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An elementary proof of the Benjamini-Nekrashevych-Pete

conjecture for the semi-direct products Zn ⋊ Z

Dean Wardell

Abstract

A finitely generated group G is called strongly scale-invariant if there exists an
injective homomorphism f : G → G such that f(G) is a finite index subgroup of G and
such that ∩n≥0f

n(G) is finite. Nekrashevych and Pete conjectured that all strongly
scale-invariant groups are virtually nilpotent, after disproving a stronger conjecture
by Benjamini.

This conjecture is known to be true in some situations. Deré proved it for virtually
polycyclic groups. In this paper, we provide an elementary proof for those polycyclic
groups that can be written as a semi-direct product Zn ⋊ Z.

1 Introduction

Let G be a finitely generated group. We call G scale-invariant if there exists a descending
chain {Gk}k≥0 of finite index subgroups in G, such that each Gk is isomorphic to G and
such that ∩k≥0Gk is finite. Benjamini introduced this concept, motivated by problems of
renormalization in percolation theory on Cayley graphs of groups [5, Section 9.2].

Benjamini conjectured that every finitely generated scale-invariant group has polynomial
growth. Therefore, by Gromov’s theorem [6] every such group is virtually nilpotent.
This conjecture was shown to be false by Nekrashevych and Pete by exhibiting a family
of counterexamples in [2]. As a result, Nekrashevych and Pete thought of a (natural)
stronger property, which they call strong scale-invariance.

Definition 1.1. Let G be a group and f : G → G a monomorphism. Let fk : G → G
denote the k-th iterate of f . We call f strongly scale-invariant if f(G) is a proper finite
index subgroup of G and if ∩k≥0f

k(G) is finite. We call G strongly scale-invariant if
it admits a strongly scale-invariant monomorphism.

Using this stronger definition, it is very natural to ask a question similar to that of
Benjamini, resulting in the following conjecture.

Conjecture 1 (Benjamini-Nekrashevych-Pete). Let G be a finitely generated strongly
scale-invariant group. Then G is virtually nilpotent.

By today, the conjecture is proved under extra assumptions: on the group, on the associated
group chain and on the discriminant group of the associated group action. Van Limbeek
showed in [3] that the conjecture is true if we assume all fn(G) to be normal subgroups
of G. Hurder, Lukina and van Limbeek proved the conjecture in the case when the
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discriminant group Df , which is an invariant associated to the dynamical system induced
by f , is finite [4]. Finally, Deré showed in [1] that the conjecture is true for all virtually
polycyclic groups.

The proof of Deré requires understanding of Q-algebraic hulls of polycyclic groups, and of
the Malcev completion of nilpotent groups. Instead, in our paper we aim to give a very
elementary proof using only linear algebra and some basic facts from abstract algebra for
a smaller class of virtually polycyclic groups, namely that of semi-direct products of the
form G = Zn ⋊A Z, where we have A ∈ GLn(Z).

The main idea is that G is virtually nilpotent if and only if all eigenvalues of A are roots
of unity. Then the assumption that our group is not virtually nilpotent forces an injective
group homomorphism f : G → G to be surjective in the second coordinate. This in turn
gives us a non-zero fixed point of f . Since G has no non-trivial finite order elements, the
intersection ∩n≥0f

n(G) is infinite. This prevents f from being strongly scale-invariant,
proving the following theorem.

Theorem 1.2. Let n be a positive integer, A ∈ GLn(Z), and G = Zn ⋊A Z. Suppose
that G admits a strongly scale-invariant homomorphism f : G → G. Then G is virtually
nilpotent.

The rest of the paper is organized as follows: in Section 2 we prove a few technical results
required for Theorem 1.2. In Section 3 we provide proofs of several statements, assuming
that G admits an injective endomorphism but is not virtually nilpotent, that together
imply Theorem 1.2.

2 Preliminaries

A semi-direct product G = Zn ⋊A Z is given by a matrix A ∈ GLn(Z). Recall that the
group law on such groups is given by the following product:

(v, z) ⋆ (w, c) := (v +Azw, z + c).

In future use we will omit the notation ⋆ for convenience, and we will write Zn ⋊Z if the
matrix A is either known from the context or if it is not important. Denote by ei ∈ Zn

for i = 1, ..., n the i-th standard coordinate vector. Furthermore, with I ∈ GLn(Z) we will
mean the identity matrix.

Our goal is to give an elementary proof of Theorem 1.2. So, in particular, we must specify
under which condition G (or a subgroup of G) is nilpotent. We use the following definition.

Definition 2.1 ([7], Section 5.3). Let H be a group. Iteratively define the groups γk(H)
by γ0(H) = H and for k > 0:

γk(H) = [γk−1(H),H].

• We call H nilpotent if there exists some k0 ∈ Z≥0 such that for all k ≥ k0 we have
γk(H) = {0}.

• We call H virtually nilpotent if H contains a nilpotent finite index subgroup.

A direct computation shows that, for semi-direct products G as above, the commutator
subgroup γ1(G) is generated by elements of the form

[(v, z), (w, c)] = ((Az − I)w − (Ac − I)v, 0).
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Notice that if z = 0, the term Az − I vanishes. It follows that the groups γk(G) are
generated by all elements of the form

(
(I −Ack−1) · · · (I −Ac1)((Az − I)w − (Ac − I)v), 0

)
(1)

for integers z, c, c1, ..., ck−1 and any v,w ∈ Zn. Next, it is also useful to know some elements
that are contained in finite index subgroups of G.

Lemma 2.2. Let H ⊆ G = Zn ⋊A Z be a finite index subgroup. Then for each v ∈ Zn

there exists a non-zero integer a such that (av, 0) ∈ H. Similarly, there exists a non-zero
integer b such that (0, b) ∈ H.

Proof. Choose v ∈ Zn. As H is finite index in G, there must exist a, a′ ∈ Z with a 6= a′

such that we have an equality of cosets (av, 0)H = (a′v, 0)H. Multiplying on the left with
(−a′v, 0) gives

((a− a′)v, 0)H = (−a′v, 0)(av, 0)H = (−a′v, 0)(a′v, 0)H = H.

Hence ((a− a′)v, 0)H = H, which holds if and only if ((a− a′)v, 0) ∈ H.

The argument for the (0, b) is similar, where instead we look at the second coordinate.

Recall that a matrix N is called nilpotent, if there exists a positive integer k such that
Nk = 0. The following result is well-known; we include a proof here for completeness.

Proposition 2.3. Let A ∈ GLn(Z) be a matrix and consider the semi-direct product
G = Zn ⋊A Z induced by A. The following are equivalent:

(i) The group G is virtually nilpotent.

(ii) All eigenvalues of A are roots of unity.

(iii) There exists an integer z 6= 0 such that Az − I is nilpotent.

Proof. (i) ⇒ (ii): Suppose that G contains a nilpotent finite index subgroup H. Then
there exists some k such that γk(H) is trivial. Consider any v ∈ Zn and choose a, b ∈ Z\{0}
such that (av, 0) ∈ H and (0, b) ∈ H, which is possible by Lemma 2.2.

Let v0 := (av, 0) ∈ H = γ0(H), and inductively define

vi := [vi−1, (0, b)] ∈ γi(H) = [γi−1(H),H].

By applying the formula for commutators as given in (1), we get

vk = (a(I −Ab)kv, 0) ∈ γk(H) = {(0, 0)}.

Hence a(I −Ab)kv = 0, so as a 6= 0, we obtain

(I −Ab)kv = 0,

which must hold for every v ∈ Zn. Therefore (I − Ab)k must be the zero matrix. If λ is
any eigenvalue of A with an eigenvector w, then we get

0 = (I −Ab)kw = (1− λb)kw.

We conclude that 1− λb = 0 holds, so that λ must be a root of unity.
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(ii)⇒(iii): Let λ1, ..., λk ∈ C denote the eigenvalues of A, and let r be some positive integer
such that 1 = λr

1 = ... = λr
k. Let J denote the (complex) Jordan normal form of A and

let S be an invertible matrix with A = SJS−1. As the eigenvalues lie on the diagonal of
J , the matrix Jr − I is a strictly upper triangular matrix. So in particular it is nilpotent.
Now we can write

Ar − I = SJrS−1 − I = S(Jr − I)S−1,

so that Ar − I is also nilpotent.

(iii)⇒(i): Now suppose there exists some non-zero integer z such that Az − I is nilpotent.
Say, (Az − I)k = 0 for a positive integer k. Consider the finite index subgroup H ≤ G
generated by all (ei, 0) and (0, z).

First of all, we notice that for any positive integer r we have

Arz − I = (Az − I)(A(r−1)z +A(r−2)z + ...+ I)

and
A−rz − I = −A−rz(Arz − I)

so that in particular for any choice of integers r1, ..., rk there exists some matrix B ∈ Z[A]
such that

(Arkz − I)(Ark−1z − I) · · · (Ar1z − I) = (Az − I)kB = 0.

Here we can interchange the order of the expressions as they are all polynomials in the
commutative ring Z[A]. The last coordinate of any element (w, c) ∈ H will be a multiple
of z, so using our computations of γk(H) as in (1), we get that γk(H) = 0. That is, H is
nilpotent.

If G = Zn⋊AZ is not virtually nilpotent, then by Proposition 2.3 and since det(A) ∈ {±1},
the matrix A must have at least two eigenvalues of absolute value not equal to 1. Thus
we obtain the following.

Lemma 2.4. Let A ∈ GLn(Z) be a matrix with at least one eigenvalue that is not a root
of unity. Then for all non-zero integers s the dimension of ker(As − I) is at most n− 2.

Finally, nearing the end of the proof of Proposition 3.1, we will use the following fact
about invertible matrices over Z.

Lemma 2.5. Let A ∈ GLn(Z) and for each m ∈ Z>0 define the matrix

Bm :=
m−1∑

k=0

Ak.

Then, for each non-zero integer r, there exists some m such that all entries of Bm are
divisible by r.

Proof. Without loss of generality we may assume r > 1. For this proof, let R :=
Matn(Z/rZ) and for any matrix M ∈ Matn(Z) let M̃ ∈ R denote the matrix with the
same entries as M viewed as elements of Z/rZ. Notice that reducing mod r commutes
with adding and multiplying matrices.
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As det(A) = ±1, the determinant of Ã must be an invertible element of Z/rZ. Hence Ã is
invertible over R. However, R is a finite ring, so Ã must have finite (multiplicative) order.
Say Ãl = Ĩ for l ∈ Z>0. Now for m = r · l we get:

B̃r·l =

r·l−1∑

k=0

Ãk = r
(
Ĩ + Ã+ ...+ Ãl−1

)
= 0.

But for any m, the matrix B̃m is the reduction of the matrix Bm. So with m = r · l the
matrix Bm must only have entries that are all divisible by r.

3 Main result

Using the tools obtained in Section 2, we can point out some properties of injective
endomorphisms f : G → G, where we assume that G is not virtually nilpotent. Every
statement in this proposition holds given all previous statements, and we use that G is
not virtually nilpotent only in the proof of (ii).

Proposition 3.1. Fix some integer n > 0 and let A ∈ GLn(Z). Let G := Zn ⋊A Z and
suppose f : G → G is an injective homomorphism. Let g : G → Zn and h : G → Z

be maps such that f(v, z) = (g(v, z), h(v, z)). If G is not virtually nilpotent, then the
following statements hold:

(i) Consider the set Zn+1 = Zn×Z with either the Abelian group structure, or the group
structure obtained from the semi-direct product given by A. Then the set-wise map
h : Zn+1 → Z becomes a group homomorphism.

(ii) We have an inclusion Zn × {0} ⊆ kerh.

(iii) There exists an invertible matrix F ∈ Matn(Z) such that for all v ∈ Zn we have
g(v, 0) = Fv.

(iv) The homomorphism h : G → Z is surjective.

(v) The composition f2 := f ◦ f has a non-trivial fixed point.

Proof. Before we prove the statements, we consider some facts about f . Using that f is a
group homomorphism, we have g(0, 0) = 0, h(0, 0) = 0, and

f(v, z)f(w, c) = (g(v, z) +Ah(v,z)g(w, c), h(v, z) + h(w, c))

equals
f(v +Azw, z + c) = (g(v +Azw, z + c), h(v +Azw, z + c)).

This gives us two equations

g((v, z)(w, c)) = g(v +Azw, z + c) = g(v, z) +Ah(v,z)g(w, c) (2)

h((v, z)(w, c)) = h(v +Azw, z + c) = h(v, z) + h(w, c) (3)

Proof of (i) Recall that the group operation of G is given by

(v, z)(w, c) = (v +Azw, z + c).
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In particular this product adds the last two coordinates together, so that the projection
map G → Z on the last coordinate is a group homomorphism. Post-composing f with
this projection gives us h, showing that h : G → Z is a group homomorphism.

Choosing w = 0 and z = 0 in (3) gives h(v, z) = h(v, 0) + h(0, c). So since (v, 0)(w, 0) =
(v +w, 0) and (0, z)(0, c) = (0, z + c), we obtain

h(v +w, z + c) = h(v, 0) + h(w, 0) + h(0, z) + h(0, c) = h(v, z) + h(w, c).

That is, h : Zn+1 → Z is also a group homomorphism.

Proof of (ii) Consider the following two sets

V := {v ∈ Zn | h(v, 0) = 0}

X := {g(v, 0) ∈ Zn | v ∈ V }

If we view Zn as the subgroup Zn × {0} ⊂ G, then V is the kernel of the induced group
homomorphism h|Zn : Zn ×{0} → Z. Hence V is a group itself. But then for v,w ∈ V we
have

g(v + w, 0) = g(v, 0) +Ah(v,0)g(w, 0) = g(v, 0) + g(w, 0) (4)

so that X is also a group.

As they are subgroups of Zn, we have induced Q-vector spaces VQ := V ⊗ Q and XQ :=
X ⊗Q, where VQ is the kernel of the Q-linear map h⊗Q : Qn → Q. In particular VQ has
dimension at least n− 1.

Next, let v ∈ V and w ∈ Zn. Then we have two ways of writing g(v + w, 0). Namely:

g(v, 0) + g(w, 0) = g(v + w, 0) = g(w + v, 0) = g(w, 0) +Ah(w,0)g(v, 0).

Therefore g(v, 0) = Ah(w,0)g(v, 0), and in turn this implies

(I −Ah(w,0))g(v, 0) = 0. (5)

Notice that this implies that X ⊆ ker(I − Ah(w,0)). If we embed XQ in Qn by taking
Q-linear combinations, then it also implies XQ ⊆ ker(I −Ah(w,0)).

Assume that h(w, 0) 6= 0. Then by Lemma 2.4, we see that XQ has dimension at most
n − 2. By (4) we have a Q-linear map g ⊗ Q : VQ → XQ, so by comparing dimensions
the kernel must have dimension at least 1. Multiplying by some integer shows that there
exists some non-zero v ∈ V such that g(v, 0) = 0. Hence we get

f(v, 0) = (g(v, 0), h(v, 0)) = (0, 0),

contradicting that f is injective. Hence we are not allowed to use Lemma 2.4, so we must
have h(w, 0) = 0. As a result, h(Zn × {0}) = {0}.

Proof of (iii) Firstly, by (ii) for any v,w ∈ Zn we have (4). So we must have some matrix
F ∈ Matn(Z) such that for all v ∈ Zn we have g(v, 0) = Fv. If F would not be invertible,
then there exists some non-zero v ∈ Zn such that Fv = 0. Hence we get

f(v, 0) = (Fv, h(v, 0)) = (0, 0),
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which contradicts that f is injective.

Proof of (iv) Let v ∈ Zn. Then we have:

FAv = g(Av, 0) = g((0, 1)(v, 0)(0,−1)) = g(0, 1) +Ah(0,1)g(v, 0) +Ah(0,1)g(0,−1).

But observe that
0 = g(0, 1 − 1) = g(0, 1) +Ah(0,1)g(0,−1).

Therefore we obtain the equation

FAv = Ah(0,1)g(v, 0) = Ah(0,1)Fv.

Since this must hold for all v ∈ Zn, we have

FAF−1 = Ah(0,1),

so that A and Ah(0,1) are similar matrices. In particular their eigenvalues must coincide,
so since by Proposition 2.3 we may assume that A has eigenvalues that are not roots of
unity, we must have h(0, 1) ∈ {±1}. Hence h is surjective.

Proof of (v) By (ii) and (iv) we have h(0, 1) ∈ {±1}. We can take f2 = f ◦ f instead of f ,
so that h(0, 1) = 1. By (i) and (ii) we obtain the equation h(v, z) = z. We consider two
cases: when F − I is invertible, and when F − I is not invertible.

If it is not invertible, then there exists some non-zero v ∈ Zn such that Fv = v. In
particular we have

f(v, 0) = (g(v, 0), h(v, 0)) = (Fv, 0) = (v, 0),

so that (v, 0) is a fixed point of f .

If F − I is invertible, then choose some positive integer z such that

(I − F )−1(I +A+ ...+Az−1)

is an integer matrix. This is possible by Lemma 2.5 by choosing r = det(I − F ). Now
consider the pair (v, z) with

v := (I − F )−1(I +A+A2 + ...+Az−1)g(0, 1) ∈ Zn.

Using that

F (I − F )−1 = −(I − F )(I − F )−1 + (I − F )−1 = −I + (I − F )−1

and

g(0, z) = g(0, 1) +Ag(0, 1) +A2g(0, 1) + ...+Az−1g(0, 1) = (I +A+ ...+Az−1)g(0, 1),

where we have used (2) iteratively with g(0, z) = g(0, 1 + (z − 1)), we get

f(v, z) = (Fv + g(0, z), z) = (−g(0, z) + v + g(0, z), z) = (v, z).

Therefore, we have found a non-zero fixed point (v, z) of f .
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As a consequence, we can prove the main theorem.

Proof of Theorem 1.2. Consider some semi-direct product G = Zn ⋊Z and let f : G → G
be a strongly scale-invariant homomorphism.

If G is virtually nilpotent, we are done, so assume that G is not virtually nilpotent. By
Proposition 3.1 we get that f2 has some non-zero fixed point (v, z). Since for all positive
integers k we have fk(G) ⊆ fk−1(G), we get

(v, z) ∈
⋂

k≥0

fk(G).

However, (v, z) has infinite order, as when z 6= 0, then (v, z)m has second coordinate equal
to z ·m, and if z = 0, then the first coordinate of (v, z)m is v ·m. We conclude that this
intersection cannot be finite, which contradicts the assumption of f . That is, G must be
virtually nilpotent.
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