 𝑣 · 𝑣, a form of index 2. Hence 𝜇(𝜓) = 1 + 2⌊𝑎⌋. The path 𝜓 is a loop in
case 𝑎 is an integer, say 𝑎 = 𝑚, and then 𝜇(𝜓) = 1 + 2(𝑚 − 1) + 1 = 2𝑚. So this is
twice the original Maslov index.

5.2. The Conley–Zehnder index

One applies the preceding construction first of all in the setting of a symplectic
manifold 𝑁 equipped with a smooth function 𝐻. The flow of the Hamiltonian
vector field 𝑋𝐻 induces a path in the tangent bundle of 𝑁 along any integral curve
𝒙(𝑡). The tangent bundle admits a fiber-wise symplectic structure and since the
flow preserves the symplectic structure, it induces a path of symplectic frames 𝑭 (𝑡).
Assuming that 𝒙(𝑡) is a closed path, say 𝒙(0) = 𝒙(1), one makes an important

Assumption: There is an orientation preserving trivialization
𝜎 : 𝑇𝑁 |𝒙( [0,1])

∼−→ [0, 1] × R2𝑛, 2𝑛 = dim𝑁.

Hence the standard basis for R2𝑛 gives the standard frame 𝑬 (𝑡) along 𝒙(𝑡) and one
may assume that 𝑭 (0) = 𝑬 (0). Then 𝑭 (𝑡) = 𝜓(𝑡)𝑬 (𝑡), 𝜓(𝑡) a path of symplectic
matrices starting at 𝐼2𝑛, which is called the path in Sp(2𝑛) induced by the
trivialization 𝜎.

The above assumption holds if there is a 2-disc spanning the closed path 𝒙
so that 𝒙 is contractible. This will automatically be the case if the manifold 𝑁 is
simply connected, for example if 𝑁 is a Milnor fiber of some isolated hypersurface
singularity.

Definition 5.3. Let 𝒙 : [0, 1] → 𝑁 be a smooth closed integral curve of
the Hamiltonian flow associated to 𝐻 and let 𝜓 : [0, 1] → Sp(2𝑛) be the path of
symplectic matrices induced by the trivialization 𝜎 (which has been assumed to
exist). The Conley–Zehnder index 𝜇CZ (𝐻,𝒙) of 𝒙 is equal to the index 𝜇(𝜓)
(see (5.1)).

This index does not depend on the chosen trivialization 𝜎 and it is a homotopy
invariant (for paths leaving begin and endpoints fixed). If the path 𝜓 is non-
degenerate, it is given by (5.2). In case 𝜓 is a loop, this integer is twice the Maslov
index.

Examples 5.4. 1. By Theorem 1.3, the tangent bundle of the Milnor fiber
is trivializable. Hence in the Conley–Zehnder indices for 1-periodic orbits of the
Hamilton flow are well defined.
2. Liouville domains. The Reeb flow on the boundary 𝑆 of a Liouville domains
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𝑊 and on the slices 𝑀𝑟 = {𝑟 = constant} of its cylindrical end in the completion 𝑊
can be compared with the Hamiltonian flow on 𝑊 for special Hamiltonians which
on the cylindrical end are of the form ℎ(𝑟) and so are constant along 𝑀𝑟. By
Corollary 4.11 the Hamiltonian flow coincides with the Reeb flow (but the ”speed”
may be different). Recalling the splitting (4.5):

𝑇𝑝𝑊 = (𝑅𝛼)𝑝 ⊕ 𝜉𝑝 ⊕ 𝑌𝑝, 𝑝 ∈ 𝑆,
note that the vector subspace 𝜉𝑝 is preserved by the Reeb flow 𝑅𝛼. It is a symplectic
subspace since 𝜔 restricts non-degenerately to it. Indeed, it does so on its (sym-
plectic) orthogonal complement, i.e., the span of 𝑌 and 𝑅𝛼, as observed just after
(4.5). Observe however that, like the Reeb vector field, also the splitting depends
on the chosen contact form 𝛼.

Under the assumption that 𝑇𝑊 |𝑆 can be trivialized, this implies that one can
define a Conley-Zehnder index for a closed path 𝒙 of the Reeb flow as the Maslov
index of the associated path in Sp(2𝑛) obtained by following the induced flow in
the tangent bundle 𝑇𝑊 along 𝒙. This path starts at the identity and ends at a
matrix describing the linearized return map defined in § 4.2.B in the situation of
contact fields.

One can also consider periodic orbits 𝛾 of the Reeb flow on an 2𝑛−1-dimensional
contact manifold (𝑀, 𝜉). The contact field 𝜉 is preserved by the Reeb flow and
if the tangent bundle of 𝑀 can be trivialized along 𝛾, the linearized flow restricted
to 𝜉 induces a path in Sp(2𝑛 − 2) and so has a Conley–Zehnder index.

Example 5.5 (The standard sphere 𝑆2𝑛−1 revisited). Example 4.17 exhibits
a Reeb orbit on 𝑆2𝑛−1 for which the lifted path ends on the Maslov cycle. The
Maslov index of the orbit starting at (1, 0, . . . , 0) is equal to 𝑛−1 since the path 𝑡 ↦→
det

(
𝑒𝒊𝑡 · 𝐼𝑛−1

)
, 𝑡 ∈ [0, 2𝜋], has winding number (𝑛− 1). The Conley–Zehnder index,

which is the Maslov index for paths then equals 2(𝑛 − 1), as observed previously.
Note that the path is a non-degenerate loop.

Consider the perturbed contact structure with contact form
∑

𝑗 𝑎𝑗 (𝑥𝑗𝑑𝑦𝑗 −
𝑦𝑗𝑑𝑥𝑗) on 𝑆2𝑛−1, where the 𝑎𝑗 ∈ Q+ are linearly independent over Q. Of course
the contact field is not the same as the standard contact field (this is only the
case if all the 𝑎𝑖 are the same), but it is homotopic to the standard contact
structure. Its Reeb field in complex coordinates at (𝑝1, . . . ,𝑝𝑛) is given by by
((𝒊𝑡/𝑎1) · 𝑝1, . . . , (𝒊𝑡/𝑎𝑛) · 𝑝𝑛) with flow 𝐹𝑡 (𝑒𝒊𝑡/𝑎1𝑧1, . . . , 𝑒𝒊𝑡/𝑎𝑛𝑧𝑛). Since the periods
2𝜋𝑎𝑗 are independent over Q, the only way to get a periodic Reeb orbit occurs
when all but one coordinate equals zero which gives 𝑛 of these through each basis
vector 𝑒𝑗 and with period 2𝜋𝑎𝑗 .

The linearized flow is represented in the standard basis by the diagonal matrix
𝜓(𝑡) = (𝑒𝒊𝑡/𝑎1 , . . . , 𝑒𝒊𝑡/𝑎𝑛 ). Let me consider the flow starting at 𝑒1 = (1, 0, . . . , 0).
As in Example 4.17 one finds that the restriction to the contact field along this
orbit is described by the path of a complex diagonal matrix (𝑑2 (𝑡), . . . , . . . , 𝑑𝑛 (𝑡)),
𝑑𝑘 (𝑡) = 𝑒𝒊𝑡𝑎1/𝑎𝑘 , 𝑘 = 2, . . . ,𝑛, where the time has been rescaled to be in the interval
[0, 1]. The index of this path can be calculated using (5.2). The crossings occur
when for some 𝑘 ≥ 2 one has 𝑡∗ ∈ 2𝜋(𝑎𝑘/𝑎1)Z and also 0 ≤ 𝑡∗ ≤ 2𝜋. Since 𝑎1/𝑎𝑘 is
not an integer, this is the case if 𝑡∗ = (⌊𝑎1/𝑎𝑘⌋ − 𝑗) (𝑎𝑘/𝑎1) · 2𝜋, 𝑗 = 0, . . . , ⌊𝑎1/𝑎𝑘⌋.
As in Example 5.2, one finds that at each of these crossings (except for 𝑗 = 0) the
index equals 2 while for 𝑗 = 0 the contribution equals (𝑛 − 1). Hence, the Conley–
Zehnder index equals 𝑛−1+2∑𝑛−1

𝑘=2 ⌊𝑎1/𝑎𝑘⌋. Similarly, for the other closed orbits at
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𝑒𝑘, one finds 𝛾𝑘 = 𝑛 − 1 + 2∑𝑘≠𝑗 ⌊𝑎𝑗/𝑎𝑘⌋, 𝑗 = 3, . . . ,𝑛. Suppose 𝑎1 < 𝑎2 · · · < 𝑎𝑛, one
has ⌊𝑎𝑗/𝑎𝑛⌋ = 0 for 𝑗 = 1, . . . ,𝑛 − 1 and so 𝛾𝑛 = (𝑛 − 1) which is the minimal index
for any such flow. Higher minimal indices are only possible if there is a non-trivial
relation with Q-coefficients among the 𝑎𝑗 and then 2(𝑛 − 1) is the highest possible
minimal index, realized by the standard flow.

5.3. Symplectic Cohomology of a Liouville domain (𝑊,𝜔)

In this section it is assumed that 𝑊 is a parallellizable Liouville domain, i.e 𝑇𝑊 is

trivializable.

5.3.A. Interlude: Morse (co)homology. Floer (co)homology which un-
derlies the concept of symplectic cohomology is an extension of Morse homology.
Since the definition of Floer homology is quite involved, the construction of Morse
homology helps to understand Floer homology. As a reference for details I advise
the illuminating lecture notes [Hut02].

The setting of symplectic geometry is now changed: one starts with a differen-
tiable manifold 𝑀 equipped with a differentiable function 𝑓 : 𝑀 → R with isolated
critical points, i.e., points where 𝑑𝑓 = 0. The Hessian 𝐻𝑝 (𝑓) at a critical point 𝑝 is
the quadratic form given in local coordinates 𝑥1, . . . ,𝑥𝑚 by the matrix of the second
order partials 𝜕2𝑓/𝜕𝑥𝑖𝜕𝑥𝑗 at 𝑝. This is independent of the choice of coordinates. If
𝐻𝑝 (𝑓) is non-degenerate, it is a diagonalizable matrix with, say ℎ+ (𝑝) positive and
ℎ− (𝑝) negative eigenvalues. In other words, locally at 𝑝, coordinates 𝑦1, . . . , 𝑦𝑚 can
be found such that the function 𝑓 can be written as

𝑓(𝑦1, . . . , 𝑦𝑚) = 𝑓(𝑝) + 𝑦21 + · · · 𝑦2𝑖 − (𝑦2𝑖+1 + · · · + 𝑦2𝑚), 𝑖 = ℎ+ (𝑝),𝑚 − 𝑖 = ℎ− (𝑝).
If all the Hessians are non-degenerate, 𝑓 is called a Morse function , and ℎ− (𝑝)
is the Morse index at 𝑝. The 𝑖-th Morse chain group is given by

𝐶Morse
𝑖 𝑀 =

⊕
𝑝

Z · 𝑝, 𝑝 critical point with ℎ− (𝑝) = 𝑖.

In order to define the Morse complex relating the Morse chain groups, one first
chooses a metric 𝑔 making it possible to define the negative gradient vector field
−∇(𝑓) and its flow Ψ𝑠 : 𝑀 → 𝑀, i.e. Ψ0 = id and 𝑑Ψ𝑠/𝑑𝑠 = −∇(𝑓). Next,
to every critical point 𝑝 of a Morse function 𝑓 one associates two submanifolds,
𝑁±𝑝 = {𝑞 ∈ 𝑀 | lim𝑠→±∞ Ψ𝑠 (𝑞) = 𝑝}, the ascending and descending submanifolds at
𝑝. One can show that 𝑁±𝑝 is an embedded disc of dimension ℎ± (𝑝). If for all critical
points of the Morse function the ascending and descending submanifolds at 𝑝 are
transversal, one calls (𝑓, 𝑔) a Morse–Smale datum . Given a Morse function 𝑓,
the pair (𝑓, 𝑔) is Morse–Smale for generic metrics 𝑔. Assuming this, for a pair (𝑝, 𝑞)
of critical points, one sets

A(𝑝, 𝑞) = 𝑁−𝑝 ∩𝑁+𝑞 ,
which, assuming that ℎ−𝑝 > ℎ−𝑞 , is a manifold of dimension ℎ−𝑝 − ℎ−𝑞 . This man-
ifold contains all the flow lines from 𝑝 to 𝑞, that is, paths 𝛾 : R → 𝑀 with
lim𝑠→−∞ −∇(𝑓) (𝛾 (𝑠)) = 𝑝 and lim𝑠→+∞ −∇(𝑓) (𝛾 (𝑠)) = 𝑞. Hence there is an induced
R-action on A(𝑝, 𝑞) and one obtains

M(𝑝, 𝑞) = A(𝑝, 𝑞)/R,
a manifold of dimension ℎ−𝑝−ℎ−𝑞−1. If ℎ−𝑝−ℎ−𝑞 = 1 this is a 0-dimensional manifold, so
a number of points. For all 𝑝 ≠ 𝑞, one can orient the manifold M(𝑝, 𝑞) as explained
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in [Hut02]. In particular, in this way one can count the number of signed points
of M(𝑝, 𝑞) which is denoted #M(𝑝, 𝑞). One then sets

𝑑 : 𝐶Morse
𝑖 𝑀 −−−→ 𝐶Morse

𝑖−1 𝑀), 𝑑(𝑝) =
∑︁
𝑞

#M(𝑝, 𝑞) · 𝑞, ℎ−𝑞 = 𝑖 − 1.

It is easy to show that 𝑑◦𝑑 = 0 and the homology of this complex by definition is
the Morse homology 𝐻Morse

∗ (𝑀). It is independent of all choices. Moreover, the
map assigning to a critical point 𝑝 of Morse index ℎ−𝑝 = 𝑖 its descending manifold
𝑁−𝑝 considered as a singular 𝑖-simplex can be shown to induce an isomorphism

(5.3) 𝐻Morse
𝑖 (𝑀) ∼−→ 𝐻𝑖 (𝑀,Z).

Dualizing the above complex yields Morse cohomology, which therefore is isomor-
phic to singular cohomology.

5.3.B. Definition of symplectic cohomology for a Liouville domain.
While the Bott complex for 𝑀 is built on the set of critical points of a Morse
function, Floer homology on a symplectic manifold (𝑁,𝜔) is built on the set P(𝐻)
of periodic orbits of the Hamiltonian flow of a function 𝐻 : 𝑀 → R, where instead of
the gradient of a metric, one uses the form 𝜔 to define the Hamiltonian vector field
𝑋 defined by 𝜔(𝑋,−) = −𝑑𝐻. Since the critical values of 𝐻 can be considered as
constant periodic orbits, the procedure that will be outlined below indeed exhibits
Floer cohomology as an extension of Morse cohomology. More precisely, if 𝐻 and
all of its first and second derivatives are small enough, one can show [Oan04, §1.2]
that 𝐻 has no periodic obits at all and so in that case Floer cohomology coincides
with Morse cohomology.

I shall exclusively deal with symplectic cohomology for Liouville domains, and
so I shift to the usual notation 𝑊 instead of 𝑁. The symplectic form is then exact
near the cylindrical end of 𝑊, say 𝜔 = 𝑑(𝑟𝛼) where 𝛼 gives 𝜕𝑊 the structure of
a compact contact manifold. To define symplectic (co)homology on 𝑊 one makes

use of the completion 𝑊 of 𝑊. Moreover, in the definition special Hamiltonian

functions on 𝑊 are used:

Definition 5.6. An admissible Hamiltonian on 𝑊 is a smooth function
𝐻 : 𝑊 → R with

(i) 𝐻 is a general Morse function on 𝑊 which is small in the 𝐶2 norm on the
complement in 𝑊 of the negative cylindrical end;

(ii) on the positive cylindrical end one has 𝐻 = 𝑎 · 𝑟 + 𝑏, 𝑎 ∈ R positive, 𝑏 ∈ R.

In addition, one assumes that 𝜔 comes from a Kähler metric 𝑔 making (𝐻, 𝑔)
Morse–Smale. As just was observed, requirement (i) implies that the Hamilton flow
of such a Morse function only has critical points on the complement in 𝑊 of the
negative cylindrical end so this takes care of the cohomology of 𝑊. The symplectic
information comes from the Hamiltonian flow near the cylindrical end of 𝑊 which
coincides with the Reeb flow for 𝛼.

The Floer cochain group in degree 𝑘 is the free group on all periodic orbits
of index 𝑛 − 𝑘:
(5.4) CF𝑘 (𝐻) =

⊕
𝒙

Z · 𝒙, 𝒙 ∈ P(𝐻), 𝜇CZ (𝐻,𝒙) = 𝑛 − 𝑘, 2𝑛 = dim𝑊.

The definition of the boundary operator of the Floer complex resembles that of the
one of the Morse complex, but it is more involved. For details consult e.g. [Sei08];
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in outline this goes as follows.

1. One starts with an almost complex structure 𝐽 on 𝑊 compatible with 𝜔 on
𝑊 and with 𝑑(𝑟𝛼) on the cylindrical end. Each 𝐽 defines a compatible metric on

the tangent spaces, that is, a metric 𝑔𝐽 for which 𝑔𝐽 (𝑋,𝑌) = 𝜔(𝑋,𝑌), 𝑋,𝑌 ∈ 𝑇𝑥𝑊.

𝑥 ∈ 𝑊. This metric is used to form the covariant derivative ∇𝐽 .
2. The constructions that follow require finite dimensional moduli spaces of ”tamed”
smooth maps from the infinite cylinder R×𝑆1 to 𝑊 and which converge to the given
periodic orbit 𝒙, respectively to the periodic orbit 𝒚 when one goes to either end of
the cylinder. This only turns out to be possible if 𝐽 is general enough. In particular
one cannot expect such a 𝐽 to be integrable. More precisely, let U(𝒙,𝒚) be the

collection of smooth maps 𝑢 : R × 𝑆1 →𝑊 with the following properties:

(i) 𝑢(𝑠, 𝑡) converges to 𝒙(𝑡), respectively to 𝒚(𝑡) if 𝑠 → −∞, respectively
𝑠→∞;

(ii)
𝜕𝑠

𝜕𝑢
+ 𝐽◦ 𝜕𝑡

𝜕𝑢
= ∇𝐽𝐻.

The set U(𝒙,𝒚) admits an R action induced by the action which sends 𝜆 ∈ R to
𝑢(𝑠, 𝑡) ↦→ 𝑢(𝑠, 𝑡 + 𝜆).

Theorem 5.7. Assume that 𝜇CZ (𝐻,𝒙) > 𝜇CZ (𝐻,𝒚) and 𝐽 is sufficiently gen-
eral. Then the quotient M(𝒙,𝒚) = U(𝒙,𝒚)/R is a (non-empty) finite dimensional
topological manifold which can be compactified to an oriented smooth manifold with
corners. Furthermore, dimM(𝒙,𝒚) = 𝜇CZ (𝐻,𝒙) − 𝜇CZ (𝐻,𝒚) − 1. In particular, if
𝜇CZ (𝐻,𝒙) − 𝜇CZ (𝐻,𝒚) − 1 = 0, M(𝒙,𝒚) is a finite set of points. In that case, the
orientation gives each of the points a sign.

3. This clearly suggests to define the operator 𝜕 : CF𝑘 (𝐻) → CF𝑘+1 (𝐻) by setting

𝜕𝒚 :=
∑︁

𝒎∈M(𝒙,𝒚)
sign(𝒎) · 𝒙, 𝜇CZ (𝐻,𝒙) = 𝑛 − 𝑘 + 1, 𝜇CZ (𝐻,𝒚) = 𝑛 − 𝑘.

One can show that 𝜕◦𝜕 = 0 so that CF∗ (𝐻) becomes a cochain complex whose
cohomology groups, the Floer cohomology groups are denoted

HF𝑘 (𝑊,𝐻) = Ker(𝜕 : CF𝑘 (𝐻) → CF𝑘+1 (𝐻))
Im(𝜕 : CF𝑘−1 (𝐻) → CF𝑘 (𝐻))

.

4. Finally, to arrive at symplectic cohomology, one orders the set H of admissible
Hamiltonians as follows. Recall that every 𝐻 ∈ H looks on the cylindrical end like
𝑎𝑟 + 𝑏 for some 𝑎 > 0. Choose 𝑎 to be a non-period and denote such a Hamiltonian
by 𝐻𝑎 . The order on H is induced by the real number 𝑎 . The group

SH𝑘 (𝑊)<𝑎 = HF𝑘 (𝑊,𝐻𝑎 ).

takes care of periodic orbits having periods < 𝑎 and one can show that it is essen-
tially independent of the choice of 𝐻 as long as 𝑎 is fixed.

If 𝑎 ≤ 𝑏 there is a chain map from CF𝑘 (𝐻𝑎 ) to CF𝑘 (𝐻𝑏) defined as follows.
Pick 𝒙, 𝒚 1-periodic with respect to 𝐻𝑎 , respectively 𝐻𝑏. Choose a non-decreasing
family of admissible Hamiltonians {𝐻𝑠}, 𝑠 ∈ R, which joins 𝐻𝑎 to 𝐻𝑏 and a family
𝐽𝑠 of almost complex structures. Let B(𝒙,𝒚) be the space of smooth maps 𝑢 :

R × 𝑆1 →𝑊 with the following properties:

(i) 𝑢(𝑠, 𝑡) converges to 𝒙(𝑡), respectively to 𝒚(𝑡) if 𝑠 → −∞, respectively to
∞;
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(ii)
𝜕𝑠

𝜕𝑢
+ 𝐽𝑠◦

𝜕𝑡

𝜕𝑢
= ∇𝐻𝑠.

This set has an R-action (as before) with finite quotient B(𝒙,𝒚)/R = N(𝒙,𝒚) which
allows to define a chain map which on 𝒙 ∈ P(𝐻𝑎 ) of index 𝑛 − 𝑘 assigns a chain on
periodic orbits for 𝐻𝑏 of the same index:

𝜑𝑎𝑏 (𝒙) :=
∑︁

𝒚∈P(𝐻𝑏)
#N(𝒙,𝒚) · 𝒚.

In cohomology it induces a homomorphism 𝐻 (𝜑𝑎𝑏) : HF𝑘 (𝑊,𝐻𝑎 ) → HF𝑘 (𝑊,𝐻𝑏),
the transfer map. Passing to the direct limit then defines symplectic cohomology:

SH𝑘 (𝑊) := lim−−→
𝑎

SH𝑘 (𝑊)<𝑎 .

It can be shown that SH𝑘 (𝑊) is independent of all choices and hence it is a sym-

plectic invariant of 𝑊. If 𝑏1 (𝑊) = 0 is turns out to be also an invariant of 𝑊. Note
however that a priori non-zero groups SH𝑘 (𝑊) may occur for all integral values
of 𝑘 because this is true for the Conley–Zehnder index. Finally, as for ordinary
cohomology, one can define a graded product structure on the direct sum of these
groups, resulting in a Z-graded ring.

Summarizing the above discussion, one has:

Theorem 5.8. [Sei14, §2.5], [Vit99]

(1) The Z-graded cohomology, SH∗ (𝑊) is a symplectic invariant of 𝑊 and, if

𝑏1 (𝑊) = 0, also of 𝑊.
(2) SH∗ (𝑊) has an associative graded product giving it a graded ring structure.

This ring structure is a symplectic invariant.

Remark 5.9. Recall that if 𝜔 is the symplectic form on 𝑊 and 𝑌 is a Liouvlille
field, the contact form on the boundary 𝑆 = 𝜕𝑊 is given by 𝛼 = 𝜄𝑌𝜔. By Remark 4.16
two contact forms on the boundary of 𝑊 are related by an isotopy and hence are
contactomorphic. So, if needed, one may choose a particular contact form without
altering the symplectic cohomology of 𝑊. This will be relevant for the discussion
in Section 5.3.C .

Examples 5.10. 1. I present here a simplified version of the computation in
[Oan04, §3.2] which shows that complex unit balls 𝐵𝑛 in C𝑛 for all 𝑛 ≥ 1 have zero
symplectic cohomology. The argument exhibits the essential role of the transfer
maps.

One considers C𝑛 as the symplectic completion of 𝐵𝑛. For simplicity, consider
the symplectization of the unit sphere 𝑆2𝑛−1 ⊂ C𝑛 as the complement of the ball
∥𝑧∥2 ≤ 1 − 𝛿, 0 < 𝛿 < 1, with coordinate 𝑟 = ∥𝑧∥2. Then the Hamiltonian vector
field of the function 𝐻𝑎 ,𝑏 = 2𝑎𝑟 + 𝑏 is 2𝜋𝑎𝑋, 𝑋 the Reeb vector field for the contact
structure on the sphere of radius 𝑟. As in Example 5.4.2, the periodic orbits of
the linearized flow are given by the diagonal complex matrix diag(𝑒2𝜋𝒊𝑎𝑡, . . . , 𝑒2𝜋𝒊𝑎𝑡)
for various values of 𝑎 . Assuming that 𝑘 < 𝑎 < 𝑘 + 1 so that ⌊𝑎⌋ = 𝑘, Exam-
ple 5.2 gives Conley–Zehnder index of this orbit 𝛾𝑎 as 𝜇CZ (𝛾𝑎 ) = 𝑛(2𝑘 + 1). So
for each choice of 𝑎 ∈ (𝑘, 𝑘 + 1) this gives one generator for CF−2𝑘𝑛 (𝐻𝑎 ) due to
the convention of Eqn. (5.4). For this choice of 𝑎 the groups CF𝑗 (𝐻𝑎 ), 𝑗 ≠ −2𝑘𝑛
all vanish so that HF−2𝑘𝑛 (𝐻𝑎 ) is 1-dimensional. If 𝑏 − 𝑎 > 1 the transfer maps
HF−2𝑘𝑛 (𝐻𝑎 ) → HF−2𝑘𝑛 (𝐻𝑏) obviously do not preserve the cohomological degrees
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since the latter depend on the choice of the parameter 𝑎 . Hence in the limit the
resulting symplectic cohomology groups all vanish.
2. The arguments in [Sei08, §6b] show that for this example the symplectic coho-
mology is determined by the contact structure of the boundary, namely the sym-
plectic cohomology of a any Liouville domain of (real) dimension ≥ 4 vanishes if its
boundary is contactomorphic to the standard contact sphere.
3. In loc. cit. §3.a, one finds a few more examples, including that of an open Rie-
mann surface of genus 𝑔 ≥ 1 with one boundary component. This is shown to have
symplectic cohomology for infinitely many degrees: it has 2𝑔 generators in degrees
0, one generator in degrees −1, 2 and in degrees 4𝑘𝑔 − 2𝑘 − 1, 𝑘 = 1, 2, . . . .

5.3.C. Symplectic cohomology as a contact invariant. It is not clear
that symplectic cohomology for 𝑊 leads to a contact invariant of the boundary 𝑆,
but as explained below, a certain convexity condition does lead to contact invariants.

Observe first that the periodic orbits in the interior of 𝑊 give rise to a sub-
complex CF−∗ (𝐻) of the so-called negative symplectic chains which reduces to
the Morse chain complex for 𝐻 on 𝑊. Indeed, these orbits are constant, and so
precisely give the critical points 𝒙 of the function 𝐻 and by § 5.3.A the subcomplex
CF−∗ (𝐻) is indeed the Morse complex for 𝐻 where the Morse index of 𝐻 at 𝒙 equals
𝑛−𝜇CZ (𝒙), 2𝑛 = dim𝑊. See also [CFO10, Lemma 2.1] and formula (8) in loc. cit.

And so, comparing with the indexing (5.4) for the Floer complex, taking the
limit, and using the (dual of the) isomorphism (5.3), one obtains the usual 𝑘-th
singular cohomology group of 𝑊:

(5.5) lim−−→
𝐻∈H

𝐻𝑘 (CF∗− (𝐻)) = 𝐻𝑘 (𝑊).

So there is an induced homomorphism SH𝑘 (𝑊) → 𝐻𝑘 (𝑊) which measures de differ-
ence between Morse cohomology and symplectic cohomology. The quotient complex

CF+∗ (𝐻) = CF∗ (𝐻)/CF−∗ (𝐻)
is called the complex of the positive symplectic chains.

After taking the limit for admissable Hamiltonians the resulting cohomology,
the positive symplectic cohomology

SH𝑘
+ (𝑊) = lim−−→

𝐻∈H
𝐻𝑘 (CF∗+ (𝐻)),

is independent of the choice of admissible Hamiltonians, but a priori depends on the
contact form for the contact structure on 𝑆. For the full symplectic cohomology this
is not the case as remarked before (Remark 5.9). K. Cieliebak and A. Oancea show
in [CO18, §9] that this is also true for positive symplectic cohomology. Surprisingly,
if the contact structure on 𝜕𝑊 satisfies the following convexity condition, it does
not depend on the filling.

Definition 5.11. If the Conley–Zehder index for all period orbits 𝒙 of the
Reeb flow for some contact form 𝛼 for the contact structure 𝜉 on 𝑆 = 𝜕𝑊 satisfies
the inequality

(5.6) 𝜇CZ (𝒙) + 𝑛 − 3 > 0, 2𝑛 = dimR𝑊,

the Reeb flow is called dynamically convex and the contact manifold (𝑆, 𝜉), is
called index positive with respect to 𝛼.

The criterion then reads:
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Criterion 5.12 ([CO18, Thm. 9.17]). If the contact structure on 𝑆 is index
positive, then SH∗+ (𝑊) is independent of the symplectic filling 𝑊, that is, it is a
contact invariant of 𝑆.

From this it follows that the full symplectic cohomology groups in negative de-

grees give contact invariants for 𝑆 since SH𝑘
+ (𝑊)

≃−→ SH𝑘 (𝑊) for 𝑘 < 0. This follows
directly from the long exact sequence in cohomology for the pair (CF∗ (𝐻),CF−∗ (𝐻))
which reads

(5.7) · · · → 𝐻∗−1 (𝑊) → SH∗+ (𝑊) → SH∗ (𝑊) → 𝐻∗ (𝑊) → · · · ,
using that 𝑊 has no cohomology in degrees < 0.

By results obtained by McLean on the contribution of the Reeb orbits on the
link of a cDV-singularity discussed in the next section one can draw more detailed
conclusions in that situation. See Proposition 5.25 in the Section 5.4.

5.4. McLean’s results

1. The first of McLean’s result is a topological characterization of numerically
Gorenstein singularities which are not necessariily IHS. Recall from § 3.1 that
(𝑋,𝑥) is numerically Gorenstein if and only if for some (and hence all) resolutions
𝑌 → 𝑋 with smooth normal crossing exceptional divisors 𝐸𝑖 and for some set of
rational numbers 𝑎𝑖 the Q-divisor 𝐾𝑌 −

∑
𝑖 𝑎𝑖𝐸𝑖 is numerically trivial.

As explained in Section 4.3, the link L𝑋,𝑥 has a suitable symplectic filling which
is a Liouville domain and so the Reeb flow exists near the link, and its periodic
orbits can be investigated. Defining their Conley–Zehnder indices require these
orbits to be contractible which in general is not the case. However, the condition
that (𝑋,𝑥) be numerically Gorenstein allows to weaken this condition in view of
the following result of McLean:

Lemma 5.13 ( [McL16, Lemma 3.3]). An isolated normal singularity (𝑋,𝑥)
is numerically Gorenstein if and only if 𝑐1 (𝑇𝑋 |L𝑋,𝑥 ) ∈ 𝐻2 (L𝑋,𝑥) is torsion. In
particular this is true for canonical singularities such as cDV-singularities.

Using this, one can modifiy the usual Conley–Zehder index as explained in
[McL16, §4.1]. Suppose that for instance 𝑚 · 𝑐1 (𝑇𝑋 |L𝑋,𝑥 ) = 0 which is the case for
index 𝑚 singularities. This has the effect that all the Conley–Zehder indices belong

to
1

𝑚
Z. In particular, for an index 1 singularity, one gets integer invariants, as is

the case for isolated cDV-singularities.

2. McLean’s second result implies that the contact structure on the link deter-
mines whether the singularity is canonical or terminal, as will be explained after
having given the relevant definitions.

First, recall the following algebra-geometric notion which generalizes the
one discussed in Remark 3.5:

Definition 5.14. The minimal discrepancy md(𝑋,𝑥) of (𝑋,𝑥) equals the
infimum of min(𝑎𝑖) taken over all non-trivial divisorial resolutions 𝑌 → 𝑋 of (𝑋,𝑥)
with center 𝑥1 for which 𝐾𝑌 −

∑
𝑖 𝑎𝑖𝐸𝑖 is numerically trivial.2

1In particular, 𝜎 is not the identity.
2Recall also (Remark 3.5) that the minimal discrepancy is attained for any one resolution of

the singularity.
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The surface case has been dealt with in Example 3.2: the only canonical singu-
larities are the A-D-E singularities (with minimal discrepancy equal to 0) and the
terminal singularities are the smooth points (with minimal discrepancy equal to 1).
All other surface singularities have (possibly fractional) minimal discrepancies < 0.

As shown in Remark 3.5, smooth points have minimal discrepancy equal to
dim𝑋 − 1. A well-known conjecture states that, as for surfaces, the converse holds:

Conjecture 5.15 (Shokurov’s conjecture [Sho88, Conjecture 2]). A normal
isolated Gorenstein singularity is smooth if and only if md(𝑋,𝑥) = dim(𝑋) − 1.

In addition to surfaces this conjecture has also been shown in dimension 3 (see
Markushevich ([Mar96]) for index 1, and Y. Kawamata (appendix to [Sho92]) for
higher index).

For an isolated threefold singularity, by [Kol92, Ch. 17, Prop. 1.8] 3, two
possibilities occur:

(1) either all 𝑎𝑗 ≥ −1, and then md(𝑋,𝑥) ∈ [−1, 2] and the infimum is a
minimum;

(2) alternatively, md(𝑋,𝑥) = −∞.
For canonical singularities md(𝑋,𝑥) ≥ 0 and for terminal singularities of index

1 one has md(𝑋,𝑥) ≥ 1. As a consequence of the validity of the smoothness criterion
in terms of the minimal discrepancy in dimension 3, one has:

Proposition 5.16. Let (𝑋,𝑥) be a 3-dimensional normal (non-smooth) termi-
nal singularity of index 1, then md(𝑋,𝑥) = 1.

Next, I shall explain the central symplectic notions. Consider the symplectic
filling 𝑊 of the link (𝑆, 𝜉) = (L𝑋,𝑥, 𝜉) of the isolated normal singularity (𝑋,𝑥) with
the contact structure as described in Section 4.3. The invariant of (𝑆, 𝜉) considered
by McLean is constructed from the collection of all 1-periodic orbits 𝒙 : [0, 1] → 𝑆
of the Reeb flow. Recall that the Reeb flow is constructed from the contact form 𝛼
and different contact forms defining the same contact structure may lead to different
Reeb flows and so the Conley–Zehnder index 𝜇CZ (𝒙) of an orbit of the Reeb flow,
as given in Definition 5.3, also depends on the chosen contact form 𝛼. So a contact
invariant of the link of (𝑋,𝑥) has to take all of these into account, which leads to
the following invariant introduced by McLean, the highest minimal index:

Definition 5.17. Set i(𝒙) := 𝜇CZ (𝒙) + (𝑛 − 3). Then the minimal index of
the Reeb flow for 𝛼 is defined as

mi(L𝑋,𝑥,𝛼) := inf
𝒙

i(𝒙).

Then the highest minimal index is defined as

hmi(L𝑋,𝑥, 𝜉) := sup
𝛼

mi(L𝑋,𝑥,𝛼),

where the supremum is taken over all contact forms 𝛼 with Ker𝛼 = 𝜉 (but one
needs to preserve the orientation of 𝑇𝑋 |𝜉).

Remark 5.18. (a) If one chooses the form 𝛼 such that mi(𝛼) = hmi(L𝑋,𝑥, 𝜉),
the definition of the minimal index and the highest minimal index implies that

3Kollár considers also blow-ups in centers that strictly contain the singular locus, while in
the present situation only points are blown up. This explains the different upper bound.
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for all orbits 𝒙 of the associated Reeb flow the Conley–Zehder index satisfies the
inequality

𝜇CZ (𝒙) + 𝑛 − 3 ≥ hmi(L𝑋,𝑥, 𝜉).
Consequently, recalling (5.6), hmi(L𝑋,𝑥, 𝜉) > 0 implies that the contact manifold is
index positive with respect to 𝛼 in the sense of Definition 5.11.
(b) Orbits for which linearized return map 𝐷 has eigenvalue 1 are sometimes
excluded, but in deformation arguments these come up and in order to make
the highest minimal index well behaved, one subtracts the correction term 𝛿 =
1
2 dimKer(𝐷 − id) in the definition of i(𝒙). Since 2𝛿 counts the multiplicity of the

eigenvalue 1 of the linear symplectic automorphism �̃� |𝜉 on a vector space of dimen-
sion 2𝑛 − 2 which is a symplectic subpace, it has indeed even dimension so that
0 ≤ 𝛿 ≤ 𝑛 − 1 with equality 𝛿 = 𝑛 − 1 if and only if 𝐷 |𝜉 = id.

McLean’s main result [McL16, Thm. 1.1] reads as follows:

Theorem 5.19. Let (𝑋,𝑥) be a normal isolated numerically Q-Gorenstein sin-
gularity with 𝐻1 (L𝑋,𝑥,Q) = 0. Then:

• if md(𝑋,𝑥) ≥ 0, then hmi(L𝑋,𝑥, 𝜉) = 2md(𝑋,𝑥);
• if md(𝑋,𝑥) < 0, then hmi(L𝑋,𝑥, 𝜉) < 0.

In particular, the contact structure on the link determines whether the singularity
is canonical (md(𝑋,𝑥) ≥ 0) or terminal (md(𝑋,𝑥) > 0).

In view of Remark 5.18(a) this implies:

Corollary 5.20. Any a normal isolated numerically Q-Gorenstein singularity
(𝑋,𝑥) with 𝐻1 (L𝑋,𝑥,Q) = 0 (e.g. a cDV-singularity) has an index positive link if
and only if it is terminal.

Example 5.21 (The standard sphere 𝑆2𝑛−1 with contact structure 𝜉).
Example 5.5 makes it plausible that hmi(𝜉) = 2(𝑛 − 1). Since it is the link of a
smooth point in an 𝑛-dimensional complex algebraic variety 𝑋 for which md(𝑋, 0) =
𝑛−1, Theorem 5.19 shows that indeed hmi(𝜉) = 2(𝑛−1). This seems quite difficult
to show directly, since the Reeb orbits for 𝑓𝛼 are difficult to control (here 𝛼 is
the standard contact form and 𝑓 : 𝑆2𝑛−1 → R is an everywhere positive smooth
function).

Example 5.21 together with Theorem 5.19 suggest a conjectural Mumford-type
result (cf. Theorem 2.11). This is true dimension 3:

Corollary 5.22. If Shokurov’s conjecture holds, then a normal Gorenstein
singularity (𝑋,𝑥) is smooth if and only if its link is contactomorphic to the standard
sphere 𝑆2𝑛−1 ⊂ C𝑛. So this is in particular true for 𝑛 = 2 and 𝑛 = 3.

Coming back to surfaces, this gives a symplectic proof of Mumford’s result
stated here as Theorem 2.11:

Corollary 5.23 ([McL16, p. 508]). A normal surface germ (𝑋,𝑥) is smooth
if and only if its link is simply-connected, i.e., homeomorphic to 𝑆3.

Proof. Suppose that the link is homeomorphic to 𝑆3. Then (by the now
proven Poincaré conjecture) it is also diffeomorphic to 𝑆3. Using a desingularization
of (𝑋,𝑥) Theorem 4.18 shows that the link is strongly Milnor fillable and so by the
classification of contact structures on 𝑆3 as discussed in Example 1.11.(1) the link
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𝑆3 can be assumed to have its standard contact structure. Then, since Shokurov’s
conjecture holds here, Corollary 5.22 implies that (𝑋,𝑥) is a smooth germ. □

3. Finally I shall explain some further consequences of Theorem 5.19 for the
contact geometry of the link of an isolated 3-dimensional terminal singularity of
index 1. The link of such singularities is index positive, but since by Proposition 5.16
such a singularity has minimal discrepancy 1, McLean’s theorem together with the
validity of Shokurov’s conjecture in this case gives a stronger inequality for the
Conley–Zehnder indices:

Corollary 5.24. For a 3-dimensional isolated terminal singularity of index 1
(so in particular for a cDV-singularity) one has hmi(L𝑋,𝑥, 𝜉) = 2 and so 𝜇CZ (𝒙) ≥ 2
for all periodic orbits 𝒙 of the Reeb flow for the contact form which realizes the
highest minimal index.

This result has consequences for the symplectic cohomology of Milnor fibers of
a cDV-singularity:

Proposition 5.25. For a cDV-singularity (𝑋,𝑥) with Milnor number 𝜇, one
has

• SH𝑘
+ (F𝑋,𝑥) is a contact invariant;

• SH𝑘
+ (F𝑋,𝑥) = SH𝑘 (F𝑋,𝑥) for 𝑘 < 0 and SH𝑘

+ (F𝑋,𝑥) = 0 for 𝑘 ≥ 2;

• SH𝑘 (F𝑋,𝑥) = 0 for 𝑘 = 2, 𝑘 ≥ 4;
• rank(SH3 (F𝑋,𝑥)) = 𝜇.

Proof. Since the link of a cDV-singularity is index positive, Criterion 5.12
states that SH𝑘

+ (F𝑋,𝑥) is a contact invariant for the contact structure on the link.
By Remark 5.9 one may then assume that the contact form on the link is the one
realizing hmi(L𝑋,𝑥). Note that any Reeb orbit with 𝜇CZ (𝒙) = 3 − ℓ on the link
contributes only to positive symplectic cohomology in degree ℓ. Corollary 5.24
states that 𝜇CZ (𝒙) ≥ 2 for all periodic Reeb orbits for the chosen contact form for
the link and so SH𝑘

+ (F𝑋,𝑥) = 0 for 𝑘 ≥ 2. Now invoke the long exact sequence (5.7)

to deduce that SH𝑘 (F𝑋,𝑥) = 0 for 𝑘 = 2, 𝑘 ≥ 4, SH3 (F𝑋,𝑥) ≃ 𝐻3 (F𝑋,𝑥), where we use
that the Milnor fiber of a three-dimensional IHS having the homotopy type of a
3-sphere, only has cohomology in ranks 0 and 3. □





CHAPTER 6

Matrix factorizations and Hochschild cohomology

Introduction

Since direct calculation of symplectic cohomology is often not possible, in re-
cent years a roundabout way has been proposed which gives a route to calculate
symplectic cohomology for the Milnor fiber of several classes of invertible matrix
singularities. In outline this goes as follows.

(a) One first applies the classical theory of matrix factorizations. One can
assign many matrix factorizations to a given IHS, but there is one that
plays a predominant role, its Koszul matrix factorization. All matrix
factorizations come with their cohomology. It should be considered as a
first rough invariant. of the IHS.

(b) The next step is to reinterpret this invariant via Hochschild cohomology.
This is quite intricate and uses the entire category of matrix factorizations
of a given IHS. Indeed, the supplementary structure of dg-category allows
to apply the machinery of categorical Hochschild cohomology.

(c) For invertible matrix singularities one refines Koszul cohomology in such
a way that the extra symmetry of these singularities is reflected therein.
This step uses equivariant matrix factorizations. For many classes of in-
vertible matrix singularities the resulting refined Hochschild cohomology
has been calculated.

(d) The categorical framework allows comparison with other categories as-
sociated to invertible matrix singularities which are rich enough so that
Hochschild cohomology makes sense for them. These categories are rel-
evant because their Hochschild cohomology is precisely the symplectic
cohomology of the Milnor fiber of that singularity.1 The associated homo-
topy categories are conjecturally equivalent to the homotopy categories
of equivariant matrix factorizations (for any given invertible matrix sin-
gularity, or its ”dual”). Since these conjectures have been shown to hold
under easily verifiable conditions, the refined Hochschild cohomology in
these cases – for which there is an explicit formula – is thus the same as
the symplectic cohomology.

In this, admittedly long chapter only steps (a)–(c) will be dealt with. Sec-
tions 6.1 and 6.2 treat step (a). This basically reports on D. Eisenbud’s original
treatment [Eis80] of matrix factorizations. The categorical reformulation of step
(b) is due to T. Dyckerhoff in [Dyc11]. The main ideas from loc. cit. will be
explained in Section 6.4 after the preliminary Section 6.3.

1Rather, of the ”dual” singularity associated to the transpose matrix.

59
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The chapter ends with a brief summary the calculation of Hochschild cohomol-
ogy in the equivariant setting, with the necessary details in the case of invertible
matrix singularities. This will be further detailed in Chapter 8.

Step (d) will be briefly explained in a later chapter; see in particular Section 8.2.

Up to now IHSs have been defined by polynomials 𝑤 ∈ C[𝑥1, . . . ,𝑥𝑚] vanishing in
the origin, but only the germ of 𝑤 at the origin is of importance. The maximal ideal
(𝑥1, . . . ,𝑥𝑚) corresponding to the origin thus plays a special role. In the algebraic setting
of a polynomial ring 𝑅 = 𝑘[𝑥1, . . . ,𝑥𝑚] over any algebraically closed field 𝑘 the maximal
ideal 𝔪 = (𝑥1, . . . ,𝑥𝑚) is called the irrelevant ideal. 𝑆 = 𝑅/𝑤 is the ring of functions on
the IHS given by {𝑤 = 0}.

Much of what follows can be rephrased in terms of local rings (𝑅,𝔪), where 𝑤 ∈ 𝔪.

For instance, the 𝔪-adic completion of 𝑅 = 𝑘[𝑥1, . . . ,𝑥𝑚] is the ring 𝑅 := 𝑘[[𝑥1, . . . ,𝑥𝑚]] of
formal power series in 𝑥1, . . . ,𝑥𝑚. It is a regular local ring in which the irrelevant ideal

now becomes the maximal ideal. If 𝑘 = C, and using the usual (classical) topology), one

can work in the local ring O0, of germs at 0 of holomorphic functions on C𝑚 in which the

irrelevant ideal is the maximal ideal and 𝑤 = 0 then defines an IHS. The ring O0 is not

only local, it is the subring of C[[𝑥1, . . . ,𝑥𝑚]] consisting of convergent power series.

6.1. Basics on matrix factorizations

6.1.A. Matrix factorizations are related to singularities. Consider an
IHS defined by a polynomial 𝑤 ∈ 𝑅 = 𝑘[𝑥1, . . . ,𝑥𝑚] with an isolated singularity at

the origin. Then 0→ 𝑅
·𝑤−−→ 𝑅 → 𝑆 := 𝑅/(𝑓) is a minimal free 𝑅-resolution of 𝑆 as

an 𝑅-module. Setting 𝑑1 = 𝑤 · id𝑅 and 𝑑0 = id𝑅, one has 𝑑1◦𝑑0 = 𝑑0◦𝑑1 = 𝑤 · id.
This is an example of a matrix factorization of 𝑤:

Definition 6.1. Let (𝑅,𝔪) be as above and let 𝑤 ∈ 𝔪. Then

(i) A matrix factorization of 𝑤 is a free Z/2-graded 𝑅-module 𝑋 of finite
rank equipped with an odd degree 𝑅-linear map 𝑑 : 𝑋 → 𝑋 such that

𝑑◦𝑑 = 𝑤 · id. In other words, 𝑋0
𝑑0−−→ 𝑋1 and 𝑋1

𝑑1−−→ 𝑋0 with 𝑑1◦𝑑0 =

𝑑1◦𝑑0 = 𝑤 · id (as above).
(ii) A morphism 𝜑 : (𝑋,𝑑) → (𝑌,𝑑′) of matrix factorizations is a Z/2-graded

map 𝜑 such that 𝜑◦𝑑′ = 𝑑◦𝜑.

Choosing a basis of the free 𝑅 modules 𝑋0 and 𝑋1 makes clear where the
terminology originates from: a matrix factorization of 𝑤 ∈ 𝑅 is represented by a
matrix of rank 2𝑘, 𝑘 = rank𝑋0 = rank𝑋1,

(𝐴,𝐵) :=
(
0 𝐴
𝐵 0

)
𝐴,𝐵 ∈ 𝑅𝑘×𝑘, such that 𝐴𝐵 = 𝐵𝐴 = 𝑤 𝐼𝑘.

Example 6.2. (i) The zero matrix factorization : 𝑋0 = 𝑋1 = 𝑅, 𝑑0 =

𝑑1 = 0, is the matrix factorization of 0 ∈ 𝑅. Note that there is no matrix
factorization of 1 since 1 ∉ 𝔪.

(ii) Consider the double point 𝑥𝑦 = 0 in C2. Setting 𝑅 = C[[𝑥, 𝑦]], 𝑆 = 𝑅/(𝑥𝑦),
the double point admits a matrix-factorization

(𝑥, 𝑦) = ©« 0 // 𝑅
𝑥
((
𝑅

𝑦

hh 𝑝
// 𝑅/(𝑥𝑦) ª®¬ .
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The operation of ”adding a double point” to an IHS at 0 given by a
polynomial 𝑤 ∈ C[𝑥1, . . . ,𝑥𝑚] consists of replacing 𝑤 by 𝑤 + 𝑥𝑦 ∈ 𝑅 =

C[𝑥1, . . . ,𝑥𝑚,𝑥, 𝑦]. If (𝐴,𝐵) gives a matrix factorization for 𝑤, then((
𝑥𝐼𝑘 𝐴
𝐵 −𝑦𝐼𝑘

)
,

(
𝑦𝐼𝑘 𝐴
𝐵 −𝑥𝐼𝑘

))
=

©«
0 0 𝑥𝐼𝑘 𝐴
0 0 𝐵 −𝑦𝐼𝑘
𝑦𝐼𝑘 𝐴 0 0
𝐵 −𝑥𝐼𝑘 0 0

ª®®®¬ ∈ 𝑅
2𝑘,2𝑘

gives a matrix factorization of 𝑤 + 𝑥𝑦.

6.1.B. A geometric incarnation of matrix factorizations. Ultimately
one wants to apply this to IHS’s, geometric objects, and indeed, a geometric flavor
can be given to the above construction, if instead of free 𝑅-modules of finite rank,
one considers vector bundles over affine 𝑛-space A𝑛, or, more precisely, locally free
OA𝑛 -modules. So one replaces 𝑅 = C[𝑥1, . . . ,𝑥𝑛] with the sheaf of regular functions
on the space Spec(𝑅) = A𝑛.

A matrix factorization for a degree 𝑑 polynomial 𝑤 is a pair (E•,𝑑) consisting
of a Z/2-graded vector bundle E• = E0 ⊕ E1 and two vector bundle morphisms2

𝑑0 : E0 → E1 (𝑑) and 𝑑1 : E1 → E0 such that 𝑑0◦𝑑1 = 𝑤 · id and 𝑑1◦𝑑0 = 𝑤 · id ⊗ 1.
Clearly, the preceding incarnation is the special case where the vector bundles are
direct sums of line bundles (these are all isomorphic to OA𝑛 (𝑑)) since morphisms
between such vector bundles are given by matrices of polynomials.

More generally, replacing in he above definition A𝑛 with any variety (or a
scheme) 𝑋 and 𝑤 by a section 𝑤 of a line bundle L on 𝑋, one obtains the definition
of a matrix factorization of 𝑤.

6.1.C. Relation with maximal Cohen–Macaulay modules. First recall
two basic concepts for finitely generated modules𝑀 over a regular local ring (𝑅,𝔪).
A sequence (𝑥1, . . . ,𝑥𝑘), 𝑥𝑖 ∈ 𝑅, 𝑖 = 1, . . . , 𝑘, is called 𝑀-regular if 𝑥𝑖 is a nonzero
divisor in 𝑀/(𝑥1, . . . ,𝑥𝑖−1)𝑀 for all 𝑖 = 1, . . . , 𝑘. The projective dimension (abbre-
viated below as ”pd”) and the depth of 𝑀 are then defined as follows:

pd𝑅 (𝑀) = length of a minimal 𝑅-free resolution of 𝑀,

depth(𝑀) = maximal length of an 𝑀-regular sequence.

These are related as follows:

Theorem (Auslander–Buchsbaum [Eis95, Thm. 19.9]). If 𝑅 is a regular local
ring, then pd𝑅 (𝑀) = dim(𝑅) − depth(𝑀).

Suppose that the 𝑅-module𝑀 is an 𝑆 = 𝑅/𝑤𝑅-module for some 𝑤 ∈ 𝔪 such that
depth(𝑀) = dim(𝑆) = dim(𝑅) − 1, then the above theorem shows that pd𝑅 (𝑀) = 1.
The 𝑆-module 𝑀 is then called a maximal Cohen–Macaulay 𝑆-module . By

assumption there is a minimal free 𝑅-resolution 0 → 𝑋0
𝑑0−−→ 𝑋1 → 𝑀 and since

𝑤 ·𝑀 = 0 one can construct 𝑑1 : 𝑋1 → 𝑋0 such that 𝑑0◦𝑑1 = 𝑤 · id:

0 // 𝑋0

𝑑0 **
𝑋1

𝑑1

jj 𝑝
// 𝑀 , 𝑑0◦𝑑1 = 𝑤 · id.

2Degree 𝑑 polynomials are sections of the line bundle OA𝑛 (𝑑), and as usual, for any vector
bundle E, one sets E(𝑑) := E⊗A𝑛 (𝑑).
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Then from the injectivity of 𝑑0 one derives that also 𝑑1◦𝑑0 = 𝑤 · id. It follows that
𝑋0 and 𝑋1 have the same rank and so 𝑑0 and 𝑑1 are represented by square matrices
of the same size. So this shows:

Lemma 6.3. Let (𝑅,𝔪) be a regular local ring, 𝑤 ∈ 𝔪 and 𝑆 = 𝑅/(𝑤), A
maximal Cohen–Macaulay module 𝑀 over 𝑆 gives a canonical matrix factorization

of 𝑤 over 𝑅, 𝑋0

𝑑0 **
𝑋1

𝑑1

jj with Coker 𝑑0 = 𝑀.

Remark 6.4. Note that 𝑀, considered as an 𝑆-module receives a 2-periodic free
resolution

· · ·
𝑑𝑘+1−−−−→ 𝑋𝑘

𝑑𝑘−−→ 𝑋𝑘−1 𝑑𝑘+1−−−−→ · · ·
𝑑1−−→ 𝑋0 → 𝑀 → 0,

where 𝑋𝑘 = 𝑋0 ⊗𝑅 𝑆 for 𝑘 even, 𝑋𝑘 = 𝑋1 ⊗𝑅 𝑆 if 𝑘 is odd, and the 𝑑𝑘 are induced
by 𝑑0 and 𝑑1. Note that this is a complex since 𝑑0◦𝑑1 = 𝑑1◦𝑑0 = 𝑤 · id is zero in 𝑆.

6.2. Koszul matrix factorizations

The basic constructions leading to the relevant matrix factorizations can be
performed over an arbitrary commutative ring 𝑅 with a unit 1. The point of de-
parture is a free 𝑅-module of rank 𝑘 with given basis 𝒆1, . . . , 𝒆𝑘 and an 𝑅-module
homomorphism 𝜑 : 𝑁 → 𝑅. This defines a Koszul sequence after identifying 𝜑
with the corresponding row-vector 𝒇 = (𝑓1, . . . ,𝑓𝑘):

𝑁• (𝒇) := {0→ Λ𝑘𝑁
𝛿𝒇
−−→ Λ𝑘−1𝑁 → · · · → Λ2𝑁

𝛿𝒇
−−→ 𝑁},

where 𝛿𝒇 is the 𝑅-linear map given on Λ𝑗𝑁 by

(6.1) 𝛿𝒇 (𝑒𝑖1 ∧ · · · ∧ 𝒆𝑖𝑗 ) =
𝑗∑︁

𝑚=1

𝑓𝑖𝑗 (−1)𝑚−1𝒆𝑖1 ∧ · · · 𝑒𝑖𝑚 · · · ∧ 𝒆𝑖𝑗 .

The derivations actually do not depend on the choice of a basis for 𝑁 and 𝛿𝒇◦𝛿𝒇 = 0.
The indexing is chosen such that the complex starts at degree −𝑘 and ends at degree
0 with 𝑁. Then the cohomology groups 𝐻𝑚 (𝑁• (𝒇)) vanish for 𝑚 > 0 and 𝑚 < −𝑘.
If 𝒇 = 𝑓1, . . . ,𝑓𝑘) is an 𝑅-regular sequence, only 𝐻0 survives and equals the quotient
ring 𝑅/(𝑓1, . . . ,𝑓𝑘). In other words:

Lemma 6.5. Suppose that 𝒇 = (𝑓1, . . . ,𝑓𝑘) is an 𝑅-regular sequence. Then
the Koszul sequence 𝑁• (𝒇) is a resolution of the 𝑅-module 𝑅/(𝑓1, . . . ,𝑓𝑘), that is,
𝐻0 (𝑁• (𝒇)) = 𝑅/(𝑓1, . . . ,𝑓𝑘) and 𝐻 𝑖 (𝑁• (𝒇)) = 0 for 𝑖 ≠ 0.

There is also a dual version, using a vector in 𝑁 which one identifies with a
column-vector 𝒈T ∈ ⊕𝑘𝑅,

𝑁• (𝒈T) := {Λ𝑘𝑁
𝑑𝒈
←−− Λ𝑘−1𝑁 ← · · · ← ∧2𝑁

𝑑𝒈
←−− 𝑁 ← 0},

where one reverses the arrows and defines

𝑑𝒈 (𝑦) = 𝒈 ∧ 𝑦, 𝑦 ∈ ∧𝑗𝑁, 𝑗 = 0, . . . , 𝑘 − 1.
Considering this as a cohomological complex starting at degree −𝑘, there is only
cohomology in degrees −𝑘, . . . , 0. If (𝑔1, . . . , 𝑔𝑛) is an 𝑅-regular sequence, then only
𝐻0 (𝑁• (𝒈)) = 𝑅/(𝑔1, . . . , 𝑔𝑘) survives. Here one uses the isomorphisms Λ𝑘𝑁 ≃ 𝑅,
and Λ𝑘−1𝑁 ≃ 𝑁.
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Observe also that

𝑑𝒈◦𝛿𝒇 + 𝛿𝒇◦𝑑𝒈 = (𝒇 · 𝒈T) · id𝑅(6.2)

which defines a homotopy operator.

Example 6.6. (1) Let 𝑅 = C[𝑥1, . . . ,𝑥𝑚] and let 𝑁 = 𝑅𝑚. Assume that
𝑓1, . . . ,𝑓𝑚 is an 𝑅-regular sequence. Then 𝐻𝑘 (𝑁• (𝒇)) = 0 if 𝑘 ≠ 0 and
𝐻0 (𝑁• (𝒇)) = 𝑅/(𝑓1, . . . ,𝑓𝑚). In particular, if 𝑓 = 0 has an IHS at 0, then
the partial derivatives of 𝑓 form an 𝑅-regular sequence and the Jacobian
ring reappears as the cohomology of the associated Koszul complex:

Jac𝑓 = 𝐻0 (𝑁• (𝒇)), 𝑁 = 𝑅𝑒1 ⊕ 𝑅𝑒2 ⊕ · · · ⊕ 𝑅𝑒𝑚, 𝜑(𝑒𝑗) =
𝜕𝑓

𝜕𝑥𝑗
.

(2) (See D. Eisenbud [Eis80, Sect. 7]) Let there be given a commutative
regular local ring 𝑅 with an 𝑅-regular sequence 𝒇 = (𝑓1, . . . ,𝑓𝑚) and let
𝑤 be an element in the ideal 𝐼 = (𝑓1, . . . ,𝑓𝑚), say 𝑤 = 𝒇 · 𝒈T where
𝒈 = (· · · , 𝑔𝑗 , · · · ) is row vector in 𝑅𝑒1 ⊕ · · · ⊕ 𝑅𝑒𝑚. This free 𝑅-module
receives a Z/2-grading by declaring |𝑒𝑗 | = 1, 𝑗 = 1, . . . ,𝑚, |𝑟 | = 0 for 𝑟 ∈ 𝑅.
This induces a degree on wedge-products by reducing mod 2. The Koszul
matrix factorization of 𝑤 = 𝒇 · 𝒈T is defined as

(6.3) {𝒇,𝒈} :=
©« 0 // (Λ•𝑁)0

𝛿𝒇+𝑑𝒈 --
(Λ•𝑁)1

𝛿𝒇+𝑑𝒈
mm 𝒇

// 𝑅/𝑤𝑅
ª®®¬ .

It is indeed a matrix factorization for 𝑤 with Coker𝒇 = 𝑅/(𝑓1, . . . ,𝑓𝑚),
since (𝛿𝒇 + 𝑑𝒈) (𝛿𝒇 + 𝑑𝒈) = 𝑑𝒈◦𝛿𝒇 + 𝛿𝒇◦𝑑𝒈 = 𝑤 · id by (6.2).

6.3. Matrix factorizations form a dg-category

6.3.A. Some basic constructions. Fix a commutative ring 𝑅 with unit 1.
Recall that a complex (𝑋•,𝑑•) of 𝑅-modules is a Z-graded 𝑅-module equipped with
a degree 1 derivation 𝑑• : 𝑋• → 𝑋•+1, A homogeneous element 𝑥 ∈ 𝑋• by definition
belongs to some graded piece 𝑋𝑝, and 𝑝 = deg 𝑥 is called the degree of 𝑥.

Definition 6.7. The category 𝐶 (𝑅) of 𝑅-complexes has for its objects com-
plexes of 𝑅-modules. A morphism 𝑓 : 𝑋• → 𝑌• in 𝐶 (𝑅) is a degree-preserving
𝑅-linear map respecting the differentials.

Note that there are also maps 𝑋• → 𝑌•+𝑑 between complexes of any degree
𝑑 ∈ Z. These give 𝐶 (𝑅) an enriched structure, that of a dg-category to be defined
below in § 6.3.B. Let me observe here only that 𝐶 (𝑅) is a so-called tensor category,
that is, one has a tensor product of two complexes defined by

(𝑋•⊗𝑌•)𝑘 =
⊕
𝑎+𝑏=𝑘

𝑋𝑎 ⊗𝑌𝑏, 𝑑𝑋•⊗𝑌𝑣 (𝑥⊗𝑦) = 𝑑𝑋𝑥⊗𝑦+ (−1)𝑎𝑥⊗𝑑𝑌𝑦, 𝑥 ∈ 𝑋𝑎 , 𝑦 ∈ 𝑌𝑏.

The tensor product 𝑓 ⊗ 𝑔 : 𝑋• ⊗ 𝑌• → (𝑋′)• ⊗ (𝑌′)• is defined as

(6.4) 𝑓 ⊗ 𝑔(𝑥 ⊗ 𝑦) = (−1)𝑝𝑞𝑓(𝑥) ⊗ 𝑔(𝑦), deg 𝑔 = 𝑝, deg 𝑦 = 𝑞.

This sign-rule is known as the Koszul sign convention .
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6.3.B. Introducing dg-categories. A category 𝐴 is a dg-category (over
𝑅) if

(1) For all objects 𝑋,𝑌 of 𝐴 the set 𝐴(𝑋,𝑌) of morphisms from 𝑋 to 𝑌 is
a complex of 𝑅-modules, i.e., 𝐴(𝑋,𝑌) is an object in 𝐶 (𝑅). Moreover,
𝑑(id𝑋) = 0, where id𝑋 ∈ 𝐴0 (𝑋,𝑋).

(2) The composition 𝐴(𝑍,𝑌) ⊗𝑅 𝐴(𝑋,𝑌)
𝜇𝑋,𝑌,𝑍

−−−−−→ 𝐴(𝑋,𝑍) (tensor product as
graded 𝑅-modules) is a morphism of complexes of 𝑅-modules, that is,
𝑑(𝑓 ⊗ 𝑔) maps to 𝑑(𝑓◦𝑔). Moreover, the composition is associative, i.e.,

𝜇𝑊,𝑌,𝑍 ◦ (id𝐴(𝑌,𝑍) ⊗ 𝜇𝑊,𝑋,𝑌) = 𝜇𝑊,𝑋,𝑍 ◦ (𝜇𝑋,𝑌,𝑍 ⊗ id𝐴(𝑊,𝑍)).

The associated homotopy category [𝐴] has the same objects as 𝐴 but the mor-
phisms are the homotopy classes of morphisms in 𝐴(𝑋,𝑌).

Example 6.8. 1. A differential graded 𝑅-algebra 𝐴 is a Z-graded associa-
tive 𝑅-algebra 𝐴 = ⊕𝑗∈Z𝐴𝑗 with algebra derivations 𝑑 of degree 1, that is,

𝑑 : 𝐴𝑗 → 𝐴𝑗+1, 𝑑◦𝑑 = 0 and 𝑑(𝑎𝑏) = 𝑑𝑎 · 𝑏 + (−1)𝑗𝑎 · 𝑑𝑏 for all 𝑎 ∈ 𝐴𝑗 , 𝑏 ∈ 𝐴
(the graded Leibniz rule). This can be made into a 𝑑𝑔-category 𝐴 with
one object, 𝐴, viewed as an 𝑅-module, whose morphism are the elements
of the algebra 𝐴. Its structure as a differential graded algebra makes 𝐴 a
dg-category. Note that for this to be a dg-category, the Leibniz rule is not
required.

2. Another basic example is obtained by transforming 𝐶 (𝑅) into a dg-category:
The category 𝐶𝑑𝑔 (𝑅) has the same objects and morphisms as 𝐶 (𝑅). The extra
structure comes from observing that the direct sum

⊕
𝑑∈ZHom𝑑

𝑅 (𝑋•,𝑌•) of
𝑅-homomorphisms 𝑋• → 𝑌•+𝑑 of all degrees receives a derivation from the
derivations on 𝑋• and on 𝑌•:

𝑑(𝑓) = 𝑑𝑌◦𝑓 − (−1)𝑛𝑓◦𝑑𝑋 ∈ Hom𝑑+1
𝑅 (𝑋•,𝑌•), ∀𝑓 ∈ Hom𝑑 (𝑋•,𝑌•).

In this way, Hom• (𝑋•,𝑌•) becomes a complex, the hom-complex associated
to (𝑋•,𝑌•). Usually, in a 𝑑𝑔-category one just focusses solely on their hom-
complexes.

6.3.C. The dg-category of matrix factorizations of 𝑤. Recall that a
matrix factorization of 𝑤 is a free Z/2-graded 𝑅-module 𝑋 of finite rank equipped
with an odd degree 𝑅-linear map 𝑑 : 𝑋 → 𝑋 such that 𝑑◦𝑑 = 𝑤 · id. These
are the objects of 𝑀𝑎𝑡𝑓

𝑅,𝑤
. If one allows arbitrary free 𝑅-modules, these are the

objects of 𝑀𝑎𝑡𝑓∞
𝑅,𝑤

. As in Example 6.8.(2) there are associated hom-complexes

Hom•𝑅 (𝑋,𝑌). Taking into account the Z/2-grading, such complexes have essentially

two components, Hom0
𝑅 (𝑋,𝑌) and Hom1

𝑅 (𝑋,𝑌) and two differentials

Hom0
𝑅 (𝑋,𝑌)

𝑑0

--
Hom1

𝑅 (𝑋,𝑌)
𝑑1

mm

given by (𝑑0𝑓)𝑚 = 𝑑𝑌 𝑓𝑚 − 𝑓𝑚+1 𝑑𝑋 and (𝑑1𝑔)𝑚 = 𝑑𝑌 𝑔𝑚 + 𝑔𝑚+1 𝑑𝑋 . Now 𝑋 and 𝑌
are not complexes, but note that 𝑑1◦𝑑0𝑓 = 0, for instance,

(𝑑1◦𝑑0𝑓)0 = (𝑑𝑌◦𝑑𝑌◦𝑓0 − 𝑑𝑌◦𝑓1◦𝑑𝑋) + (𝑑𝑌◦𝑓1◦𝑑𝑋 − 𝑓0◦𝑑𝑋◦𝑑𝑋) = 0,
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since 𝑑𝑋◦𝑑𝑋 = 𝑑𝑌◦𝑑𝑌 = 𝑤 · id. The resulting hom-complex being Z/2-graded
is denoted HomZ/2𝑅 (𝑋,𝑌). In the remainder of these notes, also the categori-

cal notation 𝑀𝑎𝑡𝑓
𝑅,𝑤
(𝑋,𝑌) is employed, instead of HomZ/2𝑅 (𝑋,𝑌). Note that in

the homotopy category [𝑀𝑎𝑡𝑓
𝑅,𝑤
] the complex HomZ/2𝑅 (𝑋,𝑌) gets replaced by

[𝑋,𝑌] = 𝐻0 HomZ/2𝑅 (𝑋,𝑌).

Example 6.9 (The Koszul matrix factorization revisited). Consider the Koszul
matrix factorization {𝒇,𝒈} of 𝑤 given by (6.3) which is associated to an 𝑅-regular
sequence 𝒇 of length𝑚 and for which 𝑤 = 𝒇·𝒈T. Place it in the dg-category𝑀𝑎𝑡𝑓

𝑅,𝑤

which consists of one object Λ•𝑁, where𝑁 = ⊕𝑚𝑗=1𝑅𝑒𝑗 , and has𝑀𝑎𝑡𝑓
𝑅,𝑤
(Λ•𝑁,Λ•𝑁) =

End𝑅 ({𝒇,𝒈}) as its hom-complex . Note that the latter 𝑅-algebra itself can also be
considered as a (Z/2-graded) dg-category with one object and with endomorphism
algebra End𝑅 ({𝒇,𝒈}). As such it is full subcategory of 𝑀𝑎𝑡𝑓

𝑅,𝑤
.

6.3.D. Tensors and matrix factorizations. The tensor product of two ma-
trix factorizations is defined using signs as for complexes:

Definition 6.10 (Tensor products of matrix factorizations). Let (𝑋,𝑑𝑋)
be a matrix factorization of 𝑤 and (𝑌,𝑑𝑌) a matrix factorization of 𝑤′ over 𝑅. Put

𝑍0 = 𝑋0 ⊗𝑅 𝑌0 ⊕ 𝑋1 ⊗𝑅 𝑌1, 𝑍1 = 𝑋0 ⊗𝑅 𝑌1 ⊕ 𝑋1 ⊗𝑅 𝑌0

𝑑𝑍0 (𝑥0 ⊗ 𝑦0) = 𝑑𝑋0 (𝑥0) ⊗ 𝑦0 + 𝑥0 ⊗ 𝑑𝑌0 𝑦0, 𝑑𝑍0 (𝑥1 ⊗ 𝑦1) = 𝑑𝑋1 (𝑥1) ⊗ 𝑦1 − 𝑥1 ⊗ 𝑑𝑌1 𝑦1
𝑑𝑍1 (𝑥0 ⊗ 𝑦1) = 𝑑𝑋0 (𝑥0) ⊗ 𝑦1 + 𝑥0 ⊗ 𝑑𝑌1 𝑦1, 𝑑𝑍1 (𝑥1 ⊗ 𝑦0) = 𝑑𝑋1 (𝑥1) ⊗ 𝑦0 − 𝑥1 ⊗ 𝑑𝑌0 𝑦0.

Then (𝑍,𝑑𝑍) = (𝑋,𝑑𝑋) ⊗ (𝑌,𝑑𝑌) is a matrix factorization of 𝑤𝑍 = −𝑤 ⊗ 1 + 1 ⊗ 𝑤′.
Indeed, the signs are such that 𝑑𝑍0 𝑑

𝑍
1 = 𝑑𝑍1 𝑑

𝑍
0 = −𝑤 ⊗ 1 + 1 ⊗ 𝑤′.

In particular, the tensor product does not preserve 𝑀𝑎𝑡𝑓
𝑅,𝑤

.

Observe that the hom-construction HomZ/2𝑅 (𝑋,𝑌) applies also in the situation
where 𝑋 gives a matrix factorization of 𝑤 ∈ 𝑅 and 𝑌 gives a matrix factorization
of 𝑤′ ∈ 𝑅 and then it is the hom-complex of a matrix factorization of −𝑤 + 𝑤′. In
particular, (𝑌0,𝑌1) = (𝑅, 0) is a matrix factorization of 0 (with zero differentials)

and then 𝑋• := HomZ/2𝑅 (𝑋,𝑌) is a matrix factorization of −𝑤. Explicitly: for

𝑔 ∈ (𝑋•)1 one has 𝑑𝑔(𝑥) = 𝑔(𝑑𝑥) and for 𝑓 ∈ (𝑋•)0 one has 𝑑𝑓 = 0 so that in view
of the signs 𝑑◦𝑑𝑔(𝑥) = −𝑔(𝑑◦𝑑(𝑥)) = −𝑤𝑔(𝑥). In particular, if 𝑤 ≠ 0, the category
𝑀𝑎𝑡𝑓

𝑅,𝑤
is not stable under duality.

6.4. Matrix factorizations as stabilizions

6.4.A. Koszul matrix factorization as a stabilization. As demonstrated
in Lemma 6.3, for a regular local ring (𝑅,𝔪) and 𝑤 ∈ 𝔪, a maximal Cohen–
Macaulay module 𝑀 over 𝑆 = 𝑅/𝑤 gives a matrix factorization of 𝑤 whose cokernel
equals 𝑀. The category of such 𝑆-modules can be “stabilized” if homomorphisms
𝑔, 𝑔′ : 𝑀 → 𝑀′ are declared to be identical if 𝑔′ = 𝑡◦𝑔◦𝑡′, where 𝑡 ∈ Hom(𝑀,𝑀) and
𝑡′ ∈ Hom(𝑀′,𝑀′) factor over some free 𝑆-module. This procedure gives the stable
category 𝐶𝑀stab (𝑆) of Cohen–Macaulay modules over 𝑆. It turms out that the
above cokernel assignment functor (on homotopy level)

Coker : [𝑀𝑎𝑡𝑓
𝑅,𝑤
] → 𝐶𝑀stab (𝑅/𝑤),



66 6. MATRIX FACTORIZATIONS AND HOCHSCHILD COHOMOLOGY

is an equivalence of categories. By definition, given a maximal Cohen–Macaulay
module 𝑀 over 𝑆, the homotopy class of a corresponding matrix factorization is
called the stabilization 𝑀stab of 𝑀.

This generalizes to the situation of Example 6.6.(2):

Proposition 6.11 ([Dyc11, Cor.2.7]). Let (𝑅,𝔪) be a regular local ring, 𝐼 ⊂ 𝔪
an ideal generated by a regular sequence 𝒇 = (𝑓1, . . . ,𝑓𝑚). Suppose 𝑤 ∈ 𝐼, set
𝐿 := 𝑅/𝐼 and write 𝑤 = 𝒇 · 𝒈T as before.

Put 𝑆 = 𝑅/𝑤 (so that 𝐿 is an 𝑆-module). Then the stabilization 𝐿stab of 𝐿
(as an 𝑆-module) is the Koszul matrix factorization given in Example 6.6.(2), i.e.
𝐿stab = {𝒇,𝒈} ∈ 𝑀𝑎𝑡𝑓

𝑅,𝑤

Example 6.12. If the IHS is given by a weighted homogeneous hypersur-
face 𝑤(𝑥1, . . . ,𝑥𝑚) = 0 of degree 𝑑, where 𝑥𝑖 has weight 𝑑𝑖, 𝑖 = 1, . . . ,𝑚, the Euler
formula gives

∑
𝑗 𝑥𝑗𝑑𝑗𝑤𝑥𝑗 = 𝑑 ·𝑤. Replacing 𝑥𝑗 with 𝑥′𝑗 = 𝑑𝑗/𝑑, this shows that the

Koszul matrix factorization {𝒙,∇𝑤} of 𝑤 represents 𝑘stab as an 𝑅/𝑤-module while
the factorization {∇𝑤,𝒙} represents the stabilization of the Jacobian algebra Jac𝑤
as an (𝑅/𝑤)-algebra.

6.4.B. Technical interlude. The constructions in this subsection, which use
the concept of stabilization, will be used in an essential way in § 6.4.C and § 6.4.D.
The main goal is to replace Hochschild cohomology of the category 𝑀𝑎𝑡𝑓

𝑅,𝑤
by

the (classical) Hochschild cohomology of the algebra �𝑀𝑅,𝑤 which will be introduced
in Corollary 6.18. It requires passing to 𝑀𝑎𝑡𝑓∞

𝑅,𝑤
where Toën’s results [Toë06] in

homotopy theory can be used. I won’t detail these techniques but only quote the
results that Dyckerhoff obtains using these.

Lemma 6.13 ([Dyc11, Lemma 4.2]). As above, let (𝑅,𝔪) be a local ring, 𝐼 ⊂ 𝑅
an ideal generated by a regular sequence and 𝑤 ∈ 𝐼.

Set 𝑆 = 𝑅/𝑤 and let 𝐿 be an 𝑆-module whose stabilization 𝐿stab belongs to
𝑀𝑎𝑡𝑓∞

𝑅,𝑤
. Let 𝑋 be an object of 𝑀𝑎𝑡𝑓

𝑅,𝑤
, and let 𝐴 be the set of morphisms from 𝑋

to itself in the category 𝑀𝑎𝑡𝑓∞
𝑅,𝑤

considered as a ring under composition and let 𝐴𝑜

be the opposite ring.
Then composition with 𝑓 ∈ 𝐴 gives 𝑀𝑎𝑡𝑓∞

𝑅,𝑤
(𝑋,𝐿stab) as well as HomZ/2 (𝑋,𝐿)

the structure of an 𝐴𝑜-module. One has an isomorphism

[𝑀𝑎𝑡𝑓∞
𝑅,𝑤
(𝑋,𝐿stab)] ∼−→ [HomZ/2 (𝑋,𝐿)]

in the derived category of 𝐴𝑜-modules.

Now return to the situation of Proposition 6.17. So 𝐿 = 𝑅/𝐼, and 𝐼 is generated
by a regular sequence 𝒇 = {𝑓1, . . . ,𝑓𝑚}, and 𝐿 is to be considered as an 𝑆 = 𝑅/(𝑤)-
module. Recall that the Koszul resolution of 𝐿 associated to 𝒇 reads as follows:

0→ Λ𝑘𝑁
𝛿𝒇
−−→ Λ𝑘−1𝑁 → · · · → Λ2𝑁

𝛿𝒇
−−→ 𝑁

𝜑
−→ 𝐿 = 𝑅/𝐼 → 0,

where 𝛿𝒇 is defined by Eqn. 6.1 and 𝜑 is the natural map onto Coker 𝛿𝒇. Applying
the preceding lemma, one finds:

Corollary 6.14 ([Dyc11, Prop. 4.3]). For a free 𝑅-module 𝑁 of rank 𝑚, let

ℎ : Λ•𝑁 → Λ0𝑁 = 𝑅
𝜑
−→ 𝑅/𝐼 = 𝐿
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the composition of the projection and the map 𝜑 resulting from the Koszul resolution
of 𝐿. Then for all objects 𝑋 in 𝑀𝑎𝑡𝑓

𝑅,𝑤
and 𝑓 ∈ Hom(𝑋,𝐿stab) the map 𝑓 ↦→ ℎ◦𝑓

establishes a quasi-isomorphism

𝑀𝑎𝑡𝑓∞
𝑅,𝑤
(𝑋,𝐿stab) qiso−−−→

≃
HomZ/2𝑅 (𝑋,𝐿),

where
𝐿stab = (Λ•𝑁, 𝛿𝒇 + 𝑑𝒈)

is the Koszul matrix factorisation of 𝑤 ∈ 𝐼 (cf. Eqn. (6.3)).

6.4.C. Compact generators. In this section 𝑅 = 𝑘[𝑥1, . . . ,𝑥𝑚] but later, for
technical reasons, it will be replaced by its completion 𝑅 = 𝑘[[𝑥1, . . . ,𝑥𝑚]]. Since
matrix-factorizations take place in 𝑅, this is always possible. The goal of this section
is to find 𝑅-algebras which as dg-algebra are homotopically the same as the two
homotopy categories [𝑀𝑎𝑡𝑓

𝑅,𝑤
] and [𝑀𝑎𝑡𝑓∞

𝑅,𝑤
] and that 𝑤 ∈ 𝑅 has an IHS at the

origin. Assuming that 𝑤 = 𝒈 · 𝒙, 𝒈 = (𝑔1, . . . , 𝑔𝑚), 𝒙 = (𝑥1, . . . ,𝑥𝑚), the two main
players are

𝐸 = 𝑘stab = {𝒈,𝒙}(6.5)

𝑀𝑅,𝑤 = 𝑀𝑎𝑡𝑓
𝑅,𝑤
(𝐸,𝐸).(6.6)

The 𝑅-algebra 𝑀𝑅,𝑤 will serve as the building block for constructing the desired
𝑅-algebra.

The entire construction depends on a crucial feature of these categories, namely
that they are triangulated . See Appendix A.3.14 of [Eis95] for more details on
this concept. Subcategories of a triangulated category stable under shifts, triangles,
isomorphisms and direct sums (coproducts) are called thick subcategories. Cer-
tain objects in such categories play the role of generators and in the present setting
yield the desired 𝑅-algebras. The required technical definitions are as follows.

Definition 6.15. An object 𝑋 of a category 𝐶 admitting arbitrary direct sums
is said to be compact if Hom(𝑋,−) commutes with coproducts, i.e.,

Hom(𝑋,
∐
𝑗∈𝐽

𝑌𝑗) ≃
∐
𝑗∈𝐽

Hom(𝑋,𝑌𝑗)

for all objects 𝑌𝑗 of 𝐶, 𝑗 ∈ 𝐽, and 𝑋 is said to be a compact generator of 𝐶 if
𝑋 is compact and if the smallest thick subcategory of 𝐶 containing 𝑋 is the entire
category 𝐶.

Compact generators in this sense can only exist within the category [𝑀𝑎𝑡𝑓∞
𝑅,𝑤
]

and not in [𝑀𝑎𝑡𝑓
𝑅,𝑤
] since the latter does not admit infinite direct sums. The

following principle describes the functorial role of a compact generator.

Theorem 6.16 ([Dyc11, Thm. 5.1]). Let 𝐶 be a triangulated 2-periodic dg-
category admitting arbitrary direct sums and admitting a compact generator 𝑋. Let
[𝑋𝑜-mod] be the localization (as dg-modules) of the category of 𝑋𝑜-modules (in the
set of equivalences). Then the functor

𝐹𝑋 : 𝐶 → 𝐶 := [𝑋𝑜-mod], 𝑌 ↦→ Hom𝐶 (𝑋,𝑌)(6.7)

induces an isomorphism in the homotopy category of 2-periodic dg-categories.
Consider 𝐵 := (𝑋,End𝑋) as a dg-category. Then 𝐹𝑋 sends the homotopy class

of 𝐵 to 𝐵, that is, 𝐵 considered as a 𝐵𝑜-module.
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The concept of 𝑋𝑜-module requires some explanation. Normally the action of
𝑋 on and 𝑋-module is from the left. To indicate that the action is from the right,
one speaks of 𝑋𝑜-modules, indicating that the action of 𝑋 is ”reversed”.

Compact generators do exits for the category [𝑀𝑎𝑡𝑓∞
𝑅,𝑤
] due to Dyckerhoff:

Proposition 6.17 ([Dyc11, Thm. 4.1 and Corollary 4.12]). In the present
situation 𝐸 (cf. (6.5)) is a compact generator of the homotopy category [𝑀𝑎𝑡𝑓∞

𝑅,𝑤
].

It follows that taking in Theorem 6.16 for 𝐶 the homotopy category of 𝑀𝑎𝑡𝑓∞
𝑅,𝑤

,

the object 𝐸 = 𝑘stab is a compact generator. So one can form the category �𝑀𝑎𝑡𝑓∞
𝑅,𝑤

as in that theorem. Note also that the objects of 𝑀𝑎𝑡𝑓
𝑅,𝑤

, being bounded com-

plexes, are compact. Recalling the formula (6.6), one then deduces from the theo-
rem:

Corollary 6.18. The functor 𝐹𝐸 induces an equivalence of categories

[𝑀𝑎𝑡𝑓∞
𝑅,𝑤
] ∼−−−→ �𝑀𝑅,𝑤.

In other words, �𝑀𝑅,𝑤 is a model for the derived category of 𝑀𝑎𝑡𝑓∞
𝑅,𝑤

.

One can describe 𝑀𝑎𝑡𝑓
𝑅,𝑤

in a similar fashion in case the ring 𝑅 is a complete

local ring. In the situation of a polynomial IHS 𝑤, one may assume this and then
[Dyc11, Thm. 5.7] implies:

Corollary 6.19. If 𝑤 = 0 determines an IHS (with singular point at 0) the
functor 𝐹𝐸 (defined by (6.7)) induces an equivalence of categories

[𝑀𝑎𝑡𝑓
𝑅,𝑤
] ∼−−−→ �𝑀𝑅,𝑤,

i.e., in the derived category one can replace 𝑀𝑎𝑡𝑓
𝑅,𝑤

by �𝑀𝑅,𝑤.

Concluding, the algebra �𝑀𝑅,𝑤 represents the derived category of the category
𝑀𝑎𝑡𝑓

𝑅,𝑤
, by which the goal set at the beginning of this subsection now has been

achieved.

6.4.D. The diagonal construction. A further crucial ingredient for calcu-
lating Hochschild cohomology comes from the diagonal construction explained in
this subsection: see the proof of Theorem 6.25 In this construction tensor products
of matrix factorizations for 𝑀𝑎𝑡𝑓

𝑅,𝑤
and 𝑀𝑎𝑡𝑓

𝑅′,𝑤′
play a role for the special case

where 𝑅′ = 𝑅 = 𝑘[[𝑥1, . . . ,𝑥𝑚]], specifically, one uses

𝑅 = 𝑅 ⊗𝑘 𝑅 = 𝑘[[𝑦1, . . . , 𝑦𝑚, 𝑧1, . . . , 𝑧𝑚]], 𝑦𝑗 = 𝑥𝑗 ⊗ 1, 𝑧𝑗 = 1 ⊗ 𝑥𝑗
𝑤 = −𝑤 ⊗ 1 + 1 ⊗ 𝑤
∆ = 𝑅/𝐼∆, 𝐼∆ = (𝑦1 − 𝑧1, . . . , 𝑦𝑚 − 𝑧𝑚) the ”diagonal” of 𝑅 in 𝑅.

Since 𝑤 ∈ 𝔪 = (𝑥1, . . . ,𝑥𝑚) it follows that 𝑤 ∈ 𝐼∆.

If 𝑋 is an object of 𝑀𝑎𝑡𝑓
𝑅,𝑤

, then 𝑋∗ ⊗ 𝑋 is an object of 𝑀𝑎𝑡𝑓
𝑅,𝑤

. Recall further

that to be able to speak of ”stabilization” in the category 𝑀𝑎𝑡𝑓
𝑅,𝑤

, one works over
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𝑆 = 𝑅/(𝑤) and over 𝑆 = 𝑅/𝑤 in the category𝑀𝑎𝑡𝑓
𝑅,𝑤

. The preceding considerations

applies to this situation. Indeed, set

𝐹 := ∆stab as an 𝑆-module (an object of 𝑀𝑎𝑡𝑓
𝑅,𝑤

).

Then using the notation of (6.5) and (6.6), Corollary 6.19 in the setting of matrix

factorizations over 𝑅 gives an equivalence of derived categories

𝐹𝐸∗⊗𝑘𝐸 : [𝑀𝑎𝑡𝑓
𝑅,𝑤
] ∼−→ [𝑀𝑅,𝑤 ⊗𝑀𝑜

𝑅,𝑤-mod], 𝑌 ↦→ Hom(𝐸∗ ⊗𝑘 𝐸,𝑌)

where one uses that 𝐸∗ ⊗𝑘 𝐸 is a compact generator of 𝑀𝑎𝑡𝑓
𝑅,𝑤

.

Proposition 6.20. The functor 𝐹𝐸∗⊗𝑘𝐸 sends the stabilized diagonal 𝐹 = ∆stab

to 𝑀𝑅,𝑤 = HomZ/2𝑅 (𝐸,𝐸) considered as an 𝑀𝑅,𝑤 ⊗𝑀𝑜
𝑅,𝑤-module.

Proof. The aim is to show that 𝐹𝐸∗⊗𝑘𝐸 sends 𝐹 to 𝑀𝑅,𝑤 considered as an

𝑀𝑜
𝑅,𝑤 ⊗𝑀𝑅,𝑤-module. Apply Lemma 6.13 to 𝑋 = 𝐸∗⊗𝑘𝐸 and 𝐿 = 𝐹 which represents

∆. One finds quasi-isomorphisms (in the category 𝑀𝑎𝑡𝑓
𝑅,𝑤

of matrix factorizations)

𝑀𝑎𝑡𝑓
𝑅,𝑤
(𝐸∗ ⊗𝑘 𝐸,𝐹) ≃ HomZ/2𝑅⊗𝑘𝑅 (𝐸

∗ ⊗𝑘 𝐸,𝑅)

≃ HomZ/2𝑅 (𝐸,𝐸) = 𝑀𝑅,𝑤.

Note that𝑀𝑅,𝑤 under left and right composition is an𝑀𝑅,𝑤⊗𝑀𝑜
𝑅,𝑤-module: (𝑓, 𝑔)ℎ =

𝑓◦ℎ◦𝑔 for all 𝑓, 𝑔,ℎ ∈ 𝑀𝑅,𝑤. Also 𝑀𝑎𝑡𝑓
𝑅,𝑤
(𝐸∗ ⊗𝑘 𝐸,𝐹) and HomZ/2𝑅⊗𝑘𝑅 (𝐸

∗ ⊗𝑘 𝐸,𝑅)
are 𝑀𝑅,𝑤 ⊗ 𝑀𝑜

𝑅,𝑤-modules and one can check that the isomorphisms preserve this
structure. □

Recall that 𝑅 = 𝑅 ⊗𝑘 𝑅 = 𝑘[[𝑦1, . . . , 𝑦𝑚, 𝑧1, . . . , 𝑧𝑚]] and that the polynomial
𝑤(𝒙) ∈ 𝔪 ⊂ 𝑘[𝑥1, . . . ,𝑥𝑚] yields 𝑤(𝒚) ∈ 𝑘[𝑦1, . . . , 𝑦𝑚] and hence 𝑤 = −𝑤⊗1+1⊗𝑤 ∈
𝐼∆ ⊂ 𝑅 can be written as 𝑤 =

∑
𝑤𝑗 (𝑦𝑗 − 𝑧𝑗) = �̃� · (𝒚 − 𝒛). Using this, the central

result which will be used for calculating Hochschild cohomology is as follows:

Proposition 6.21. 1) The stabilized diagonal ∆stab, an object in𝑀𝑎𝑡𝑓
𝑅,𝑤

,

is represented by the Koszul matrix factorization {�̃�,𝒚 − 𝒛}.
2) One has 𝑤𝑗 = 𝑤𝑥𝑗 mod 𝐼∆.

3) End(∆stab) – considered as a complex – is isomorphic to the Koszul com-
plex for the sequence 𝑤1, . . . ,𝑤𝑚 modulo the diagonal ideal 𝐼∆, considered
as a Z/2-graded complex, that is, if 𝒘 = (𝑤𝑥1 , . . . ,𝑤𝑥𝑚 ), then End(∆stab) ≃
𝑁• (𝒘) (see Example 6.6(1)).

4) 𝐻𝑘 (End(∆stab)) = 0 for 𝑘 odd and equal to Jac𝑤 if 𝑘 is even.

Proof. 1) is clear and 2) is left as an exercise.

3) Apply Corollary 6.14 with 𝑋 = 𝑅, 𝐿 = 𝑅 and remark that 𝑅 is an 𝑅/𝑤-module

whose stabilization is ∆stab. Hence End∆stab = HomZ/2
𝑅
(∆stab,𝑅). Note that 𝑅

as Z/2-graded complex has 𝑅 in even degrees and 0 in odd degrees and so all
derivatives are 0. Moreover, 𝑅 is considered as an 𝑅-module and so 𝒚− 𝒛 maps to 0
under any morphism Λ2𝑗𝑁 → 𝑅, 𝑁 a free 𝑅-module of rank 𝑚. So in the complex

HomZ/2
𝑅
(∆stab,𝑅) only the derivatives from �̃� = ∇𝑤 mod 𝐼∆ survive which gives

the Koszul complex for 𝑤1, . . . ,𝑤𝑚 modulo the diagonal ideal 𝐼∆, i.e. for the ideal
generated by the partial derivatives of 𝑤.
4) Follows from the above by applying Lemma 6.5. □
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Remark 6.22. Using the diagonal construction one can define a product struc-
ture on 𝑀𝑎𝑡𝑓

𝑅,𝑤
which under the equivalence of categories 𝑀𝑅,𝑤 = 𝑀𝑎𝑡𝑓

𝑅,𝑤
(𝐸,𝐸) ≃

[𝑀𝑎𝑡𝑓
𝑅,𝑤
] corresponds to the 𝑅-algebra structure on 𝑀𝑅,𝑤. So one might consider

the homotopy category [𝑀𝑎𝑡𝑓
𝑅,𝑤
] as a categorical incarnation of the 𝑅-algebra

𝑀𝑅,𝑤.

6.5. Hochschild cohomology

In this section I shall introduce Hochschild cohomology, first for algebras, and then for cate-

gories. The aim is to understand Hochschild cohomology for the category of matrix factorizations

over a commutative ring 𝑅 with a unit. As before, 𝑅 will be a polynomial algebra over a field 𝑘,

or its completion.

6.5.A. Hochschild cohomology for algebras. Let 𝐴 be any associative
algebra over 𝑅. So 𝐴 is an 𝑅-module equipped with an associative product. Now
pass to the 𝑅-module

𝐶𝑑 (𝐴) = Hom𝑅 (𝐴 ⊗ · · · ⊗ 𝐴→ 𝐴), (𝑑 factors).

By convention, 𝐶0 (𝐴) = 𝐴. The modules 𝐶𝑑 (𝐴) can be made into a cohomological
complex with derivations 𝛿𝑑 : 𝐶𝑑 (𝐴) → 𝐶𝑑+1 (𝐴) given by

𝛿𝑑𝑓(𝑎0, . . . , 𝑎𝑑) = 𝑎0 · 𝑓(𝑎1, . . . , 𝑎𝑑)−
𝑑∑︁
𝑖=0

(−1)𝑖𝑓(𝑎0, . . . , 𝑎𝑖𝑎𝑖+1, . . . , 𝑎𝑑) + (−1)𝑑+1𝑓(𝑎0, . . . , 𝑎𝑑) · 𝑎𝑑.(6.8)

Its cohomology is the Hochschild cohomology of the algebra 𝐴:

HH𝑑 (𝐴) = 𝐻𝑑 (𝐶• (𝐴), 𝛿•),
named after Hochschild’s article [Hoc45]. As for ordinary cohomology, this group
carries a graded cup-product structure coming from the product on co-cycles 𝛾 ∈
𝐶𝑛 (𝐴), 𝛾′ ∈ 𝐶𝑚 (𝐴) given by

𝛾 ∪ 𝛾′(𝑎1, . . . , 𝑎𝑛+𝑚) = (−1)𝑛𝑚𝛾 (𝑎1, . . . , 𝑎𝑛)𝛾′(𝑎𝑛+1, . . . , 𝑎𝑛+𝑚), ∀𝑎1, . . . , 𝑎𝑛+𝑚 ∈ 𝐴.
The Hochschild cohomology can be also be described in terms of the envelop-

ing algebra

𝐴𝑒 := 𝐴 ⊗𝐴 𝐴𝑜, 𝐴𝑜 = opposite algebra of 𝐴

as will be explained next. This is based on the observation that the action of
𝐴 on 𝐴 by left multiplication makes 𝐴 into an 𝐴-module while multiplication on
the right gives 𝐴 the structure of an 𝐴𝑜-module. There is indeed a complex of
free 𝐴𝑒-modules that computes Hochschild cohomology, the so-called bar-complex
𝐶bar
• (𝐴) = 𝐴⊗•+2, a homological complex starting in degree 0 with 𝐴 ⊗ 𝐴 and with

derivations given by

𝑑𝑛 (𝑎0 ⊗ · · · ⊗ 𝑎𝑛+1) =
𝑛∑︁
𝑖=0

(−1)𝑖𝑎0 ⊗ · · · ⊗ 𝑎𝑖𝑎𝑖+1 ⊗ · · · ⊗ 𝑎𝑛+1.

The modules 𝐶bar
𝑛 (𝐴) are free 𝐴𝑒-modules under the operation (𝑎 ⊗ 𝑏) · (𝑎0 ⊗

· · · 𝑎𝑛+1) = 𝑎 · 𝑎0 ⊗ · · · 𝑎𝑛+1 · 𝑏 since 𝐶bar
𝑛 (𝐴) ≃ 𝐴𝑒 ⊗𝐴⊗𝑛 ≃ ⊕𝑗 (𝐴𝑒 ⊗ 1) ⊗ 𝑒𝑗 , where the

𝑒𝑗 form a 𝑘-basis of 𝐴⊗𝑛. By definition, the associated cohomological complex is

𝐶• (𝐴,𝐴) = Hom𝐴𝑒 (𝐶bar
• 𝐴,𝐴).
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There is an isomorphism of 𝑘-vector spaces 𝐶𝑛 (𝐴) → 𝐶𝑛 (𝐴,𝐴) given by 𝑓 ↦→
{𝑎0 ⊗ · · · ⊗ 𝑎𝑚 → 𝑎0𝑓(𝑎1 ⊗ · · · ⊗ 𝑎𝑛)𝑎𝑚} whose inverse is 𝑔 ↦→ {𝑎1 ⊗ · · · ⊗ 𝑎𝑛 ↦→
𝑔(1 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛 ⊗ 1)}, as one easily verifies. Hence

HH𝑑 (𝐴) = 𝐻𝑑 (𝐶•𝐴) = 𝐻𝑑 (𝐶• (𝐴,𝐴)).(6.9)

The bar-resolution is a free resolution of 𝐴 as an 𝐴𝑒-module by extending
it to the right by the multiplication map 𝐴 ⊗𝑘 𝐴 → 𝐴. The Ext-groups are
thus the cohomology groups of the complex Hom𝐴𝑒 (𝐶bar

• 𝐴,𝐴). Next, pass to
the derived category3 D(𝐴𝑒) which is built on complexes of 𝐴-bimodules such
as the bar-complex, or its dual 𝐶• (𝐴,𝐴). In the derived language this gives
𝐻𝑑 (𝑅HomD(𝐴𝑒) (𝐴,𝐴)) ≃ HomD(𝐴𝑒) (𝐴,𝐴[𝑑]). Summarizing, one has:

Proposition 6.23. HH𝑑 (𝐴) ≃ Ext𝑑𝐴𝑒 (𝐴,𝐴) which in turn is isomorphic to

𝐻𝑑 (𝑅HomD(𝐴𝑒) (𝐴,𝐴)) ≃ HomD(𝐴𝑒) (𝐴,𝐴[𝑑]).

6.5.B. Hochschild cohomology for dg-categories. B. Keller [Kel94] has
introduced an analog of the bar-resolution for any dg-category 𝐴 which serves as a
means to define Hochschild cohomology of 𝐴. In order to carry this out, the first
task is to define tensor products of dg-categories in order to define the analog of
𝐴𝑒.

• The tensor product 𝐴⊗𝐵 of dg-categories: its objects are pairs (𝑥, 𝑦) of ob-
jects 𝑥 of 𝐴 and 𝑦 of 𝐵 and its morphisms are given by 𝐴⊗𝐵 ((𝑥, 𝑦), (𝑥′, 𝑦′)) =
𝐴(𝑥,𝑥′) ⊗ 𝐵 (𝑦, 𝑦′) as dg-modules;
• the dg-category 𝐴𝑜, the one opposite to 𝐴, has the same objects as 𝐴 but
𝐴𝑜 (𝑥, 𝑦) = 𝐴(𝑦,𝑥).
• the enveloping dg-category is 𝐴𝑒 := 𝐴 ⊗ 𝐴𝑜.

One can attempt to define Hochschild cohomology by imitating what has been
done for algebras:

HH𝑑 (𝐴) = 𝐻𝑑 (𝑅HomD(𝐴𝑒) (𝐴,𝐴)) ≃ HomD(𝐴𝑒) (𝐴,𝐴[𝑑]).

The problem is then to find a substitute for the bar-complex which should represent
𝑅HomD(𝐴𝑒) (𝐴,𝐴). Any such complex is called a Hochschild complex . There is
indeed a categorical version of the bar-complex as explained in [Kel94] but this
complex usually is unsuitable for concrete calculations. There exists a more suitable
Hochschild complex via the diagonal construction, as now will be explained. But
first, some more categorical constructions are needed.

(i) A dg-functor 𝐹 : 𝐴→ 𝐵 between two dg-categories 𝐴,𝐵 consists of a map
𝑥 ↦→ 𝐹 (𝑥) from objects in 𝐴 to objects in 𝐵, and for any two objects 𝑥, 𝑦,
a 𝑘-linear morphism 𝐴(𝑥, 𝑦) → 𝐵 (𝐹 (𝑥),𝐹 (𝑦)) preserving the identity and
satisfying the usual associativity condition.

(ii) Given a dg-category 𝐴, a left 𝐴-module consists of a functor 𝑀 : 𝐴 →
𝐶dg (𝑘). So for objects 𝑥 of 𝐴 the image 𝑀 (𝑥) is a 𝑘-complex and for any

two objects 𝑥, 𝑦, there is a 𝑘-linear morphism 𝐴(𝑥, 𝑦) → 𝐶dg (𝑀 (𝑥),𝑀 (𝑦)) =
Hom(𝑀 (𝑥),𝑀 (𝑦)). In other words, this gives morphisms of complexes
𝐴(𝑥, 𝑦) ⊗𝑀 (𝑥) → 𝑀 (𝑦) which describes the action of 𝐴 on 𝑀.

(iii) An 𝐴-bimodule 𝑀 is a dg-functor 𝑀 : 𝐴𝑒 → 𝐶dg (𝑘).

3See for example Appendix A.3.14 in [Eis95].
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Examples 6.24. 1. The identity 𝐴-bimodule or the diagonal bimodule
∆𝐴 : 𝐴𝑒 → 𝐶dg (𝑘) of 𝐴 is defined by ∆𝐴 (𝑥, 𝑦) = 𝐴(𝑥, 𝑦) on objects (𝑥, 𝑦) of 𝐴 ⊗ 𝐴𝑜

and

∆𝐴 (𝐴(𝑥, 𝑦) ⊗ 𝐴(𝑦′,𝑥′)) = Hom(𝐴(𝑥, 𝑦),𝐴(𝑦′,𝑥′))
on morphisms of 𝐴𝑒. This is a left 𝐴𝑒-module with action (𝐴𝑒 ((𝑥, 𝑦), (𝑥′, 𝑦′)) ⊗
𝐴(𝑥, 𝑦) → 𝐴(𝑦′,𝑥′). In the case of an 𝑅-algebra considered as category, ∆(𝐴) is the
algebra 𝐴 considered as an 𝐴𝑒-bimodule.
2. A special case of the identity functor. Let 𝑋 be a variety over the field 𝑘 and
let 𝛿 : 𝑋 ↩→ 𝑋 ×𝑋 be the diagonal embedding with image ∆. Let 𝑝, 𝑞 : 𝑋 ×𝑋 → 𝑋
be the two projections. Note that 𝛿∗O𝑋 = O∆ and so for a locally free sheaf E on 𝑋
one has 𝑝∗E⊗ 𝛿∗O𝑋 = 𝑞∗E⊗ 𝛿∗O𝑋 . It follows that there are canonical isomorphisms

𝑞∗ (𝑝∗E⊗𝑂𝑋×𝑋 𝛿∗O𝑋) ≃ 𝑞∗ (𝑞∗E⊗𝑂𝑋×𝑋 𝛿∗O𝑋) = E⊗𝑂𝑋 (𝑞∗◦𝛿∗O𝑋) ≃ E.

So the functor on the category of locally free O𝑋-sheaves given by

E ↦→ 𝑞∗ (𝑝∗E⊗𝑂𝑋×𝑋 O∆)

represents the identity functor. In this sense ∆ ”is” the identity functor on the
category of locally free sheaves on 𝑋. This functor can be extended to the dg
category of complexes of locally free sheaves on 𝑋, or to the category of matrix
factorizations in the sense of § 6.1.B.

The same construction for pairs (𝑋,𝑌) of 𝑘-varieties, E a coherent O𝑋-module,
and with the structure sheaf of the diagonal replaced with any coherent O𝑋×𝑌-sheaf
K defines the Fourier-Mukai transform of E with kernel K, a functor on the
category of coherent O𝑋-modules to the category of coherent O𝑌-modules.

The diagonal also allows to define Hochschild cohomology for the scheme 𝑋 as

(6.10) HH𝑑 (𝑋) := 𝐻𝑑 (𝑋 × 𝑋,𝑅H𝑜𝑚O𝑋×𝑋 (O∆,O∆)).

Equation (6.10) can be seen as an example of a general result due to B. Toën
[Toë06, Cor. 8.1] stating that the usual bar complex is homotopic to the endomor-
phism complex of the identity bimodule

End𝐴𝑒 (∆𝐴) = Hom𝐴𝑒 (∆𝐴,∆𝐴),(6.11)

and hence serves as a Hochschild complex. In particular, equation (6.10) shows
that any complex representing 𝑅H𝑜𝑚O𝑋×𝑋 (O∆,O∆) is a Hochschild complex for O𝑋
(identified with O∆).

By making use of the diagonal construction in § 6.4.D the preceding observa-
tions can be applied to the category 𝑀𝑎𝑡𝑓

𝑅,𝑤
of matrix factorizations of an IHS at

0 given by a polynomial 𝑤 ∈ 𝑅 = C[𝑥1, . . . ,𝑥𝑚]. Indeed, by Proposition 6.20 the
identity functor is represented by the stabilized diagonal. Its endomorphism alge-
bra as well as its cohomology has been calculated in Proposition 6.21. The results
thus reads

Theorem 6.25. The Koszul complex on the derivatives {𝑤𝑥1 , . . . 𝑤𝑥𝑚 } of 𝑤 ∈
𝑅 = C[𝑥1, . . . ,𝑥𝑚], viewed as a Z/2-graded complex serves as a Hochschild complex
for 𝑀𝑎𝑡𝑓

𝑅,𝑤
and hence

HH𝑑 (𝑀𝑎𝑡𝑓
𝑅,𝑤
) =

{
Jac𝑤 = C[𝑥1, . . . ,𝑥𝑚]/(𝑤𝑥1 , . . . 𝑤𝑥𝑚 ) if 𝑑 is even

0 if 𝑑 is odd.
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Remark 6.26. As explained in Remark 6.22, one can equip the homotopy
category [𝑀𝑎𝑡𝑓

𝑅,𝑤
] with an 𝑅-algebra structure through the quasi-isomorphism

𝑀𝑎𝑡𝑓
𝑅,𝑤
(𝐸,𝐸) ≃ 𝑀𝑎𝑡𝑓

𝑅,𝑤
. The Hochschild complex respects the algebra structure

and so this structure survives on the level of its cohomology. Clearly, this is reflected
in the above theorem: the jacobian ring Jac𝑤 is an 𝑅 = C[𝑥1, . . . ,𝑥𝑚]-algebra.

6.6. The equivariant case

6.6.A. Equivariant matrix factorizations. Assume that the IHS given by
{{𝑤 = 0}, 0} admits symmetries in the weak sense that 𝑤 ∈ C[𝑥1, . . . ,𝑥𝑚] is a semi-
invariant with respect to a group Γ of linear transformations of C𝑚, that is, there
is a character 𝜒 : Γ→ C× with

𝛾 (𝑤) = 𝜒(𝛾)𝑤, ∀𝛾 ∈ Γ.

A Γ-character 𝜒 can be viewed as a rank 1 free 𝑅 module with obvious Γ-action,
and so, if 𝑉 admits a Γ-action , also 𝑉 (𝜒) := 𝑉 ⊗𝑅 𝜒 admits a canonical Γ-action.

Definition 6.27. Let (𝑅,𝔪), Γ, 𝜒 and 𝑤 ∈ 𝔪 as above.

(i) A Γ-equivariant matrix factorization of 𝑤 consists of a pair 𝑋0,𝑋1

of free 𝑅-modules of finite rank equipped with an action of Γ, together

with equivariant 𝑅-linear morphisms 𝑋0
𝑑0−−→ 𝑋1 (𝜒) and 𝑋1

𝑑1−−→ 𝑋0 such
that 𝑑1◦𝑑0 = 𝑤 · id (as above).

(ii) A morphism 𝑓 : (𝑋,𝑑) → (𝑌,𝑑′) of matrix factorizations is a Z/2-graded
Γ-equivariant map 𝑓 such that 𝑓◦𝑑′ = 𝑑◦𝑓.

The resulting dg-category is denoted 𝑀𝑎𝑡𝑓
𝑤,Γ,𝜒

. There is an important differ-

ence with the non-equivariant case: this category is not Z/2-graded. This is caused
by the action of the character. Instead, the Γ-equivariant hom-complexes are

Hom2𝑘
Γ (𝑋,𝑌) = Hom(𝑋0,𝑌0 (𝜒⊗𝑘))Γ ⊕ Hom(𝑋1,𝑌1 (𝜒⊗𝑘))Γ,

Hom2𝑘+1
Γ (𝑋,𝑌) = Hom(𝑋0,𝑌1 (𝜒⊗(𝑘+1)))Γ ⊕ Hom(𝑋1,𝑌0 (𝜒⊗𝑘))Γ,

where the differentials are defined as in the non-graded case and where 𝑀Γ stands
for the submodule of Γ-invariants of 𝑀, i.e. 𝑀Γ = {𝑥 ∈ 𝑀 | 𝛾 (𝑥) = 𝑥 for all 𝛾 ∈ Γ}.

Example 6.28. Assume that Γ acts on a commutative ring 𝑅 and let 𝑁 be a free
Γ-module of finite rank. Starting from 𝒇 ∈ 𝑁Γ and a Γ-equivariant map 𝜑 : 𝑁 → 𝑅
such that 𝜑(𝒇) ∈ 𝑅 is Γ-invariant, the two Koszul sequences given in Section 6.2
are obviously Γ-equivariant. This yields a Γ-equivariant matrix factorization for
𝑤 = 𝜑(𝒇). One can also find a Γ-equivariant Koszul matrix factorization {𝒈,𝒙} for
C (with trivial Γ-action) using a Γ-invariant IHS given by 𝑤 =

∑
𝑔𝑖𝑥𝑖. Below I’ll

restrict myself to the following situation:

• – The ring 𝑅 is the polynomial ring 𝑅 = C[𝑥1, . . . ,𝑥𝑚];
– Γ is an finite extension of C∗ acting diagonally on C𝑚, i.e. there are

characters

𝜒𝑖 : Γ→ C∗, 𝑖 = 1, . . . ,𝑚 with 𝛾 (𝑥𝑖) = 𝜒𝑖 (𝛾)𝑥𝑖 for all 𝛾 ∈ Γ;

– There is a character

𝜒 : Γ→ C∗ such that 𝐺 := Ker𝜒 is a finite group.
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• – The polynomial 𝑤 ∈ 𝑅 = C[𝑥1, . . . ,𝑥𝑚] belongs to the 𝜒-character
subspace 𝑅𝜒 = {𝑤 ∈ 𝑅 | 𝛾 (𝑤) = 𝜒(𝛾)𝑤}, 𝛾 ∈ Γ so that 𝑤 is invariant
under 𝐺,

– 𝑤 = 0 has an IHS at 0.

6.6.B. Hochschild cohomology. In the situation of Example 6.28, the tech-
niques that have been used in Section 6.5.B can be extended to the Γ-equivariant
case. It is a special case of a more general situation studied at length in [BFK14].

The calculation in loc. cit. is very technical, but the main ideas are already
present in the non-equivariant setting. There are some important special features
of the equivariant setting to keep in mind:

1. In the equivariant setting characters of the group Γ play a central role
which, as explain above, implies that the hom-complexes of the matrix
factorizations are not periodical, but graded by the characters and so are
the Hochschild cohomology groups;

2. as in the non-equivariant case, Jacobian rings come up, but now involve
only part of the variables associated to a character space.

The expression for equivariant Hochschild cohomology involves an extra variable
𝑥0, and so one introduces
• 𝑉 := C𝑥0 ⊕ · · · ⊕ C𝑥𝑚;
• The Γ-action extends to 𝑉 (and hence to C[𝑥0, . . . ,𝑥𝑚]) through the character

(6.12) 𝜒0 := 𝜒 ⊗
𝑛+1∏
𝑖=1

𝜒−1𝑖 , 𝛾 (𝑥0) = 𝜒0 (𝛾)𝑥0 for all 𝛾 ∈ Γ;

Moreover, for each 𝛾 ∈ Γ set

• 𝑉𝛾 = {𝑣 ∈ 𝑉 | 𝛾 (𝑣) = 𝑣} =
⊕

𝑖∈𝐼𝛾 C𝑥𝑖, where 𝐼
𝛾 is the collection of integers 𝑖

in 𝐼 := {0, . . . ,𝑛 + 1} for which 𝛾 (𝑥𝑖) = 𝑥𝑖.
• 𝑤𝛾 , the restriction of the polynomial 𝑤 to the polynomial subalgebra of
C[𝑥0, . . . ,𝑥𝑚] spanned by the 𝛾-invariant variables.
• 𝑉𝛾 =

⊕
𝑗∈𝐼−𝐼𝛾 C𝑥𝑗 , a Γ-invariant complement of 𝑉𝛾 in 𝑉.

Tensor-products and duals of Γ-modules are Γ-modules. In what follows, the
dual of C[𝑥0, . . . ,𝑥𝑚] is identified with the polynomial ring C[𝑥∗0, . . . ,𝑥∗𝑚] where the
𝑥∗𝑗 are given degree −1. Hence C[𝑥0, . . . ,𝑥𝑚,𝑥∗0, . . . ,𝑥∗𝑚] is a Γ-module as well.

In the present situation the following Γ-submodules of C[𝑥0, . . . ,𝑥𝑚,𝑥∗0, . . . ,𝑥∗𝑚]
play a role:

•The Jacobian ring Jac𝑤𝛾 .

•The character space det
(
𝑉𝛾

)
= Λdim𝑉𝛾𝑉𝛾 with character 𝜅𝛾 :=

∏
𝑖∈𝐼𝛾 𝜒𝑖,

• For any Γ-invariant subring 𝑆 of C[𝑥0, . . . ,𝑥𝑚,𝑥∗0, . . . ,𝑥∗𝑚], the character space
𝑆𝜒 := {𝑥 ∈ 𝑆 | 𝛾 (𝑥) = 𝜒(𝑥) · 𝑥}.

Recall from Section 6.2 that the Koszul sequence associated to the regular sequence
𝒘 = (𝑤𝑥1 , . . . ,𝑤𝑥𝑚 ) is denoted by 𝑁 (𝒘), and similarly for the regular sequence 𝒘𝛾

associated to 𝑤𝛾 . Using these conventions, the result from [BFK14] in this case
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reads (see [LU21, Eqn. (5.2])

HH𝑡 (𝑀𝑎𝑡𝑓
𝑤,Γ,𝜒
) =

⊕
𝛾∈Ker𝜒, 𝑙≥0
𝑡−#𝐼𝛾=2𝑢

(
𝐻−2𝑙 (𝑁 (𝒘𝛾) ⊗ 𝜅𝛾

)
(𝑢+ℓ)𝜒

⊕
⊕

𝛾∈Ker𝜒, 𝑙≥0
𝑡−#𝐼𝛾=2𝑢+1

(
𝐻−2𝑙−1 (𝑁 (𝒘𝛾) ⊗ 𝜅𝛾

)
(𝑢+ℓ+1)𝜒

.

Since 𝑤 = 0 (and hence also 𝑤𝛾 = 0) is an isolated IHS at 0, Example 6.6.1 tells
that the cohomology of the Koszul sequence 𝒘 (and also for 𝒘𝛾) is concentrated in
degree 0 and so only the terms with ℓ = 0 contribute, i.e., the terms involving the
𝐻0 (𝑁 (𝒘𝛾)) = Jac𝑤𝛾 . Unraveling the above formula then yields:

Proposition 6.29. Let 𝑢 ∈ Z, then
(1) The contributions to HH2𝑢+#𝐼𝛾 (𝑀𝑎𝑡𝑓

𝑤,Γ,𝜒
) consist of two types of mono-

mials in the ring C[𝑥0, . . . ,𝑥𝑚,𝑥∗0, . . . ,𝑥∗𝑚]:
(a) In case 𝛾 (𝑥0) ≠ 𝑥0, every monomial in 𝑆𝜒⊗𝑢 , where 𝑆 = Jac𝑤𝛾 ⊗ 𝜅∗𝛾 ;
(b) If 𝛾 (𝑥0) = 𝑥0, every monomial in (𝑆 ⊗ C[𝑥0])𝜒⊗𝑢 .

(2) The contributions to HH2𝑢+1+#𝐼𝛾 (𝑀𝑎𝑡𝑓
𝑤,Γ,𝜒
) consist of every monomial of

the form 𝑥∗0 ⊗ (𝑆 ⊗ C[𝑥0])𝜒⊗𝑢 provided 𝛾 (𝑥0) = 𝑥0.





CHAPTER 7

Bigrading on symplectic cohomology as a
contact-invariant

Introduction

A Gerstenhaber algebra, introduced in Section 7.1, gives a bigrading on Hoch-
schild cohomology, as explained in (7.2). It turns out that a Gerstenhaber structure
exists on the symplectic cohomology of the symplectic completion of a Liouville
domain with 𝑏1 = 0 and with trivializable tangent bundle, as is the case for the
Milnor fiber of an IHS. Under favorable conditions, enumerated in Theorem 7.6, this
structure is a contact invariant of the link. It follows in particular (cf. Corollary 7.7)
that for isolated cDV singularities (𝑋,𝑥) the resulting grading on each of the vector
spaces HH𝑑 (𝑋,𝑥), 𝑑 < 0, is a contact invariant.

7.1. Gerstenhaber algebras

A graded complex vector space 𝔤∗ = ⊕𝑘∈Z𝔤𝑘, is a Gerstenhaber algebra if it
comes equipped with

• a degree-preserving associative and graded commutative product ·, that
is, 𝑎 · 𝑏 = (−1) |𝑎 |·|𝑏 |𝑏 · 𝑎 , where |𝑎 |, |𝑏 |, . . . , denotes the degree of 𝑎 , 𝑏, . . . .
• a Lie-algebra bracket [−,−] of degree −1:

– [𝔤𝑘, 𝔤ℓ] ⊂ 𝔤𝑘+ℓ−1;
– [𝑎 , 𝑏] = −(−1) ( |𝑎 |−1)·( |𝑏 |−1) [𝑏, 𝑎] (i.e. [−,−] is graded anti-symmetric);
– [𝑎 , [𝑏, 𝑐]] = [[𝑎 , 𝑏], 𝑐]+(−1) ( |𝑎 |−1) ( |𝑏 |−1) [𝑏, [𝑎 , 𝑐]] (the Jacobi identity).

• the two products are compatible: [𝑎 , 𝑏 · 𝑐] = [𝑎 , 𝑏]𝑐 + (−1) ( |𝑎 |−1) |𝑏 |𝑏 · [𝑎 , 𝑐]
(the Poisson identity).

The subspace 𝔤1 is a Lie-algebra over C. Moreover, since [𝔤1 , 𝔤𝑘] ⊂ 𝔤𝑘, one
has a degree preserving representation of 𝔤1 on 𝔤. Assume now that 𝔤1 is a finite
dimensional Lie algebra. Then, from the usual theory of Lie-algebras (see e.g.
[Hum72, §15.3]), there is a Cartan subalgebra 𝔥 ⊂ 𝔤1, that is a nilpotent subalgebra
which equals its own normalizer. Cartan subalgebras are unique up to conjugacy.
In case 𝔤1 is semisimple, a Cartan subalgebra is the same as a maximal abelian
subalgebra.

Example 7.1. Consider the traceless matrices 𝔰𝔩(2) of 2 × 2-matrices. The
1-dimensional vector space 𝔥 of diagonal matrices is a Cartan subalgebra. The

functional 𝛼 : 𝔥→ C sending 𝐻 =

(
1 0
0 −1

)
to 2 gives an eigenvalue for the adjoint

action of 𝐻 on 𝔰𝔩(2) with eigenvector

(
0 1
1 0

)
. The functional 𝛼 is called a root of

𝔰𝔩(2) . The only other root is −𝛼.

77
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Since 𝔤1 cannot be assumed to be semisimple, the usual approach with root
systems does not apply here. It is still true that for a finite dimensional represen-
tation 𝜌 : 𝔥 → End𝑉 the Jordan decompositions for the non-zero elements 𝑥 ∈ 𝔥
are compatible and lead to a common generalized eigenspace decomposition

𝑉 =
⊕
𝜆

𝑉𝜆, 𝑉𝜆 = {𝑣 ∈ 𝑉 | (𝜌(𝑥) − 𝜆(𝑥)id)𝑛𝜆𝑣 = 0, for all 𝑥 ∈ 𝔥},

where 𝑛𝜆 is some positive integer. Moreover, the set of eigenvalues 𝜆(𝑥) for a fixed
𝜆 defines a linear function on 𝔥.

In the semisimple case the 𝑉𝜆 are genuine eigenspaces and are directly related
to the roots. This provides 𝑉 with a multi-index grading as follows. Choose a
basis {𝛼1, . . . ,𝛼𝑟}, 𝑟 = dim 𝔥 for the roots. Then the eigenvalues occurring in a
𝔥-representation space 𝑉 are integral linear combinations 𝜆 =

∑
𝜆𝑖𝛼𝑖 to which one

associates the multi-index ®𝜆 = (𝜆1, . . . , 𝜆𝑟) ∈ Z𝑟. This gives the aimed for grading
𝑉 = ⊕𝑉®𝜆. In this situation, the adjoint representation of 𝔥 on 𝔤1 gives the so-called

Cartan decomposition 𝔤1 = 𝔥 ⊕𝛼≠0 𝔤1,𝛼, dim(𝔤1,𝛼) = 1,𝛼 ≠ 0, where now any
non-zero 𝛼 is called a root.

In the general case the (𝜆 = 0)-eigenspace for the adjoint action of 𝔥 on 𝔤1 still
equals the Cartan subalgebra. However, instead of a root basis, one can only use
a C-basis and the multi-index becomes a complex multi-index. In the applications
below, dim 𝔥 = 1 and there is an honest finite complex grading on each of the 𝔤𝑘

resulting in the bigrading

(7.1) 𝔤 =
⊕

𝑘∈Z,ℓ∈C
𝔤𝑘,ℓ.

This bigrading depends on the basis 𝛼 of 𝔥. Changing it by a complex multiple
𝜇 · 𝛼 replaces the second grading ℓ by 𝜇ℓ. One calls it a rescaled grading .

Recall from § 6.5.A that the Hochschild cohomology HH∗ (𝐴) of an associative
algebra 𝐴 is constructed from a complex 𝐶• (𝐴) and if 𝑍𝑘 (𝐴) is the sub-algebra of
the 𝑘-cocyles, there is a a Lie-algebra structure which comes from a Lie bracket

𝑍𝑘 (𝐴) × 𝑍ℓ (𝐴) → 𝑍𝑘+ℓ−1 (𝐴)
generalizing the Lie bracket on 𝑍1 (𝐴), the so-called Gerstenhaber bracket . See
[Ger63] for the (involved) definition. This bracket together with the cup product
structure gives Hochschild cohomology HH∗ (𝐴) the structure of a Gerstenhaber
algebra.

Example 7.2. Since Remark 6.26 states that the Hochschild cohomology of
the category [𝑀𝑎𝑡𝑓

𝑅,𝑤
] of matrix factorizations for 𝑤 can be computed from a

Hochschild complex of 𝑅-algebras, it has a natural structure of a Gerstenhaber
algebra.

Observe that since 𝑅 = C[𝑥1, . . . ,𝑥𝑚], the 𝑅-algebras that occur here are graded
and so HH∗ (𝑀𝑎𝑡𝑓

𝑅,𝑤
) as well as HH∗ (𝑀𝑎𝑡𝑓

𝑤,Γ,𝜒
) receive an extra grading. This

grading is an integral grading.

The above example motivates to consider the abstract situation of a graded
associative algebra, 𝐴, that is 𝐴 = ⊕ℓ∈Z𝐴ℓ. As in the example, the spaces 𝐶𝑘 (𝐴)
then receive an extra grading. The one on 𝐶1 (𝐴) = Hom(𝐴,𝐴) is to be interpreted
as an operator 𝐸 : 𝐴 → 𝐴 having integral eigenvalues ℓ on the eigenspace 𝐴ℓ.
Such an operator can be seen to be a derivation on 𝐴 and hence defines a class
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[𝐸] ∈ HH1 (𝐴). The operator 𝐸 acts on 𝑍𝑘 (𝐴) through the Gerstenhaber-bracket
and preserves 𝐵𝑘 (𝐴). Hence one gets a second grading on Hochschild cohomology.
Usually one shifts the grading on 𝐴 to achieve that the bigrading adds up to the
degree of the Hochschild cohomology by setting

(7.2) 𝑍𝑘,ℓ (𝐴) := {𝑐 ∈ 𝑍𝑘 (𝐴) | [𝐸, 𝑐] = ℓ𝑐}[−ℓ], HH𝑘,ℓ (𝐴) = 𝑍𝑘,ℓ (𝐴)/𝐵𝑘,ℓ (𝐴),
where 𝐵𝑘,ℓ (𝐴) = 𝑍𝑘,ℓ (𝐴) ∩ 𝐵𝑘 (𝐴). It follows from kernel of [𝐸,−] on HH1 (𝐴) is
exactly HH1,0 (𝐴). If this space happens to be 1-dimensional it obviously is a Cartan
subalgebra of HH1 (𝐴) and by unicity of such a subalgebra, one deduces:

Proposition 7.3. Suppose dimHH1,0 (𝐴) = 1. The adjoint action of the Car-
tan subalgebra HH1,0 (𝐴) ⊂ HH1 (𝐴) on Hochschild cohomology yields an integral
bigrading (7.2) which satisfies

HH𝑚 (𝐴) =
⊕
𝑘+ℓ=𝑚

HH𝑘,ℓ (𝐴).

Example 7.4. HH∗ (𝑀𝑎𝑡𝑓
𝑅,𝑤
) as well as HH∗ (𝑀𝑎𝑡𝑓

𝑤,Γ,𝜒
) come from Hochschild

complexes of 𝑅-algebras with 𝑅 = C[𝑥1, . . . ,𝑥𝑚].

7.2. How Gerstenhaber algebras lead to contact invariants

Recall that by Theorem 5.8 the symplectic cohomology of a Liouville domain
𝑊 with 𝑐1 (𝑊) = 0 has a graded product. More is true:

Theorem 7.5. Let (𝑊,𝜔) be a Liouville domain for which 𝑇𝑊 is trivializable.

and such that 𝑏1 (𝑊) = 0, where 𝑊 is the symplectic completion of 𝑊. Then
SH∗ (𝑊) admits a Lie-algebra bracket of degree −1 and, together with the graded
product SH∗ (𝑊), forms a Gerstenhaber algebra.

There is an excellent overview of the construction of the Lie bracket in [EL21,
§4.3]. The Gerstenhaber structure then provides a Cartan subalgebra 𝔥 ⊂ SH1 (𝑊)
which is the generalized 0-eigenspace SH1,0 (𝑊) of the adjoint action of 𝔥 on SH1 (𝑊).
Assuming that

(7.3) dim SH1,0 (𝑊) = 1,

the Gerstenhaber structure gives SH∗ (𝑊) a bigraded structure as in (7.1):

SH∗ (𝑊) =
⊕

𝑘∈Z,ℓ∈C
SH𝑘,ℓ (𝑊).

It is worthwhile to observe that here one has SH𝑘,ℓ (𝑊) ⊂ SH𝑘 (𝑊), contrary to
the bigrading in Hochschild cohomology discussed in the previous subsection where
HH𝑘,ℓ (𝐴) ⊂ HH𝑘+ℓ (𝐴) (see Proposition 7.3).

One applies this to contact manifolds 𝑆 which are symplectically fillable, say

𝑆 = 𝜕𝑊, 𝑊 a Liouville domain and 𝑊 its symplectic completion. In § 5.3.C it has
been explained that the groups SH𝑘 (𝑊) for 𝑘 < 0 are contact invariants under the
assumption that (𝑆, 𝜉) is index-positive. Lemma 4.3 in [EL21] states something
more precise, namely, if in addition, every closed Reed orbit 𝛾 has Conley–Zehnder
index ≥ max(5− 𝑛,𝑛 − 1), then for a suitable almost complex structure on 𝑊 these
orbits stay away from the cylindrical end of 𝑊, that is, close to 𝑆 = 𝜕𝑊. Together
with some supplementary conditions, this implies that then the Gerstenhaber alge-
bra structure on SH<0 (𝑊) is a contact invariant for 𝑆:
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Theorem 7.6 ([EL21, Cor. 4.5]). Let 𝑆 be as above and let 𝑊,𝑊′ be Liouville
domains of (real) dimension 2𝑛 with 𝜕𝑊 = 𝜕𝑊′ = 𝑆. Assume

(1) The Conley–Zehnder index of every closed Reeb orbit 𝛾 satisfies 𝜇CZ (𝛾) ≥
max(5 − 𝑛,𝑛 − 1);

(2) 𝑐1 (𝑊) = 𝑐1 (𝑊′) = 0;
(3) 𝑊 and 𝑊′ admit Morse functions all of whose critical points have index

≠ 1.

Then

(a) there is an isomorphism of Lie algebras 𝑓1 : SH1 (𝑊) ∼−→ SH1 (𝑊′),
(b) for each 𝑑 < 0 there is an isomorphism 𝑓𝑑 : SH𝑑 (𝑊) ∼−→ SH𝑑 (𝑊′) which

intertwines the induced representations given by the adjoint representa-
tion given by the bracket operation of SH1 (𝑊) on SH𝑑 (𝑊), respectively of
SH1 (𝑊′) on SH𝑑 (𝑊′). That is, for each 𝑑 < 0, one has a commutative
diagram:

SH1 (𝑊)
ad

//

𝑓1

��

𝔤𝔩(SH𝑑 (𝑊))

𝑓𝑑

��
SH1 (𝑊′)

ad
// 𝔤𝔩(SH𝑑 (𝑊′)).

This can be applied to links. Note that in case two Milnor fibers (for differ-
ent singularities) are symplectomorphic, its is not clear that the induced contact
structures on the boundary are contactomorphic. The above result gives conditions
which make it possible to read this off from Reeb orbits near the cylindrical ends.
In dimension 3 one deduces:

Corollary 7.7. Let {𝑓 = 0} ⊂ C4 have a normal terminal IHS at the origin.
Then the bigraded symplectic cohomology in negative degrees of its Milnor fiber F𝑓
is a contact invariant of the link.

Proof. By Proposition 5.16 the minimal discrepancy equals 1. By Mclean’s
theorem 5.19 the Conley–Zehnder index for every closed Reeb orbit is at least
2 = max(5 − 3, 3 − 1). Since the Milnor fiber is a parallellizable complex manifold,
one has 𝑐1 (F𝑓) = 0. Also, since F𝑓 is diffeomorphic to a handlebody obtained from
the 6-disc by attaching 𝜇 handles of index 3, by Corollary 1.6 there is Morse function
F𝑓 → R which has only index 0 and 3. So all conditions are satisfied to apply the
preceding theorem. □



CHAPTER 8

Symplectic cohomology for invertible matrix
singularities

Introduction

In Section 8.2 it will be shown that symplectic cohomology for the Milnor
fiber of large classes of invertible matrix singularities is the same as Hochschild
cohomology for the category of equivariant matrix factorizations. But first, in
§ 8.1, I shall specialize the prescription given in Section 6.6.B to the special case of
invertible matrix singularities.

By Corollary 7.7 the bigraded symplectic cohomology in negative degrees of
the Milnor fiber of a 3-dimensional normal terminal IHS is a contact invariant
of the link. In Section 8.2 it is shown that for cDV-singularities {𝑤𝐴 = 0} of
invertible matrix type the Gerstenhaber structure on symplectic cohomology can
be transported to HH∗ (𝐴,Γ𝐴) in such a way that it preserves the property of being
a contact invariant of the link. This makes this bigrading often computable in these
cases.

In Section 8.3 and 8.4, following [EL21, §2.4, §3.1], I shall explain how to
calculate the Hochschild cohomology with its Gerstenhaber structure for diagonal
matrix-singularities in dimension 3. As just explained, this also gives contact in-
variants for the links. These calculations give an indication of how to proceed in
the other cases treated in [EL21].

8.1. General prescription

Recall that an invertible matrix 𝐴 = (𝑎𝑖𝑗) ∈ GL𝑛+1 (C) defines the polynomial

𝑤𝐴 (𝒙) :=
∑

𝑘 𝑥
𝑎𝑘,1
1 𝑥

𝑎𝑘,2
2 · · · 𝑥𝑎𝑘,𝑛+1𝑛+1 which is an invertible polynomial IHS if the hyper-

surface 𝑤𝐴 = 0 of C𝑛+1 has an isolated singularity at 0. The entries of 𝐴 define the
group

Γ𝐴 := {(𝑡0, . . . , 𝑡𝑛+1) ∈ (C∗)𝑛+2 | 𝑡𝑎𝑘 ,11 · · · 𝑡𝑎𝑘 ,𝑛+1𝑛+1 = 𝑡0 · · · 𝑡𝑛+1, 𝑘 = 1, . . . ,𝑛 + 1}.
Since 𝐴 is invertible, this is in fact a finite group extension of C∗ which admits the
canonical character

𝜒𝐴 : Γ𝐴 −−−→ C∗, 𝒕 := (𝑡0, . . . , 𝑡𝑛+1) ↦→ 𝑡0 · · · 𝑡𝑛+1
whose kernel is the finite group

𝐺𝐴 = {𝒕 ∈ (C×)𝑛+2 | 𝑡𝑎𝑘,11 𝑡
𝑎𝑘,2
2 · · · 𝑡𝑎𝑘.𝑛+1𝑛+1 = 1, 𝑘 = 1, . . . ,𝑛 + 1, 𝑡0 = (𝑡1 · · · 𝑡𝑛+1)−1}.

Now one can begin to specialize the description of HH∗ (𝑀𝑎𝑡𝑓
𝑤,𝛾𝜒
) given in

§ 6.6.B in case 𝑤 = 𝑤𝐴,Γ = Γ𝐴,𝜒 = 𝜒𝐴. First note that (C∗)𝑛+1 acts naturally on
the polynomial ring C[𝑥0,𝑥1, . . . ,𝑥𝑛+1] and on

𝑅 := C[𝑥0, . . . ,𝑥𝑛+1,𝑥∗0, . . . ,𝑥∗𝑛+1]

81
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by coordinate-wise multiplication:

(𝑡0, . . . , 𝑡𝑛+1) · 𝑥𝑗 = 𝑡𝑗𝑥𝑗 , (𝑡0, . . . , 𝑡𝑛+1) · 𝑥∗𝑗 = 𝑡−1𝑗 𝑥∗𝑗 .

This induces an action of Γ𝐴 on 𝑅 through further characters 𝜒𝑗 , 𝑗 = 0, . . . ,𝑛 + 1,
which on (𝑡0, . . . , 𝑡𝑛+1) take the value 𝑡𝑗 , that is

𝛾 (𝑥𝑗) = 𝜒𝑗 (𝛾) · 𝑥𝑗 , 𝛾 (𝑥∗𝑗 ) = 𝜒−1𝑗 (𝛾) · 𝑥∗𝑗 .
One clearly has:

Lemma. 𝑤𝐴 is a semi-invariant for the Γ𝐴-action with character 𝜒𝐴 and 𝑤𝐴

is invariant under the action of 𝐺𝐴.

The individual variables 𝑥𝑗 may or may not be invariant under the action of
𝛾 ∈ 𝐺𝐴, and one accordingly divides the indexing set 𝐼 = {1, . . . ,𝑛+1} in two disjoint
subsets 𝐼𝛾 and 𝐼𝛾 ,

𝑖 ∈ 𝐼𝛾 ⇐⇒ 𝑥𝑖 is fixed under the action of 𝛾,
𝑖 ∈ 𝐼𝛾 ⇐⇒ 𝑥𝑖 is not fixed under the action of 𝛾.

The polynomial 𝑤
𝛾
𝐴 is the trace of 𝑤𝐴 in the 𝛾-invariant polynomial ring. In other

words, 𝑤
𝛾
𝐴 is obtained from 𝑤𝐴 upon setting all 𝑥𝑗 , 𝑗 ∈ 𝐼𝛾 , to zero:

𝑤
𝛾
𝐴 = 𝑤𝐴 |{𝑥𝑗=0, for all 𝑗∈𝐼𝛾 }.

Note that 𝑤
𝛾
𝐴 only involves the 𝛾-invariant variables. Since 𝑡0 = 𝑡0 · · · 𝑡𝑛+1·(𝑡1 · · · 𝑡𝑛+1)−1,

the characters 𝜒𝐴 and 𝜒𝑗 , 𝑗 = 0, . . . ,𝑛 + 1 satisfy the relation

𝜒0 = 𝜒𝐴 ⊗
𝑛+1∏
𝑖=1

𝜒−1𝑖 ,

one finds oneself exactly in the situation of Section 6.6.B. In the present situation
one has

𝜅𝛾 =
∏
𝑗∈𝐼𝛾

𝑥∗𝑗 .

Since the contributions in the Hochschild cohomology come from monomials 𝒎 ∈ 𝑅,
it is convenient to use the corresponding monomial characters 𝜒𝒎 of the full torus
(C∗)𝑛+2 given by

𝜒𝒎 : (C∗)𝑛+2 → C∗, 𝒕 ↦→ 𝑡𝑏00 · · · 𝑡
𝑏𝑛+1
𝑛+1 , where 𝑏𝑗 = deg𝑥𝑗 (𝒎) − deg𝑥−1𝑗 (𝒎).

Proposition 6.29 motivates the concept of a 𝛾-monomial:

Definition 8.1. To 𝛾 ∈ 𝐺𝐴 and 𝑤𝐴 one associates a set 𝑀𝛾 := 𝐴𝛾 ∪ 𝐵𝛾 ∪ 𝐶𝛾 of

monomials in 𝑅, the 𝛾-monomials, where

(=case 1(b) of Prop. 6.29)): The set 𝐴𝛾 is empty if 𝛾 (𝑥0) ≠ 𝑥0 and if 𝛾 (𝑥0) = 𝑥0
one has

𝐴𝛾 = {𝑥𝑏00 · 𝑃 ·
∏
𝑖∈𝐼𝛾

𝑥∗𝑖 | 𝑏0 ≥ 0 and 𝑃 monomial in ∈ Jac𝑤𝛾
𝐴
},

a collection of monomials of involving 𝑥0, 𝑥𝑗 , 𝑗 ∈ 𝐼𝛾 , 𝑥∗𝑖 , 𝑖 ∈ 𝐼𝛾 .
(=case 2 of Prop. 6.29): The set 𝐵𝛾 is empty if 𝛾 (𝑥0) ≠ 𝑥0 and if 𝛾 (𝑥0) = 𝑥0

one has

𝐵𝛾 = {𝑥𝑏00 · 𝑃 · 𝑥
∗
0 ·

∏
𝑖∈𝐼𝛾

𝑥∗𝑖 | 𝑏0 ≥ 0 and 𝑃 monomial in ∈ Jac𝑤𝛾
𝐴
},
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a collection of monomials involving 𝑥0, 𝑥
∗
0, 𝑥𝑗 , 𝑗 ∈ 𝐼𝛾 , 𝑥∗𝑖 , 𝑖 ∈ 𝐼𝛾 .

(=case 1a of Prop. 6.29): The set 𝐶𝛾 is empty if 𝛾 (𝑥0) = 𝑥0 and if 𝛾 (𝑥0) ≠ 𝑥0
one has

𝐶𝛾 = {𝑃 · 𝑥∗0 ·
∏
𝑖∈𝐼𝛾

𝑥∗𝑖 | and 𝑃 monomial in ∈ Jac𝑤𝛾
𝐴
},

a collection of monomials involving 𝑥∗0, 𝑥𝑗 , 𝑗 ∈ 𝐼𝛾 , 𝑥∗𝑖 , 𝑖 ∈ 𝐼𝛾 .
The condition that a 𝛾-monomial 𝒎 belongs to the 𝜒⊗𝑢𝐴 -character space trans-

lates as 𝜒𝒎 = 𝜒⊗𝑢𝐴 , suggesting the following

Definition 8.2. A pair (𝛾,𝒎), consisting of 𝛾 ∈ ker(𝜒𝐴) and a 𝛾-monomial
𝒎, is said to be a compatible pair of weight 𝑢 ∈ Z if 𝜒𝒎 = 𝜒⊗𝑢𝐴 .

To determine the degree of such monomials in the Hochschild cohomology, let
me provisionally introduce the negativity

of a 𝛾-monomial 𝒎 as the number of variables 𝑥∗0, . . . ,𝑥
∗
𝑛+1 appearing in 𝒎.

So, if 𝑥0 is not fixed by 𝛾, the only 𝛾-monomials in 𝐶𝛾 are those involving
𝑥∗0 and no powers of 𝑥0. In case 𝛾 (𝑥0) = 𝑥0, there are two types: The 𝐴-types
which possibly involve a power of 𝑥0 but not of 𝑥∗0 while the 𝐵-types involve 𝑥∗0 and
possibly a power of 𝑥0. The negativity of a 𝛾-monomial of type 𝐴𝛾 equals #𝐼𝛾 , the
total number of 𝑥𝑗 , 𝑗 ∈ [1, . . . ,𝑛+1] that are not invariant under 𝛾. The other types
have negativity #𝐼𝛾 + 1. From Proposition 6.29 it then follows that a compatible

pair (𝛾,𝒎) of weight 𝑢 and negativity ℎ contributes to HH2𝑢+ℎ (𝐴,Γ𝐴).

Example 8.3. The group 𝐺𝐴 is finite. If |𝐺𝐴 | = 𝑘 and if the subgroup 𝐻 that
fixes each of the variables 𝑥1, . . . ,𝑥𝑛+1 has order ℓ, then #𝐼𝛾 = 𝑛 + 1 for 𝛾 ∈ 𝐺𝐴 −𝐻.
Thus (𝑥0 · · · 𝑥𝑛+1)∗ is a 𝛾-monomial of type 𝐵 ⇐⇒ 𝛾 (𝑥0) = 𝑥0, and otherwise is of
type 𝐶. Hence one always has (𝑘 − ℓ) 𝛾-monomials of negativity 𝑛 + 2.

Remark 8.4. 𝛾-monomials can involve 𝑥𝑗 , 𝑗 ≥ 1 but the exponent of such 𝑥𝑗
is bounded by dim Jac𝑤𝐴 . This implies that 𝛾-monomials of type 𝐶 have bounded
total degree. Since 𝑥0 can have arbitrary high exponent for types 𝐴 and types 𝐵,
the total degree of such 𝛾-polynomials can be arbitrarily high.

The group Γ𝐴 and its canonical character 𝜒𝐴 being defined by 𝐴, as in Sec-
tion 1.5 of the introductory chapter, I shall use simplified notation:

(8.1) HH∗ (𝐴,Γ𝐴) := HH∗ (𝑀𝑎𝑡𝑓
𝑤𝐴 ,Γ𝐴 ,𝜒𝐴

).

Summing up one has:

Theorem 8.5 ([EL21, Thm. 2.14]). HH∗ (𝐴,Γ𝐴) is the (possibly infinite di-
mensional) C-vector space with basis the compatible (𝛾,𝒎)-pairs. A compatible

pair (𝛾,𝒎) of weight 𝑢 and negativity ℎ contributes to HH2𝑢+ℎ (𝐴,Γ𝐴).

8.2. Relating symplectic cohomology to Hochschild cohomology

As mentioned in the introduction, calculating symplectic cohomology is in gen-
eral difficult. In [EL21] it is explained how one might reduce the calculation for
𝑛-dimensional isolated singularities 𝑤𝐴 = 0 associated to invertible matrices 𝐴, to
a purely algebraic one. This explanation is highly technical; for the benefit of
a general readership I shall give here a simplified account skipping all technical
details.



84 8. SYMPLECTIC COHOMOLOGY FOR INVERTIBLE MATRIX SINGULARITIES

There are two related categories that play the central role here. They are
associated to a perturbation of 𝑤𝐴 which only has ordinary double point singu-
larities, a so-called Morsification of 𝑤𝐴. Such perturbations arise e.g. in the
semi-universal unfolding, which has been briefly discussed in Section 3.3.C. To the
resulting family of hypersurfaces acquiring at most ordinary double points one can
apply the technique of Lefschetz: each double point gives a vanishing cycle and a
vanishing thimble in the total space of the family. It turns out that this association
leads to two corresponding so-called 𝐴∞-algebras A (for the vanishing cycles) and
B (for the vanishing thimbles) which only depend on the function 𝑤𝐴.

1 As outlined
in Section 6.5.B, these algebras can be considered as categories as well, say A and
B. Below a ”duality” between invertible matrix-singularities plays a role where 𝐴
is replaced with its transpose 𝐴T.

In order to understand the formulation of these conjectures, observe that Γ𝐴
also fixes the polynomial 𝑥𝐴′: = 𝑥𝐴+(𝑥0 · · · 𝑥𝑛+1), one can thus consider the category
𝑀𝑎𝑡𝑓

𝑤𝐴′,Γ,𝜒
. The following conjectures play role in this story:

Conjecture 8.6. (A) The homotopy category [𝑀𝑎𝑡𝑓
𝑤𝐴 ,Γ𝐴 ,𝜒𝐴

] is equiva-

lent to the homotopy category [A] (associated to the vanishing thimbles
of a morsification of 𝑤𝐴T). Moreover, the algebra A is formal in the sense
that its cohomology algebra 𝐻∗ (A) is quasi-isomorphic to A.

(B) The homotopy category [𝑀𝑎𝑡𝑓
𝑤𝐴′,Γ𝐴 ,𝜒𝐴

] is equivalent to the homotopy cat-

egory [B] (associated to the vanishing thimbles of a morsification of 𝑤𝐴T).

Recalling the simplified notation (8.1), the announced relation is as follows:

Theorem 8.7. Assume that 𝑤𝐴 has non-zero amplitude (i.e., 𝑤𝐴 is not of
log-Calabi type, see Example 1.2.5). If moreover

(1) HH2 (𝐴,Γ𝐴) = 0;
(2) either Conjecture 8.6.(A) or 8.6(B) holds,

then HH∗ (𝐴,Γ𝐴) ≃ SH∗ (F𝑤𝐴T ) as Gerstenhaber algebras.

Sketch of the proof: Assumption (1) implies two crucial results used in
the proof:

• linking Hochschild cohomology of the category B to symplectic cohomol-
ogy of the Milnor fiber of 𝑤𝐴T :

(8.2) HH∗ (B) ≃ SH∗ (F𝑤𝐴T ) (as Gerstenhaber algebras).

This is a consequence of [LU21, Thm. 6.4] together with [Gan13, Thm.
1.1].
• linking A and B:

A ≃ B, B = 𝐻∗ (B).
This is a consequence of [LU21, Eq.(1.0) and Section 2]. Consequently
HH∗ (𝐴,Γ𝐴) = HH∗ (B). Assumption (1) then implies that also B is formal
so that

(8.3) HH∗ (A) ≃ HH∗ (B) = HH∗ (B).

1Here one does not need to know what 𝐴∞-algebras or 𝐴∞-categories are. The reader can
learn about these structures for instance in S. Ganatra’s thesis [Gan13].
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Let me first assume that Conjecture 8.6(A) holds. Hence

HH∗ (𝐴,Γ𝐴) ≃ HH∗ (A), A = 𝐻∗ (A).
By (8.3) it thus follows that

(8.4) HH∗ (𝐴,Γ𝐴) ≃ HH∗ (B).
Moreover, the isomorphisms preserve the Gerstenhaber-algebra structure. Equa-
tions (8.2) and (8.4) yield HH∗ (𝐴,Γ𝐴) = SH∗ (F𝑤𝐴T ) as Gerstenhaber algebras which
proves the theorem.

Next, assume that Conjecture 8.6(B) holds. By [EL21, Theorem 2.15] assump-
tion (1) implies that the two homotopy categories [𝑀𝑎𝑡𝑓

𝑤𝐴 ,Γ𝐴 ,𝜒𝐴
] and [𝑀𝑎𝑡𝑓

𝑤𝐴′ ,Γ𝐴 ,𝜒𝐴
],

are equivalent. Hence Conjecture 8.6.(B) together with (8.2) then imply the theo-
rem. □

The present status of the conjectures is as follows:

Proposition 8.8. Conjecture 8.6(A) holds if

(1) 𝐴 is diagonal (cf. [FU11]);
(2) 𝐴 is block diagonal and its blocks are either 1-by-1 or 2-by-2 equal to(

2 1
0 𝑘

)
(cf. [FU13]);

(3) 𝐴 = 𝑓(𝑥1,𝑥2) +
∑𝑛+1

𝑗=3 𝑥
2
𝑗 (cf. [HS20]).

Conjecture 8.6(B) holds if 𝐴 is associated to an 𝐴-𝐷-𝐸-singularity (any dimension).
(cf. [Gam20, LU21, LU22])

8.3. The diagonal case

On the 𝛾-monomials. Assuming that 𝐴 = diag(𝑎1, . . . , 𝑎𝑛+1), I shall explain
how to find compatible pairs of 𝛾-monomials. The first task consists of comparing
𝜒𝐴 and the restriction of the character 𝜒𝒎 to Γ𝐴. Recall that

𝐺𝐴 = Ker(𝜒𝐴) = {𝒕 ∈ (C×)𝑛+2 | 𝑡𝑎𝑘𝑘 = 1, 𝑘 = 1, . . . ,𝑛 + 1, and 𝑡0 = (𝑡1 · · · 𝑡𝑛+1)−1},
which is isomorphic to the product 𝝁𝑎1 × · · ·𝝁𝑎𝑛+1 of (𝑛 + 1) cyclic groups, each
generated a primitive root of unity. The comparison will be done using the group

𝐺𝐴 := {(𝑡0, . . . , 𝑡𝑛+1) ∈ (C×)𝑛+2 | 𝑡
𝑎𝑗
𝑗 = 1, 𝑡 = 1, . . . ,𝑛 + 1}

and the homomorphism

(8.5) 𝑇 : 𝐺𝐴 → Γ𝐴, (𝑡0, . . . , 𝑡𝑛+1) ↦→ (𝑡𝑚0 · (𝑡1 · · · 𝑡𝑛+1)−1, 𝑡
ℓ/𝑎1
0 𝑡1, . . . , 𝑡

ℓ/𝑎𝑛+1
0 𝑡𝑛+1),

where ℓ := lcm(𝑎1, . . . , 𝑎𝑛+1) and 𝑚 := ℓ −∑𝑛+1
𝑖=1 ℓ/𝑎𝑖. Notice that

𝜒𝐴◦𝑇 (𝑡0, . . . , 𝑡𝑛+1) = (𝑡0 · · · 𝑡𝑛+1)ℓ

which gives a commutative diagram

1 // 𝐺𝐴
// Γ𝐴 𝜒𝐴

// C× // 1

1 // 𝝁𝑎1 × · · · × 𝝁𝑎𝑛+1
// 𝐺𝐴

𝑇

OO

𝜒𝐴◦𝑇
// C× //

𝑡 ↦→𝑡ℓ

OO

1.

To check if a 𝛾-monomial𝒎 is compatible and determine its weight, one has a simple

procedure. This uses the reduced exponents of the monomial 𝒎 where 𝑥
𝑝𝑗
𝑗 (𝑥

∗
𝑗 )𝑞𝑗
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has reduced exponent 𝑝𝑗 − 𝑞𝑗 . In other words, write 𝑥−1𝑗 instead of 𝑥∗𝑗 and allow

negative exponents. (Note that for a 𝛾-monomial one has 𝑞𝑗 = 0 or 𝑞𝑗 = 1.) For
simplicity I make the substitution 𝑥∗𝑗 = 𝑥−1𝑗 and use the and use the reduced form

𝑥𝑏00 · · · 𝑥
𝑏𝑛+1
𝑛+1 . This creates an ambiguitiy only for 𝑥0 since for 𝑗 ≥ 1, the variables 𝑥𝑗

and 𝑥∗𝑗 never occur simultaneously in 𝛾-monomials.

Lemma 8.9. Let 𝒎 = 𝑥𝑏00 · · · 𝑥
𝑏𝑛+1
𝑛+1 be a 𝛾-monomial in reduced form. Then the

character 𝜒𝒎 is a power of 𝜒𝐴 if and only if integers 𝑚1, . . . ,𝑚𝑛+1 exist such that
𝑏𝑖 = 𝑏0 −𝑚𝑖𝑎𝑖 for 𝑖 = 1, . . . ,𝑛 + 1 and then 𝜒𝒎 = 𝜒⊗𝑢𝐴 with 𝑢 = 𝑏0 −

∑
𝑚𝑖.

Proof. Observe that 𝜒𝒎 (𝒕) = 𝑡𝑏00 · · · 𝑡
𝑏𝑛+1
𝑛+1 and so, using Eqn. (8.5) one finds

(8.6) 𝜒𝒎◦𝑇 (𝒕) = 𝑡𝑐00 · · · 𝑡
𝑐𝑛+1
𝑛+1 , 𝑐0 = 𝑚𝑏0 +

𝑛+1∑︁
𝑖=1

𝑏𝑖
ℓ

𝑎𝑖
, 𝑐𝑖 = 𝑏𝑖 − 𝑏0, 𝑖 = 1, . . . ,𝑛 + 1.

I claim that this is a power of 𝜒𝐴 if 𝑐𝑖 ≡ 0 mod 𝑎𝑖 for 𝑖 = 1, . . . ,𝑛+1. In fact, writing

𝑏𝑖 = 𝑏0 −𝑚𝑖𝑎𝑖 , 𝑖 = 1, . . . ,𝑛 + 1,

one finds 𝑐0 = ℓ(𝑏0 −
∑
𝑚𝑖) and so

𝜒𝒎◦𝑇 (𝒕) = ((𝑡0 · · · 𝑡𝑛+1)ℓ)𝑏0−
∑
𝑚𝑖 = (𝜒𝐴◦𝑇 (𝒕))𝑏0−

∑
𝑚𝑖 for all 𝒕 ∈ 𝐺𝐴.

Conversely, if 𝜒𝒎◦𝑇 (𝒕) = 𝜒𝐴 (𝑇 (𝒕))𝑢 = ((𝑡0 · · · 𝑡𝑛+1)ℓ)𝑢, then (8.6) implies that 𝑏𝑖 −
𝑏0 = ℓ𝑢, but ℓ is a multiple of 𝑎𝑖 for all 𝑖 = 1, . . . ,𝑛+1 and so 𝑏𝑖 −𝑏0 ≡ 0 mod 𝑎𝑖. □

As a consequence, if (𝛾,𝒎 = 𝑥𝑏00 · · · 𝑥𝑏+1𝑛+1) is a compatible pair, then its weight
equals 𝑢 = 𝑏0 −

∑
𝑚𝑖. Hence the sole exponent 𝑏0 determines the other exponents

𝑏𝑗 as well as the weight by solving the congruences

(8.7) 𝑏𝑖 ≡ 𝑏0 mod 𝑎𝑖 , 𝑖 = 1, . . . ,𝑛 + 1.

Now by Remark 8.4, the appearance of 𝑥
𝑏𝑗
𝑗 , 𝑗 ≥ 1 is governed by the Jacobian ring

of the polynomial 𝑤𝐴. In the present situation all 𝑤
𝛾
𝐴 =

∑
𝑗∈𝐼𝛾 𝑥

𝑎𝑗
𝑗 are diagonal and

Jac𝑤𝛾
𝐴
= C · 1 ⊕

−−−−→
𝑎𝑗−1⊕
−→
𝑘𝑗=
−→
1

C ·
∏
𝑗∈𝐼𝛾

𝑥
𝑘𝑗
𝑗 .

Examples 8.10. 1. I claim that dimHH𝑛 (Γ𝐴) ≥
∏𝑛+1

𝑖=1 (𝑎𝑖 − 1). This can be
seen by the above procedure, setting 𝑏0 = −1. Then the congruences (8.7) have a
solution 𝑏𝑖 = −1, 𝑚𝑖 = 0, 𝑖 = 1, . . . ,𝑛 + 1. So 𝑥−10 · · · 𝑥−1𝑛+1 is a 𝛾-polynomial for all
𝛾 ∈ 𝐺𝐴 that fix no variable 𝑥𝑗 , 𝑗 ≥ 1, i.e, 𝛾 ∈ (𝝁𝑎1 − {1}) × · · · × (𝝁𝑎𝑛+1 − {1}). Hence

there are
∏𝑛+1

𝑖=1 (𝑎𝑖 − 1) such compatible pairs (𝛾,𝑥−10 · · · 𝑥−1𝑛+1) of weight 𝑢 = −1 and

negativity (𝑛+2) which all contribute to HH𝑛 (Γ𝐴) = HH−2+𝑛+2 (Γ𝐴). So its dimension
is at least

∏𝑛+1
𝑖=1 (𝑎𝑖 − 1).

2. Likewise, setting 𝑏0 = 0, one finds that 𝑏𝑖 = 0, 𝑚𝑖 = 0, 𝑖 = 1, . . . ,𝑛 + 1. Hence the
reduced form of 𝒎 equals the constant polynomial 1 and so 𝒎 = 1, an 𝐴𝛾-type poly-

nomial, or 𝒎 = 𝑥0𝑥
∗
0, a 𝐵𝛾-polynomial of negativity 1 and weight 0. Hence HH1 (Γ𝐴)

is at least one-dimensional. If 𝑛 = 3, the calculations in Section 8.4 show that this
is the only class in HH1 (Γ𝐴). By Theorem 8.12 below, since the non-zero class is
represented by 𝑥0𝑥

−1
0 , it belongs to HH1,0 (Γ𝐴) precisely because dimHH1,0 (Γ𝐴) = 1.
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This is a central observation which makes it possible to calculate the contact in-
variants of the examples of the links discussed in the last section.
3. In a similar way, for a fixed 𝑏0 > 0, solving the congruences (8.7), one checks

whether 𝒎(𝑏0) := 𝑥𝑏00 · · · 𝑥
𝑏𝑛+1
𝑛+1 is an 𝐴𝛾-monomial for some 𝛾 ∈ 𝐺𝐴. By construc-

tion it yields the compatible pairs and their weights and hence to which degree in
Hochschild cohomology the monomial contributes.

Elaborating the last example, let me outline a practical way to find a 𝛾-
monomial 𝒎𝐴 (𝑏0) of 𝐴-type whose 𝑥0-exponent is a given positive integer 𝑏0 > 0.
Taking a look at the 𝐴-monomials, one sees that for each 𝑖 ∈ 𝐼𝛾 the variable 𝑥−1𝑖 ap-
pears. So then 𝑏𝑖 = −1 and this leads to the congruence 𝑏0 + 1 ≡ 0 mod 𝑎𝑖. Pick out
all 𝑖 for which this is possible. Then these form 𝐼𝛾 . So now the complementary set
𝐼𝛾 is known and one determines the monomials which span Jac𝑤𝛾

𝐴
. Now 𝑑0 mod 𝑎𝑖

gives a unique remainder 𝑏𝑖 < 𝑎𝑖 and the required 𝛾-monomial becomes

𝒎𝐴 (𝑏0) := 𝑥𝑏00 ·
∏
𝑗∈𝐼𝛾

𝑥
𝑏𝑗
𝑗 ·

∏
𝑖∈𝐼𝛾

𝑥−1𝑖 ,

where one sets 𝑥
𝑎𝑗−1
𝑗 = 1. The associated 𝐵-monomial then is𝒎𝐵 (𝑏0) = 𝒎𝐴 (𝑏0)𝑥0𝑥−10 .

Notice that if indeed 𝛾 ∈ Γ𝐴 exists with 𝛾 (𝑥0) = 𝑥0 and 𝛾 (𝑥𝑖) = 𝑥𝑖 ⇐⇒ 𝑖 ∈ 𝐼𝛾 , the
pairs (𝛾,𝒎𝐴 (𝑏0)) and (𝛾,𝒎𝐵 (𝑏0)) yield compatible pairs.

Example 8.11. Consider 𝑤 := 𝑥2
1 +𝑥3

2 +𝑥5
3 +𝑥7

4 and 𝑏0 = 38. Then 𝑏0 +1 = 39 ≡
0 mod 3 but 39 . 0 mod 2, 5, 7 and so 𝐼𝛾 = {2}. Hence Jac𝑤𝛾 is spanned by 𝑥𝑎3𝑥

𝑏
4

with 𝑎 = 0, . . . , 3, 𝑏 = 1, . . . , 5. Since 𝑏0 − 𝑏3 ≡ 3 − 𝑏3 ≡ 0 mod 5, one has 𝑏3 = 3 and
likewise 38 − 𝑏4 ≡ 0 mod 7 gives 𝑏4 = 3. Hence 𝒎𝐴 (38) = 𝑥38

0 𝑥3
3𝑥

3
4𝑥
−1
2 .

Computing the second grading. Let me now describe (without proof) the
bigrading on HH∗ (𝐴,Γ𝐴) under the identification

HH∗ (𝑀𝑎𝑡𝑓
𝑤𝐴
) = HH∗ (𝐴,Γ𝐴).

This requires tracing through all of the identifications from Section 8.2. This is
quite involved. The final result is as follows:

Theorem 8.12 ([EL21, Lemma 4.6]). Let 𝑤𝐴 = 0 be an 𝑛-dimensional isolated
singularity associated to an invertible matrix 𝐴. Suppose that assumption (7.3)
holds. Then the bigrading on the side of symplectic cohomology on the Milnor fibre
F𝑤𝐴 given by the representation

SH1 (𝑤𝐴) →
⊕
𝑑

𝔤𝔩(SH𝑑 (F𝑤𝐴 ))

is scale equivalent to the bigrading by the total exponent of 𝑥0 on Hochschild coho-
mology:

HH𝑑 (𝐴,Γ𝐴) =
⊕
𝑞

HH𝑑−𝑞,𝑞 (𝐴,Γ𝐴),

where a 𝛾-monomial 𝑚 whose total exponent of 𝑥0 in 𝑚 is 𝑏0 contributes to the
bigraded piece HH𝑑−𝑛𝑏0,𝑛𝑏0 (𝐴,Γ𝐴).

The bigrading on
⊕

𝑑<0 SH
𝑑 (𝑤𝐴) (which by Theorem 7.6) is a contact invariant

of the link) can therefore be computed in terms of the 𝑥0-powers of the contributing
𝛾-monomials. This information can be used to distinguish non-isomorphic contact
structures on the link of the Milnor fibre as will be explained below in Section 8.4.B
for the example of diagonal CDV-singularities.
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8.4. A diagonal cDV-example

I now give the full details for calculations which leads to the results stated in
Example 1.16. Here (𝑎1, 𝑎2, 𝑎3, 𝑎4) = (2, 2, 2, 2𝑘).

8.4.A. The symplectic cohomology of the Milnor fiber in terms of
the Hochschild cohomology. Recall the statement:

Theorem.

dim(SH𝑑 (𝐴1 (2𝑘))) =


0 𝑑 ≥ 4

2𝑘 − 1 𝑑 = 3

0 𝑑 = 2

1 𝑑 ≤ 1

To show this, first note that 𝐺𝐴 = 𝝁1 × 𝝁1 × 𝝁1 × 𝝁2𝑘 with action given by2

((−1)𝑏1 , (−1)𝑏2 , (−1)𝑏3 , (𝜌2𝑘)𝑏4 ) · (𝑥0,𝑥1,𝑥2,𝑥3,𝑥4)

= ((−1)𝑏1+𝑏2+𝑏3𝜌𝑏4
2𝑘
𝑥0, (−1)𝑏1𝑥1, (−1)𝑏2𝑥2, (−1)𝑏3𝑥3, (𝜌2𝑘)𝑏4𝑥4).

Let me make this more explicit in the following tables. There I use the convention
that 𝛼𝑖 is the generator of the 𝑖-th cyclic factor of 𝐺𝐴) and 𝛼𝑖𝑗 = 𝛼𝑖 × 𝛼𝑗 . Hence
𝛼1,𝛼2,𝛼3 have order 2 while 𝛼4 = 𝜌2𝑘, and in Table 8.1 only exponents 1, . . . , 2𝑘 − 1
are allowed to occur. Observe that 𝛼𝑘4 = 𝜌𝑘

2𝑘
= −1 so that (−1,−1,−1,𝛼𝑘4) as well as

14, (−1,−1, 1, 1), (−1, 1,−1, 1) and (1,−1,−1, 1) fix 𝑥0. This leads to Table 8.1 and
Table 8.2

Table 8.1. 𝛾 with 𝛾 (𝑥0) = 𝑥0

𝛾 13 × 1 𝛼𝑖 × 1 𝛼𝑖𝑗 × 𝛼𝑘4 (−1)3 × 𝛼𝑘4
other 𝑥𝑘 fixed 𝑘 = 1, 2, 3, 4 𝑘 ≠ 𝑖, 𝑘 = 4 𝑘 ≠ 𝑖, 𝑗 none

|𝐼𝛾 | 4 3 1 0

dim Jac𝑤𝛾
𝐴

2𝑘 − 2 2𝑘 − 2 0 0

𝐴𝛾 -polyn. 𝑥𝑏00 𝑥ℓ4 𝑥𝑏00 𝑥ℓ4𝑥
−1
𝑖 𝑥𝑏00 𝑥−1𝑖 𝑥−1𝑗 𝑥−14 𝑥𝑏00

∏4
𝑖=1 𝑥

−1
𝑖

Table 8.2. 𝛾 with 𝛾 (𝑥0) ≠ 𝑥0

𝛾 13 × 𝛼ℓ4 𝛼𝑖 × 𝛼ℓ4 𝛼𝑖𝑗 × 𝛼ℓ4 (−1)3 × 𝛼ℓ4 𝛼𝑖𝑗 × 1 (−1)3 × 1
𝛾 (𝑥𝑘) = 𝑥𝑘 𝑘 = 1, 2, 3 𝑘 ≠ 𝑖 𝑘 ≠ 𝑖, 𝑗 none 𝑘 ≠ 𝑖 𝑘 ≠ 𝑖, 𝑗

|𝐼𝛾 | 3 2 1 0 2 1

dim Jac𝑤𝛾
𝐴

0 0 0 0 2𝑘 − 2 2𝑘 − 2
𝐶𝛾 -polyn. 𝑥−14 𝑥−1𝑖 𝑥−14 𝑥−1𝑖 𝑥−1𝑗 𝑥−14

∏4
𝑖=1 𝑥

−1
𝑖 𝑥−1𝑖 𝑥−1𝑗 𝑥ℓ4

∏3
𝑖=1 𝑥

−1
𝑖 𝑥ℓ4

The next task is to find compatible pairs. This necessitates solving the equa-
tions 𝑏0 ≡ 𝑏𝑖 mod 2 for 𝑖 = 1, 2, 3 and 𝑏0 ≡ 𝑏4 mod 2𝑘 for any given integer 𝑏0 > 0.
Now, by the euclidean algorithm, one may write

𝑏0 = 2𝑝𝑘 + 2𝑞 + 𝑟, 𝑝 ≥ 0, 0 ≤ 𝑞 ≤ 𝑘 − 1, 𝑟 = 0, 1.

One has to play this off against the 𝑥𝑖, 1, 2, 3, having exponents 𝑏𝑖 = 0 or 𝑏𝑖 = −1.
Let me first find the 𝐴𝛾-polynomials.

2Here 𝜌𝑘 denotes a primitive 𝑘-th root of unity.
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Case 1: 𝑏0 is even. Then 𝑟 = 0 and 𝑏1 = 𝑏2 = 𝑏3 = 0 and 𝑏4 = 2𝑞, 0 ≤ 𝑞 ≤ 𝑘 − 1.
Recalling Lemma 8.9, one finds 𝑚1 = 𝑚2 = 𝑚3 = 𝑝𝑘 + 𝑞, 𝑚4 = 𝑝 and so

the weight is 𝑢 = 𝑏0 −
∑
𝑚𝑖 = −((𝑘 + 1)𝑝 + 𝑞). Such polynomials 𝑥𝑏00 𝑥

2𝑞
4

are 𝐴𝛾-polynomials for 𝛾 = 1. These contribute each to HH2𝑢 (𝐴1 (2𝑘)) =
HH−2((𝑘+1)𝑝+𝑞) (𝐴1 (2𝑘)).

Case 2: 𝑏0 is odd (so 𝑟 = 1). One sees that 𝑏1 = 𝑏2 = 𝑏3 = −1, 𝑏4 = 2𝑞 + 1, 0 ≤ 𝑞 ≤
𝑘 − 1. Also, 𝑚1 = 𝑚2 = 𝑚3 = 𝑝𝑘 + 𝑞 + 1, 𝑚4 = 𝑝 if 𝑞 ≤ 𝑘 − 2 and 𝑚4 = −1
if 𝑞 = 𝑘 − 1. Only the last possibility gives an 𝐴𝛾-polynomial, namely

𝑥𝑏00 𝑥−11 𝑥−12 𝑥−13 𝑥−14 for 𝛾 = (−1)3×𝛼𝑘4 whose weight is 𝑢 = −((𝑘+1)𝑝+𝑘+2).
It contributes to HH2𝑢+4 (𝐴1 (2𝑘)) = HH−2((𝑘+1)𝑝+𝑘) (𝐴1 (2𝑘)).

This shows that dimHH𝑚 (𝐴1 (2𝑘)) = 1 for each non-positive even degree 𝑚,
since 2((𝑘 + 1)𝑝 +𝑞), 𝑞 = 0, . . . , 𝑘 runs over all possible even numbers (or 0) because
𝑝 can be any non-negative integer.

Next, multiplying the above 𝐴𝛾-polynomials with 𝑥−10 gives 𝐵𝛾-polynomials

which gives the odd negative degrees. For 𝑏0 = 0 one only finds 1 ∈ HH0 (𝐴1 (2𝑘)).
The only other 𝐵𝛾-polynomial (or 𝐶𝛾-polynomial) is (𝑥0 · · · 𝑥4)−1 which contributes

one dimension to HH2 (𝐴1 (2𝑘)) for each group element of the form 𝛾 = (−13 × 𝛼ℓ4),
ℓ = 1, . . . , 2𝑘 − 1. See Example 8.10.1. The other 𝐶𝛾-polynomials do not give
contributions.

8.4.B. The bigrading and contact invariants. Recall that the link of
𝐴1 (2𝑘) is diffeomorphic to 𝑆2 × 𝑆3 and its contact structure is denoted 𝛼1,𝑘. The
goal is to show that the second grading distinguishes these contact structures. The

crucial tool is Theorem 8.12 which asserts that a 𝛾-monomial 𝑥𝑏00 𝑥𝑏11 𝑥𝑏22 𝑥𝑏33 𝑥𝑏44 con-

tributes to HH𝑑−3𝑏0,3𝑏0 (𝐴,Γ𝐴). So in this case the unique contribution to degree −2
is: {

𝑥0𝑥
−1
1 𝑥−12 𝑥−13 𝑥−14 bidegree (−5, 3) for 𝛼1,1,

𝑥2
0𝑥

2
4 bidegree (−8, 6) for 𝛼1,𝑘, (𝑘 ≥ 2).

This already distinguishes 𝛼1,1 from everything else. To make comparison of the
various contact structures easier, one can rescale the second degree for degrees

𝑑 < −2 coming from the contribution of 𝑥𝑏00 · · · 𝑥
𝑏4
4 to be 4𝑏0 for 𝛼1,1 and 2𝑏0 for

𝛼1,𝑘, 𝑘 ≥ 2. Then the unique contribution in degree −4 is:
𝑥4
0 in bidegree (−20, 16) for 𝛼1,1,

𝑥3
0𝑥
−1
1 𝑥−12 𝑥−13 𝑥−14 in bidegree (−10, 6) for 𝛼1,2,

𝑥4
0𝑥

4
4 in bidegree (−12, 8) for 𝛼1,𝑘, (𝑘 ≥ 3).

This distinguishes 𝛼1,2 from the other 𝛼1,𝑘, 𝑘 ≠ 2. To distinguish 𝛼1,𝑘 from 𝛼1,𝐾 with
2 ≤ 𝑘 < 𝐾, observe that the unique contribution to degree −2𝑘 is 𝑥2𝑘−1

0 𝑥−11 𝑥−12 𝑥−13 𝑥−14
in bidegree (−6𝑘 + 2, 4𝑘 − 2) for 𝛼1,𝑘, respectively 𝑥2𝑘

0 𝑥2𝑘
4 of bidegree (−6𝑘, 4𝑘) for

𝛼1,𝐾 . The result is summarized in the table below which shows that 𝛼1,𝑘, and 𝛼1,𝑗

are not contactomorphic if 𝑘 ≠ 𝑗.
To interpret the table, recall that dim SH𝑑 (𝐴2,𝑘) = 1 for 𝑑 < 0 so that in all cases

there is one generator in each bidegree so that indeed the second degree (which is
printed in red here) distinguishes the contact structures 𝛼1,𝑘 among each other.
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Table 8.3. Bidegrees (𝑑 − 𝑝,𝑝) contributing to SH𝑑 (𝐴2,𝑘), 𝑑 < 0, 𝑑 even.

𝑘 (𝑑,𝑝)
1 (−2, 3)
2 (−2, 6)
1 (−4, 16)
2 (−4, 6)

𝑘 ≥ 3 (−4, 8)
3 ≤ 𝑘 ≤ 𝐾 − 1 (−2𝑘, 4𝑘 − 2)

𝐾 (−2𝑘, 4𝑘)



Bibliography

[Ada62] J. F. Adams. Vector fields on spheres. Ann. of Math. (2), 75:603–632, 1962. 12

[APZ24] N. Adaloglou, F. Pasquotto, and A. Zadardini. Symplectic cohomology of 𝑐𝐴𝑛- singu-
larities. https: // arxiv. org/ pdf/ 2404. 17301 , 2024. 3, 24, 36

[Ati58] M. F. Atiyah. On analytic surfaces with double points. Proc. Roy. Soc. London Ser.

A, 247:237–244, 1958. 30
[AVGL98] V. I. Arnol’d, V. A. Vasil’ev, V. V. Goryunov, and G. V. Lyashko. Singularity Theory

I. Springer-Verlag, Berlin, second edition, 1998. 1, 16

[BFK14] M. Ballard, D. Favero, and L. Katzarkov. A category of kernels for equivariant factor-

izations and its implications for Hodge theory. Publ. Math. Inst. Hautes Études Sci.,
120:1–111, 2014. 74

[BK86] E. Brieskorn and H. Knörrer. Plane algebraic curves. Modern Birkhäuser Classics.
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ogy. Ann. Sci. Éc. Norm. Supér. (4), 43:957–1015, 2010. 53

[CO18] K. Cieliebak and A. Oancea. Symplectic homology and the Eilenberg-Steenrod axioms.
Algebr. Geom. Topol., 18(4):1953–2130, 2018. Appendix written jointly with Peter

Albers. 53, 54

[DH88] A. Durfee and R. Hain. Mixed Hodge structures on the homotopy of links. Math. Ann.,
280(1):69–83, 1988. 35

[Dim92] A. Dimca. Singularities and topology of hypersurfaces. Universitext. Springer-Verlag,

New York, 1992. 25
[Dur79] Alan H. Durfee. Fifteen characterizations of rational double points and simple critical

points. Enseign. Math. (2), 25(1-2):131–163, 1979. 28

[Dyc11] T. Dyckerhoff. Compact generators in categories of matrix factorizations. Duke Math.
J., 159(2):223–274, 2011. 3, 59, 66, 67, 68

[Eis80] D. Eisenbud. Homological algebra on a complete intersection, with an application to
group representations. Trans. Amer. Math. Soc., 260(1):35–64, 1980. 59, 63

[Eis95] D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 1995. With a view toward algebraic geometry. 61, 67, 71
[EL21] J. D. Evans and Y. Lekili. Symplectic cohomology of compound Du Val singularities.

https: // arxiv. org/ pdf/ 2104. 11713. pdf , 04 2021. 1, 2, 16, 36, 79, 80, 81, 83, 85,
87

[Eli92] Y. Eliashberg. Contact 3-manifolds twenty years since J. Martinet’s work. Ann. Inst.
Fourier (Grenoble), 42(1-2):165–192, 1992. 14

[FH94] A. Floer and H. Hofer. Symplectic homology. I. Open sets in C𝑛. Math. Z., 215(1):37–
88, 1994. 2

[Fle81] H. Flenner. Divisorenklassengruppen quasihomogener Singularitäten. J. Reine Angew.
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71

[KN08] A. Katanaga and K. Nakamoto. The links of 3-dimensional singularities defined by

Brieskorn polynomials. Math. Nachr., 281(12):1777–1790, 2008. 36
[Kol92] J. Kollár, editor. Flips and abundance for algebraic threefolds, volume 211 of
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