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Abstract Matrix-vector multiplication forms the basis of

many iterative solution algorithms and as such is an im-

portant algorithm also for hierarchical matrices. However,

due to its low computational intensity, its performance is

typically limited by the available memory bandwidth. By op-

timizing the storage representation of the data within such

matrices, this limitation can be lifted and the performance

increased. This applies not only to hierarchical matrices

but for also for other low-rank approximation schemes, e.g.

block low-rank matrices.
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1 Introduction

Introduced in [15] was a version of (hierarchical) low-rank

arithmetic where the matrix data, i.e., dense and low-rank

blocks, was compressed using floating point compression

methods. As the standard H-arithmetic is typically based

on dense arithmetic functions defined by the BLAS and

LAPACK function set [5], the modified H-arithmetic in [15]

was based on the idea of decompressing all input data of

arithmetic kernel functions, executing the arithmetic kernel

in standard double precision and then compressing the out-

put data. This way, the actual arithmetic functions remain

unchanged. Already this approach showed superior perfor-

mance for the H-matrix-vector multiplication (H-MVM),

which is often memory bandwidth limited and as such, any

reduction of the memory size will increase performance.

Another reason for this semi-on-the-fly approach was the

general compression approach in [15], i.e., for floating point

data any compressor could be used. This prevents direct

arithmetic within the (unknown) compression format.

However, some of the compression schemes in [15] allow

random access of entries in the compressed storage and

hence, special arithmetic functions can be implemented.

The aim of this work is to investigate the benefit of such an

approach for H-matrix vector multiplication.

An analog strategy was used in [6] with the idea of a

memory accessor, i.e., transparent conversion between a

storage and a computation format within a sparse matrix

computation. This work is therefore the application of this

concept for H-matrix arithmetic.

A different strategy is used by mixed precision schemes

([20, 1]) where combinations of hardware provided floating

point formats are used to reduce the memory footprint and

to increase performance, partly due to faster execution of

such smaller data formats. However, these approaches are

limited in the reduction of the H-matrix memory which

is crucial on computer systems with memory bandwidth

limitations. Also, not all floating point formats are (yet)

hardware supported on all platforms, e.g., half precision

formats like BF16 or FP16.

The rest of this work is structured as follows: in Sec-

tion 2 basic definitions and algorithms for H-matrices are

introduced together with the introduction of compression

schemes for dense and low-rank data. Section 3 will dis-

cuss different strategies for H-matrix-vector multiplication

with and without compression. Numerical experiments

will be presented in Section 4, followed by a conclusion in

Section 5.

2 H-Matrices

For an indexset I we define the cluster tree (or H-tree) as

the hierarchical partitioning of I into disjoint sub-sets of I :

Definition 2.1 (Cluster Tree) Let TI = (V,E) be a tree
with V ⊂ P(I). TI is called a cluster tree over I if

1. I = root(TI) and

2. for all v ∈ V with sons(v) ̸= ∅ : v = ∪̇v′∈sons(v)v
′.

A node in TI is also called a cluster and we write τ ∈ TI if
τ ∈ V . The set of leaves of TI is denoted by L(TI).

Similar to a cluster tree we can extend the hierarchical

partitioning to the product I × J of two index sets I, J ,

while restricting the possible set of nodes by given cluster

trees TI and TJ over I and J , respectively. Furthermore, the

set of leaves will be defined by an admissibility condition. In

the literature, various examples of admissibility can found,

e.g. standard [11], weak [12] or off-diagonal admissibility

[9, 2].
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Definition 2.2 (Block Tree) Let TI , TJ be two cluster
trees and let adm : TI ×TJ → B. The block tree T = TI×J

is recursively defined starting with root(T ) = (I, J):

sons(τ, σ) ={
∅, if adm(τ, σ) = true ∨ sons(τ) = ∅ ∨ sons(σ) = ∅,
{(τ ′, σ′) : τ ′ ∈ sons(τ), σ′ ∈ sons(σ)} else.

A node in T is also called a block. Again, the set of leaves of
T is denoted by L(T ) := {b ∈ T : sons(b) = ∅}.

The admissibility condition is used to detect blocks in T
which can be efficiently approximated by low-rank matrices

with a predefined rank k, i.e., blocks b with adm(b) = true.

The set of all such matrices forms the set of H-matrices:

Definition 2.3 (H-Matrix) For a block tree T over cluster
trees TI , TJ and k ∈ N, the set of H-matrices H(T, k) is
defined as

H(T, k) := {M ∈ RI×J : ∀(τ, σ) ∈ L(T ) :
rank(Mτ,σ) ≤ k ∨ τ ∈ L(TI) ∨ σ ∈ L(TJ)}

Here,Mτ,σ refers to the sub-block M |τ×σ .

In practice the constant rank k is typically replaced by

a fixed low-rank approximation accuracy ε > 0 as the

resulting H-matrices are often more memory efficient. For

this we assume for an admissible block Mτ,σ :

||Mτ,σ − Uτ,σV
H
τ,σ|| ≤ ε||Mτ,σ|| . (1)

In an analog way to H(T, k), the set H(T, ε) can be defined

as the set of H-matrices with local low-rank approximation

error of ε. We will also use H(T ) if either a fixed rank or a

fixed accuracy is used.

Remark 2.4 The set H(T ) also includes various other for-
mats like block low-rank (BLR) [3] or hierarchical off-

diagonal low-rank (HODLR) [2], as only the clustering or the
admissibility has to be chosen appropriately.

Remark 2.5 For H-matrices with a full hierarchy, the set
Mτ := {M |τ,σ : (τ, σ) ∈ L(T ) ∧ rank(Mτ,σ) ≤ k} of
low-rank blocks for a cluster τ ∈ TI is bounded by the con-
stant csp [10] for a particular application.

2.1 CompressedH-Matrices
Floating point data in H-matrices appears in inadmissible

blocks as dense matrices holding the coefficients and in

low-rank blocks in the form of the low-rank factors. Often

these are stored in FP64 (or FP32) format. However, due to

low-rank approximation with accuracy ε, already an error

is introduced which is typically much larger than the unit

roundoff of FP64 (or even FP32).

In [16, 15] the FP64 storage was replaced by error adap-

tive floating point compression, i.e., an optimized storage

format was chose with a representation error depending on

ε. Different compressors are available to implement such a

direct compression of floating point data, e.g., ZFP [19] or

BLOSC [8]. Furthermore, different storage schemes based

on the IEEE-754 floating point standard were examined,

were the number of mantissa bits mε is chosen based on

the low-rank approximation error ε as m := ⌈− log2 ε⌉.

Different choices for the number of exponent bits e were

also examined, e.g., with 8 bits as in the FP32 or BF16 for-

mats (called BFL), 11 bits as in FP64 (called DFL) and an

adaptive choice based on the dynamic range of the data, i.e.,

the base 10 logarithm of the ratio between the largest and

smallest (absolute) value (called AFLP). In all cases mε was

increased such that the number of bits per value 1+e+mε
1

is a multiple of 8 for fast byte aligned storage.

Independent on the particular choice of the compres-

sion scheme, this direct compression mode is then applied

to the dense data of inadmissible blocks Mτ,σ ∈ Linadm

and the low-rank factors Uτ ′,σ′ , Vτ ′,σ′ of admissible blocks

Mτ ′,σ′ ∈ Ladm.

Furthermore, as described in [15], low-rank matrices

permit an advanced compression scheme with an adaptive

accuracy choice for each column in the low-rank factors.

This adaptive precision compression (APLR) is based on the

mixed precision approach described in [4]. For a blockMτ,σ

we assume a rank-k approximation U · V H
with ∥Mτ,σ −

UV H∥ ≤ δ. Using the singular value decomposition we

can find orthogonal matrices W and X and a diagonal

matrix Σ = diag(σ0, . . . , σk−1) with the singular values

σ0 > σ1 > . . . σk−1 of UV H
.

If the i’th column wi of W and xi of X is stored with

precision δ/σi, then the total approximation error is (see

[15, Section 4])

∥Mτ,σ − W̃ΣX̃H∥ ≤ δ +

(
2δk + δ2

k∑
i=1

1

σi

)
.

With this, any direct floating point compression method Z
can be used to yield an improved storage method for low-

rank matrices, denoted APLR-Z , e.g., APLR-AFLP, APLR-

BFL or APLR-DFL. The main advantage of this scheme com-

pared to direct compression is, that in the latter case the

chosen precision is applied to the full data whereas with

APLR even for a high accuracy, a low precision may be used

for some part of the data.

3 H-Matrix-Vector Multiplication
We consider the update operation

y := αAx+ y

1
With the additional sign bit.
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with an H-matrix A ∈ H(T, k) and vectors x and y. The

product is computed by looping over the leaf blocks of A
and performing local matrix-vector multiplications, either

with a dense matrix for inadmissible blocks or in low-rank

format, i.e., t := V H
τ,σx|σ followed by y|τ := y|τ + αUτ,σt.

The full procedure is shown in Algorithm 1.

Algorithm 1: H-Matrix-Vector Multiplication

procedure hmvm(α,A, x, y)
for (τ, σ) ∈ L do

if (τ, σ is admissible then
y|τ := y|τ + αUτ,σV

H
τ,σx|σ;

else
y|τ := y|τ + αDτ,σx|σ;

Versions of the H-MVM for parallel systems need to

consider load balancing due to different, not a priori known

ranks in different low-rank blocks of the H-matrix if a fixed

accuracy ε is used. Also the block structure is typically not

equal throughout the matrix. This poses a serious scalability

issue for the distributed memory case (see [7, 17] or systems

with a NUMA architecture.

On shared memory systems a task-based approach can

avoid these problems if the scheduling algorithm is able to

assign ready tasks to idle processors. However, this may

lead to other problems as the memory layout of the blocks

handled by a single processor may not be optimal for ef-

ficient execution. This is of special importance because

of the low computational intensity of matrix-vector mul-

tiplication, which normally leads to a memory bandwidth

limited performance. Different optimization strategies are

discussed in [13], where especially the memory layout of

the H-matrix data is adjusted such that memory loads are

faster.

Another issue with shared memory programming is han-

dling potential collisions when writing to the same memory

positions, e.g., with matrix blocks Aτ,σ and Aτ,σ′ handled

by different processors writing simultaneously to y|τ . So-

lutions to this problem involve atomic updates [14] or re-

duction of thread local results [13]. A reduction approach

of local results is also the default choice for the distributed

memory case [7, 17].

An alternative approach is a collision free design in which

the memory blocks are scheduled to the processors in a

way to prevent simultaneous writing to the same memory

positions. Such a method is used in the following.

Let Aτ := {Aτ,σ : (τ, σ) ∈ L(T )} be the set of all

matrix blocks in A with identical row cluster τ and let

A := {Aτ : τ ∈ TI} be the set of all such block lists. Since

A is defined based on TI , it can be considered to be struc-

turally identical to the cluster tree. Due to its definition,

the number of matrix blocks in any Aτ is bounded by csp

(see 2.5) and therefore independent on the dimension of the

matrix..

Now let τ0, . . . , τℓ be clusters of TI with identical level,

i.e., depth(τi) = depth(τj), 0 ≤ i, j ≤ ℓ. Then, for any

0 ≤ i, j ≤ ℓ the matrix-vector products in the correspond-

ing sets Aτi and Aτj can be computed in parallel since

τi ∩ τj = ∅.

For any τ, σ ∈ TI with depth(τ) ̸= σ the sets Aτ and

Acls can only be executed in parallel if τ ∩σ = ∅. However,

due to the definition of TI if τ ∩ σ ̸= ∅ then either τ ⊆ σ
or σ ⊆ τ holds. Therefore, if TI is traversed from root to

bottom with execution of matrix blocks in a givenAτ before

proceeding to the sons in S(τ), any race condition when

accessing y is prevented. This procedure is implemented in

Algorithm 2.

Algorithm 2: Parallel H-Matrix-Vector Multiplication

procedure phmvm(α, τ,A, x, y)
for all Aτ,σ ∈ Aτ do

if (τ, σ is admissible then
y|τ := y|τ + αUτ,σV

H
τ,σx|σ;

else
y|τ := y|τ + αDτ,σx|σ;

parallel for (τ ′ ∈ S(τ) do
phmvm(α, τ ′,A, x, y)

10 2 10 1 100 101 102

Flops / Byte

100

101

102

103

104

GF
lo

ps
 / 

s

3.8 TFlop/s

390 GB/s

Figure 1: Roofline plot for H-MVM.

When using this algorithm with the architecture used in

Section 4, almost optimal performance is achieved as shown

in the (empirical) roofline plot in Figure 1. Please note, that

the plot shows values obtained for different problem sizes

and therefore data sizes, demonstrating its performance

consistency.

In principle, the computation of all products for matrix

blocks in Aτ in Algorithm 2 can be further parallelized

using a reduction scheme. One could also combine memory

layout optimizations from [13] easily with this approach.

However, as already the performance limit is reached by

the above procedure, only minor improvements by such

modifications are possible.

In Algorithm 2 no parallelism of the per matrix block

products was considered, which is a major drawback of this

procedure if a block structure like HODLR [2] is used. There,
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the most time consuming computations are performed on

the upper levels of the block cluster tree, where only a few

processors may be used in parallel. However, as the numeri-

cal results in Section 4 demonstrate, typical H-matrix block

structures do not show these problems, at least not for the

number of processors cores considered in this work.

3.1 CompressedH-Matrix-Vector
Multiplication

The main interest of this work is in the performance of

H-MVM when using floating point compression. This was

already the topic of [15]. There, for a dense or low-rank

block, the compressed data was first fully converted into the

computation format and only then the local matrix-vector

multiplication was performed in double precision. This

way, the standard arithmetic kernels, typically optimized

by hardware vendors, could be reused.

In [6] the concept of a memory-accessor is described

which implements on-the-fly conversion between the stor-

age format and the computation format during the arith-

metic. Since H-MVM only uses decompression this ap-

proach is easier to apply in this case compared to the full

H-arithmetic. Also, since H-MVM is often memory band-

width limited it may be more forgiving for a (potentially)

less heavily optimized implementation.

In any case, such an approach requires fast access to the

compressed values, which holds for the above described

compression schemes AFLP, BFL and DFL but much less

so for ZFP or BLOSC. Furthermore, especially ZFP showed

a low performance compared to other formats (see [15]).

However, in principle by tightly coupling the compression

scheme with the matrix-vector multiplication, any com-

pression format could be used. As such, the restriction to

AFLP, BFL and DFL in this work should be considered a

proof-of-concept.

Since Algorithm 2 only uses dense matrix-vector mul-

tiplication, one only needs to focus on this function. The

actual implementation of the compressed version is straight-

forward, without particular optimizations, aside from stan-

dard code reorganization due to the used column-major

storage scheme and shown in Algorithm 3 for the applica-

tion of a non-transposed n×m matrix D. Only the access

to the coefficients in D is replaced by the corresponding

coefficient decompression.

Algorithm 3: Matrix-vector multiplication with com-

pressed dense n×m matrix

procedure zmvm(in: D,x, inout: y)
for 0 ≤ j < m do

for 0 ≤ i < n do
yi := yi + decompress(Dij)xj;

For the mixed precision approach in [4] in the prede-

cessor in [20] (using FP64 and FP32) which are based on

hardware supported floating point formats, one has the

advantage of performing the computations for the corre-

sponding floating point hardware natively, i.e., without

converting to FP64, thereby potentially increasing the per-

formance. As this had no negative side effects on the error

for the model problems used in Section 4 this was also used

in the following.

4 Numerical Experiments
The model problem is based on a boundary element dis-

cretization for the Laplace single layer potential (Laplace

SLP) while the domain is defined by the unit sphere:∫
Ω

1

∥x− y∥
u(x)dy = f(x), x ∈ Ω (2)

withΩ =
{
x ∈ R3 : ∥x∥2 = 1

}
. Piecewise constant ansatz

functions are used for the discretization. Furthermore, stan-

dard admissibility

min {diam(t),diam(s)} ≤ η dist(τ, σ)

is applied for setting up the block tree.

All experiments are performed on an AMD Epyc 9554

CPU with 64 cores in total and 12 32GB DDR5-4800 mem-

ory DIMMs. For parallelization Intel TBB v2021.11 was

used while Intel oneMKL v2024.0 provided the BLAS and

LAPACK functions for the uncompressed case. Please note,

that the sequential version was chosen as all parallelization

is performed within the H-arithmetic itself. Furthermore,

the AVX512 code path in MKL was activated. All code was

compiled using GCC v12.3.

The algorithms described in this work are implemented

in the open source software HLR
2
. For the numerical exper-

iments version 9cdb804 was used.

For runtime results the median of ten runs is presented,

while only little variations between each run was observed.

Aside from the compressors AFLP, BFL, DFL the mixed

precision formats MP-3 using FP64, FP32 and BF16
3

(as in

[4]) and MP-2 with FP64 and FP32 (as in [20]) are used.

First, the compression ratio for the different schemes is

shown in Figure 2 for a comparison on the memory sav-

ings. As can be seen the compression ration is slightly

improving with a growing problem size if a fixed accuracy

is chosen. This corresponds to the increasing portion of

low-rank memory compared to memory associated to inad-

missible blocks in H-matrices with larger problems and is

more pronounced for the mixed precision formats as there

inadmissible blocks are not compressed. Due to a larger

number of exponent bits in BFL and DFL, these formats

have a higher memory consumption compared to AFLP.

2http://libhlr.org, program: mpmvm
3
BF16 was preferred over FP16 due to much faster conversion from

FP64/FP32.

http://libhlr.org
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Figure 2: Compression rates compared to uncompressed H-matrices for fixed accuracy of ε = 10−6
(left) and a fixed

problem size of n = 2.097.152 (right).

For a fixed problem size and varying accuracy, APLR

compression yields a high compression for low and high

accuracies. In contrast to this MP-3 and MP-2 show a much

worse compression if low accuracy is used, again due to the

fact that it is applied to low-rank blocks only. However, for

higher accuracies especially MP-3 is able to come closer to

the other formats.
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Figure 3: Roofline plot for H-MVM without (red) and with

compression using AFLP (blue) for a fixed accu-

racy of ε = 10−6
.

Figure 3 shows the the performance of uncompressed

and compressed H-MVM in an empirical roofline plot with

a maximal memory bandwidth of 390 GB/s and maximal

floating point performance of 3.8 TFlop/s, measured by the

Likwid tool [18]. The arithmetic intensity ofH-MVM is well

within the bandwidth limited regime. While the uncom-

pressed multiplication is close to the limit, the compressed

H-MVM is slightly less optimal. However, the latter does

not make use of the optimized matrix-vector product from

the Intel MKL library and also has the additional overhead

of the coefficient decompression.

Nevertheless, the performance is significantly increased

by lowering the memory bandwidth requirements. The run-

time speedup compared to the uncompressed multiplication

is shown in Figure 4 for all compression schemes. There

a better compression ratio directly translates into a better

performance with AFLP yielding best results.

To demonstrate, that this performance improvement is

not restricted to H-matrices, the same problem was com-

puted using the Block Low-Rank approach from [3]. Here,

the weak admissibility [12] was used. The results for BLR

matrix-vector multiplication (BLR-MVM) are shown in Fig-

ure 5. The maximal problem sizes are smaller due to the

higher memory demands of the BLR format.

While the general picture is similar to the H-matrix case,

the runtime improvements compared to the uncompressed

case are even slightly bigger. Only the mixed precision

formats do show a worse behavior for small problem sizes.

5 Conclusion
Matrix-vector multiplication for H-matrices can benefit sig-

nificantly from an optimized memory representation of the

dense and low-rank data on platforms with slow memory

access as is the case for many CPU based computations.

With APLR an efficient compressor is available which per-

mits such optimizations if combined with floating point

compression schemes with fast access to individual values.

The such presented algorithm not only performs well for H-

matrices but may by used also for other forms of low-rank

storage like BLR. It will be interesting to see if these con-

cepts can be applied to more complex forms ofH-arithmetic,

e.g. matrix-multiplication or LU factorization.
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