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In this paper we present a detailed statistical analysis related to the characterization of the spatial
and temporal fluctuations present in the rainfall patterns of North-East region (26.05◦N −26.95◦N ,
88.05◦E − 94.95◦E) of India using half hourly rainfall data over the last 20 years for the range
2001-2020. We analyze the nature of the distribution by computing the mean, second moment of
the fluctuation, skewness and kurtosis of the temporal rainfall data that indicate the presence of
heavy tail in the right skewed distribution a typical feature of the presence of rare events. We find
that the temporal distribution of the rainfall data follow the multiplicative Log-Normal probability
distribution. Further we compute the spatial and temporal correlation of the rainfall in this region
indicate that the rainfall events are correlated in the spatial direction of about 70 Km. The Power
spectral density of temporal rainfall shows power law behaviour with frequency with an exponent
∼ −1.5 close to the Kolmogorov exponent (−1.67) exhibited for the turbulent passive scalar driven
by the mean flow. Our wavelet analysis reveals the evidence of multiple frequencies in the rainfall
pattern which can attributed to different short and long range factors responsible for the rainfall.
We have also used the Hilbert Huang transformation to identify the frequencies corresponding
fluctuating part of the rainfall time series. Using multifractal detrended fluctuation analysis, finally
we establish the multifractal nature of the rainfall pattern with Hurst exponent close to 0.65 .

I. INTRODUCTION

In recent years the research on complex system has
seen the unprecedented growth in number due to its man-
ifestation in different spectrum of natural phenomena [1–
12]. Among them Rainfall is a very complex process
owing to its dependency on several atmospheric compo-
nents, like, temperature, pressure, humidity, wind flow
direction along with the topography of earth surface, ge-
ographical position, etc. [13]. Similar to other complex
phenomena, rainfall is also highly nonlinear encompass-
ing the several length and time scale which is difficult to
quantify through the dynamical models [14].

In recent years there are several models that have been
used to describe the rainfall processes. In this direction,
researchers have mainly adopted two class of determinis-
tic models that include Global Climate [15] and Statis-
tical Dynamical Model [16]. However, stochastic nature
of the rainfall is least explored [17]. Hasselmann [18–
20] introduced the stochastic model to describe the phe-
nomenology of the sea surface temperature. Although
these seminal models yield the promising nature of the
events, they lack the essence of exact physical details and
mechanisms involved in the rainfall process that imposes
a limitation on the accuracy and performance of these
models [21, 22]. Similar to these models, there are several
works that have been proposed to unravel the underlying
mechanism of the rainfall. Some of the analytical models
consider that the convective precipitation gets triggered
by nonlinear continuous phase transition when the accu-
mulated water vapour results in intense precipitation as
it increases beyond a certain threshold value [23]. The
matching of output of these models with the actual rain-
fall process very much depend upon many free parame-
ters. This particular feature again posses some limitation
in the robustness of these models. Therefore, it is quite

daunting task to come up with a model with minimal free
parameter that can accurately describe the real time be-
haviour of the rainfall. In past few years the time-series
analysis of the rainfall data has become an essential in-
gredient to characterize the rainfall data and come up
with a model that can capture the real time process in
the adequate manner. In this paper we have analyzed
the statistical behaviour of the rainfall in the north east
region of India which has typical topography.

Rainfall is a multiscale phenomena. This whole phe-
nomenon is far from equilibrium and can be character-
ized using the two time scales: first the slow time scale in
which the heat is transferred from the solar radiation to
the atmosphere and second one is the fast convective flow
resulting the increase of moisture in the atmosphere that
rises against the gravity and results as the rain [13]. Hav-
ing these two time scales embedded in the rainfall event,
in recent years it has been modeled in the similar line
as for self organization criticality (SOC) [24]. The slowly
driven convective flow resulting in an avalanche-like rain-
fall event encompasses several features which can be iden-
tified as the SOC like behaviour [25]. Using the SOC
like model for rainfall event it has been shown that the
event size distribution follows the power law behaviour
at different stations from diverse locations indicating the
presence of universality in the rainfall event [26]. There
are several works that consider the rainfall as a stochastic
process. Depending on the continuous phase transition
phenomena of rainfall process [23], two prototype mod-
els relating water column vapour and precipitation have
been proposed that consider the two state model for con-
vective onset and three state model with stratiform pre-
cipitation. The critical exponents obtained using SOC
model and stochastic forcing have been further utilized to
connect the rainfall process as a first-passage-time prob-
lem [27].
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Characterizing the nature of the rainfall distribution is
quite non-trivial task as it depends upon a lot of factors.
There are many studies that have been undertaken to
unfold the rainfall patterns in different part of world us-
ing the statistical models, however a clear pattern for the
rainfall is still lacking. Some studies have used the ex-
treme event statistics to characterize the rainfall [28] and
proposed that the rainfall events can be described better
with the Poisson model. On the other hand the presence
of skewed distribution of the rainfall in other parts of the
word has been reported using principal component anal-
ysis and three coherent regions of rainfall has been identi-
fied [29]. Using twenty years rainfall data (1999-2018) for
Jakarta it was shown that the Log-Normal distribution
with three free parameters and Log-Pearson type III dis-
tribution appear to fit the rain distribution better than
other closely associated distribution such as, Gumbel,
Pearson 3, Gamma, Log-Gamma, Normal, Log-Normal
( with 2 parameters), etc. [30]. However, studies per-
formed for the rainfall of the Australian continent do not
show mixture of both Gamma and Log-normal distribu-
tion for the rare rainfall events. On the other hand, Cho
et al. demonstrated that the Log-Normal distribution
fits better in the dry region while Gamma distribution
fits better in the wet region of the rainfall for the tropi-
cal rain [31].

One of the pertinent question that arise in the analysis
of the rainfall is what are the control parameters which
govern the distribution and statistics of the rainfall in a
particular region. India mainly receives convective rain-
fall during the summer-monsoon season that typically
spans between June-September of the year. There are
different hypothesis available to describe the prominent
cause of rainfall in Indian peninsula. Some of the recent
works indicate it as a manifestation of the seasonal mi-
gration of the intertropical convergence zone [32]. Indian
summer-monsoon rainfall inherits two kind of character-
istics. First is the intermittent occurrence of the rainfall
happens in the quasi-periodic manner in which the whole
event can be described as a combination of the active and
break spells termed as intraseasonal variation of the rain-
fall at the supersynoptic scale. Second one is the north-
ward drifting of the effective rainfall region in a period of
two to six weeks of time [33]. In this paper explore the
rainfall in the topography region mainly North East part
of India which is is mainly wet in nature.

Most of the studies [34, 35] reveal that due to its unique
geographical position North-East part of India behaves
differently than the other main land part of India. One
of the most prominent features of rainfall is the presence
of extreme events during the prolonged summer-monsoon
season in this region, which lacks in the rest parts of In-
dia [36]. Through different statistical analysis researchers
have obtained that North-East rainfall pattern in India
in general appears to be negatively correlated from the
rainfall intensity in the rest part of India [32]. Due to
the presence of these anomalies it requires some special
care while proposing a comprehensive rainfall model in

this region. Due to the presence of many rare events,
models based on the studies are not so robust and de-
pend very much on the spatial location as well as the
year of the rainfall event. Some statistical studies em-
ploying Sen’s estimator and Mann-Kendall test for the
North-East region of India for the time span of one hun-
dred and thirty seven years (1871-2008) reported discrete
trends for seasons and hydro-meteorological subdivisions
but could not find any general trend as a whole for the en-
tire region [37]. In another study, five different probabil-
ity distribution functions (Normal, Log-normal, Gumbel,
Log-logistic and Exponential) were examined and none
of them found to be suitable. All these attributes need
more quantitative investigation in order to understand
the driving factors of these kind of anomalous behaviours
in the North-East region of India.

So far most of the model related to the rainfall is based
on the fact that the event is linear in nature where the
fluctuating part of the event is smaller than the mean
part. However, the whole process that is responsible for
the rainfall is highly non-linear and hence a proper anal-
ysis for the noise embedded in the rainfall is sought in
order to come up with a robust model. In this paper
we bridge the gap by providing a detailed statistical as
well spectral analysis of the rainfall data of North-East
region of India and propose some universal nature of the
distribution of the rainfall as well the characteristics of
the noise. We consider the real time rainfall data and
through the statistical analysis like, mean, second mo-
ment of the fluctuation, skewness and kurtosis of the tem-
poral rainfall data find presence of skewed distribution of
the rare events which shows the Log Normal probability
distribution. Our spectral analysis of the temporal rain-
fall shows Kolmogorov like scaling for the power spectral
density (with an exponent −1.5) for the rainfall event
during one day of time which is quite universal for all the
year and spatial points in this region. We also analyze
the local frequency present in the rainfall event using the
wavelet analysis that reveals different characteristic time
scale which we have related with many natural events,
like, interseasonal variation of the monsoon season, time
scale for the cyclone, depression, etc. Further we estab-
lish the presence of multifractality nature of rain event
in this north-east region.

The paper is structured as follows. In Sec. II we present
our analysis related to the statistical distribution, spec-
tral calculation, wavelet, Hilbert Huang transformation
and multifractal analysis. Finally we conclude our paper
in Sec. III. We provide the relevant details of distribu-
tion fitting, methodology for wavelet and Hilbert Huang
transformation and multifractal analysis respectively in
the Appendix A, Appendix B, Appendix C, Appendix D.

II. RESULTS

In this paper one of the main aim is to characterize
the spatio and temporal fluctuation present in the rain-
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fall event in the North-East region of India. To unveil the
prominent characteristics and to understand the underly-
ing mechanism of rainfall process, we consider the rainfall
time series of the North-East region (26.05◦N−26.95◦N ,
88.05◦E−94.95◦E) of India with half hourly rainfall data
from May to October month of last 20 years (2001-2020).
The North-East region of India contains two highest rain-
ing places of the world, Mawsynram (11871 mm/year)
and Cherrapunji (11777 mm/year) which are extended
Himalayan part of India that witnesses a long monsoon
season along with a few intense patches of shower that
leads to flood in Brahmaputra river every year. Unique
geographical position and different weather variables con-
tribute to the distinctive patterns along with extreme
events in rainfall of this region. The onset of monsoon in
the North-East region in general happens from May [38]
and it extends until beginning of October. As we are
interested in analyzing the rainfall during the Monsoon
season of North East part of India, in this paper we con-
sider the rainfall data from May to October month of the
year that spans for twenty years (2001-2020).

For all our analysis we have considered the half hourly
rainfall data recorded (in millimeter unit) which have
been obtained from the NASA project known as “In-
tegrated Multi-satellitE Retrievals for Global Precipita-
tion Measurement” (GPM IMERG) [39], NASA, USA.
The data have 0.1◦×0.1◦ spatial resolution on Cartesian
grid (approximately 10 km × 10 km) procured using pas-
sive microwave sensors situated at various precipitation-
relevant satellite. To differentiate between the dry and
wet days, we have used a threshold cutoff on the half-
hourly rainfall. If the threshold value of the rainfall in-
tensity is lower than 0.001 mm we consider it dry half
hour otherwise it is a wet half hour.

0 2000 4000 6000 8000
0

20

40

0

20

40

FIG. 1. Temporal evolution of rainfall of (a) station 26.05◦N,
88.05◦E, year 2010 and (b) station 26.55◦N, 91.65◦E, year
2020 respectively. The time-series of rainfall event for both
the stations exhibits the stochastic variation accompanied by
intermittent jump of the rain intensity suggesting the presence
of nonlinear nature of the rainfall events.

In Fig. 1 we show the temporal evolution of rainfall

data for two different stations (a) 26.05◦N, 88.05◦E and
(b) 26.55◦N, 91.65◦E for two different years 2010 and
2020 respectively. The time series exhibits that the rain-
fall events are random with time and shows intermittent
jumps that indicate towards the presence of complicated
nonlinear fluctuations in the rainfall events. In this work
we are intended to analyze the detailed nature of these
nonlinear fluctuations which happens to be multifractal
in nature.

A. Statistical analysis of rainfall time-series

In this section, we perform detailed statistical analy-
sis of the rainfall time series. First we calculate different
moments of the rainfall time series to understand its sta-
tistical behaviour. After that we determine the suitable
probability distribution function (PDF) of the rainfall
for this region. The proposed PDF is Log Normal in na-
ture that has been also confirmed by measuring the good-
ness of fit tests. We have further presented the spatial
and temporal correlation of the rainfall data that show
the presence of weak correlation in time while relatively
string correlation in space.

We begin our analysis by calculation the different sta-
tistical moment of the real time rainfall data over the
region. For this we have computed the mean (X̄), stan-
dard deviation (σx), skewness (µ3) and kurtosis (µ4) of
the rainfall and extracted a detailed feature of rainfall
distribution. In Table I we provide the formula for the
different moments of the rainfall event used for our stud-
ies. Here, X is the random variable corresponding to

TABLE I. Definition of different moments used to characterize
the statistics of the rainfall data [40].

Statistical variable Formula

Mean (X̄) 1
N

∑N
i=1 Xi

Standard deviation (σx)
√∑N

i=1 Xi−X̄

N

Skewness (µ3)
∑N

i=1(Xi−X̄)3

(N−1)σ3
X

Kurtosis (µ4)
∑N

i=1(Xi−X̄)4

(N−1)σ4
X

the intensity of rainfall and N is the total number of
data points in rainfall time series. In Fig. 2 we depict
all the computed moments (in pseudo color) of the rain-
fall data at different stations averaged over 20 years on
actual geographical map choosing longitude (θ) as x-axis
and latitude (ϕ) as y-axis. We notice that the maximum
mean rainfall over these 20 years is 3475.7 mm and the
minimum of it is 2566.7 mm over the six months [see
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FIG. 2. Different statistical variables averaged over twenty years (2001-2020) for the selected area under investigation. (a)
mean, (b) standard deviation, (c) skewness and (d) kurtosis on the geographic map in the θ − ϕ plane. Color bar represents
the magnitude of different statistical quantities. These values indicate that the distribution of rainfall intensity is right skewed
and possess a heavy tail.

Fig. 2(a)]. The variance measures the dispersion from
the mean of the dataset. The mean standard deviation
(square root of variance) has a maximum value 2.6 mm
and minimum value 1.2 mm [see Fig. 2(b)]. Skewness
is the third moment of rainfall data and it shows the
asymmetry in the data about its mean. Here for our
datasets the Skewness values are scattered between 11.7
(maximum) to 6.8 (minimum) [see Fig. 2(c)]. The fourth
moment of data is known as kurtosis which gives the rel-
ative idea whether the data is concentrated at center or
it is spread over its tails. The Kurtosis values of the
whole datasets are spread from 348.1 (maximum) to 77.2
(minimum) [see Fig. 2(d)].

The Skewness and kurtosis values for a normal dis-
tribution is 0 and 3 respectively. In Fig. 2(c), we find
that Skewness value of all the stations averaged over all
the years turns out to be positive which implies that the
rainfall distribution is skewed at the right side. All the
Kurtosis values for all the stations are greater than 3
implying the fall of the distribution is lower than that
those for the normal distribution indicating the presence
of heavy tail in the distribution of the rainfall data [see
Fig. 2(d)]. These results reveal that rainfall data does
not follow Gaussian statistics. Fat tailed distribution is
one of the main characteristics of complex systems [14].
So it is quite necessary to obtain a detailed nature of

probability distribution function of the rainfall event in
order to characterize it in a better way.

1. Probability Distribution Function of rainfall in
North-East Region

Among different probability distribution functions
(PDF), both Gamma and Log Normal distribution func-
tion possess right skewed and heavy tail features along
with validity for positive arguments only (as rainfall mag-
nitude can take zero or positive values only). There are
several studies that point out both log normal or Gamma
distribution for the rainfall data is suitable depending on
different locations and other control parameters [31, 41].
The origin of Log-Normal distribution is multiplicative
process. Both Log- Normal and Gamma PDF belongs to
Gumbel extreme distribution class. Based on the results
of statistical analysis, we find Log Normal and Gamma
PDF as the two possible contender for the rainfall distri-
bution in the North-east region of India. In what follows
provide a detailed analysis related to the rain distribution
of the rainfall data.
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FIG. 3. PDF of the wet half hour rainfall data. In the left panels (a)for station 26.05◦N, 88.05◦E, year 2005 and (c) for station
26.05◦N, 88.05◦E, year 2015 while in the right panel (b) for station 26.55◦N, 91.65◦E, year 2005 and (d) for station 26.55◦N,
91.65◦E, year 2015. For all the stations over all the year, Log Normal PDF (red curve) is found to be better fitted than the
Gamma PDF (blue curve). The inset of each figure contains the rainfall intensity data (green square) fitted with these two
distribution functions in log-log scale suggesting the better fitted Log-normal distribution.

Log Normal PDF is defined as [42]

fLN (x; θ, σx) =
1

xσx
√
2π

exp(− (ln(x/θ))2

2σ2
x

)

∀x > 0, θ, σx > 0 (1)

where x is the random variable, θ is the scale parameter
and σx is the shape parameter. Gamma PDF can be
expressed as [42]

fGA(x;α, β) =
βα

Γ(α)
xα−1 exp(−βx)

∀x > 0, α, β > 0 (2)

where x is the random variable and α and β are the
shape and rate parameter respectively. We have utilized
the least square fitting method to ascertain the accuracy
of our method used to the determine the distribution.
In Fig. 3 we show the histogram of wet rainfall data
fitted with both Gamma (blue curve) and Log normal
(red curve) PDF for two different stations with coordi-
nate 26.05◦N , 88.05◦E (left panel) and 26.55◦N, 91.65◦E
(right panel). Figure 3(a)-(b) shows the distribution for
the year 2005 and Fig. 3(c)-(d) represents the same for
the year 2015. In the inset of each figure, the same graphs

TABLE II. The fitting parameters for both Log Normal and
Gamma PDF shown in fig 3.

Station Year Log-Normal Gamma
θ σx α β

26.05◦ N, 88.05◦ E 2005 -1.6 2.3 1.2 0.2
26.05◦ N, 88.05◦ E 2015 -1.2 1.8 1.0 0.3
26.55◦ N, 91.65◦ E 2005 -2.2 2.5 1.1 0.1
26.55◦ N, 91.65◦ E 2015 -1.4 2.0 1.1 0.2

are plotted in log-log scale just to demonstrate the fitting
for the higher values of rain intensity which contains the
extreme events. We find the evidence of Log Normal PDF
for the rainfall data that fits better than the Gamma dis-
tribution. In Table II we list out the parameters of the
distribution fitted with Log-normal and Gamma PDF as
shown in Fig. 3.

To find out the best possible PDF between these two,
we have computed Root Mean Square Error (ERMSE)
and Mean Absolute Error (ERMSE) values for both of
them. ERMSE and EMAE are calculated using the follow-
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ing formulae respectively [43]:

ERMSE =

√√√√ 1

n

n∑
i=1

|Ai − Fi|2 (3)

EMAE =

∑n
i=1 |Ai − Fi|

n
(4)

where n is the number of data points, Ai is actual data
array and Fi is the predicted data array. By calculat-
ing both the error factors, we find that the Log Normal
PDF fits better than the Gamma PDF. The ERMSE and
EMAE values for the plots shown in Fig. 3 can be found in
Table IV in the appendix. The mean values of the differ-
ence of RMSE value for Gamma and Log-Normal fit and
the same for MAE values over twenty years are displayed
for all the seven hundred stations on θ − ϕ plane in the
fig. 13(a) and (b) respectively in the appendix A. This
suggests Log Normal PDF as the most suited distribu-
tion function of our wet rainfall data for the region under
consideration. Our procured result is inline with other
studies [31, 44–46] which have also shown the log normal
behaviour of rain distribution in different regions of the
world. In discriminating between two competing distri-
bution functions, ratio of maximized likelihoods (RML)
serves as a reliable quantity [47]. The likelihood func-
tion for the dataset following Log normal PDF can be
expressed as [48]

LLN (θ, σx) =

n∏
i=1

fLN (xi; θ, σx) (5)

and the same assuming the dataset follows Gamma PDF
can be written as (LN and GA subscript stands for log-
normal and gamma PDF respectively) [48]

LGA(α, β) =

n∏
i=1

fGA(xi;α, β) (6)

Using these, the RML can be defined as [49]

RML =
LLN (θ̂, σ̂x)

LGA(α̂, β̂)
(7)

where (θ̂, σ̂x) and (α̂, β̂)) are the maximum likelihood
estimators of (θ, σx) and (α, β)) respectively based on
the observed dataset X1, ...., Xn. The natural logarithm
of RML (denoted by T ) can be expressed as

T = n

[
ln(

Γ(α̂)

σ̂x
)− α̂ ln(β̂X̃) + β̂X̄

− 1

2σ̂2
xn

n∑
i=1

(ln(
Xi

θ̂
))2 − 1

2
ln(2π)

]
(8)

where X̃ and X̄ are the geometric and arithmetic
mean of the rainfall data sets X1, ...., Xn defined as

X̃ = (
∏n

i=1Xi)
( 1
n ) and X̄ = 1

n

∑n
i=1Xi respectively.

For determine goodness of the fitting we also compute
the maximum likelihood estimators as θ̂ = X̃, σ̂x =√

1
n

∑n
i=1 ln(Xi/X̃)2 and β̂ = α̂/X̄. Here magnitude

of T decides about the robustness of more suited distri-
bution. For instance as T > 0 the Log Normal PDF
is best suitable nature of the distribution, however for
T < 0, the Gamma distribution fits better with the rain-
fall data. Using our analysis performed on all the stations
at different years we find that T is positive implying Log
Normal PDF nature of the rainfall in this region consis-
tent with earlier studies. The more detailed nature of
the averaged T over twenty years for all the stations has
been provided on the θ − ϕ plane in the Appendix A.

Low mean value, comparatively large variance and the
positive values of rainfall intensity yields an skewed dis-
tribution of non zero intensity values of rainfall and in
our investigation, we find it to follow log normal PDF for
the particular region under consideration. Several other
complex systems also obey Log-Normal distribution such
as the dissipation of kinetic energy by horizontal friction
in high resolution global ocean models [50], the moments
of resistance of weakly disordered systems [51], the con-
centration of the elements in the earth’s crust and their
radioactivity, the size distribution of aerosols in the air,
the local strain of plastic deformation in material [52] etc.
A discussion of the physical origin of the log normal PDF
is presented in [53]. This particular distribution results
from a balance between the growth i.e. continuous ad-
ditive increase (in our case, the increase of rain intensity
within an active spell) and stochastic jumps i.e. discrete
multiplicative decrease (in our case, the sudden change in
rain intensity). In [54], future precipitation pattern was
simulated base on a historic rainfall event of Netherlands
and the simulated rainfall intensity has been found to
follow log normal distribution. PDF describes how rain
intensity is distributed at any particular station at a spe-
cific year. But rainfall possess a broad spatio-temporal
connection and to understand that relation, we perform
spatial and temporal correlation analysis.

2. Spatial and Temporal Correlation

rainfall is multiscale phenomena in which the event is
correlated in the space as well as in the time. To probe
the nature of these correlation next we move our focus
in analyzing the spatial and temporal correlation of the
rainfall time-series collected for the 700 stations of North
East region of India of span of twenty years. Here we
compute the correlation among different stations’ rainfall
pattern for both longitude and latitude spatial directions.
Pearson correlation coefficient used for the spatial corre-
lation between the rainfall time series of the neighbouring
stations both in latitudinal and longitudinal direction is
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FIG. 4. Spatial and temporal correlation plots. (a) Spatial correlation coefficients (ρ(θ)) for the stations having same latitude
values but varying longitudes for the year 2005. The thin graphs (from light blue to dark blue) denote the correlation coefficients
for a fixed latitude and the thick black graph shows the average behaviour of all these graphs. Inset shows the exponential
fitting (dotted red) to the mean graph indicating the correlation length. (b) Spatial correlation coefficients for the stations
having same longitude values but varying latitudes for the year 2005. The thin graphs (from light blue to dark blue) shows
the correlation coefficients variation for a fixed longitude and the thick black graph denotes the average behaviour of all these
graphs. (c) Temporal autocorrelation with time lags of station 26.05◦ N, 88.05◦E for 20 years. The thin graphs (from light blue
to dark blue) denotes the temporal autocorrelation for different years and the thick black graph depicts the average behaviour
of 20 years. The periodic ripples (indicated by the black arrows) appear at a mean interval of 24 hours. Inset shows a zoomed
version of the mean graph with a red shaded area indicating mean time interval of occurrence of ripples.

defines as

ρ(A,B) =
1

N − 1

N∑
i=1

(Ai − Ā)

σA

(Bi − B̄)

σB
(9)

where A and B are the variable with two different time
series, Ā and B̄ are the mean and σA and σB are the
standard deviation of the time series A and B respec-
tively and N is the total number of observations in each
time series. To find out the correlation among differ-
ent stations, we have first considered the stations vary-
ing in latitude direction keeping the longitude variation
fixed and then we repeat the same calculation by keep-
ing latitude fixed. In Fig. 4(a) we plot the variation of
correlation coefficients (ρ(θ)) with longitude (θ) of dif-
ferent stations having same latitude (ϕ) values for the
year 2005. The shaded lines (from light blue to dark
blue) correspond to correlation coefficients variation for
a fixed latitude and longitude varying from 88.05◦ E to
94.95◦ E. However the curves for different latitude val-
ues from 26.05◦ N to 26.95◦ N are denoted by different
shades of blue [see adjacent colorbar]. The thick black
graph exhibits the average behaviour of all these graphs.
For the longitudinal direction, we find the mean spatial
correlation length is to be 0.7350◦ (Max value 0.9267◦ to
min value 0.5370◦) i.e. 73.50 km which is equivalent to
almost seven neighbouring stations in longitude direction
and the magnitude of this length has a gradual decreas-
ing trend with increasing longitude value. In the inset of

Fig. 4(a), we fit the mean curve (thick continuous black
curve) with an exponential function (dotted red curve).
The thin dotted black line gives an estimate for the the
correlation length the value at which correlation falls by
1/e. In Fig. 4(b) we present the variation of the corre-
lation coefficients with latitude (ϕ) fixing longitude (θ)
values for the year 2005. The thin graphs (from light
blue to dark blue) denote the corresponding correlation
coefficients variation for a fixed longitude but latitude
varying from 26.05◦N to 26.95◦N. The different longitude
values from 88.05◦ E to 94.95◦ E are denoted by different
shades of blue [see adjacent colorbar]. The thick black
graph exhibits the average behaviour of all these graphs.
After analysing those stations which are aligned latitude
wise, we obtain the mean spatial correlation length to
be 0.4362◦ (max value 0.4581◦ to min value 0.4052◦) i.e.
43.62 km which is equivalent to almost four neighbour-
ing stations in latitude direction. Using same kind of ap-
proach, some studies done on Malawi using the rainfall
data of forty two stations for forty six years (1960-2006)
has reported that there exists strong spatial correlation
among the stations situated within 20 km range [55]. An-
other study done based on the rainfall data obtained from
391 stations over Korean peninsula from May to Septem-
ber for four years (1999-2002) reported that the spatial
correlation length ranges from 50-100 km depending on
month wise analysis [56].

Next to understand the temporal correlation in differ-
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ent year’s rainfall for any specific station we compute the
autocorrelation coefficient defined as

C(τ) =
< (X(t+ τ)− X̄)(X(t)− X̄) >t

σ2
X

(10)

where τ is the time lag, X̄ is the mean and σX is the
standard deviation of the time series and < · >t denotes
the average of the time series X(t) over time. We have
considered the temporal autocorrelation of different sta-
tions for 20 years (from 2001 to 2020). In Fig. 4(c) we
show the variation of the temporal autocorrelation (C(τ))
with time lags (τ) up to 500 half hour of the station hav-
ing latitude 26.05◦N and longitude 88.05◦E for 20 years.
The thin graphs (from light blue to dark blue) correspond
to the temporal autocorrelation for each year from 2001
to 2020 and the thick black graph denotes the average
behaviour of these twenty curves. The periodic ripples
(indicated by the black arrows) occur at a mean inter-
val of 24 hours. In the inset of Fig. 4(c), we present the
zoomed version of the mean graph. The light red shaded
area indicates the width between two consecutive peri-
odic ripples. The autocorrelation decreases rapidly with
time lag and the mean correlation time (defined as the
value where C(τ) falls to 1/e) comes out to be 4.5 half
hour or 2.3 hour. One study done based on the rainfall
data obtained from 391 stations over Korean peninsula
from May to September for four years (1999-2002) re-
ported that the temporal correlation length is quite short
(1.34 to 1.87 hours for different months) for the whole re-
gion while the rainfall events of the coastal part of the
country exhibit comparatively long temporal correlation
(1.52 to 2.45 hours for different months) [56].

Through these analysis we find the presence of typical
spatial and temporal length scales associated with the
rainfall in the Northeast region of India. Next to extract
the presence of characteristic frequency modes we present
the spectral analysis of the rainfall.

B. Dominant temporal frequency modes in the
rainfall event

1. Global Spectral Analysis

Power spectral density (PSD) analysis is an essential
tool to characterize the presence multicale phenomena.
In general many of the complex phenomena , such as criti-
cal phenomena, preferential processes, self organised crit-
icality (SOC), multiplicative processes with constraints,
optimisation etc. [14] show the power law nature of PSD.

In Fig. 5 we show the PSD of the rainfall time se-
ries of the station with latitude 26.15◦N and longitude
91.05◦E for 20 years (varying from blue to yellow as de-
picted by the adjacent colorbar) in log-log scale. The
thick black line denotes the average behaviour over these
years. The dashed red and pink line indicate the power
law behaviour in the higher and lower frequency range re-
spectively. Here we perform the power spectrum analysis

FIG. 5. PSD of the rainfall time series of the station
26.15◦N, 91.05◦E for 20 years in log-log scale. The thin lines
(varying from blue to yellow) corresponds to different years
while the thick black line denotes the temporal average. At
higher frequency range, it shows power law behaviour (red
dotted line) with the exponent value (β2) 1.5 whereas in the
low frequency range, it follows power law behaviour (pink dot-
ted line) with an exponent (β1) 0.3. The shaded gray rectan-
gle highlights the presence of the distinct peak at almost 24
hours.

for all the stations over 20 years (from 2001 to 2020) to es-
timate the dominant frequencies. We find the presence of
a distinct kink in all the spectres at an average frequency
of 1.16 ×10−5 Hz (∼ 24 hour in time scale) that suggests
the presence of a dominate period of rainfall nearly equal
to 24 Hrs (one day). The spectrum exhibits power law
behaviour in both the higher and lower frequency range
divided by the one day peak with two different exponents
β1 (for low frequency region) and β2 (for high frequency
region). To obtain the exponent values, we employ lin-
ear regression method and find that β1 comes out to be
0.3 approximately while β2 is found to be almost 1.5. As
such there is no theory which can fully explain this scaling
behaviour of rainfall. However the rain within one day
frequency or less can be considered to be mainly driven
by mean circulation of the wind. According to the the-
ory of turbulent field, the spectrum of wind follows the
Kolmogorov scaling with the PSD falls with frequency
with an exponent −5/3 [57]. Our obtained exponent in
high frequency range (i.e. β2) is closer to this which in-
dicate that the rainfall pattern within a day is mainly
dictated by the mean-wind velocity field. Similar kind of
power law behaviour of PSD of rainfall with an exponent
∼ 0.7 within a day time interval (3-24Hrs) has also been
reported from a X-band radar situated in the southeast
part of France during the summer season. However, for
the time window of one to ten days, it exhibits power law
behaviour with an exponent almost ∼ 1.2 [58].

PSD essentially brings out the most dominant frequen-
cies present in the system. To understand the different
ranges of frequencies present in the rainfall process, it is
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pertinent to investigate the local trends embedded in the
system. For that we employ two non-linear techniques,
namely Wavelet analysis and Hilbert-Huang Transforma-
tion to investigate the rainfall time series. There we suc-
cessfully obtain the two power law exponents (β1 and β2)
along with other local features.

2. Wavelet Analysis

FIG. 6. Wavelet analysis. (a) Temporal distribution of rain-
fall of the station 26.15◦N, 91.05◦E for the year 2010, (b)
Wavelet spectrum of the rainfall data shown in (a). The col-
orbar shows the power variable in arbitrary unit (c) The global
wavelet power spectrum. It reveals the presence of local peaks
in the frequency domain.

Fourier analysis can only provide the global behaviour
of the time series data over that time span. But rain-
fall data is non-linear and non-stationary in nature.
To get more regional and local insight about the pro-
cess, we analyse our data using wavelet techniques [59]
and Hilbert-Huang Transformation (HHT) [60]. Wavelet
analysis can extract the multi-frequency, multi-scale fea-
tures hidden in the non-stationary data like rainfall. It
takes wavelets instead of continuous sine or cosine wave
as its basis and select the local characteristics of the time
series which finally yields the representation of how the
signal’s frequency and amplitude evolve with time. In
wavelet analysis, the signal not only gets decomposed
into its spectral components, but the spatial informa-
tion i.e. where it was oscillating also gets retained. This
analysis has been used quite widely in different multiscale
phenomena such as, nanoscale thermal transportation in
molecular dynamics simulations [61], detecting the scal-
ing behaviour in noisy experimental data [62], earth’s
atmosphere and climate [63].

Wavelet Transformation (WT) is a comparatively new
time series analysing tool which provides the instanta-
neous temporal behaviour of the magnitude of the am-
plitude of the time series along with its behaviour in the
frequency domain. Thus the signal’s behaviour in both
time and frequency space can be readily get retaining

all its local variations. In WT, wavelets from different
families are used as the basis of the analysis instead of
the continuous sine and cosine functions used as the ba-
sis in Fourier transformation. The standard wavelet is
called the mother wavelet and the different sections of
the time series under inspection is matched with differ-
ent scaled and shifted versions of that mother wavelet
to extract the local frequency and temporal behaviour.
Among different types of mother wavelet, Morlet wavelet
is used here to analyse the rainfall time series because of
its many oscillations resembles the nature of the pattern
of the rainfall time series. The two dimensional plot of
the wavelet spectrum displays the time scale in one axis,
frequency scale in another scale and shows the magnitude
of the amplitude of rain intensity using color. We obtain
the global wavelet power spectrum by averaging over the
time scale. The main feature of this spectrum is that it
retains the local behaviour of the time series. For the
completeness of the paper, we discuss briefly about the
methodology of WT in the appendix B. More elaborated
analysis can be found in [59, 64–66].

TABLE III. The prominent time scales obtained from the
global wavelet power spectrum and the associated physical
events related to monsoon dynamics [32].

Time scale procured
from WT

Time scale of the attributed
physical events

21 days 10-20 days: The intraseasonal
variation of monsoon circulation

4 days 3-4 days: The mean life span
of active and break events and
the typical longevity of the syn-
optic systems (e.g. depressions
formed in low pressured region)

1 day Daily periodicity

1
2

day Harmonic of the daily
periodicity

In Fig. 6, we present the wavelet analysis of our rain-
fall data. In Fig. 6(a) we show the temporal evolution of
rainfall of the station 26.15◦N, 91.05◦E for the year 2010.
In Fig. 6(b) and Fig. 6(c) we show the wavelet spectrum
and global wavelet power spectrum of the rainfall time
series shown in Fig. 6(a) respectively. After computing
for all the stations over 20 years, we find the presence of
three major bands of frequency where the rainfall data
shows significant local peaks in intensity in the global
wavelet power spectrum. The characteristics time scale
embedded in the rainfall time series have been listed in
the table III. In the first band of frequency ranging from
10−6 Hz to 10−7 Hz, the mean frequency comes out to
be 5.4 ×10−7 Hz i.e. almost 21 days. This result can be
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associated with the intraseasonal variation of monsoon
circulation which is found to be around 10 to 20 days
for the core monsoon zone of India [32, 67]. In the sec-
ond band ranging from 10−5 Hz to 10−6 Hz, the mean
frequency of the existing local peaks is found to be 2.7
×10−6 Hz i.e. almost 4 days which can be attributed to
the mean life span of active and break spell events consis-
tent with observation reported in [32]. The main driving
force of these events are the lows and depressions formed
in Bay of Bengal and these synoptic systems also possess
an average longevity of 3 to 4 days. The last and third
frequency band is extended from 10−4 Hz to 10−5 Hz and
the mean peak position of this range is found out to be 2.4
×10−5 Hz i.e. almost 12 hours. In between 10−5 Hz to
2.15×10−5 Hz, the presence of a peak at almost 24 hours
in each dataset complement the prominent peak observed
in PSD of rainfall data (See Fig. 5). The almost 12 hours
peak can be attributed as the harmonic of this globally
dominated one day peak. These unique local behaviours
stem from the presence of the quasi-rhythmic intrasea-
sonal oscillations of Indian summer monsoon rising the
quasi-periodic emergence of active and break spell in the
monsoon season. Along with this, the seasonal migration
of the intertropical convergence zone toward north during
monsoon season contributes to these signature features of
Indian summer monsoon [33]. After obtaining the char-
acteristics frequencies presence in the rainfall locally at a
given time of instant now we seek to disentangle the em-
bedded noise (fluctuating at short time scale) from the
mean oscillating component of the rainfall time series us-
ing the Hilbert Huang Transformation.

3. Characterizing the noise embedded in rainfall event

Unlike Fourier analysis and Wavelet analysis, Hilbert-
Huang Transformation (HHT) does not depend on the
preselected basis functions and it is suitable for both
non-linear and non-stationary data as it decomposes the
mother signal into several intrinsic mode functions (IMF)
using empirical mode decomposition (EMD) technique.
Thus it is a quite useful technique to extract different
significant patterns present in different frequency scales.
The formalism of HHT has been successfully applied to
analysis the gravitational wave data from ground and
space based gravitational wave detectors, Laser Inter-
ferometer Gravitational Wave Observatory (LIGO) and
Laser Interferometer Space Antenna (LISA) [68]. Fur-
ther this technique has been extended to characterise a
simulated gravitational wave signal from a core-collapse
supernova, which found to acquire quite promising re-
sults [69]. This technique has also been applied to re-
solve the non-stationary wind speed time series to obtain
the spectral information [70]. The capability of HHT
in detecting and characterising the embedded signals in
a noisy data using its adaptive and local analysis are
reported in [71]. In our case, we utilize HHT to ana-
lyze real time rainfall data which also encompasses com-

plex and noisy mechanisms in it like different systems
mentioned earlier. In general HHT is an empirical ap-
proach which consists of two components namely em-
pirical mode decomposition (EMD) and Hilbert spectral
analysis. EMD disintegrates the original signal, in our
case here rainfall time series, into several sub-signals each
with a specific frequency. These sub-signals known as in-
trinsic mode functions (IMF) and they are derived em-
pirically from the original signal without any user speci-
fied filter. The instantaneous frequency accounts for the
signal’s frequency at every time instance and it is cal-
culated as the rate of change of the phase angle at the
analysis time instance. All the IMFs are real valued sig-
nal and analytic signal method is used to find out their
instantaneous frequency. The overall effect of instanta-
neous frequency for all the IMFs construct the temporal
variation with frequency in addition to the variation of
the magnitude of the amplitude of the signal with fre-
quency. Hilbert spectrum is the final representation of
this analysis which comprises the joint distribution of
the magnitude of the amplitude as well as the time with
frequency simultaneously. Without considering the final
residue, the original signal is expressed after performing
the Hilbert transformation on each of the IMFs. The
three dimensional Hilbert spectrum is constructed using
those and the amplitude and instantaneous frequency is
represented as a function of time in the Hilbert spectrum.
Detailed methodology can be obtained from [72, 73]. A
brief discussion of the construction of IMFs and Hilbert
spectrum is included in the appendix C.

In Fig. 7 we present the IMFs obtained from the orig-
inal rainfall signal (first upper panel of Fig. 7) of the
station 26.15◦N, 91.05◦E for the year 2010 following the
procedure explained briefly in the appendix C as EMD.
The 1st IMF contains the highest frequency present in
the original signal and the 2nd IMF represents the sec-
ond highest frequency of the mother signal and so on.
In Fig. 7 we can clearly see that first few IMFs contain
the higher fluctuations in them and gradually we can
observe more periodic behaviour in the last few IMFs.
In Fig. 8 we show the PSD of the IMFs. Here we can
clearly see how the frequencies present in the original sig-
nal get distributed among several IMFs and subsequently
we can identify which frequencies are contributing how
much and what is the embedded mean frequency coupling
with the noise. From Fig. 8, we find that the IMFs gets
evolved from the noisy behaviour to gradually quasi pe-
riodic behaviour. Here, the last Few IMFs (IMF8,IMF7
and IMF6) show a power law behaviour with an exponent
∼ −1.8 almost over the entire range of frequency. Subse-
quently this behaviour gets shifted gradually towards the
high frequency range and the value of the exponent also
gradually decreases. In the IMF3 (cyan blue), we find the
presence of distinct separation between the modes where
the high frequency region exhibits the power law be-
haviour with an exponent ∼ −1.6 whereas in the low fre-
quency region, the IMF shows the same behaviour with
an exponent ∼ −0.3. All these exponents are calculated
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FIG. 7. IMFs obtained after EMD in HHT analysis of the station 26.15◦N, 91.05◦E for the year 2009. The top most panel
shows the original rainfall signal and the rest of the panels contain the IMFs obtained after the decomposition. IMF1 contains
the highest frequency present in the rainfall time series and subsequently other IMFs contain the next characteristic frequencies
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FIG. 8. PSD of the individual IMFs shown in Fig. 7. The
dotted lines indicate the power law behaviour of that partic-
ular region. This depicts how the IMFs evolve from the noisy
to quasi-periodic behaviour.

after analyzing all the stations over the whole range of
durations (2001-2020). These analysis reveals the grad-
ual emergence of different significant features, some of

FIG. 9. HHT spectrum of the station 26.15◦N, 91.05◦E for
the year 2009. Both frequency and intensity of rainfall is
plotted as a function of time. The colorbar denotes the value
of rain intensity in arbitrary unit. It distinctly reveals the
presence of intense rain events over different temporal and
frequency scales.

which we have also procured with power spectrum anal-
ysis in Fig. 5. In Fig. 9, we display the HHT spectrum
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of the same rainfall time series. In the spectrum, the
time coordinate is displayed along the x-axis, frequency
values are depicted along y-axis (in log scale) and the
pseudo colors exhibit the strength of the amplitude in
arbitrary unit. Using this spectrum we obtain the fre-
quency modes present a particular instant of time along
with its strength. We find the presence of distinct fre-
quency peaks corresponding to the intense rainfall event
which point out the dominant frequencies present at that
particular time window.

So far we find that the rainfall distribution is of log-
normal in nature that implies the presence of extreme
events. In addition the rainfall spectrum shows the pres-
ence of Kolmogorov like scaling confirming the presence
of the characteristics of the turbulent features. All these
features of the rainfall indicate towards the interesting
behaviour of the fluctuations at different time scale. In
order to analyze these features of the fluctuations also
responsible for the extreme events at different scale next
we perform the fractal analysis of the rainfall data.

C. Evidence of multifractal nature of rainfall event

In both equilibrium and non-equilibrium systems, the
natural fluctuations often found to follow a power law
scaling relation over several orders of magnitude of the
scales. This kind of power law scaling relations indicate
towards the similarity of the behaviour of the system at
different scale. Fractal analysis is a suitable tool to un-
derstand and analyze complex systems like rainfall in our
case. The fat tail of PDF of the wet half hourly rainfall
data appears due to the presence of extreme events in
the time series. This indicates the presence of fractality
in the underlying time series [74]. In addition the power
law nature of the spectrum of the rainfall time series also
carry a signature of the fractal nature. A fractal process
basically means the occurrence of the same elementary
action over different scales such that the behaviour of
any particular part of the system mimics the general be-
haviour of the whole system. Rainfall also possesses this
fractal nature like many other atmospheric, hydrological,
climatic complex systems [75], seismic events [76], com-
plex biological processes related to the reproduction [77],
matter wave localization [78], etc. However, for highly
non-linear system with long range correlation shows the
signature of multifractal nature events[79].

The analysis to ascertain the fractal nature of the event
one needs to rely over several techniques. In this work we
implement the multifractal detrended fluctuation analy-
sis (MFDFA) [74] for our rainfall data, one of the no-
table techniques among the other existing schemes to
analysis the fractal nature of any time series data. The
brief discussion of this method and the distinct features
of mono and multifractality have been included in the
appendix D. Briefly one can see that if a time series con-
tains any fractal nature, the fluctuation function Fq(s)
[see appendix D] shows a power law behaviour with the

segment length s of the time series such that Fq(s) ∼ sHq ,
generalized Hurst exponent, for any fixed value of fluc-
tuation order q. Another scale parameter mass exponent
(τq) is used to show the scaling properties and can be
defined using Hurst exponent as

τq = (q ×Hq)− 1 (11)

To obtain the singularity spectrum, we need the singu-
larity strength hq which is related to τq via Legendre
transformation such that

hq = τ ′q (12)

and the singularity spectrum (Dq) of qth order can be
defined as

Dq = (q × hq)− τq (13)

Detailed methodology of MFDFA can be found in [80–
82].
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FIG. 10. The Hurst exponent values obtained for different
stations averaging over twenty years using MFDFA plotted
on the θ− ϕ plane. The mean value of the Hurst exponent is
indicated by the color at that particular station and it reveals
that the rainfall time series is persistence in nature.

In Fig. 10, we show the mean value of the Hurst ex-
ponent (H) over 20 years for different stations on the
θ − ϕ plane. The mean value of hurst exponent is found
to be of the order of 0.64 indicating the time series of
all the stations is persistent in nature and thus carry the
predictable features for a shorter time period by know-
ing the initial state. This value is in consistence with
the mean hurst value obtained using R/S method [83].
Generalised Hurst exponent Hq does not depend on the
parameter q for the monofractal time series but for the
multifractal case it varies with q. In Fig. 11(a) and (b),
we plot Hq as a function of q for two different stations
with coordinates 26.05◦N, 88.05◦E and 26.95◦N, 94.95◦E
respectively, each for 20 years. Here we see thatHq varies



13

0

1

2

-10 0 10

-20

-10

0

-10 0 10
2001

2005

2009

2013

2017

2020

FIG. 11. Generalised hurst exponent (Hq) and mass exponent
(τq) variation with the order q using MFDFA method. (a) and
(b) display the generalised hurst exponent for two different
stations 26.05◦N, 88.05◦E and 26.95◦N, 94.95◦E respectively.
(c) and (d) show the mass exponent for those two different
stations 26.05◦N, 88.05◦E and 26.95◦N, 94.95◦E respectively.
The adjacent colorbar is showing different colors attributed
to different year’s dataset. The dependency of Hq on q and
the non-linear variation of τq with q reveals the multifractal
nature of rainfall time series.

with different values of q which is a signature of multi-
fractality. The negative values of q, Hq describes the be-
haviour of the segments with small fluctuations. On the
other hand the positive values of q, Hq depict the seg-
ments with the large fluctuations. Mass exponent τq can
be obtained using the Eq. (11). We show the variation of
τq with q in Fig. 11(c) and (d) for two different stations
26.05◦N, 88.05◦E and 26.95◦N, 94.95◦E respectively, at
the span of 20 years. We find that τq exhibits non-linear
dependence on q indicating the presence of multifractal
nature of the rainfall event. Our detailed analysis per-
formed on all the station shows the presence of same
multifractality behaviour. Next we compute the multi-
fractal spectrum which carries the information about the
distribution of the PSD scaling exponent of the multi-
scale system at different time scales. The multifractal
spectrum can be obtained using Eq. (13). In Fig. 12(a)
we show the multifractral spectrum (Dq) for the station
with coordinate 26.15◦N, 88.05◦E spanning over 20 years
(from 2001 to 2020). We notice that the spectrum with
respect to hq exhibits a wide distribution a typical char-
acteristic of multifractal nature of the rainfall events.
To make it self content in the appendix we provide a
detailed criteria to characterize the nature of different
degrees of multifractality based general Hurst exponent,
mass exponent, and spectrum behaviour[see appendix D].
In Fig. 12(b), we report the mean of multifractal spec-
trum width distribution averaged over twenty years for
different stations as in the θ − ϕ plane. We observe that
multifractal spectrum width spread over a quite wide
range (∼ 1.2 − 2.4) depict the strong evidence of mul-
tifractality in the rainfall events of North East part of
India. In order make the analysis more concrete we have
also used alternate scheme, Wavelet Transform Modu-
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FIG. 12. Multifractal spectrum and its width distribution.
(a) Multifractal spectrum of the station 26.15◦N, 88.05◦E for
all the 20 years. The adjacent colorbar displays different col-
ors assigned to the datasets of different years. (b) Multifractal
spectrum width values obtained for different stations averag-
ing over twenty years using MFDFA method plotted on the
θ−ϕ plane. The color variation depicts the mean value of the
width of the spectrum of that particular station.

lus Maxima (WTMM) [81], to calculate the multifractal
spectrum and found the behaviour consistent with those
obtained using MFDFA.

III. SUMMARY AND CONCLUSIONS

Using the half hourly rainfall data of summer-monsoon
season (May-October month) in the span of two decades
(2001-2020) we have performed a detailed statistical anal-
ysis of the rainfall data of North East part of India col-
lected at 700 stations. The analysis reveals the presence
of skewed distribution with heavy tails a typical features
of extreme events for all the stations. The probability
distribution of the rainfall event shows Log-Normal dis-
tribution which has been established by computing dif-
ferent characteristics quantities for goodness of fit like
RMSE, MAE and RML, etc. Further we have computed
the spatial as well temporal correlation of the rain fall
time-series for all the stations that reveal seven neigh-
bouring stations are correlated in the longitudinal direc-
tion. However the temporal correlation of rainfall indi-
cate the presence of short time correlation (∼ 2.3hours)
as well longtime correlation manifests as a periodic os-
cillation. The spectral analysis of the rainfall time series
shows a signature of turbulent nature of the rainfall event
which is quite evident through the power law behaviour of
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PSD of rainfall time series with an exponent of ∼ −1.5 in
the high frequency range (for the time interval less than
24Hrs). The behaviour of the PSD in the high frequency
region can be attributed to the Kolmogorov scaling of
mean wind circulation power spectrum which shows an
exponent ∼ −1.67 (close to the exponent we get in our
case i.e. ∼ −1.5) and thus we find that within one day
time scale, the rainfall is mainly driven by the mean wind
circulation field. This feature of PSD of rainfall is very
much similar to the Kolmogorov like of exponent exhib-
ited by the passive scalars such as temperature in the
turbulent convective flow [84]. On the other hand we ob-
tain the exponent of the PSD of rainfall as ∼ −0.3 for
the low frequency range (time scale higher than 24 Hrs.).

Further to ascertain the presence of different charac-
teristics frequency at different time we have performed
the wavelet analysis of the rainfall data for all the sta-
tions. Through this analysis we find the presence of one
day periodicity as well as characteristic harmonics at the
intervals of 12 hours. The wavelet analysis also shows
the presence of dominant frequency corresponding to the
4 days which can be attributed to the mean life span of
active and break spells as well as the mean longevity of

the synoptic systems, a typical features of depressions
formed in Bay of Bengal. Another dominant frequency
in the wavelet analysis appears around 21 days which
can be associated with the typical time scale of the in-
traseasonal variation of monsoon circulation in the core
monsoon zone of India. Through the HHT analysis we
have been able to characterize the noise present in the
system. Further we have utilized the HHT spectrum to
compute the high intense rain events present in this re-
gion. We have observed the multifractal nature of the
rainfall time-series of North East part of India through
the calculation of the Hurst exponent that suggest the
persistent and predictable nature of the rainfall.
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Appendix A: RMSE and MAE value

In this appendix we provide a detailed analysis of the goodness of fitting of the probability distribution function of
time-series of rainfall data during Monsoon season of all the 700 station of North-East part of India. Following this
we provide a detailed methodology used for the wavelet, Hilbert Huang transformation and fractal analysis.

The required formula for calculating RMSE (ERMSE) and MAE (EMAE) is shown in the eqns. The normalised
RMSE and MAE value can be calculated as ERMSE/(max(A)−min(A)) and EMAE/(max(A)−min(A)) respectively.

Station Year Normalised RMSE value (in %) Normalised MAE value (in %)
Gamma Log-Normal Gamma Log-Normal

26.05◦ N, 88.05◦ E 2005 1.05 0.42 0.21 0.13
26.05◦ N, 88.05◦ E 2015 1.66 0.49 0.42 0.18
26.55◦ N, 91.65◦ E 2005 1.27 0.61 0.22 0.15
26.55◦ N, 91.65◦ E 2015 0.99 0.41 0.18 0.10

TABLE IV. The normalised ERMSE and EMAE values in percentage for two different station for two different years whose PDF
fitting is shown in the Fig. 3.

Appendix B: Wavelet Analysis

Morlet wavelet [59] can be expressed approximately using the following equation:

ψ(τ) = π−1/4 exp(−iω0τ) exp(−
τ2

2
) (B1)

where ω0 and τ is the non-dimensional frequency and non-dimensional time parameter respectively. Here continuous
WT is used for analysing the rainfall time series as it provides a smooth transition of wavelet power between the scales
or frequencies which are present in the time series. The continuous WT can be approximated for a discrete time series
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FIG. 13. The difference of the error ((a) RMSE and (b) MAE) values (in percentage) of Gamma and Log Normal PDF fitting.
The values are averaged over 20 years and the colorbar depicts the numerical values of the difference in error between the two
fittings associated with the specific colors. (a) The difference of the RMSE value of the Gamma PDF and the RMSE value of
the Log-Normal PDF is plotted and it comes out to be positive at all the stations which implies the Log Normal fitting has
less error than the Gamma fitting for all the stations. (b) The same difference for MAE is shown and it also concludes that
LOG-Normal PDF fits better than the Gamma PDF.

FIG. 14. The natural logarithm of RML value (T ) is plotted on the θ − ϕ plane. The values are averaged over 20 years. All
values of the T is positive which implies the Log-Normal PDF fits better than the Gamma PDF.

x(t) is defined as the convolution of x(t) with a scaled and translated version of (ψ(τ)) such that the discrete wavelet
transform (W (b, a)) can be obtained as:

W (b, a) =

N−1∑
τ=0

1

a
1
2

ψ∗(
τ − b

a
)x(t)∆t (B2)

where ψ∗ is the complex conjugate of the wavelet function ψ, b is the localised time index of the mother wavelet and
a(a > 0) is the scale or dilation parameter of the mother wavelet. For this analysis ω0 is set to be at 6 which gives
a more convenient form the mother wavelet to carry out and interpret the results. The wavelet function ψ(τ) is in
general complex in nature and hence the wavelet transform is also complex. The Global wavelet power spectrum is
obtained by averaging the wavelet spectrum in time over the entire time period of the time series and can be expressed
mathematically as:

W̄ 2(a) =
1

N

N−1∑
b=0

|W (b, a)|2 (B3)

This spectrum gives an one dimensional plot of wavelet power vs frequency while retaining the traces of its localised
time domain.
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Appendix C: Hilbert Huang Transformation (HHT)

HHT contains two steps namely empirical mode decomposition (EMD) and Hilbert spectral analysis. EMD disinte-
grates the original signal into several sub-signals each with a specific frequency. These sub-signals are called Intrinsic
mode functions (IMF). Each IMFs must satisfy the following conditions [60]: (a) the number of extrema and the
number of zero crossing in the whole sub-signal must be equal or can differ at most by one and (b) at any point in
the sub-signal, the mean value of the envelope defined by the local maxima and local minima is zero. EMD separates
these sub-signals subsequently from its lower frequencies and trend. Here we are discussing the general algorithm to
obtain these IMFs: Let the time series be x(t).

1. find out the extrema (both maxima and minima) of x(t).

2. construct the upper and lower envelop h(t) and l(t) respectively, by connecting maxima and minima points in
each case using cubic spline interpolation.

3. calculate the local mean m1(t) = (h(t) + l(t))/2

4. as zero local mean is one of the requirement of being IMF, m1(t) is subtracted from x(t): g1(t) = (x(t)−m1(t))

5. examine whether g1(t) is an IMF or not

6. repeat the steps from 1 to 5 to get the IMF g1(t)

That’s how we obtain the 1st IMF C1(t) = g1(t) which contains the finest temporal scale of the signal and the highest
frequency present in the original signal. In order to proceed to find other IMFs, we have to get the 1st residue r1(t)
as r1(t) = (x(t)−C1(t)). This residue r1(t) contains all other IMFs with higher temporal periods and we can extract
them using the procedure explained earlier. So in each iteration we construct subsequent IMFs C2(t), C3(t) ... up to
Cn(t) with residues r2(t) = (r1(t) − C2(t)), r3(t) = (r2(t) − C3(t)) ... up to rn(t) = (rn−1(t) − Cn(t)) where rn(t) is
a constant or monotonic function or a function left with only one extremum such that no other IMF can be derived.
We can reconstruct the original signal as

x(t) =

n∑
i=1

Ci(t) + rn(t) (C1)

The instantaneous frequency accounts for the signal’s frequency at every time instance and it is calculated as the rate
of change of the phase angle at the analysis time instance. All the IMFs are real valued signal and analytic signal
method is used to find out their instantaneous frequency. The real valued IMFs need to express in the complex form
and that is defined as

zi(t) = Ci(t) + jH[Ci(t)] = ai(t)e
jθi(t) (C2)

Here, ai(t) and θi(t) are the instantaneous amplitude and phase respectively of the IMF Ci(t) and H[·] is the Hilbert
transform operator. For any arbitrary time series X(t), the Hilbert transform Y (t) can be obtained as

Y (t) =
1

π
P

∫
X(t′)

t− t′
dt′ (C3)

where P is the Cauchy principal value. The Hilbert transform introduces a phase shift of ±π/2 to all the frequency
components. Following this formalism, X(t) and Y (t) become a complex conjugate and the analytical signal can be
expressed as Z(t) = X(t) + jY (t). So the instantaneous frequency of the ith IMF can be obtained as

ωi(t) =
dθi(t)

dt
(C4)

Thus the overall effect of instantaneous frequency for all the IMFs construct the temporal variation with frequency
in addition to the variation of the magnitude of the amplitude of the signal with frequency. Hilbert spectrum is the
final representation of this analysis which comprise the joint distribution of the magnitude of the amplitude as well
as the time with frequency simultaneously. Without considering the final residue, the original signal can be expressed
as after performing the Hilbert transformation on each of the IMFs as

x(t) =

n∑
i=1

ai(t)e
j
∫
ωi(t)dt (C5)

This way the three dimensional Hilbert spectrum is constructed where the amplitude and instantaneous frequency is
represented as a function of time.
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Appendix D: Multifractal Detrended Fluctuation Analysis (MFDFA)

This technique [74, 82] is briefly discussed here: Let Xk(k = 1, 2, 3....N) is any arbitrary time series and it is being
analyzed by this MFDFA technique.

1. determine the profile by subtracting the mean value (< X >= 1
N

∑N
k=1Xk) of the time series X from each of

its entries and then adding them resulting 1, 2, ...N no of profiles as

Y (i) =

i∑
k=1

[Xk− < X >], i = 1, 2, ...N (D1)

2. the obtained profile Y (i) is divided into Ns = int(N/s) number of non overlapping segments of equal length
s. Sometime, N is not a multiple number of s and the dividing process has to be started from the back end of
the series to include the odd number of data in the last segment made earlier. Thus in total 2Ns number of
segments of equal length is obtained following this process.

3. in order to find out the local trend of each segments, polynomials of different degrees are fitted using least square
fit and according to the degree of the fitted polynomial, the procedure is also named as MFDFA1 (for linear fit),
MFDFA2 (for quadratic fit), MFDFA3 (for cubic fit), ..., MFDFAn (for nth order of polynomial fit). Lets take
Yp as the best fitted polynomial to an arbitrary section p of the series, then its variance can be obtained as

F 2(p, s) =
1

s

s∑
i=1

(Y [(p− 1)s+ i]− Yp(i))
2, for p = 1, 2, ..., Ns (D2)

F 2(p, s) =
1

s

s∑
i=1

(Y [N − (p−Ns)s+ i]− Yp(i))
2, for p = Ns + 1, ...2Ns (D3)

4. at last the qth order MFDFA fluctuation is calculated using the following formulae

Fq(s) =

[
1

2Ns

2Ns∑
p=1

(F 2(p, s))q/2

]1/q

,∀ q ̸= 0 (D4)

F0(s) = exp

[
1

4Ns

2Ns∑
p=1

ln (F 2(p, s))

]
, for q → 0 (D5)

5. if the time series contains any fractal nature, Fq(s) shows a power law behaviour with s such that Fq(s) ∼ sHq

for any fixed value of q. Thus the generalised Hurst exponent ( Hq) and other scaling parameters like mass
exponent (τq), singularity strength hq and singularity spectrum (Dq) can be deduced from here.

Using this procedure, we can find out if the time series under consideration possess any fractal behaviour and if
it has then which type of fractality (monofractal or multifractal) is present in it. Based on different behaviours of
Generalised Hurst exponent Hq and Mass exponent τq with the scaling order q and the width of the multifractal
spectrum, we can divide the fractal nature as monofractal and multifractal. The key features of monofractals are:

1. the fluctuation function Fq(s) is the same for all the segments of the original signal.

2. the generalised Hurst exponent Hq does not depend on the values of q.

3. the mass exponent τq increases linearly with q.

4. the singularity spectrum width (∆hq = (hq)max − (hq)min) is very narrow, i.e. (∆hq ∼ 0).

And the signature behaviour of the multifractals are:

1. for the positive values of q, Fq(s) is dominated by the segments having large deviation and for the negative
values of q, Fq(s)’s behaviour is mostly controlled by the segments having small deviation.
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2. similarly the generalised Hurst exponent Hq describes the effects of small fluctuations in the region of negative
q values whereas for positive q values, Hq shows the attributes of large fluctuations.

3. the mass exponent τq increases non-linearly with q.

4. the singularity spectrum is wide enough as compared to the monofractal case.

So using these characteristic features, we can find out which kind of fractality is present in the our system.
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