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Abstract

We show, assuming PD, that every complete finitely axiomatized
second order theory with a countable model is categorical, but that
there is, assuming again PD, a complete recursively axiomatized sec-
ond order theory with a countable model which is non-categorical.
We show that the existence of even very large (e.g. supercompact)
cardinals does not imply the categoricity of all finite complete second
order theories. More exactly, we show that a non-categorical complete
finitely axiomatized second order theory can always be obtained by
(set) forcing. We also show that the categoricity of all finite complete
second order theories with a model of a certain singular cardinality κ

of uncountable cofinality can be forced over any model of set theory.
Previously, Solovay had proved, assuming V = L, that every complete
finitely axiomatized second order theory (with or without a countable
model) is categorical, and that in a generic extension of L there is a
complete finitely axiomatized second order theory with a countable
model which is non-categorical.
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under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 101020762).
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1 Introduction

A second order theory T is complete if it decides, in the semantical sense,
every second order sentence φ in its own vocabulary i.e. if for every such
φ either T |= φ or T |= ¬φ, or equivalently, all models of T are second
order equivalent. The question we investigate in this paper is whether every
complete second order theory is categorical in the sense that all of its models
are isomorphic. Already in 1928 Fraenkel [8] mentions this question as a
question ‘calling for clarification’. Carnap [6] claimed a positive answer, but
his proof had an error (see [5]).

For mere cardinality reasons there are always complete non-categorical
second order theories. One needs only consider models of the empty vocab-
ulary. Since there are only continuum many different second order theories,
there must be two such models of different cardinality with the same (a
fortiori complete) second order theory.

Categoricity of complete second order theories would follow if all sec-
ond order equivalent models were isomorphic, which is not the case again
for cardinality reasons. However, if V = L, then countable second order
equivalent models are isomorphic [1] and, moreover, every complete finitely
axiomatized second order theory is categorical [26]. But if a Cohen real is
added to a model of V = L, then there are countable non-isomorphic second
order equivalent models [1], and if ℵ1 Cohen-reals are added to a model of
V = L, there is a complete finitely axiomatized second order theory (with a
countable model) which is non-categorical [26].

Fräıssé [9, 10] conjectured that countable second order equivalent ordinals
are equal. Marek [18, 19] showed that Fräıssé’s conjecture is true under the
assumption V = L, and false in a forcing extension obtained by collapsing
an inaccessible cardinal to ω1.

The ambitious goal in the area of this paper is to decide in a definitive
way the status of categoricity of complete second order theories. Since we are
dealing with a question that cannot be decided in ZFC alone, it is natural
to make an assumption such as PD, a consequence of the existence of large
cardinals (e.g. infinitely many Woodin cardinals). We offer a partial solution
to the full question by solving the case of second order theories with countable
models. We have also partial results about theories with uncountable models.
In particular, we show that a non-categorical complete finitely axiomatized
second order theory can always be obtained by (set) forcing. This shows that
large cardinal assumptions cannot imply, as V = L does, the categoricity of

2



all complete finitely axiomatized second order theories.

Notation: We recall the usual definition of the beth hierarchy: i0 = ω,
iα+1 = 2iα, and iν = supα<ν iα for limit ν. An ordinal α is called a beth
fixed point if α = iα. If µ is a cardinal, we use Fn(I, J, µ) to denote the poset
of partial functions I → J of cardinality < µ, ordered by p ≤ q ⇐⇒ q ⊆ p.
The trivial poset Fn(∅, ∅, 1) is denoted ({0},=).

We denote the second order theory of a structure M by Th2(M). A
second order theory T is complete if Th2(M) = Th2(N) for all M,N |= T ,
and T is categorical if M ∼= N for all M,N |= T . For second order sentences
φ, ψ we write φ |= ψ to mean M |= φ implies M |= ψ for allM , and similarly
T |= T ′ for second order theories T, T ′, and we say T axiomatizes T ′. If T
is a finite (resp. recursive) set of sentences and T |= T ′, we say T ′ is finitely
(resp. recursively) axiomatizable.

A cardinal λ is second order characterizable if there is a second order
sentence φ in the empty vocabulary such that N |= φ if and only if |N | = λ.

2 The case of L[U ]

It is already known that if V = L, then every complete finitely axiomatized
second order theory is categorical [26]. We now show that this also holds if
V = L[U ], and we show there are complete recursively axiomatized second
order theories that are non-categorical (with very large models).

Assuming V = L[U ], we write κ for the sole measurable cardinal, U for
the unique normal measure on κ and <L[U ] for the canonical well-order. By
a L[U ]-premouse we mean a structure (Lα[W ],∈,W ) where W is an Lα[W ]-
ultrafilter on some γ < α. Recall that a premouse (Lα[W ],∈,W ) is iterable
(under taking iterated ultrapowers), i.e. that every iterate is well-founded,
if and only if every iterate in an iteration of any countable length is well-
founded. Observe that every iterate in an iteration of countable length has
the same cardinality as the original premouse, so the iterability of a premouse
is expressible in second order logic. See for example [12, chapter 20] for more
details.

Theorem 1. Assume V = L[U ]. Every complete finitely axiomatized second
order theory is categorical.

Proof. Suppose φ is a complete second order sentence in a vocabulary with a
single binary relation symbol R (for simplicity). Note first that φ has models
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in only one cardinality. If not, let N be a model of φ of least cardinality, and
M another model with |M | > |N |. Let θ be the sentence

∃P∃R′(θ′(P ) ∧ φ′(P,R′))

where

• P is a unary predicate, not occurring in φ, and R′ is a binary relation
symbol not occurring in φ.

• φ′(P,R′) is a modification of the sentence φ, where the first order quan-
tifiers ∃x . . . are relativised to P as ∃x(P (x)∧ . . .), and each occurrence
of R is replaced by R′.

• θ′(P ) says that the cardinality of P is smaller than the ambient domain
of the model (for example, that there is no injective function with range
contained in P ).

As φ is complete and M |= θ (by taking (P,R′) isomorphic to N), also
N |= θ, so there is a model of φ of cardinality smaller than that of N , which
is a contradiction. Thus all models of φ have the same cardinality.

Now let M0 be the <L[U ]-least model of φ. Suppose first that |M0| > κ:
in this case we can mimic the categoricity argument for L as follows. Let θ
be the sentence

∃E∃u∃m∃P∃R′(θ′(E, u) ∧ φ′(P,R′) ∧ θleast(E, u,m) ∧ θisom(E,m, P,R
′))

where

• E,R′ are binary predicate symbols, P a unary predicate symbol and
u,m are first order variables, none occurring in φ (the intuition is that
E is ∈, u is a normal ultrafilter, m is a structure in the vocabulary of
φ, P is the domain of m and R is the single binary relation of m).

• θ′(E, u) states E is well-founded and extensional (so that E has a tran-
sitive collapse, and the domain of the model equipped with E can be
thought of as a transitive set), and its collapse is a level of L[u] having
a normal measure u as an element.

• φ′(P,R′) is (as before) a modification of the sentence φ where each first
order quantifier ∃x . . . is relativised to P as ∃x(P (x) ∧ . . . ), and each
occurrence of R is replaced by R′.
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• θleast(E, u,m) says m <L[u] m
′ for any other m′ = (Q, S) also satisfying

φ′(Q, S) (using the formula defining the canonical well-order of L[u]
with u as a parameter).

• θisom(E,m, P,R
′) states that m = (P,R′), and that (P,R′) is isomor-

phic to the ambient model (so there is an injection F with range P
such that R(x, y) ↔ R′(F (x), F (y)) for all x, y).

If M |= θ with witnesses E, u and m = (P,R′), and π : (M,E) → (N,∈) is
the transitive collapse, then π(u) = U is the unique normal measure U on κ,
N = Lα[U ] for some α and π(m) is the <L[U ]-least model M0 of φ, so M is
isomorphic to M0.

Conversely, let α be least such that M0 ∈ Lα[U ]. Then κ < α < |M0|
+

and U ∈ Lα[U ], so we may pick a bijection π : M0 → Lα[U ] and let E, u and
m = (P,R′) be the preimages of ∈, U and M0 under π to witness M0 |= θ.

Thus the above sentence θ is such that M |= θ if and only if M is iso-
morphic to the <L[U ]-least model of φ. Now if M |= φ, also M |= θ by
completeness of φ, so M is isomorphic to M0 and φ is categorical.

Suppose now that |M0| = λ < κ. In this case we cannot find a binary
relation E onM0 and u ∈M0 such that u is a normal measure in the transitive
collapse of (M0, E), so we modify the previously produced sentence θ. This
argument relies on a straightforward modification of the ∆1

3 well-order of
reals in L[U ]. We make the further assumption that the domain of M0 is a
cardinal (and that M0 is the <L[U ]-least among such models), and let θ be
the sentence

∃E∃W∃m∃P∃R′(θ′(E,W )∧φ′(E, P,R′)∧θleast(E,W,m)∧θisom(E,m, P,R
′))

where

• E,R′ are binary andW,P unary predicate symbols, and m a first order
variable, none occurring in φ.

• θ′(E,W ) states E is well-founded and extensional, whose transitive
collapse is an iterable L[U ]-premouse (Lα[W ],∈,W ) for some α, where
W is a L[W ]-ultrafilter on some γ, where γ is an ordinal greater than
the cardinality of the ambient model.

• φ′(E, P,R′) is the sentence φ′(P,R′) from before, with the additional
stipulation that the extent of the predicate P is a cardinal.
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• θleast(E,W,m) says m <L[W ] m
′ for any other m′ = (Q, S) also satisfy-

ing φ′(E,Q, S) (using the formula defining the canonical well-order of
L[W ] with W as a predicate).

• θisom(E,m, P,R
′) remains unchanged from earlier.

We claim that θ is a sentence such that M |= θ if and only if M is iso-
morphic to the <L[U ]-least model of φ (among models whose domain is a
cardinal). So suppose M |= θ with witnesses E,W and m = (P,R′), and let
π : (M,E,W ) → (N,∈,W ′) be the transitive collapse. Then W ′ = π′′(W ) is
a N -ultrafilter on some γ > λ and N = Lα[W

′] for some α > γ, and π(m) is
the <L[W ′]-least model of φ in Lα[W

′], to which M is isomorphic.
To see why π(m) is M0, let j : L[U ] → L[F ] and k : Lα[W

′] → Lδ[F ] be
long enough iterations of L[U ] and Lα[W ] respectively such that they become
comparable. Then crit(j) = κ > λ and crit(k) = γ > λ, so j(M0) =M0 and
k(π(m)) = π(m). By elementarity, both M0 and π(m) are now the <L[F ]-
least model of φ among models whose domain is a cardinal, so π(m) = M0

and M is isomorphic to M0.
Conversely, to see M0 |= θ amounts to finding an appropriate premouse

(Lα[W ],∈,W ). Let δ be a large enough cardinal such that M0, U ∈ Lδ[U ],
and that (Lδ[U ],∈, U) is an iterable premouse. Then let N be the Skolem hull
of λ∪ {M0} in Lδ[U ] of cardinality λ, and let π : (N,∈, U ∩N) → (Lα[W ],∈
,W ) be the transitive collapse. Now (Lα[W ],∈,W ) is also an iterable pre-
mouse with |Lα[W ]| = λ, W is a Lα[W ]-ultrafilter on some γ = π(κ) > λ,
and π(M0) = M0, so by elementarity M0 is the <L[W ]-least model of φ as
required. So θ is a sentence such that M |= θ if and only if M is isomorphic
to M0, implying as before that φ is categorical.

Finally, observe that the case |M0| = κ is impossible, since the measurable
cardinal κ is Π2

1-indescribable [11]. Thus φ is categorical.

It turns out that finite axiomatizability is key for the preceding theorem.
For every second order characterizable cardinal λ > κ, we produce a non-
categorical recursively axiomatizable theory whose models have cardinality
λ.

Theorem 2. Assume V = L[U ]. Suppose κ is measurable and λ is second
order characterizable with λ > κ. Then there is a recursively axiomatizable
theory T with κ many non-isomorphic models of cardinality λ.
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Proof. For α < κ let Mα = (λ+α,<), so in a structure of cardinality λ, Mα

is straightforwardly definable from α (as λ is second order characterizable).
These models have the property that Mα

∼= Mβ implies Mα =Mβ .
For a second order sentence φ in vocabulary (<), let

Sφ = {α < κ :Mα |= φ},

and let T0 be the set of sentences φ such that Sφ ∈ U . As U is an ultrafilter,
T0 is a complete theory (so for any φ, exactly one of φ ∈ T0 or ¬φ ∈ T0 hold),
and by the σ-completeness of U the intersection X =

⋂

{Sφ : φ ∈ T0} ∈ U is
nonempty. The set X is such that for any α, β ∈ X , the structures Mα, Mβ

have the same second order theory T0, so it remains to see that the theory
T0 is recursively axiomatizable.

For a second order sentence φ in vocabulary (<), let E be a binary relation
symbol and u a first order variable, neither occurring in φ, and let φ+ be the
second order sentence

∃E∃u(θ′(E, u) ∧ (∃x ∈ u)(∀α ∈ x)”Mα |= φ”)

where θ′(E, u) says E is well-founded and extensional, and its transitive
collapse is a level of L[u] containing λ and having a normal measure u as an
element. Note that φ+ is a sentence in the empty vocabulary. Intuitively, φ+

states that Mα |= φ for a U -big set of ordinals α < κ, so for any structure N
with |N | = λ we have the equivalences

N |= φ+ ⇐⇒ {α < κ :Mα |= φ} = Sφ ∈ U

⇐⇒ Mα |= φ for some α ∈ X

⇐⇒ φ ∈ T0.

The import of the vocabulary of φ+ being empty is that for a structure N ,
the truth of N |= φ+ depends only on |N |, so we get that for all structures
N with |N | = λ,

N |= φ+ ⇐⇒ Mα |= φ+ for some α ∈ X ⇐⇒ φ+ ∈ T0

so also φ ↔ φ+ ∈ T0 for all second order sentences φ in vocabulary (<).
Now define the recursive set of sentences

T = {φ↔ φ+ : φ is a second order sentence in vocabulary (<)}.
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Observe that any model N of the theory T has cardinality λ, since taking θλ
to be the second order characterization of λ, we have Mα |= θλ for all α < κ,
so N |= θ+λ and thus N |= θλ since θ+λ ↔ θλ ∈ T .

To see T axiomatizes T0, suppose N |= T so |N | = λ, and that φ is a
second order sentence in the vocabulary (<), so either φ ∈ T0 or ¬φ ∈ T0.
In the former case we have Sφ ∈ U so N |= φ+, so N |= φ, and in the latter
case we have S¬φ ∈ U so N |= ¬φ. Thus Th2(N) = T0, so T recursively
axiomatizes T0 as desired.

In conclusion, all complete finitely axiomatizable theories are categorical
in L[U ] as in L, and in L[U ] there are complete recursively axiomatizable
second order theories that are non-categorical (whereas this is still unknown
in L).

3 Countable models

We already remarked earlier that if V = L, then every complete finitely
axiomatized second order theory is categorical [26]. We now show that for
theories with a countable model this is a consequence of PD, and therefore
a consequence of large cardinals:

Theorem 3. Assume PD. Every complete finitely axiomatized second order
theory with a countable model is categorical.

Proof. Suppose φ is a complete second order sentence with a countable model.
Then by completeness all models of φ are countable. Suppose φ is on the level
Σ1

n of second order logic and its vocabulary is, for simplicity, just one binary
predicate symbol P . Let R be the Σ1

n (lightface) set of real numbers coding
models of φ. By PD and its consequence, the Projective Uniformization
Theorem [22, Theorem 6C5], there is a Σ1

n+1 (even Σ1
n if n is even) element r

in R. Suppose r codes the model M of φ. We show that every model of φ is
isomorphic to M . Suppose N is a model of φ. Let θ be the following second
order sentence:

∃Q+∃Q×(θ1(Q+, Q×) ∧ ∃A(θ2(Q+, Q×, A)∧
∃B(θ3(Q+, Q×, A, B) ∧ ∃Fθ4(F,B)))),

where

• θ1(Q+, Q×) is the standard second order characterization of (N,+,×).
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• θ2(Q+, Q×, A) says that the set A satisfies the Σ1
n+1 definition of r in

terms of Q+ and Q×.

• θ3(Q+, Q×, A, B) says in a domainN that (N,B) is the binary structure
coded by A in terms of Q+ and Q×.

• θ4(F,B) is the second order sentence which says that F is a bijection
and

∀x∀y(P (x, y) ↔ B(F (x), F (y))).

Thus, θ essentially says “I am isomorphic to the model coded by r.” Trivially,
M |= θ. Recall that M |= φ. Since φ is complete, φ |= θ. Therefore our
assumption N |= φ implies N |= θ and therefore N ∼= M .

We make a few remarks about the proof. First, if n = 2, then we can use
the Novikov-Kondo-Addison Uniformisation Theorem and PD is not needed.
Thus we obtain:

Corollary 4. A complete Σ1
2-sentence of second order logic with a countable

model is always categorical.

In fact, the categorical finite second order axiomatizations of structures
such as (N,+,×), (R,+,×, 0, 1) and (C,+,×, 0, 1) (any many other classical
structures) are all on the Π1

1-level of second order logic.
Second, the above proof gives also the following more general result: As-

sume Det(∆1
2n). Suppose T is a recursively axiomatized theory on the Σ1

2n+2-
level of second order logic, which is complete for sentences on this level of
second order logic. Then T is categorical.

An essential ingredient of the proof of Theorem 3 was the assumption
that the complete second order theory is finitely axiomatized. The following
theorem shows that “finitely” cannot be replaced by “recursively”.

Theorem 5. Assume PD. There is a recursively axiomatized complete second
order theory with 2ω non-isomorphic countable models.

Proof. For any x ⊆ ω let

Mx = (Vω ∪ {y ⊆ ω : y ≡T x},∈),

where y ≡T x means the Turing-equivalence of y and x. We denote the
second order theory of Mx by Th2(Mx). By construction, x ≡T y implies
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Th2(Mx) = Th2(My). On the other hand, if x 6≡T y, then clearly Mx ≇ My.
If φ is a second order sentence, then ‘Mx |= φ’ is a projective property of x,
closed under ≡T , and hence by Turing Determinacy for projective sets [20]
has a constant truth value on a cone of reals x. By intersecting the cones we
get a cone C of reals x on which Th2(Mx) is constant. For any second order
φ let φ+ be the second order sentence

“My |= φ for a cone of y”

and φ̂ the sentence φ ↔ φ+. Let us consider the recursive second order
theory T consisting of φ̂, when φ ranges over second order sentences in the
vocabulary of the structures Mx. We may immediately conclude that T is
complete, for if a second order sentence φ is given, then by the choice of C
either Mx |= φ for x ∈ C or Mx |= ¬φ for x ∈ C. In the first case φ̂ |= φ
and in the second case φ̂ |= ¬φ. Therefore, T |= φ or T |= ¬φ. There are a
continuum of non Turing equivalent reals in the cone C. Hence there are a
continuum of non-isomorphic Mx with x ∈ C.

4 Models of cardinality ℵ1

Next, we show that the (∗) axiom (see Definition 4.33 in [28]) has categoric-
ity consequences for theories with a model of cardinality ℵ1. Thus these
consequences can also be derived from forcing axioms, namely MM++ which
implies the (∗) axiom (as shown in [4]). The following theorem answers a
question of Boban Veličković.

Theorem 6. Assume (∗). Then there is a complete finitely axiomatizable
second order theory with ω2 (= 2ω1) non-isomorphic models of cardinality ℵ1.

Proof. The pertinent consequence of (∗) is the quasihomogeneity of the non-
stationary ideal on ω1 (see Section 5.8 in [28], particularly Definition 5.100).
We take “NSω1 is quasihomogeneous” to be the following statement: if
X ⊆ P(ω1) is ordinal definable from parameters in R ∪ {NSω1}, and X is
closed under equality modulo NSω1 , and X contains one bistationary subset
of ω1, then X contains every bistationary subset of ω1.

We focus on the ω1-like dense linear orders Φ(S) = η +
∑

α<ω1
ηα, where

ηα =

{

η, α /∈ S

1 + η, α ∈ S,
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η is the order type of the rationals, and S ⊆ ω1 is bistationary. These models
have the property that Φ(S) ∼= Φ(S ′) if and only if S△S ′ ∈ NSω1 . For a
second order sentence φ in vocabulary (<), the set

Xφ = {S ⊆ ω1 : S bistationary,Φ(S) |= φ}

is ordinal definable, and closed under equality modulo NSω1 , so the quasiho-
mogeneity of NSω1 implies that Xφ contains either every bistationary subset
of ω1, or none of them.

This shows the models Φ(S) for bistationary S ⊆ ω1 all have the same
complete second order theory, which is thus non-categorical. This theory
is axiomatized by the second order sentence in vocabulary (<) expressing
“I am isomorphic to Φ(S) for some bistationary S ⊆ ω1”, so it is finitely
axiomatizable, as required.

Some categoricity consequences of (∗) can already be derived from AD,
the axiom of determinacy. As the axiom (∗) states that L[P(ω1)] is a ho-
mogeneous forcing extension of a model of AD by a forcing that does not
add reals, the categoricity consequences of AD for theories with a model of
cardinality ≤ ℵ1 also follow from (∗). (Of course, the existence of recur-
sively axiomatized non-categorical theories under (∗) is overshadowed by the
existence of even finitely axiomatized such theories.)

Theorem 7. Assume AD. Then there is a complete recursively axiomatized
second order theory with at least 2ℵ0 many models of cardinality ℵ1.

Proof. By Martin, AD implies ω1 → (ω1)
ω, and moreover the homogeneous

set given by ω1 → (ω1)
ω can be taken to be a club (see [14]). We may

then intersect ω many homogeneous clubs for ω many colorings to obtain
ω1 → (ω1)

ω
2ω , and the homogeneous subset can still be taken to be a club.

We focus on models of the form MX = (ω1, <,X) for X ∈ [ω1]
ω. The

second order theory Th2(MX) in the vocabulary (<,X) can be encoded by
a real f(X) ∈ 2ω consisting of the Gödel numbers of the sentences true in
MX . This gives a coloring f : [ω1]

ω → 2ω, so we find a homogeneous club
subset H0 ⊆ ω1 such that f(X) does not depend on X ∈ [H0]

ω. Hence the
models MX with X ∈ [H0]

ω all have the same complete second order theory
T0, which is thus non-categorical.

The theory T0 is axiomatized by

T = {φ↔ φ+ : φ is a second order sentence}

11



where for a given second order sentence φ in vocabulary (<,X), the sentence
φ+ expresses “there exists a club C ⊆ ω1 such thatMX |= φ for allX ∈ [C]ω”.

For a given second order sentence φ, if MX |= φ for each X ∈ [H0]
ω, then

H0 serves to witness that φ+ holds, so T |= φ. Conversely, if φ+ holds, there
is a club C such that MX |= φ for every X ∈ [C]ω, and taking X ∈ [C ∩H0]

ω

we see also that MX |= φ for all X ∈ [H0]
ω. Thus T |= φ for exactly those

φ such that MX |= φ for all X ∈ [H0]
ω, so we see that T is a recursive

axiomatization of the theory T0 as desired.

The same can be analogously derived from the (∗) axiom, as follows:

Corollary 8. Assume (∗). Then there is a complete recursively axiomatized
second order theory with ω2 many models of cardinality ℵ1.

Proof. Recall (∗) states that L[P(ω1)] = L(R)Pmax and AD holds in L(R).
As Pmax is homogeneous and does not add reals under AD (see Lemmas 4.40

and 4.43 in [28]), ω1 = ω
L(R)
1 and [ω1]

ω = ([ω1]
ω)L(R).

We again look at models MX = (ω1, <,X) for X ∈ [ω1]
ω, and working in

L(R), define a coloring f : [ω1]
ω → 2ω by

f(X) = r ⇐⇒ L(R) |= Pmax  ”ř codes Th2(MX̌)”.

That f is a well-defined total function relies on the homogeneity of Pmax. By
ADL(R) we find a club H0 ∈ L(R), H0 ⊆ ω1 homogeneous for f . Stepping out
of L(R), we see that the models MX , X ∈ [H0]

ω all have the same complete
second order theory T0 (in L(R)Pmax = L[P(ω1)] and in V both).

Working now in V , we again define

T = {φ↔ φ+ : φ is a second order sentence}

where for a given second order sentence φ, the sentence φ+ expresses “there
exists a club C ⊆ ω1 such that MX |= φ for all X ∈ [C]ω”. The proof
concludes analogously to the preceding theorem.

We note that (∗) calculates |ωω
1 | to be ω2, so T0 has ω2 many non-

isomorphic models as claimed.

Of course, we may also use the fact that the club filter on ω1 is an ultrafil-
ter under AD to get another complete recursively axiomatized non-categorical
second order theory, the difference being that this theory has ω1 many models
instead. The proof, analogous to the proof of Theorem 2, is omitted:
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Theorem 9. Assume AD. Then there is a complete recursively axiomatized
second order theory with ω1 many models of cardinality ℵ1.

This proof is also easily modified to assume (∗) instead:

Corollary 10. Assume (∗). Then there is a complete recursively axiomatized
second order theory with ω1 many models of cardinality ℵ1.

Thus, under (∗), a complete non-categorical theory with a model of car-
dinality ℵ1 may have either ω1 or ω2 many non-isomorphic models.

5 Forcing non-categoricity

We shall show (Theorem 14) that we can force, over any model of set theory,
a finite complete non-categorical second order theory with a model of cardi-
nality ℵ1. This shows that large cardinals cannot imply the categoricity of
finite complete second order theories in general and, in particular, in the case
that the theory has a model of cardinality ℵ1. This is in contrast to finite
complete second order theories with a countable model where PD implies
categoricity (Theorem 3).

Here is an outline of the proof. We start with a preparatory countably
closed forcing P obtaining a generic extension V [G]. Then we add ℵ1 Cohen-
reals obtaining a further generic extension V [G][H ]. In this model we consider
for every x ⊆ ω the model

Mx = (HCV [x], HCV ,∈). (1)

We show that if x is Cohen-generic over V [G], then the complete second
order theory of Mx is finitely axiomatizable (in second order logic), and if x
and y are mutually Cohen-generic over V [G], then Mx and My are second
order equivalent but non-isomorphic.

We begin by recalling the following fast club forcing Pfast, due to R.
Jensen: Conditions are pairs p = (cp, Ep) where cp is a countable closed
subset of ω1 and Cp is club in ω1. We define (cp, Ep) ≤ (cq, Eq) if cq is an
initial segment of cp, Eq ⊆ Ep, and cp \ cq ⊆ Eq. This forcing is countably
closed. If we assume CH, this forcing has the ℵ2-c.c. It is called fast club
forcing because of the following property: Suppose G is Pfast-generic. If CG

is the union of the sets cp such that p ∈ G, then the following holds: If D is
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any club in V , then there is α such that CG \ α ⊆ D. The set CG is called a
fast club (over V ).

Let Q be the poset Fn(ω1 × ω, 2, ω) for adding ℵ1 Cohen reals. We use
fast club forcing to build a preparatory iterated forcing in such a way that
after forcing with Q the ground model reals are second order definable from
any set A ⊆ ω1 with a certain second order property. The following lemma
is crucial in the iteration:

Lemma 11. Suppose G × H is Pfast × Q-generic over V . Suppose A ⊆ ω1

is in V [H ] and D ⊆ CG is a club in V [G×H ] such that V [G×H ] satisfies
∀α < ω1(D ∩ α ∈ L[A]). Then P(ω)V ⊆ L[A].

Proof. We modify a construction from the proof of [30, Lemma 4.33] to our
context. Let us call a pair (A,B) of sets of ordinals an interlace, if A∩B = ∅,
above every element of A there is an element of B, and vice versa. Suppose
we have disjoint sets X, Y, Z ⊆ ω1 such that (X ∪ Y, Z) is an interlace. Let
z ∼ z′ in Z if (z, z′) ∩ (X ∪ Y ) = ∅. Let [zn], n < ω, be the first ω ∼-
equivalence classes in Z in increasing order. The triple (X, Y, Z) is said to
code the set a ⊆ ω if for all n < ω:

n ∈ a ⇐⇒ min{α ∈ X ∪ Y : [zn] < α < [zn+1]} ∈ X.

It suffices to prove that for every a ⊆ ω in V there is a triple (X, Y, Z) ∈
L[A] such that (X ∪Y, Z) is an interlace, and (X, Y, Z) codes a. To this end,
suppose a ∈ P(ω)V .

Suppose Ȧ is a Q-name for A in V , τ ∈ V is a Pfast-name for a Q-name
Ḋ for D, and Ḟ a Q-name for a function ω1 → ω1 which lists the elements of
Ḋ in increasing order. W.l.o.g. τ is a Pfast-name 〈ḟα : α < ω1〉 for a sequence
of countable partial functions defined on ω1 such that {ḟα(γ) : γ ∈ dom(fα)}
is a maximal antichain in Q and ḟα(γ) forces Ḟ (α) = γ. Suppose (w.l.o.g.)
the weakest condition in Pfast×Q forces what is assumed about Ȧ, Ḟ , τ and
Ḋ. Since Pfast  “Q  Ḋ ⊆ CĠ”, we have  dom(ḟα) ⊆ CĠ. More generally,
if p ∈ Pfast decides the countable set dom(ḟα), then

p  dom(ḟα) ⊆ cp \ α. (2)

If δ < ω2, let Wδ be the set of conditions p ∈ Pfast such that p decides
dom(ḟδ). It is easy to see that Wδ is dense.

We construct descending ω-sequences (pn), (qn) and (rn) in Pfast as follows.
We let p0 = q0 = r0 be the weakest condition in Pfast. Suppose pn, qn and
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rn have been defined already. Let δn = max(crn ∪ {0}). Now there are two
cases:

1. Case n ∈ a:

(a) Let pn+1 ≤ pn such that min(cpn+1 \ cpn) > δn and pn+1 ∈ Wδn .

(b) Let qn+1 ≤ qn such that min(cqn+1 \ cqn) > max(cpn+1) and qn+1 ∈
Wδn .

(c) Let rn+1 ≤ rn such that min(crn+1 \ crn) > max(cqn+1) and qn+1 ∈
Wδn .

2. Case n /∈ a:

(a) Let qn+1 ≤ qn such that min(cqn+1 \ cqn) > δn and qn+1 ∈ Wδn .

(b) Let pn+1 ≤ pn such that min(cpn+1 \ cpn) > max(cqn+1) and pn+1 ∈
Wδn .

(c) Let rn+1 ≤ rn such that min(crn+1 \ crn) > max(cpn+1) and rn+1 ∈
Wδn .

Note that if δn < α < min(cpn+1 \ cpn), then pn+1  α /∈ CĠ, whence
pn+1  α /∈ τ . Respectively, if δn < α < min(cqn+1 \cqn), then qn+1  α /∈ CĠ,
whence qn+1  α /∈ τ , and if δn < α < min(crn+1 \ crn), then rn+1  α /∈ CĠ,
whence rn+1  α /∈ τ .

Similarly, if max(cpn+1) < α < δn+1, then pn+2  α /∈ CĠ, whence pn+2 

α /∈ τ . Respectively, if max(cqn+1) < α < δn+1, then qn+2  α /∈ CĠ, whence
qn+2  α /∈ τ .

Finally, if α ∈ I = [min(cpn+1),max(cpn+1)], then pn+1 may leave the
sentence α ∈ τ undecided, but still pn+1  I ∩ τ 6= ∅, since pn+1 decides
dom( ˙fδn) and we have (2). Respectively, qn+1 forces [min(cqn+1),max(cqn+1)]∩
τ 6= ∅, and rn+1 forces [min(crn+1),max(crn+1)] ∩ τ 6= ∅.

Let pω = infn pn, qω = infn qn, rω = infn rn, and let δ = sup{δn : n < ω}.
Let G0 ⊆ Pfast be generic over V [H ] such that pω ∈ G0, G1 ⊆ Pfast generic
over V [H ] such that qω ∈ G1, and G2 ⊆ Pfast generic over V [H ] such that
rω ∈ G2. Lastly, let

X = τG0×H ∩ δ, Y = τG1×H ∩ δ, Z = τG2×H ∩ δ.

As Pfast×Q τ ∩ δ ∈ L[Ȧ] and ȦG0×H = ȦH , we have V [G0×H ] |= X ∈ L[A].
By absoluteness, V [H ] |= X ∈ L[A]. Similarly, V [H ] |= Y, Z ∈ L[A].
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Now by construction, (X ∪ Y, Z) is an interlace and (X, Y, Z) codes a.
Hence a ∈ L[A].

We need another auxiliary lemma for the iteration:

Lemma 12. Assume G is Pfast-generic over V , R ∈ V [G] is a σ-closed
forcing, K is R-generic over V [G], H is Q-generic over V [G][K], A ⊆ ω1 is
in V [H ], and in V [G][K][H ], there is a club D ⊆ CG such that D∩α ∈ L[A]
for all α < ω1. Then such a club D must already exist in V [G][H ].

Proof. Suppose Ȧ ∈ V is a Q-name for A and Ḋ ∈ V [G] is an R-name for a
Q-name for D. Suppose Ḟ ∈ V [G] is an R-name for a Q-name for a function
ω1 → ω1 listing the elements of Ḋ in increasing order. W.l.o.g. Ḋ is a R-name
〈ḟα : α < ω1〉 for a sequence of countable partial functions defined on ω1 such
that {ḟα(γ) : γ ∈ dom(fα)} is a maximal antichain in Q and ḟα(γ) forces
Ḟ (α) = γ. Suppose (w.l.o.g.) the weakest condition in R×Q forces what is
assumed about Ȧ, Ḟ , and Ḋ. Since  Ḋ ⊆ CĠ, we have  dom(ḟα) ⊆ CĠ.

We shall define a descending sequence (rα)α<ω1 in K. For a start, r0 ∈ K
can be arbitrary. Suppose rα ∈ K has been defined already. Let rα+1 ≤ rα
such that rα+1 ∈ K and rα+1 decides dom(ḟβ) and ḟα(γ) for β ≤ α and
γ ∈ dom(ḟα). Let gα ∈ V [G] such that rα+1  ḟα = gα. Let Ṡ be a Q-name
in V for a function ω1 → ω1 such that gα(γ)  Ṡ(α) = γ. Let Ė ∈ V be a
Q-name such that  Ė = {Ṡ(α) : α < ω1}. Now

V [K][H ] |= ĖH = ḊK×H ∧ ĖH ∩ δ ∈ L[A],

whence V [H ] |= ĖH ∩ δ ∈ L[A] follows by absoluteness.

Now we can construct the iteration in such a way that after forcing with
the iteration and then with Q the ground model reals, which are the same as
the reals after the iteration, are second order definable from any set A ⊆ ω1

with a certain second order property.

Lemma 13. We assume CH. Suppose P is the countable support iteration
of fast club forcing of length ω2. Let G be P-generic over V . Suppose H is
Q-generic over V [G]. Suppose in V [G][H ] there is a set A ⊆ ω1 such that for
every club C, there is a club D ⊆ C such that D ∩ α ∈ L[A] for all α < ω1.
Then P (ω)V ⊆ L[A].
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Proof. Let P = 〈Pα : α < ω2〉 be the countable support iteration of 〈Q̇α :
α < ω2〉, where Pα  “Q̇α is the fast club forcing Pfast”. Let Gα = G ∩ Pα.
Let Ȧ ∈ V [G] be an H-name for A. Choose β large enough such that
Ȧ ∈ V [〈Gα : α < β〉]. Now Gβ is Pfast-generic over V [〈Gα : α < β〉]. But,
V [G] is a generic extension of V [〈Gα : α < β〉][Gβ] by countably closed
forcing and by assumption, in V [G][H ], there is a club D ⊆ CGβ

such that
D ∩ η ∈ L[A] for all η < ω1. We apply Lemma 12 in V [〈Gα : α < β〉] and
conclude that there is a club D ⊆ CGβ

in V [〈Gα : α < β〉][Gβ][H ] such that
D ∩ α ∈ L[A] for all α < ω1. By Lemma 11, P (ω)V ⊆ L[A].

Theorem 14. There is a set of forcing conditions that forces the existence
of a complete non-categorical finite second order theory with a model of car-
dinality ℵ1.

Proof. Assume w.l.o.g., CH. As said above, we start with some preparatory
countably closed forcing P obtaining a generic extension V [G]. Then we add
ℵ1 Cohen-reals obtaining a further generic extension V [G][H ]. In this model
we consider for every x ⊆ ω the model Mx as defined in (1). Clearly, the
cardinality of Mx is ℵ1. We shall now show that if x is Cohen-generic over
V [G], e.g. one of the ℵ1 many coded by H , then the complete second order
theory of Mx is finitely axiomatizable (in second order logic). To end the
proof of the theorem, we show that if x and y are mutually Cohen-generic
over V [G], then Mx and My are second order equivalent but non-isomorphic.

In order to use second order logic over ω1 to talk about HCV and Cohen-
genericity over V we need to be able to decide, by the means offered by second
order logic, which reals in V [G][H ] are in V (or, equivalently, in V [G]) and
which are not. This is precisely the purpose of the preparatory forcing P.

We denote the starting ground model by V and assume, w.l.o.g., that V
satisfies CH. We let the preparatory forcing P = 〈Pα : α < ω2〉 be the count-
able support iteration of 〈Q̇α : α < ω2〉, where Pα  “Q̇α is the fast club
forcing Pfast”. Let G be P-generic over V and Gα = G ∩ Pα. In V [G] we

force with Q a generic H . Note that ℵ
V [G][H]
1 = ℵV

1 and P(ω)V [G] = P(ω)V .
Working in V [G][H ], let the second order sentence φ(R,E), where R is unary
and E is binary, say in a model M :

(1) EM is a well-founded relation satisfying ZFC− + “every set is count-
able”. This should be also true when relativized to RM .

(2) |M | = ℵ1.
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(3) If P ′ ∈ RM denotes (in M) the set Fn(ω, 2, ω) of conditions for adding
one Cohen real, then there is K ⊆ P ′ such that K is P ′-generic over
RM and M |= “V = R[K]”.

(4) If a ⊆ ω and the transitive collapse of M is N , then the following
conditions are equivalent:

(a) a ∈ RN .

(b) If A ⊆ ω1 and for every club C ⊆ ω1 there is a club D ⊆ C such
that D ∩ α ∈ L[A] for every α < ω1, then a ∈ L[A].

Note that we can express “D ∩ α ∈ L[A]”, or equivalently “∃β(|β| =
ℵ1 ∧ D ∩ α ∈ Lβ [A]”, in second order logic on M since second order logic
gives us access to all structures of cardinality |M | (=ℵ1).

Claim: The following conditions are equivalent in V [G][H ]:

(i) M |= φ(R,E).

(ii) M ∼=Mx for some real x which is Cohen generic over V .

Proof. (i) implies (ii): SupposeM |= φ(R,E). Let (N,U,∈) be the transitive
collapse of (M,RM , EM). By (3), there is r which is Cohen-generic over U
and N = HCU [r]. We show that U = HCV . Suppose a ∈ P(ω)V . We use
condition (4) to demonstrate that a ∈ U . To this end, let A be as in (4b). By
Lemma 13, a ∈ L[A]. Thus (4) implies a ∈ U . On the other hand, suppose
a ∈ (P(ω))U . We again use (4) to show that a ∈ P(ω)V . Let A ⊆ ω1 code
([ω1]

ω)V . If C is any club in V [G][H ], then, since H is obtained by means
of a CCC forcing, there is a club D ⊆ C in V [G]. Now D ∩ α ∈ V , whence
D ∩ α ∈ L[A], for all α < ω1. It follows that a ∈ L[A]. Since A ∈ V , we may
conclude a ∈ P(ω)V . Hence, U = HCV and r is Cohen-generic over V . We
have proved (ii).

(ii) implies (i): Suppose (N,RN , EN) = (HCV [r], HCV ,∈), where r is
Fn(ω, 2, ω)-generic over V . We show that (N,RN , EN) |= φ(R,E). Condi-
tions (1) and (2) are trivially satisfied. Condition (3) holds by construction.
To prove that condition (4) holds, suppose a ⊆ ω and let A be as in (4). By
Lemma 13, a ∈ L[A]. Condition (4) and thereby the Claim is proved.

We continue the proof of Theorem 14. The sentence φ(R,E) is non-
categorical in V [G][H ] because if we take two mutually generic (over V [G])
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Cohen reals r0 and r1, then Mr0 and Mr1 are non-isomorphic models of
φ(R,E). To prove that φ(R,E) is complete, suppose (M,RM , EM) and
(N,RN , EN) are two models of φ(R,E). W.l.o.g., they are of the form
(M,RM ,∈) and (N,RN ,∈), where M and N are transitive sets. By con-
struction, they are of the form Mr0 and Mr1 where both r0 and r1 are Cohen
generic over HCV , hence over HCV [G]. They are subsumed by the generic
H . By homogeneity of Cohen forcing Fn(ω, 2, ω) the models are second order
equivalent.

In fact the forcing gives something stronger. If κ is a cardinal that is
second order characterizable in the forcing extension, we may replace the
model Mx = (HCV [x], HCV ,∈), where x ⊆ ω is Cohen over V , with the
model (κ ∪ HCV [x], HCV ,∈), and the proof of Theorem 14 goes through
mutatis mutandis:

Corollary 15. There is a set of forcing conditions that forces the follow-
ing: if κ is any second order characterizable cardinal, there is a complete
non-categorical finitely axiomatizable second order theory with a model of
cardinality κ.

Since the non-isomorphic models above derive from mutually generic Co-
hen reals, it follows that the non-categorical theories in question have (at
most) continuum many non-isomorphic models. We lastly mention how to
get non-categorical theories with more models than this.

It is straightforward to see that in theorem 14 and the constructions
preceding it, the cardinal ℵ1 may be replaced with any cardinal µ+ with
µ regular. That is, the ω2-length countable support iteration of fast club
forcing at ω1 is replaced by a µ++-length ≤ µ-sized support iteration of fast
club forcing at µ+, and the forcing to add ℵ1 many Cohen subsets of ω is
replaced by adding µ+ many Cohen subsets of µ. The model Mx is then
taken to be of the form (H(µ)V [x], H(µ)V ,∈) where x is a Cohen subset of µ
generic over V .

From this variation, we then get the following corollary.

Corollary 16. Suppose µ is a regular cardinal. There is then a set of forcing
conditions that forces the following: if µ is second order characterizable, and
if κ ≥ µ is any second order characterizable cardinal, there is a complete
non-categorical finite second order theory T with a model of cardinality κ.
Also, the theory T has between µ+ and 2µ many models up to isomorphism.
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Note that the concern of the second order characterizability of µ and κ in
the forcing extension are irrelevant for cardinals with simple definitions such
as ℵn, n < ω or ℵω1+1, for example.

In conclusion we cannot hope to prove the categoricity of finite complete
second order theories from large cardinals even if we restrict to theories which
have a model of regular uncountable cardinality.

6 Forcing categoricity

In [2] (for κ > ω1) and [3] (for κ = ω1), Aspero and Friedman proved the
following:

Theorem 17. Suppose κ is the successor of a regular cardinal, and uncount-
able. Then there is a poset P such that in a generic extension by P, there is
a lightface first order definable well-order of H(κ+).

Since we can translate a first order lightface definable well-order of H(κ+)
into a well-order of P(κ) that is second order definable over any structure of
cardinality κ, we obtain the following corollary.

Theorem 18. Suppose κ is the successor of a regular cardinal, uncountable,
and that κ is second order characterizable. Then there is a poset P that forces
the following: every finitely axiomatizable second order theory with a model
of cardinality κ is categorical.

We are thus left to consider the case of theories with models of limit
cardinality, whether regular or singular.

The following theorem shows that the categoricity of complete second
order theories with a model of singular cardinality is (relatively) consistent
with large cardinals. We are indebted to Boban Veličković for suggesting
how to improve an earlier weaker version of this result.

Theorem 19. Suppose κ is a singular strong limit with uncountable cofinality
λ. Then there is a forcing notion P of cardinality κ such that

1. P preserves κ singular strong limit of uncountable cofinality λ.

2. P forces the statement: Every finitely axiomatizable complete second
order theory with a model of cardinality κ is categorical.
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Proof. W.l.o.g. we assume GCH up to κ. We first force a second order
definable well-order of the bounded subsets of κ with a reverse Easton type
iteration of length κ described in [21, Theorem 20].

Let e : κ → κ be the function which lists the set B of beth fixed points
> λ in increasing order, and let S = 〈κξ : ξ < λ〉 ⊆ B be an increasing cofinal
sequence in κ such that κ0 > λ. Let π : κ × κ → κ be the Gödel pairing
function. Let W be a well-order of Vκ. Suppose A ⊆ µ, where µ ∈ B. We
write A ∼ Vµ if

(Vµ,∈) ∼= (µ, {(α, β) : π(α, β) ∈ A}).

Let the poset E(µ,A) be the iteration (product) of the posets Rα, α < µ,
where

Rα =







Fn(ℵµ+α+3 × ℵµ+α+1, 2,ℵµ+α+1), if α = ω · β and β ∈ A
Fn(ℵµ+α+4 × ℵµ+α+2, 2,ℵµ+α+2), if α = ω · κξ + 1, ξ < λ
({0},=) otherwise

with Easton support i.e. E(µ,A) consists of functions p ∈
∏

α<µ Rα such
that, denoting the support {α : f(α) 6= ∅} of f by supp(p), |supp(p)∩γ| < γ
for all regular γ.

We now define an iteration 〈Pα : α < κ〉 with the property that Pα does
not change beth fixed points β = iβ for any β. We let P = 〈Pα : α < κ〉 be
the following iteration: If α is a limit ordinal, we use direct limits for regular
α and inverse limits for singular α. Suppose then α = β+1. Let Ȧ be theW -
first Pβ-name Ȧ in Vκ such that Pβ  Ȧ ∼ Vě(β̌). Then Pα = Pβ ⋆E(ě(β̌), Ȧ).
Let G be P-generic over V and Gα = G ∩ Pα.

In the forcing extension V [G], for every µ ∈ B there is a set A ⊆ µ which
codes, via the canonical bijection π : κ×κ → κ, a bijection fA : µ → (Vµ)

V [G].
The set A itself satisfies

V [G] |= A = {α < µ : 2ℵµ+ω·α+1 = ℵµ+ω·α+3}

and from A we can read off fA and a well-order <∗
µ of (Vµ)

V [G]:

V [G] |= fA(α) <
∗

µ fA(β) ⇐⇒ α < β < µ.

Now working in V [G], fix a collection F ⊆ P(κ), and we set out to define
a well-order not on the whole of F but a certain subset of it. Define a relation
R on F by

XRY ⇐⇒ X ∩ κξ <
∗

κξ
Y ∩ κξ for all but boundedly many ξ < λ.
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As λ is uncountable, R is well-founded, so the set

W = {X ∈ F : X is minimal in R}

is nonempty, and if X, Y ∈ W with X 6= Y , then both X ∩ κξ <
∗
κξ
Y ∩ κξ

and Y ∩ κξ <
∗
κξ
X ∩ κξ occur for unboundedly many ξ < λ.

To see that |W| < κ, suppose to the contrary that |W| ≥ κ and define
a coloring c : [W]2 → λ by c({X, Y }) = π(ξ1, ξ2) where ξ1 is the least ξ < λ
such that X ∩ κξ <

∗
κξ
Y ∩ κξ, and ξ2 is the least ξ < λ such that Y ∩ κξ <

∗
κξ

X ∩ κξ. Since |W| ≥ κ > (2λ)+, by the Erdös-Rado theorem there is a set
H ⊆ W homogeneous for c of color π(ξ1, ξ2) and cardinality λ+. But this is
a contradiction, since ordering H in <∗

κξ1
-increasing order yields an infinite

decreasing sequence in the well-order <∗
κξ2

, so |W| < κ.

Now for each X ∈ W, define fY : λ → κ such that fX(ξ) is the index of
X ∩ κξ in the well-order <∗

κξ
. Then the set

⋃

{ran(fX) : X ∈ W} has some

cardinality γ < κ, and we can let h :
⋃

{ran(fX) : X ∈ W} → γ be the
transitive collapse map.

Then for X ∈ W, the function h ◦ fX : λ→ γ can be encoded as a subset
of a large enough µ ∈ B, and obviously h ◦ fX 6= h ◦ fY if X 6= Y , so we can
well-order W by

X ✁ Y ⇐⇒ h ◦ fX <∗

µ h ◦ fY

and all this is second order definable in V [G] in a structure of size κ, if the
collection F is. This allows us to pick a distinguished element of F as the
✁-least R-minimal element.

Suppose now that φ is a complete second order sentence with a model M
of cardinality κ, and let F consist of the set of X ⊆ κ encoding a model of
φ. Note that over a model of cardinality κ we can write a formula φR(X, Y )
expressing XRY for X, Y ∈ F , a formula φW(X) expressing X ∈ W, and a
formula φ✁(X, Y ) expressing X ✁ Y if X and Y are R-minimal.

Let M |= Φ now say that X ⊆ M encodes a model isomorphic to M
(and thus satisfies φ), and for any Y ⊆ M that also encodes a model of φ,
¬φR(Y,X), and moreover if for all Z ⊆ M that encode a model of φ also
¬φR(Z, Y ), then X = Y or φ✁(X, Y ). That is, X ∈ W and if also Y ∈ W
then X = Y or X ✁ Y , which uniquely specifies X . As the model of φ with
the least code in this sense satisfies Φ and φ is complete, φ implies Φ and
thus that all models of φ are isomorphic, so φ is categorical.
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The method of the preceding proof does not extend to the cases of the
limit cardinal κ being regular, or of countable cofinality, so these cases are
left open.

In conclusion, no known large cardinal axiom (e.g. the existence of huge
cardinals) can decide whether all complete second order theories with a model
of singular cardinality are categorical. In particular, such axioms cannot
imply that all finite complete second order theories are categorical.

7 Theories with only countably many models

Since under PD we have non-categorical complete recursively axiomatized
second order theories, we may ask how badly categoricity can fail in those
cases? Echoing Vaught’s Conjecture, we may ask whether the number of
countable non-isomorphic models of a complete recursively axiomatized sec-
ond order theory is always countable or 2ω. Leaving this question unresolved,
we have the following result which demonstrates the ability of categorical the-
ories to ‘capture’ (in the sense of [23]) the models of non-categorical theories.

Theorem 20. Assume ADL(R). If T is a recursively axiomatized complete
second order theory with only countably many non-isomorphic countable mod-
els, then there is a recursively axiomatized categorical second order theory S
the unique model of which interprets all the countable models of T .

Proof. Let T be a recursively axiomatized second order theory with only
countably many non-isomorphic countable models. Let A be the Π1

ω (i.e.
an intersection of a recursively coded family of sets each of which is Π1

n for
some n) set of reals that code a model of T . Since A is a countable union
of equivalence classes of the Σ1

1-equivalence relation of isomorphism, we may
conclude that A is Σ1

1.
We wish to show that A is Π1

2(r0) in a parameter r0 which is a Π1
ω single-

ton. For this, we mimic a proof of Louveau (Theorem 1 in [17]) to show:

Theorem 21. Assume ADL(R). Every Σ1
1 set which is Π1

ω is Π1
2(r0) for some

real r0 such that {r0} is a ∆1
ω+1-singleton.

Proof. Let A be a Σ1
1 set that is also Π1

ω, say A =
⋂

nAn with each An being
Π1

n. Let also U ⊆ (ωω)2 be a universal Σ1
1 set.

We define for each n a game Gn on ω where players I and II take turns
to play the digits of reals α and γ respectively (there is no need to let II
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pass turns here). Then II wins a play of Gn if α ∈ A =⇒ γ ∈ U and
α /∈ An =⇒ γ /∈ U .

I n0 n1 · · ·
II m0 m1 · · ·

α
γ

As in Louveau’s proof, II has a winning strategy as follows: since A is Σ1
1,

we have A(x) ⇐⇒ U(y, x) for some y, so II wins by playing the digits of
〈y, α〉 (as I is playing the digits of α). The complexity of the winning set for
II in Gn is Σ1

ω, so by Moschovakis’s strategic basis theorem ([22], Theorem
6E.2), II has a winning strategy σn that is a ∆1

ω+1-singleton. Note that the
pointclass Σ1

ω, i.e. the collection of countable unions of recursively coded
families of projective sets, is both adequate and scaled (see Remark 2.2 in
[24], essentially Theorem 2.1 in [27]).

Then the set Bn = {y | (y ∗ σn)II ∈ U} is a Σ1
1(σn) set with A ⊆ Bn ⊆ An

(where (y∗σn)II denotes the real γ the strategy σn produces as I plays α = y),
so altogether A =

⋂

nBn is a Π1
2(s0) set where s0 = 〈σn | n < ω〉 is a ∆1

ω+1-
singleton.

We may reduce the complexity of the parameter down to being a Π1
ω

singleton by the following theorem of Rudominer:

Theorem 22 (Rudominer [24]). Assume ADL(R). Then every real s0 which
is a Σ1

ω+1 singleton, is recursive in a real r0 which is a Π1
ω singleton.

Therefore the set A is a Π1
2(r0) set where r0 is a Π

1
ω singleton. Let η(r, s) be

a second order Π1
2 formula which defines the predicate s ∈ A on (N,+,×, r0).

Let θ1(Q+, Q×) be the standard second order characterization of (N,+,×),
as above in the proof of Theorem 3. Let ψn(Q+, Q×, s), n < ω, be second
order formulas such that if Xn is the set of reals s satisfying ψn(Q+, Q×, s)
in (N,+,×), then {r0} =

⋂

nXn. Let P be a new unary predicate symbol
and

S = {θ1(Q+, Q×)} ∪ {ψn(Q+, Q×, P ) : n < ω}.

Suppose M is a model of S. W.l.o.g. the arithmetic part of M consists
of the standard + and × on N. Let s be the interpretation of P in M .
Then s = r0. Thus S is categorical. The theory S is recursive because the
proofs of Theorems 21 and 22 are sufficiently uniform. In conclusion, M is
categorically characterized by the recursive second order theory S.
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Now the countable models of T are interpretable in S in the following
sense: a real s codes a model of T if and only if M |= η(r0, s). We also get a
translation of sentences: if φ is a second-order sentence in the vocabulary of
T , letting φ̂ be the sentence ∃X(η(r0, X) ∧ X |= φ), we have that φ ∈ T if
and only if φ̂ ∈ S.

8 Definable models of categorical theories

Suppose we are given a categorical second order theory T . Naturally, we as-
sume that T has a model, otherwise categoricity is vacuous. But what can be
said about the models of T apart from their isomorphism with each other? In
particular, can we always find a model which is definable in some reasonable
sense, e.g. hereditarily ordinal definable? To emphasize this point, consider
the second order sentence which characterizes the structure (N,+, ·, 0♯). This
categorical sentence has no models in L. We ask, can we have a categorical
sentence with no models in HOD? Since it could be that V = HOD, we are
looking at this question under assumptions stronger than ZFC.

The following result of Kaplan and Shelah is useful for us:

Theorem 23 ([13]). If P forces the collapse of |ω2| to ω, then there is a
P-term τ for a countable model such that

1. If G1 ×G2 is generic for P× P then

V [G1][G2] |=M1
∼= M2,

where M1 is the interpretation τG1 of τ by G1 and M2 is τG2.

2. P  “τ is not isomorphic to M̌”, for any M in V .

We make some observations about the proof. It involves a construction
of Laskowski and Shelah:

Theorem 24 ([16]). There is a countable consistent first order theory T ,
with a predicate V in its vocabulary, having the following property. For any
model M |= T and any A ⊆ V M , isolated types are dense over A but the
theory T (A) = Th(M, a)a∈A has an atomic model if and only if |A| < ω2.

The theory T is as follows. Let L be a countable vocabulary consisting
of two unary predicates U, V , one unary function symbol p, as well as binary
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relations Rn and binary functions fn for n < ω (the functions will not be
total, but instead have domain U). Let K be the collection of all finite L-
structures satisfying a certain finite list of first order axioms (see [16]). Let
B be the Fräısse limit of K and let T = Th(B). The theory T is well defined
since B is unique up to isomorphism.

We then form an uncountable model of the theory T as follows. For an
ordinal α let Lα be the vocabulary L together with α many new constant
symbols cβ, β < α. Using a standard Henkin construction, we form a term
model for the theory T together with the additional axioms stating that the
new constant symbols name distinct elements. We let T (Aα) be the theory
of this term model in the vocabulary Lα. (Although the Henkin construction
involves forming the completion of a theory, we can make the choice of which
completion to use definable by referring to the well-ordering of the sentences.)

We can also observe that for a countable ordinal α, the class of countable
atomic models of T (Aα) is definable from T (Aα), which itself is definable
from α, and the definitions can be carried out in H(ω1). Using these two
observations, the following obtains:

Theorem 25 (ZF). Assume ωHOD
2 is countable. Then there is a countable

model M such that

1. The isomorphism class of M is ordinal definable.

2. There is no model in HOD which is isomorphic to M.

Moreover, if the property of a linear order of being of order-type ωHOD
2 is

second order definable in the countably infinite structure of the empty vocab-
ulary, then the second order theory of M is finitely axiomatizable.

Proof. Let α = ωHOD
2 . Let T (Aα) be the theory constructed above. Finally,

letM be a countable atomic model of T (Aα). Since HOD satisfies |T (Aα)| =
ω2, the theory T (Aα) has no atomic model in HOD, but as being an atomic
model is absolute, this shows that there is no model in HOD isomorphic to
M .

The isomorphism class of M is ordinal definable as the class of count-
able atomic models of T (Aα), which is definable from α. Additionally, if
α is second order definable in the countably infinite structure of the empty
vocabulary, we can define the theories T and T (Aα) in second order logic
expressing “I am isomorphic to a countable atomic model of T (Aα)” with
a single second order sentence. This finitely axiomatizes the second order
theory of M .
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Of course, the assumption that ωHOD
2 is second order definable in the

countably infinite structure of the empty vocabulary is somewhat ad hoc.
However, it holds, for example, in L[G], where G is P -generic over L for
P = Coll(ω,< ω3)

L. This is because the poset P is weakly homogeneous,
so HODL[G] = HODL(P ) = L, whence ωHOD

2 = ωL
2 is countable and second

order definable in any countable model in L[G].

We also obtain the following variation:

Corollary 26. Assume ZFC + ADL(R) + “HOD ∩R = HODL(R) ∩R” and
that ωHOD

2 is definable in HODL(R) ↾ ΘL(R) and countable. Let M be the
countable model of Theorem 25. Let N = (ΘL(R), <,M) (w.l.o.g. the domain
of M is ω). Then the second order theory of N is finitely axiomatizable and
categorical but has no model which belongs to HOD.

Proof. We can use [7, Theorem 3.10, Chapter 23]) to define HODL(R) ↾ ΘL(R)

and LΘL(R)(R) from ΘL(R) in second order logic, which then allows us to define
ωHOD
2 and M as in Theorem 25.

The assumptions of Corollary 26 follow, for example, from ZFC+ADL(R)+
V = L(R)[G], where G is Pmax-generic, as then HODL(R) = HODL(R)[G] and
ωHOD
2 is countable.

9 Open questions

The following question was raised by Solovay [26]:

Open Problem 1. Assuming V = L, is every recursively axiomatized com-
plete second order theory categorical?

Our results do not solve this one way or another, and it remains an
interesting open question. In L[U ] there are recursively axiomatized complete
non-categorical second order theories, but we do not know if such theories
necessarily have only large models:

Open Problem 2. Suppose V = L[U ], κ is the sole measurable cardinal of
L[U ], and T is a complete recursively axiomatized second order theory that
has a model of cardinality λ < κ such that λ is second order characterizable.
Is T categorical?
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There are many other open questions related to finite or recursively ax-
iomatized complete second order theories with uncountable models. We
showed that we can force categoricity for successor cardinals of regular car-
dinals, and some singular limit cardinals, but the following two cases were
left open:

Open Problem 3. Can we always force the categoricity of all finite complete
second order theories with a model of cardinality κ, where κ is either a regular
(non-measurable) limit cardinal, or singular of cofinality ω?

An I0-cardinal is a cardinal λ such that there is j : L(Vλ+1) → L(Vλ+1)
with critical point below λ. Note that then λ is singular of cofinality ω, λ+ is
measurable in L(Vλ+1) ([29]), and the Axiom of Choice fails in L(Vλ+1) ([15]).
This is in sharp contrast to the result of Shelah that if λ is a singular strong
limit cardinal of uncountable cofinality, then L(P(λ)) satisfies the Axiom of
Choice ([25]). Since Axiom of Choice fails in L(Vλ+1), there can be no well-
order of P(λ) which is second order definable on λ. This raises the following
question:

Open Problem 4. Is every finite complete second order theory with a model
of cardinality of an I0-cardinal categorical (or, at least categorical among all
models of that cardinality)?
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