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ABSTRACT Image-based 3D reconstruction is a challenging task that involves inferring the 3D shape
of an object or scene from a set of input images. Learning-based methods have gained attention for their
ability to directly estimate 3D shapes. This review paper focuses on state-of-the-art techniques for 3D
reconstruction, including the generation of novel, unseen views. An overview of recent developments in the
Gaussian Splatting method is provided, covering input types, model structures, output representations, and
training strategies. Unresolved challenges and future directions are also discussed. Given the rapid progress
in this domain and the numerous opportunities for enhancing 3D reconstruction methods, a comprehensive
examination of algorithms appears essential. Consequently, this study offers a thorough overview of the latest
advancements in Gaussian Splatting.

INDEX TERMS 3D Reconstruction, Computer Vision, Deep Learning, Gaussian Splatting, Novel view
synthesis, Optimization, Rendering

I. INTRODUCTION

3D reconstruction is a fascinating process that revolves
around the creation of three-dimensional models or rep-

resentations of objects or scenes using 2D images or other
data sources [1]. This process aims to transform flat images
into immersive and realistic virtual representations that can
be utilized in numerous applications. From visualizing ar-
chitectural designs to animating characters in movies, and
from simulating real-world scenarios to analyzing complex
structures, 3D reconstruction plays a crucial role in various
fields such as computer vision, robotics, and virtual reality.
By leveraging advanced algorithms and cutting-edge tech-
nologies, researchers and professionals are constantly push-
ing the boundaries of what is possible in the realm of 3D
reconstruction, opening up new possibilities and revolutioniz-
ing industries along the way. From the 3D reconstruction of a
scene it is possible to render novel viewpoints that are not cap-
tured, so this method is called novel view synthesis (NVS). In
other words 3D reconstruction enables NVS. In this article,
we will dive deeper into the concept of 3D reconstruction
and NVS, exploring its methodologies, applications, and the
transformative impact it has in our increasingly digital world.

In recent years, learning-basedmethods have gained signif-
icant prominence, supplanting traditional approaches across
various fields of study. These innovative techniques not only
offer improved performance, but also introduce novel capabil-
ities. This trend holds true in the realm of 3D computer vision,
particularly in 3D reconstruction. For instance, deep learning
models have been proposed, enabling end-to-end training
and eliminating the need for designing multiple handcrafted
stages. Additionally, learning-based methods have the advan-
tage of multitasking, allowing a single model to simultane-
ously predict both the 3D shape and semantic segmentation
of a given scene [2]. This integration of advanced learning
algorithms has revolutionized the field of 3D reconstruction,
offering more efficient and versatile solutions.
Image-based view synthesis techniques play a crucial role

in computer graphics and computer vision applications. Ad-
dressing the challenge of representing a 3D model or scene
based on 2D input images, Gaussian Splatting [3] emerges
as a novel and effective approach. Gaussian Splatting has
gained tremendous popularity since it’s inception in June
2023 (Figure 1). This technique involves iterative refinement
ofmultiple Gaussians to generate 3D objects from 2D images,
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FIGURE 1. Approximate number of publications related to Gaussian
Splatting since inception in June 2023 compiled from [4].

allowing for the rendering of novel views in complex scenes
through interpolation. While Gaussian Splatting doesn’t di-
rectly recover the entire 3D scene geometry, it stores infor-
mation in a volumetric point cloud. Each point in this cloud
represents a Gaussian with parameters such as color, spread,
and location, resulting in a volumetric representation that
provides color and density for each point in the relevant 3D
space.

Typically, 3D reconstruction is achieved by traditional
algorithms such as photogrammetry and multi view stereo
(MVS) algorithms [5]. A few modern approaches include
Neural Radiance Field (NeRF) [6] andGaussian Splatting [3],
where Gaussian Splatting is a unique method which is pretty
new to the NVS scene. The most common problem faced
by any existing solutions is the inability to real time ren-
dering, competitive training time and high quality rendering.
Gaussian Splatting offers some significant improvement over
NeRFs including fewer artifacts, failure cases, and faster
training time. While NeRF already has a few review pa-
pers [7], [8], Gaussian Splatting still don’t have a significant
review paper that compiles all the recent advancements since
its inception.

The objectives of this paper is a thorough review of the var-
ious techniques developed in Gaussian Splatting. Section II
presents a comprehensive introduction to the state-of-the-
art in 3D reconstruction and NVS and Section III details
the algorithms to achieve 3D reconstruction using Gaussian
Splatting. Section IV deals with the main review part and
the latest advancements, and Section V discusses the various
applicational areas related to Gaussian Splatting. Finally, a
discussion of the methods, research directions, and conclu-
sion is presented.

II. A PRIMER ON 3D RECONSTRUCTION AND NOVEL
VIEW SYNTHESIS
3D reconstruction and NVS are two closely related fields in
computer graphics that aim to capture and render realistic
3D representations of physical scenes. 3D reconstruction in-
volves extracting the geometric and appearance information
from a series of 2D images, typically captured from differ-

ent viewpoints. Although there are numerous techniques for
3D scanning, this capturing of different 2D images is very
straightforward and computationally cheap way to gather
information about the 3D environment. This information can
then be used to create a 3D model of the scene, which can
be used for various purposes, such as virtual reality (VR)
applications, augmented reality (AR) overlays, or computer-
aided design (CAD) modeling.
On the other hand, NVS focuses on generating new 2D

views of a scene from a previously acquired 3D model. This
allows the creation of realistic images of a scene from any
desired viewpoint, even if the original images were not taken
from that angle. Recent advances in deep learning have led
to significant improvements in both 3D reconstruction and
NVS. Deep learning models can be used to efficiently ex-
tract 3D geometry and appearance from images, and such
models can also be used to generate realistic novel views
from 3D models. As a result, these techniques are becoming
increasingly popular in a variety of applications, and they are
expected to play an even more important role in the future.
This section will introduce how 3D data is stored or repre-

sented, followed by the most commonly used publicly avail-
able dataset for this task, and then will expand on various
algorithms, primarily focusing on Gaussian Splatting.

A. 3D DATA REPRESENTATION
The intricate spatial nature of 3D data, which includes volu-
metric dimensions, provides a detailed representation of ob-
jects and environments. This is crucial for creating immersive
simulations and accurate models in various fields of study.
The multidimensional structure of 3D data allows the incor-
poration of depth, width, and height, leading to significant
advancements in disciplines such as architectural design and
medical imaging techniques.
The selection of the data representation plays a crucial role

in the design of numerous 3D deep learning systems. Point
clouds, which lack grid-like structures, typically cannot be
directly subjected to convolutions. On the other hand, voxel
representations, characterized by grid-like structures, often
incur high computational memory demands.
The evolution of 3D representation is accompanied by

the way in which 3D data or models are stored. The most
frequently used representation of 3D data can be classified
as traditional and novel approaches:

1) Traditional Approaches
Point cloud: A 3D point cloud [9] provides a direct and
uncomplicated representation of 3D objects. In this repre-
sentation, each point cloud consists of a set of 3D points,
with each individual point represented by a three-dimensional
tuple (x, y, z). Typically, the raw data captured by numerous
depth cameras is presented in the form of 3D point clouds.
Mesh: Meshes [9] serve as another commonly utilized 3D
data representation. Similar to the points in point clouds, each
mesh comprises a collection of 3D points known as vertices.
Additionally, meshes include a set of polygons, referred to
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as faces, which are defined based on these vertices. In many
data-driven applications, meshes result from post-processing
raw measurements obtained from depth cameras [10]. Fre-
quently, they are manually crafted during the creation of 3D
assets. In contrast to point clouds, meshes offer extra geomet-
ric details, encode topology, and incorporate surface-normal
information. This supplementary information proves particu-
larly valuable in the training of learning models. For instance,
graph convolutional neural networks often treat meshes as
graphs and establish convolutional operations using informa-
tion about vertex neighbors.
Voxel: Yet another crucial representation for 3D data is the
voxel representation [9]. In 3D computer vision, a voxel is
analogous to a pixel. Just as a pixel is delineated by subdi-
viding a 2D rectangle into smaller rectangles, each of which
is a pixel, a voxel is defined by partitioning a 3D volume
into smaller cubes, with each individual cuboid referred to
as a voxel. Typically, voxel representations employ truncated
signed distance functions (TSDFs) for the portrayal of 3D
surfaces. At each voxel, a signed distance function (SDF)
can be established as the (signed) distance from the center
of the voxel to the nearest point on the surface. A positive
sign in the SDF signifies that the center of the voxel lies
outside an object. The key distinction between a TSDF and
an SDF lies in the truncation of values; TSDF values are
truncated, ensuring that they fall consistently within the range
of -1 to +1. Figure 2 shows how 3D data are represented in
traditional techniques.

FIGURE 2. Traditional 3D data representations. 3D model source: [11].

2) Novel Approaches
Neural Network/Multi layer perceptron (MLP): NeRFs [6]
are a type of 3D deep learning model that can represent
and render 3D scenes with high fidelity. They encode 3D
information in a unique way that combines traditional 3D
geometry with a neural network representation. To capture
more intricate details and lighting effects, NeRFs augment

FIGURE 3. Novel 3D data representations [3], [6].

the density field with a neural network. This network, known
as the radiance field, takes a 3D position as input and outputs
a color value along with a normal vector. The color represents
the color of the surface at the given position, while the normal
vector indicates the surface’s orientation. The radiance field
is trained on a dataset of images, allowing it to learn how to
map 3D positions to their corresponding color and normal
information. This information is crucial for generating pho-
torealistic images from arbitrary viewpoints.
Gaussian Splats: Gaussian splats [3] are a type of 3D rep-
resentation that is used to render complex scenes with high
fidelity. They are a more efficient and flexible alternative
to traditional methods such as point clouds or voxel grids.
Gaussian splats are stored in a compact format that represents
each splat as a collection of parameters. These parameters
typically include:

• Position: The 3D location of the center of the splat.
• Scale: The size of the splat.
• Opacity: The amount of influence the splat has on the

rendered image.
• Color: The color of the splat.
• Material properties: Additional properties such as shini-

ness, reflection, and refraction.
By storing splats in this compact format, it is possible to
represent a large number of splats with relatively less data.
This makes Gaussian splats well-suited for rendering com-
plex scenes at high resolutions. Figure 3 shows how 3D data
are represented in these two novel techniques.

B. DATASETS
Gaussian Splatting models are generally modeled per scene
and demand dense images of a scene with a varied number
of poses. In most cases, the camera poses are unknown and
are calculated using the structure from motion (SFM) [12]
using the COLMAP library [13]. The original Gaussian
Splatting paper uses three datasets: the Mip-NeRF360 [14],
Tanks&Temples [15], and Deep Blending [16].
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As research progresses in 3D reconstruction, MVS, and
NVS, an increasing number of datasets, are becoming avail-
able for testing the algorithms developed in these areas. Some
of the notable once are listed in Table 1.

C. 3D RECONSTRUCTION AND NVS TECHNIQUES
To evaluate the current advances in the field, a literature study
is conducted, identifying and scrutinizing relevant academic
works. The analysis specifically concentrates on two key ar-
eas: 3D reconstruction and NVS. The evolution of 3D volume
reconstruction from multiple camera images spans several
decades and has diverse applications in computer graphics,
robotics, and medical imaging. The state of the art is explored
in the next part.

Photogrammetry: Since the 1980s, advanced photogram-
metry and stereo vision techniques emerged, automating
the identification of corresponding points in stereo image
pairs [32]. Photogrammetry is amethodmerging photography
and computer vision to generate 3D models of objects or
scenes. It entails capturing images from various perspectives,
utilizing software like Agisoft Metashape [33] to estimate
camera positions and generate a point cloud. This point cloud
is subsequently transformed into a textured 3D mesh, en-
abling the creation of detailed and photorealistic visualiza-
tions of the reconstructed object or scene.

Structure from motion: In the 1990s, SFM techniques
gained prominence, enabling the reconstruction of 3D struc-
ture and camera motion from sequences of 2D images [32].
SFM is the process of estimating the 3D structure of a scene
from a set of 2D images. SFM requires point correspon-
dences between images. Finding corresponding points either
bymatching features or tracking points frommultiple images,
and triangulating to find 3D positions.

Deep learning: Recent years have seen the integration of
deep learning techniques, particularly Convolutional Neural
Networks (CNNs) [5]. Deep learning based methods have
picked up pace in 3D reconstruction. The most notable is 3D
Occupancy Network, a type of neural network architecture
designed for 3D scene understanding and reconstruction [34],
[35]. It operates by dividing a 3D space into small volumet-
ric cells or voxels, with each voxel representing whether it
contains objects or is empty space. These networks use deep
learning techniques, like 3D convolutional neural networks,
to predict voxel-wise occupancy, making them valuable for
applications such as robotics, autonomous vehicles, aug-
mented reality, and 3D scene reconstruction. These networks
heavily rely on convolution and transformers [34], [36],
[37]. They are essential for tasks like collision avoidance,
path planning, and real-time interaction with the physical
world. Additionally, 3D Occupancy Networks can estimate
uncertainty, but they may have computational limitations in
handling dynamic or complex scenes. Advances in neural
network architectures continue to improve their accuracy and
efficiency.

Neural Radiance Field: NeRFwas introduced in 2020 [6],
and it integrates neural networks with classical 3D recon-

struction principles, gaining notable attention in computer
vision and graphics [38]. It reconstructs detailed 3D scenes by
modeling volumetric functions, predicting color and density
through a neural network. NeRFs are widely applied in com-
puter graphics, and virtual reality. Recently, NeRF has seen
enhancements in accuracy and efficiency through extensive
research [7], [8]. Recent studies also explore NeRF’s appli-
cability in underwater scenes [39]. While offering a robust
representation of 3D scene geometry still challenges like
computational demands persist. Future NeRF research needs
to focus on interpretability, real-time rendering, novel appli-
cations, and scalability, opening avenues in virtual reality,
gaming, and robotics [6], [7].
Gaussian Splatting: Finally, in 2023 3D Gaussian Splat-

ting [3] emerged as a novel technique for real-time 3D ren-
dering. In the next section this method is discussed in details.

III. FUNDAMENTALS OF GAUSSIAN SPLATTING
Gaussian Splatting portrays a 3D scene using numerous 3D
Gaussians or particles, each equipped with position, orienta-
tion, scale, opacity, and color information. To render these
particles, they undergo a conversion to 2D space and are
strategically organized for optimal rendering.
Figure 4 shows the architecture of the Gaussian Splatting

algorithm. In the original algorithm, the following steps are
taken:

1) Structure from motion: The process starts using the
SFM method [12] to create a point cloud from images
using the COLMAP library [13].

2) Convert to gaussian splats: The conversion of each
point to Gaussian Splats enables rasterization. The
SFM data only allows for the initialization of position,
size, and color of each splats.

3) Training: To ensure a representation yields high-
quality outcomes, training is imperative. Stochastic
Gradient Descent, akin to a neural network, is em-
ployed for this purpose.

• Employ differentiable Gaussian rasterization to
rasterize Gaussians in an image.

• Compute the loss based on the disparity between
the raster and actual terrain images.

• Modify the Gaussian parameters in accordance
with the incurred loss.

4) Differentiable Gaussian rasterization: Every 2D
Gaussian requires differentiable Gaussian rasterization
to be projected from the viewpoint of the camera, sorted
according to depth, then repeated both backwards and
forwards combined for every pixel. A detailed mathe-
matical insight to the rasterization and training process
can be found in [40].

A. MATHEMATICAL REPRESENTATION AND RENDERING
PROCESS
The mathematical insights discussed in this section is formal-
ized by Ye et al. in [41]. A 3D Gaussian is parameterized
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TABLE 1. Most commonly used 3D reconstruction and NVS datasets, sorted based on ranking from Papers with code. The last eight entries are taken
based on the algorithms that are dicussed but not present in Papers with code ranking.

Dataset Name Description Source

LLFF
Local Light Field Fusion (LLFF) dataset includes synthetic and real images of natural
scenes. Synthetic images are generated from SUNCG and UnrealCV, while real images
consist of 24 scenes captured using a handheld cellphone.

https://bmild.github.io/llff/ [17]

NeRF
Neural Radiance Fields (NeRF) dataset comprises synthetic renderings and real images
of complex scenes. It includes Diffuse Synthetic 360 °, Realistic Synthetic 360°, and real
images of complex scenes.

https://www.matthewtancik.com/
nerf [18]

DONeRF DONeRF dataset incorporates synthetic data generated using Blender and Cycles path
tracer, with 300 images rendered for each scene. https://depthoraclenerf.github.io/ [19]

X3D X3D dataset comprises 15 scenes dedicated to X-ray 3D reconstruction, spanning
medicine, biology, security, and industry applications.

https://github.com/caiyuanhao1998/
SAX-NeRF [20]

RTMV RTMV is a synthetic dataset for novel view synthesis, consisting of 300,000 images
generated through ray tracing across 2,000 scenes.

https://www.cs.umd.edu/~mmeshry/
projects/rtmv/ [21]

Tanks&Temples Tanks&Temples dataset is comprehensive, featuring both intermediate and advanced
testing datasets for image-based 3D reconstruction pipelines. https://www.tanksandtemples.org/ [15]

RealEstate10K RealEstate10K is a large dataset of camera poses derived from 10,000 YouTube videos,
providing trajectories obtained through SLAM and bundle adjustment algorithms.

https://google.github.io/
realestate10k/ [22]

ACID
Aerial Coastline Imagery Dataset (ACID) dataset focuses on generating novel views
over an extended camera trajectory based on a single image, using a hybrid approach
of geometry and image synthesis.

https://infinite-nature.github.io/ [23]

SWORD
’Scenes with occluded regions’ dataset (SWORD) dataset comprises 1,500 training
videos and 290 test videos, emphasizing nearby objects and occlusions for robust model
training.

https://samsunglabs.github.io/
StereoLayers/ [24]

Mip-NeRF 360 Mip-NeRF 360 dataset extends Mip-NeRF with non-linear parameterization, online
distillation, and a distortion-based regularizer for unbounded scenes. https://jonbarron.info/mipnerf360/ [14]

Deep Blending Deep Blending dataset for Free-Viewpoint Image-Based Rendering includes 9 scenes
captured with a stereo camera rig and reconstructed using COLMAP and RealityCapture.

http://visual.cs.ucl.ac.uk/pubs/
deepblending/ [16]

DTU DTU dataset is multi-view stereo data with precise camera positioning, structured light
scanner, and diverse scenes with varying illumination.

https://roboimagedata.compute.dtu.dk/
?page_id=36 [25]

ScanNet ScanNet is an indoor RGB-D dataset with 1513 annotated scans, providing 90% surface
coverage and diverse 3D scene understanding tasks. http://www.scan-net.org/ [26]

ShapeNet ShapeNet is a large-scale repository for 3D CAD models, valuable for NeRF models
emphasizing object-based semantic labels. https://shapenet.org/ [27]

Matterport 3D Matterport-3D dataset includes 10,800 panoramic views from 90 building-scale scenes
with depth, semantics, and instance annotations.

https://niessner.github.io/
Matterport/ [28]

Replica Replica dataset is a genuine indoor dataset with 18 scenes and 35 rooms, featuringmanual
adjustments, semantic annotations, and both class-based and instance-based labels.

https://github.com/facebookresearch/
Replica-Dataset [29]

Plenoptic Video Plenoptic Video dataset comprises 3D videos captured using a plenoptic camera for
realistic and immersive 3D experiences. https://neural-3d-video.github.io/ [30]

Panoptic CMU Panoptic dataset features 3D pose annotations for over 1.5 million instances in
social activities, captured with synchronized cameras and diverse scenes.

http://domedb.perception.cs.cmu.
edu/ [31]

FIGURE 4. 3D Gaussian Splatting architecture [3].

by its mean µ ∈ R3, covariance Σ ∈ R3×3, color c ∈ R3,
and opacity o ∈ R. To render a view of the Gaussians,
first compute their projected 2D locations and extents in the
camera plane. The visible 2D Gaussians are then sorted by
depth and composited from front to back to construct the

output image.

1) Projection of Gaussians
The render camera is described by its extrinsics Tcw, which
transforms points from the world coordinate space to the cam-
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era coordinate space, and its intrinsics, which are the focal
length (fx , fy) and the principal point (cx , cy) of the camera
plane. The transformation from camera space to normalized
clip space is denoted with the projection matrix P.

Tcw =

[
Rcw tcw
0 1

]
∈ SE(3), (1)

P =


2fx
w 0 0 0

0
2fy
h 0 0

0 0 f+n
f−n

−2fn
f−n

0 0 1 0

 , (2)

where (w, h) are the output image width and height, and
(n, f ) are the near and far clipping planes. The 3D mean µ is
projected into pixel space via standard perspective projection.
This is achieved by transforming the mean µ into t ∈ R4 in
camera coordinates, t ′ ∈ R4 in ND coordinates, and µ′ ∈ R2

in pixel coordinates

t = Tcw

[
µ
1

]
, t ′ = Pt, µ′ =

 1
2 (

wt′x
t′w

+ 1) + cx
1
2 (

ht′y
t′w

+ 1) + cy

 (3)

Perspective projection of a 3D Gaussian does not result
in a 2D Gaussian. The projection of Σ to pixel space is
approximated with a first-order Taylor expansion at t in the
camera frame. Specifically, the affine transform is computed
as J ∈ R2×3 as shown in [42] as

J =

[ fx
tz

0 − fx tx
t2z

0
fy
tz

− fyty
t2z

]
(4)

The transformed 2D covariance matrix Σ′ ∈ R2×2 is then
given by

Σ′ = JRcwΣR⊤
cwJ

⊤ (5)

Finally, the 3D covarianceΣwith scale s ∈ R3 and rotation
quaternion q ∈ R4 is parameterized and converted toΣ. Then
the quaternion q = (x, y, z,w) is converted into a rotation
matrix:

R =

1− 2(y2 + z2) 2(xy− wz) 2(xz+ wy)
2(xy+ wz) 1− 2(x2 − z2) 2(yz− wx)
2(xz− wy) 2(yz+ wx) 1− 2(x2 + y2)

 (6)

The 3D covariance Σ is then given by

Σ = RSS⊤R⊤, (7)

where S = diag(s) ∈ R3×3

2) Depth Compositing of Gaussians
For every Gaussian, the bounding box aligned with the axis
encompassing the 99% confidence ellipse of each 2D pro-
jected covariance (3σ) is calculated. If the bounding box
intersects with the tile, the Gaussian is added to the respective
tile bin. Subsequently, the authors implement the tile sorting
algorithm outlined in [3], Appendix C to generate a sorted
list of Gaussians based on depth for each tile. Then the sorted
Gaussians within each tile is rasterized. For a color at a pixel

i, let n index the N Gaussians involved in that pixel, it is
calculated as:

Ci =
∑
n≤N

cnαnTn, where Tn =
∏
m<n

(1− αm) (8)

And, the opacity α with the 2D covariance Σ′ ∈ R2×2

calculated as:

αn = on exp(−σn), σn =
1

2
∆⊤
n Σ

′−1∆n

where ∆ ∈ R2 and is the offset between the pixel center and
the 2D Gaussian center µ′ ∈ R2. Tn is computed online as the
interaction is made through the Gaussians from front to back.

B. QUALITY ASSESSMENT MATRICES
In the conventional scenario of Gaussian Splatting, bench-
marking for NVS often involves the use of visual quality as-
sessment metrics. These metrics aim to evaluate the quality of
individual images, either with (full-reference) or without (no-
reference) ground truth images. The peak signal-to-noise ratio
(PSNR), structural similarity index measure (SSIM) [43], and
learned perceptual image patch similarity (LPIPS) [44] are
widely utilized in the Gaussian Splatting literature as the pri-
mary metrics for this purpose. The mathematical formulation
of theses metrices are defined below.

1) Peak Signal to Noise Ratio
PSNR↑ is a no-reference quality assessment metric. PSNR is
defined by the following formulae:

PSNR(I) = 10 · log10
(
MAX(I)2

MSE(I)

)
, (9)

where MAX(I) is the maximum possible pixel value in the
image (255 for 8-bit integer), and MSE(I) is the pixel-wise
mean squared error calculated on all color channels. PSNR is
also commonly used in signal processing and is well under-
stood.

2) Structural Similarity Index Measure
SSIM↑ [43] is a full-reference quality assessment metric.The
SSIM for a single patch is given by the following formula:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (10)

where Ci = (KiL)2, L is the dynamic range of the pixels (255
for 8bit integer), and K1 = 0.01,K2 = 0.03 are constants
chosen in [43]. The local statistics µ′s, σ′s are calculated
within a 11× 11 circular symmetric Gaussian weighted win-
dow, with weights wi having a standard deviation of 1.5 and
normalized to 1.

3) Learned Perceptual Image Patch Similarity
LPIPS↓ [44] is a complete reference quality assessment met-
ric that uses learned convolutional characteristics. The score
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is given by a weighted pixel-wise MSE of feature maps over
multiple layers.

LPIPS(x, y) =
L∑
l

1

HlWl

Hl ,Wl∑
h.w

||wl(ς)(x lhw − ylhw)||22, (11)

where x lhw, y
l
hw are the original and generated/accessed im-

ages’ feature at pixel width w, pixel height h, and layer
l. Wl and Hl are the width and height of feature map at
the corresponding layer. The original LPIPS paper used
SqueezeNet [45], VGG [46] and AlexNet [47] as feature
extraction backbone.

C. STATE OF ART
In the next two sections, an exploration of various applica-
tions and advancements in Gaussian Splatting will be un-
dertaken, delving into its diverse implementations across
domains such as autonomous driving, avatars, compression,
diffusion, dynamics and deformation, editing, text-based gen-
eration, mesh extraction and physics, regularization and op-
timization, rendering, sparse representations, and simultane-
ous localization and mapping (SLAM). Each subcategory
will be examined to provide insights into the versatile use
of Gaussian Splatting methodologies in addressing specific
challenges and achieving notable advancements within these
distinct domains. Figure 5 shows complete list of all the
methods that are discussed in Section IV and V. Broadly, the
division of methods can be classified into functional areas
based on functional improvements such as compression, ren-
dering in Section IV and Specific use cases are applicational
areas such as avatars, SLAM in Section V.

IV. FUNCTIONAL ADVANCEMENTS
This section examines the advances in functional capabilities
that have been achieved since the Gaussian Splatting algo-
rithm was first introduced.

A. DYNAMIC AND DEFORMATION
In contrast to general Gaussian splats, where all parameters
of the 3D covariance matrix are dependent on only the input
images, in this case, to capture the dynamic of the splats over
time, some of the parameters are dependent on time or time
step [51]. For example, the position is time-step or frame
dependent. This position can be updated by the next frame in a
temporally consistent manner. Also some latent encoding can
be learnt which can be used to edit or propagate the Gaussian
in each time-step during render to achieve certain effect like
expression changes in a avatar [54], [55], and application of
force to a non rigid body [50], [57]. Figure 6 shows a few of
the dynamic and deformation-based methods.

The dynamic and deformable models can be easily rep-
resented by a slight modification to the original Gaussian
Splatting representation:

1) A 3D position at time t: [x(t), y(t), z(t)]T ∈ R3,
2) A 3D rotation at time t represented by a quaternion:
[qx(t), qy(t), qz(t), qw(t)]T ∈ R4

3) A scaling factor: [sx , sy, sz]T ∈ R3

4) Spherical harmonics coefficients representing color with
the degrees of freedom k: h ∈ R3×(k+1)2

5) An opacity: o ∈ R

1) Motion and Tracking
Most of the work related to dynamic Gaussian Splatting
extends on the motion tracking of the 3D gaussian across
time steps, instead of having a separate splat for each time
step. Katsumata et al. proposed a Fourier approximation
for the position and linear approximation for the rotation
quaternion in [51].
The paper by Luiten et al. [48] introduces a method for

capturing full 6 degrees of freedom for all 3D points in
dynamic scenes. By incorporating local-rigidity constraints,
Dynamic 3D Gaussians represent consistent space rotation,
enabling dense 6-DOF tracking and reconstruction without
correspondence or flow input. The method outperforms PIPs
in 2D tracking [105], achieving a 10x lower median trajectory
error, higher trajectory accuracy, and a 100% survival rate.
This versatile representation facilitates applications like 4
dimensional video editing, first person view synthesis, and
dynamic scene generation.
Wu et al. in [49] proposes a novel approach known as 4D

Gaussian Splatting (4D-GS). The author proposes a Spatial-
Temporal Structure Encoder and a Multi-head Gaussian
Deformation Decoder. This holistic representation combines
both 3D Gaussians and 4D neural voxels, enabling real-time
rendering at high resolutions. The method achieves a notable
frame rate of 82 frames per seconds (FPS) at a resolution
of 800×800 using an RTX 3090 GPU, maintaining good
quality. Despite its success in rapid convergence and real-time
rendering, 4D-GS faces challenges in optimizing Gaussians
for large motions, dealing with the absence of background
points, and addressing imprecise camera poses. Additionally,
the method struggles to separate the joint motion of static and
dynamic Gaussian parts under monocular settings without
additional supervision. Lastly, there is a need for a more
compact algorithm to handle urban-scale reconstruction due
to the substantial querying of Gaussian deformation fields by
a large number of 3D Gaussians.
To properly represent spatial and temporal structures in dy-

namic scenes Yang et al. in [50] propose a holistic approach,
treating spacetime as a whole. They advocate approximating
the underlying spatiotemporal 4D volume of dynamic by
optimizing a set of 4D primitives, incorporating explicit
geometry and appearance modeling. The proposed model
is conceptually straightforward, utilizing a 4D Gaussian pa-
rameterized by anisotropic ellipsoids capable of arbitrary
rotation in space and time. Additionally, it incorporates view-
dependent and time-evolved appearance represented by the
coefficients of 4D spherical harmonics. This approach offers
simplicity, flexibility for variable-length videos, end-to-end
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Dynamic and
Deformation
(Sec. IV-A)

Motion and Tracking
(Sec. IV-A1)

Luiten et al. [48] , Wu et al. [49] , Yang et al. [50] ,
Katsumata et al. [51] , Kratimenos et al. [52] , Lin et al. [53]

Expression/Emotion
variation

Editable (Sec. IV-A2)
Shao et al. [54] , Xiong et al. [55] , Yu et al. [56]

Non-rigid/Deformable
Objects (Sec. IV-A3) Yang et al. [50] , Das et al. [57]

Diffusion
(Sec. IV-B)

Text based generation
(Sec. IV-B1) Li et al. [58] , Chen et al. [59] , Yang et al. [60]

Denoising and
Optimisation
(Sec. IV-B2)

Chen et al. [61] , Tang et al. [62] , Yi et al. [63] , Liang et al. [64] ,
Chung et al. [65] , Liu et al. [66] , Vilesov et al. [67]

Optimization
(Sec. IV-C) Yan et al. [68] , Keetha et al. [69] , Matsuki et al. [70] , Yugay et al. [71] , Huang et al. [34]

Rendering
(Sec. IV-D)

Yu et al. [72] , Gao et al. [73] , Liang et al. [74] , Yan et al. [75] ,
Jiang et al. [76] , Lu et al. [77] , Xiong et al. [55] , Zhu et al. [78]

Compression
(Sec. IV-E) Fan et al. [79] , Navaneet et al. [80]

A
PP
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A
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IO

N
S
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ec

V
)

Avatars
(Sec. V-A)

Articulated or joint
based (Sec. V-A1)

Zielonka et al. [81] , Jena et al. [82] , Lei et al. [83] ,
Hu et al. [84] , Abdal et al. [85]

Animatable
(Sec. V-A2)

Jiang et al. [86] , Li et al. [87] , Moreau et al. [88] ,
Kocabas et al. [89] , Pang et al. [90] , Zheng et al. [91] ,

Hu et al. [92]

Head based
(Sec. V-A3)

Wang et al. [93] , Qian et al. [94] , Dhamo et al. [95] ,
Xiang et al. [96] , Saito et al. [97] , Chen et al. [98]

SLAM
(Sec. V-B) Yan et al. [68] , Keetha et al. [69] , Matsuki et al. [70] , Yugay et al. [71] , Huang et al. [34]

Mesh Extraction
Physics (Sec. V-C) Xie et al. [99] , Guadon et al. [100] , Duisterhof et al. [101] , Chen et al. [61]

Editable
(Sec. V-D)

Chen et al. [102] , Fang et al. [103] , Huang et al. [34] , Ye et al. [41] ,
Cen et al. [34] , Zhou et al. [104]

FIGURE 5. Taxonomy of selected key Gaussian Splatting innovation papers, selected using a combination of citations and GitHub star rating.
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training, and efficient real-time rendering, making it well-
suited for capturing complex dynamic scene motions.

Kratimenos et al. in [52] effectively addresses the challenge
of the motion field in dynamic scenarios, which is natu-
rally underconstrained, guaranteeing effective optimization.
In order to do this, each point is bound to motion coeffi-
cients that enforce the sharing of basis trajectories. The
introduction of a sparsity loss to the motion coefficients
enables the disentanglement of scene motions, providing
independent control and the generation of novel motion
combinations. Remarkably, state-of-the-art render quality is
achieved in minutes of training, and the model can synthesize
high-quality views of dynamic scenes with superior photo-
realistic results when trained less than thirty minutes. Their
proposed representation is characterized by interpretability,
efficiency, and expressiveness, allowing for real-time NVS
including dynamic motions in scene in both monocular and
multi-view scenarios.

Lin et al. introduce a novel Dual-Domain Deformation
Model (DDDM) in [53] which is explicitly designed to
model attribute deformations for each Gaussian point. This
model uses Fourier series fitting in the frequency domain
and polynomial fitting in the time domain to capture time-
dependent residuals. The DDDM is adept at handling de-
formations across complex video scene, eliminating the
need to train individual 3D Gaussian Splatting (3D-GS)
models for every frame.Notably, discretized Gaussian point
explicit deformation modeling guarantees quick training and
4D scene rendering, similar to the original 3D-GS intended
for static 3D reconstruction. This approach have substantial
efficiency improvement, with almost a 5× faster training
speed compared to 3D-GS modeling. However, there is an
identified opportunity for enhancement in maintaining high-
fidelity thin structures in the final rendering.

2) Expression or Emotion variation and Editable in Avatars
Shao et al. introduce GaussianPlanes in [54], a 4D represen-
tation through plane-based decomposition in both 3D space
and time, improving effectiveness in 4D editing. Additionally,
Control4D leverages a 4D generator to optimize the contin-
uous creation space from inconsistent photos, resulting in
better consistency and quality. The proposed method employs
GaussianPlanes to train the implicit representation of a
4D portrait scene, followed by rendering into latent features
and RGB images using Gaussian rendering. A generative
adversarial network (GAN) [106] based generator, along with
a 2D-diffusion-based editor, refines the dataset and produces
real and fake images for discrimination. The discriminative
results contribute to iterative updates of both the Generator
and Discriminator. However, the approach faces challenges
in handling rapid and extensive non-rigid movements due to
relying on canonical Gaussian point clouds with flow repre-
sentation. The method is constrained by ControlNet [107],
limiting edits to a coarse level and preventing precise expres-
sion or action edits. Furthermore, the editing process requires
iterative optimizations, lacking a single-step solution.

Huang et al. utilizes sparse control points, a fraction of
the Gaussians, to learn compact 6 DoF transformation
bases in [108]. These bases, locally interpolated with learned
weights, define the motion field of 3D Gaussians. A defor-
mation MLP predicts time-varying 6 DoF transformations
for each control point, simplifying learning, improving ca-
pabilities, and ensuring coherent motion patterns. The joint
learning process encompasses 3D Gaussians, canonical space
locations of control points, and the deformation MLP, re-
constructing appearance, geometry, and dynamics. Adaptive
adjustments to control point locations and numbers accom-
modate motion complexities, with an As-Rigid-As Possible
Regularization (ARAP) loss enforcing spatial continuity
and local rigidity. The explicit sparse motion representa-
tion allows user-controlled motion editing while maintain-
ing high-fidelity appearances. Experimental results showcase
superiority in NVS with high rendering speed and novel
appearance-preserved motion editing applications. However,
the method’s performance is susceptible to inaccurate camera
poses, leading to reconstruction failures. Additionally, the
method’s testing has been limited to scenes with modest
motion changes, and extending its applicability to intense
movements remains an area for exploration.
Yu et al. in [56] introduces a Controllable Gaussian

Splatting method (CoGS), providing real-time handling of
elements in a scenewithout the need for pre-computed control
signals.

3) Non-Rigid or deformable objects
Implicit neural representation has brought around a signif-
icant transformation in dynamic scene reconstruction and
rendering. Nevertheless, contemporary methods in dynamic
neural rendering encounter challenges related to capturing
intricate details and achieving real-time rendering in dynamic
scenes.
In response to these challenges, Yang et al. proposed

Deformable 3D Gaussians for High-Fidelity Monocu-
lar Dynamic Scene Reconstruction in [50]. A novel de-
formable 3D-GS method is proposed. This method utilizes
3D Gaussians learned in canonical space with a defor-
mation field, specifically designed formonocular dynamic
scenes. The approach introduces an annealing smooth train-
ing (AST) mechanism tailored for real-world monocular dy-
namic scenes, effectively addressing the effect of erroneous
poses on time interpolation tasks without introducing addi-
tional training overhead. By using a differential Gaussian
rasterizer, the deformable 3D Gaussians not only enhance
rendering quality but also achieve real-time speeds, surpass-
ing existing methods in both aspects. The method proves to
be well-suited for tasks such as NVS and offers versatility
for post-production tasks due to its point-based nature. The
experimental results underscore themethod’s superior render-
ing effects and real-time capabilities, confirming its efficacy
in dynamic scene modeling.
Das et al. in [57] introduces NPGs (Neural Paramet-

ric Gaussians), that address the challenging task of recon-
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(a) Persistent Dynamic NVS and Tracking Results from [48].

(b) Pipeline of Control4D: utilizing GaussianPlanes [54].

(c) Proposed method by Yang et al. can reconstruct accurate dynamic scene geometry and render high-quality images in both
the NVS, and time interpolation compared with HyperNeRF [50].

FIGURE 6. Dynamic and deformation based methods.
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structing dynamic objects from monocular videos. The ap-
proach involves a two-stage process: first, fitting a low-
rank neural deformation model to preserve consistency in
NVS, and second, optimizing 3D Gaussians driven by the
coarse model for high-quality reconstruction. Their model
is based on a local representation of temporally shared an-
chored 3D Gaussian where the local oriented volumes causes
the deformation. The resulting radiance fields enable photo-
realistic high-quality reconstructions of non-rigidly deform-
ing objects, ensuring uniformity across NVS. NPGs exhibit
superior performance, specially in scenes with limited multi-
view cues.

B. DIFFUSION
Diffusion and Gaussian Splatting is a powerful technique
for generating 3D objects from text descriptions/prompts. It
combines the strengths of two different approaches: diffusion
models and Gaussian Splatting. Diffusion models are a type
of neural network that can learn to generate images from
a noisy input [109]. By feeding the model a sequence of
increasingly clean images, the model learns to reverse the
process of image corruption, eventually generating a clean
image from a completely random input. This can be used to
generate images from text descriptions, as themodel can learn
to associate words with the corresponding visual features.
The text-to-3Dwith diffusion andGaussian Splatting pipeline
works by first using a diffusion model to generate an initial
3D point cloud from the text description. The point cloud is
then converted into a set of Gaussian spheres using Gaussian
Splatting. Finally, the Gaussian spheres are rendered to pro-
duce a 3D image of the object.

1) Text based generation
The work by Yi et al. introducesGaussian-Dreamer in [63],
a text-to-3D method that seamlessly connects 3D and 2D
diffusion models through Gaussian splitting, ensuring both
3D consistency and intricate detail generation. Figure 7 shows
the proposed model generating images. To further enrich
content, noisy point growing and color perturbation are
introduced to supplement the initialized 3D Gaussians.
The method is characterized by its simplicity and effective-
ness, generating a 3D instance within 15 minutes on a sin-
gle GPU, showcasing superior speed compared to previous
methods. The generated 3D instance can be directly rendered
in real time, highlighting the practical applicability of the ap-
proach. The overall framework involves initialization with 3D
diffusion model priors and optimization with the 2D diffusion
model, enabling the creation of high-quality and diverse 3D
assets from text prompts by leveraging the strengths of both
diffusion models.

Chen et al. presented Gaussian Splatting based text-to-
3D GENeration (GSGEN) in [59], a text-to-3D generation
method utilizing 3D Gaussians as a representation. By lever-
aging geometric priors, emphasizing the unique advan-
tages of Gaussian Splatting in text-to-3D generation. The
two-stage optimization strategy combines joint guidance

FIGURE 7. Dream-Gaussian framework generating images through
iteration [63].

of 2D and 3Ddiffusion for shaping a coherent rough struc-
ture in geometry optimization, followed by densification
in appearance refinement based on compactness. GSGEN
is validated across various textual prompts, demonstrating its
ability to generate 3D assets withmore accurate geometry and
enhanced fidelity. Notably, GSGEN excels in capturing high-
frequency components in objects, such as feathers, intricate
textures, and animal fur. However, challenges arise when the
provided text prompt is complex or involves complicated
logic, given the limited language understanding of Point-
E [110] and the CLIP [111] text encoder used in Stable Dif-
fusion. Although incorporating 3D priors mitigates the Janus
problem1, potential degenerations persist, particularly with
extremely biased textual prompts in the guidance diffusion
models.
Tang et al. introduce a pioneering framework [62] for 3D

content creation by integrating Gaussian Splatting into gener-
ative settings, leading to a significant reduction in generation
time compared to optimization-based 2D lifting methods.
Additionally, the authors present an efficientmesh extraction
algorithm from 3D Gaussians and a UV-space texture re-
finement stage to further elevate the quality of the generated
content. Through extensive experiments encompassing both
image-to-3D and text-to-3D tasks, this method demonstrates
a remarkable balance between optimization time and genera-
tion fidelity, opening up new possibilities for real-world de-
ployment of 3D content generation. It’s important to note that,
like previous text-to-3D approaches, the authors encounter
common challenges such as theMulti-face Janus problem and
issues related to baked lighting.
Liang et al. proposed an analysis of Score Distillation

Sampling (SDS) in text-to-3D generation [64], exposing its
limitations. They introduce Interval Score Matching (ISM) to
outperform SDS, integrating it with 3DGaussian Splatting for
state-of-the-art performance in various applications, achiev-
ing realism with reduced training costs.
Chung et al. introduces LucidDreamer in [112] shown

in Figure 8, a domain-free 3D scene generation framework.

1The Janus dilemma pertains to the difficulty of addressing temporal in-
consistencies or uncertainties in data, especially in situations where historical
records or informationmay lack completeness or contain contradictions. This
poses a notable hindrance in areas like historical research, data analysis, and
artificial intelligence, necessitating the use of specialized methodologies to
effectively reconcile conflicting temporal data points.
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Leveraging Stable Diffusion, depth estimation, and explicit
3D representation, LucidDreamer demonstrates superior do-
main generalizationwith diverse input types, generating high-
quality 3D scenes across scenarios.

FIGURE 8. Lucid Dreamer framework with iterative navigation and
dreaming [112].

The HumanGaussian Framework in [88] by Moreau
et al. generates 3D humans from text prompts using the
neural representation of 3D-GS. The Structure-Aware SDS
optimizes appearance and geometry, achieving efficient and
effective 3D human generation with fine-grained geometry
and realistic appearance.

The proposed Compositional generation for text-to-3d
via gaussian splatting (CG3D) framework [67] by Vilesov
et al. introduces a text-driven compositional 3D scene gener-
ation method emphasizing scalability and physical realism.
Leveraging explicit radiance fields, CG3D achieves coher-
ent multi-object scenes, allowing quick editing through text
prompts while addressing challenges like the Janus problem.
Future work aims to enhance the support for intricate object
interactions and large-scale compositions.

2) Denoising and Optimisation

The GaussianDiffusion framework in [58] by Li et al. rep-
resents a novel text-to-3D approach, leveraging Gaussian
Splatting and Langevin dynamics diffusion models to accel-
erate rendering and achieve unparalleled realism. The intro-
duction of structured noise addresses multi-view geometric
challenges, while the variational Gaussian Splatting model
mitigates convergence issues and artifacts. While current
results show improved realism, ongoing research aims to
refine aspects of blurriness and haze introduced by variational
Gaussian for further enhancement.

Yang et al. encompass a thorough examination of existing
diffusion priors, leading to the proposition of [60], an uni-
fied framework that improves these priors by optimizing
denoising scores. The versatility of the approach extends
across various use cases, consistently delivering substantial
performance enhancements. In experimental evaluations, our
method achieves unprecedented performance on [113], sur-
passing contemporary methods. Despite its success in refin-
ing the texture aspect of 3D generation, there is room for
improvement in enhancing the geometry of the generated 3D
models.

C. OPTIMIZATION AND SPEED
This subsectionwill deal with the techniques researchers have
developed for faster training and/or inference speed. In the
study by Chung et al. [65], a method is introduced to opti-
mize Gaussian Splatting for 3D scene representation using
a limited number of images while mitigating overfitting
issues. The conventional approach of representing a 3D scene
with Gaussian splats can lead to overfitting, particularly when
the available images are limited. This technique [65] uses the
depth map from a pre-trained monocular depth estimation
model as a geometric guide, and align with sparse feature
points from a SFM pipeline. These helps in optimization
of 3D Gaussian Splatting, reducing floating artifacts and
ensuring geometric coherence. The proposed depth-guided
optimization strategy is tested on the LLFF [17] dataset,
showcasing improved geometry compared to if only images
are used. The study includes the introduction of an early stop
strategy and a smoothness term for the depth map, both
contributing to enhanced performance. However, limita-
tions are acknowledged, such as reliance on the accuracy of
the monocular depth estimation model and the dependency
on COLMAP’s [13] performance. Future work is suggested
to explore interdependent estimated depths and address chal-
lenges in areas with difficult depth estimation, like textureless
plains or the sky.
The study by Lee et al. introduces a compact 3D Gaus-

sian representation framework [114], leveraging the advan-
tages of 3D-GS. While 3D-GS offers rapid rendering and
promising image quality, it demands a significant number
of 3D Gaussians, leading to substantial memory and storage
requirements. The proposed framework uses a learnable
mask strategy that considerably reduces the number of
Gaussians without sacrificing performance. Additionally,
a grid-based neural field is introduced for a compact repre-
sentation of view-dependent color, and codebooks are learned
to compress geometric attributes effectively. The experiments
demonstrate over a 10× reduction in storage, enhanced ren-
dering speed, and maintained scene representation quality
compared to 3D-GS. The framework’s emphasis on reducing
Gaussian points and compressing attributes establishes it as a
comprehensive solution, fostering broader adoption in fields
requiring efficient and high-quality 3D scene representation.
In their research [115], Girish et al. introduced a novel

technique utilizing quantized embedding for efficient mem-
ory utilization. Girish et al. used a coarse-to-fine strategy
for optimized Gaussian point clouds, achieving scene rep-
resentations with fewer Gaussians and quantized attributes,
resulting in faster training and rendering speeds. Validating
across various datasets and scenes with a notable 10-20×
reduction in memory usage and improved training/inference
speed. Contributions include a novel compression method
for 3D Gaussian point clouds, optimization enhancements
via opacity coefficient quantization, progressive training, and
controlled densification. Ablation studies underscore the ef-
fectiveness of these components, with the approach demon-
strating comparable quality to 3D-GS while being faster and
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more efficient. Overall, this method represents a significant
advancement in 3D reconstruction and NVS, striking a bal-
ance between efficiency and reconstruction quality.

In the study [116] Fu et al. introduces COLMAP-Free
3D Gaussian Splatting (CF-3DGS), a novel end-to-end
framework for simultaneous camera pose estimation and
NVS from sequential images, addressing challenges posed
by large camera motions and lengthy training durations in
previous approaches. Diverging from the implicit representa-
tions of NeRFs, CF-3DGS leverages explicit point clouds
to represent scenes. The method sequentially processes
input frames, progressively expanding 3D Gaussians to
reconstruct the entire scene, demonstrating enhanced per-
formance and robustness on challenging scenes, such as
360° videos. The approach optimizes camera pose and 3D-
GS jointly in a sequential manner, making it particularly
suitable for video streams or ordered image collections. The
utilization of Gaussian Splatting enables rapid training and
inference speeds, showcasing the advantages of this approach
over previous methods. While demonstrating effectiveness,
it’s acknowledged that the sequential optimization restricts
the application primarily to ordered image collections, leav-
ing room for exploration into extensions for unordered image
collections in future research.

D. RENDERING AND SHADING METHODS
Yu et al. in [72] observed in 3D-GS, specifically artifacts in
NVS results when changing the sampling rate. The introduced
solution involves incorporating a 3D smoothing filter to
regulate the maximum frequency of 3D Gaussian prim-
itives, resolving artifacts in out-of-distribution renderings.
Additionally, the 2D dilation filter is replaced with a 2D
Mip filter to address aliasing and dilation issues. Evalua-
tions on benchmark datasets demonstrate the effectiveness
of Mip-Splatting, particularly when modifying the sampling
rate. The proposed modifications are principled and straight-
forward, requiring minimal changes to the original 3D-GS
code. However, there are acknowledged limitations, such as
errors introduced by the Gaussian filter approximation and
a slight increase in training overhead. The research presents
Mip-Splatting as a competitive solution, demonstrating its
performance parity with state-of-the-art methods and superior
generalization in out-of-distribution scenarios, showcasing its
potential in achieving alias-free rendering at arbitrary scales.

Gao et al. proposes a novel approach in [73] to 3D point
cloud rendering that enablesmaterial and lighting decom-
position from multi-view images. This framework supports
editing, ray tracing, and real-time relighting of the scene in a
differentiable manner. Each point in the scene is represented
by a "relightable" 3D Gaussian, carrying information about
its normal direction, material properties like bidirectional
reflectance distribution function(BRDF), and incoming light
from various directions. For accurate lighting estimation, the
incoming light is separated into global and local components,
considering visibility based on the viewing angle. Scene opti-
mization leverages 3D Gaussian Splatting, while physically-

based differentiable rendering handles BRDF and lighting de-
composition. An innovative point-based ray-tracing method
utilizing a bounding volume hierarchy enables efficient vis-
ibility baking and realistic shadows during real-time render-
ing. Experiments demonstrate superior BRDF estimation and
novel view rendering compared to existing methods. How-
ever, challenges remain for scenes without clear boundaries
and the requirement of object masks during optimization. Fu-
ture work could explore integrating multi-view stereo (MVS)
cues to improve the geometric accuracy of point clouds gen-
erated by 3D Gaussian Splatting. This "Relightable 3D Gaus-
sian" pipeline demonstrates promising real-time rendering
capabilities and opens doors for revolutionizing mesh-based
graphics with a point cloud-based approach that allows for
relighting, editing, and ray tracing.
Liang et al. proposes 3D Gaussian Splatting for Inverse

Rendering (GS-IR) in [74], a novel inverse rendering ap-
proach leveraging the strengths of 3D-GS, a powerful tech-
nique for generating novel views. Unlike approaches relying
on implicit neural representations and volume rendering, GS-
IR expands the capabilities of 3D-GS to directly estimate
scene geometry, material properties, and lighting conditions
from multi-view images, even under unknown lighting. It
successfully addresses challenges like normal estimation
and occlusion handling through an efficient optimization
scheme that combines depth-based regularization and
baking-based occlusion modeling. The inherent flexibility
of 3D-GS enables fast and compact reconstruction of the
scene geometry, leading to photorealistic NVS and physi-
cally accurate rendering. Extensive evaluations across various
scenes demonstrate that GS-IR outperforms existing meth-
ods, achieving state-of-the-art results in both reconstruction
quality and efficiency.
Yan et al. proposed a multi-scale 3D Gaussian Splatting

algorithm to address the degradation in rendering quality
and speed that occurs at lower resolutions or from a faraway
camera position in [75]. Acknowledging the aliasing effect
caused by pixel size falling below the Nyquist frequency, the
algorithm maintains Gaussians at different scales to represent
the scene effectively. Inspired by mipmap and levels of detail
(LOD) algorithms, larger, coarser Gaussians are added for
lower resolutions by aggregating smaller and finer Gaussians
from higher resolutions. This approach achieves significant
improvements compared to standard 3D Gaussian Splatting.
It shows a 13%-66% boost in PSNR and a 160%-2400% in-
crease in rendering speed across resolutions ranging from 4x
to 128x.While there is some initial overhead during splatting,
the method effectively reduces aliasing artifacts and signif-
icantly improves rendering efficiency. Future research will
explore lightweight filtering criteria for Gaussian functions to
further enhance speed. Overall, this algorithm demonstrates
effectiveness in both rendering quality and speed at various
resolutions, overcoming limitations of previous 3D Gaussian
Splatting methods.
Jiang et al. introduced GaussianShader in [76] which

integrates a simplified shading function directly onto 3D
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Gaussians, improving the visual quality of rendered reflec-
tive scenes while maintaining efficiency in both training
and rendering. Estimating accurate normals on discrete
3D Gaussians has been challenging, this approach over-
comes this difficulty with a novel framework leveraging
shortest axis directions and a customized loss function
for consistency. GaussianShader achieves a remarkable bal-
ance between rendering quality and efficiency, outperform-
ing standard 3D Gaussian Splatting in terms of PSNR on
datasets containing specular objects. Additionally, it demon-
strates significant optimization time improvements compared
to previous methods. By explicitly approximating the render-
ing equation, GaussianShader enhances realism and allows
for real-time rendering, making it suitable for interactive
applications. In summary, this method is a significant step
forward in rendering 3D objects, particularly for reflective
surfaces, by combining shading functions with an extended
3D Gaussian model and introducing an innovative normal
prediction technique for high-quality results.

Lu et al. introduced Scaffold-GS in [77], for rendering
complex scenes effectively. Their method utilizes anchor
points to strategically distribute local 3D Gaussians and dy-
namically predicts their attributes based on viewing condi-
tions. Through a clever "growing and pruning" strategy for
these anchors, Scaffold-GS efficiently adapts its represen-
tation to the scene, minimizing redundant Gaussians. This
results in improved rendering quality while handling scenes
with varying details and viewpoints without compromising
speed.

3D Gaussian Splatting faces challenges in few-shot sce-
narios, where it tends to overfit to training views, leading
to issues like background collapse and excessive floaters. In
response, Xiong et al. introduced [55] proposed to enable
the coherent training of 3D-GS based radiance fields for
360-degree scenes using sparse training views. The method
integrates depth priors with generative and explicit constraints
to address challenges such as background collapse and floater
artifacts, enhancing consistency from unseen viewpoints. Ex-
perimental results demonstrate the superiority of the pro-
posed technique over base 3D-GS and NeRF-based methods
in terms of LPIPS on the MipNeRF-360 dataset, achieving
substantial improvements with reduced training and inference
costs. Despite its reliance on the initial point cloud from
COLMAP, the method showcases impressive performance
in few-shot NVS, with potential for further improvements
through investigations into point cloud densification tech-
niques.

In response to the persistent challenge of efficient NVS
from limited observations, Zhu et al. propose a Few-Shot
View Synthesis framework in [78]. To achieve real-time
and photorealistic results with only three training views.
This adeptly handles the sparsity of initialized SFM points
through a well-designed Gaussian Unpooling process, it-
eratively distributing new Gaussians around representative
locations to fill in local details in vacant areas. The framework
incorporates a large-scale pretrainedmonocular depth estima-

tor within the Gaussian optimization process, using online
augmented views to guide geometric optimization for an
optimal solution. The accuracy and rendering efficiency tests
are performed on various datasets, including LLFF [17], Mip-
NeRF360 [14], and custom dataset generated using Blender.
Noteworthy features include a novel point-based framework
with Proximity-guided Gaussian Unpooling for comprehen-
sive scene coverage, integration of monocular depth priors for
optimized Gaussian representation, and real-time rendering
speed (200+ FPS) with improved visual quality. This frame-
work paves the way for practical applications in real-world
scenarios, offering a valuable contribution to the field of few-
shot view synthesis.

E. COMPRESSION
Fan et al. in [79] introduce a novel technique for compressing
3D Gaussian representations used in rendering. Their method
identifies and removes redundant Gaussians on the basis
of their significance, similar to network pruning, ensuring
minimal impact on visual quality. Leveraging knowledge
distillation and pseudo-view augmentation, LightGaussian
transfers information to a lower-complexity representa-
tion with fewer spherical harmonics, further reducing
redundancy. Additionally, a hybrid scheme calledVecTree
Quantization optimizes the representation by quantizing
attribute values, leading to even smaller size without sig-
nificant loss in accuracy. Compared to standard approaches,
LightGaussian achieves an average compression ratio of
over 15x, significantly boosting rendering speed from 139
FPS to 215 FPS on datasets like Mip-NeRF 360 [14], and
Tanks&Temples [15]. The key steps involved are calculating
global significance, pruning Gaussians, distilling knowledge
with pseudo-views, and quantizing attributes using VecTree.
Overall, LightGaussian offers a groundbreaking solution for
converting large point-based representations into a compact
format, resulting in dramatic reductions in data redundancy
and substantial improvements in rendering efficiency.
Navaneet et al. propose a simple yet effective solution

in [80], leveraging vector quantization based on the K-
means algorithm to quantize Gaussian parameters. The
approach involves storing a small codebook alongside the
index of the code for each Gaussian, followed by further
compression of indices through sorting and a method akin
to run-length encoding. Through extensive experiments on
standard and a larger-than-standard benchmark, the method
demonstrates its effectiveness in reducing the storage cost
of the original 3D Gaussian Splatting by nearly 20×, with
minimal impact on the quality of rendered images. This com-
pression technique provides a valuable trade-off, maintaining
the efficiency of 3D Gaussian Splatting while significantly
mitigating storage demands.

V. APPLICATIONS AND CASE STUDIES
This section delves into the notable advancements in ap-
plications of Gaussian Splatting since the inception of the
algorithm in July 2023. These advancements have found spe-
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cific utility in various domains, such as avatars, SLAM, and
mesh extraction and physics simulation. Gaussian Splatting,
when applied to these specialized use cases, demonstrates its
versatility and effectiveness in diverse application scenarios.

A. AVATARS
A large amount of research in Gaussian Splatting is focused
towards developing digital avatars of human, pertaining to the
rise of AR/VR application boom. Capturing a subject from
less number of viewpoint and constructing a 3D model is a
challenging task and Gaussian Splatting is helping researcher
and industries to achieve that.

1) Joint angles or articulation
These kind of Gaussian Splatting technique focuses on mod-
eling the human body in terms of joint angles. Some of the
parameter of these kind of model reflects the 3D joint posi-
tion, the angles, and other similar parameters. The input frame
is decoded to find out the current frame 3D joint position and
angle.
Zielonka et al. presents a model in [81] for human body
representation using Gaussian splats, achieving real-time ren-
dering with the innovative 3D-GS technique. Unlike exist-
ing photorealistic drivable avatars, Drivable 3D Gaussian
Splatting (D3GA) doesn’t rely on accurate 3D registra-
tions during training or dense input images during testing.
Instead, it leverages dense calibrated multi-view videos
for real-time rendering and introduces tetrahedral cage-
based deformations driven by keypoints and angles in
joint, making effective for applications involving commu-
nication as shown in Figure 9. The experiment includes
subjects with various clothing, body shapes, and motions,
where D3GA outperforms other state-of-the-art methods,
showcasing superior pose-based avatar generation for dense
multi-view scenes without the need for ground truth regis-
tration. The contributions include the first implementation
of DG3A, tetrahedral cage-based deformations, and state-
of-the-art pose-based avatar generation without ground truth
registration. D3GA demonstrates high-quality results and
promising advancements in geometry and appearance mod-
eling for dynamic sequences without relying on ground truth
geometry, thereby streamlining the data processing pipeline.

FIGURE 9. D3GA framework, from the left: joint angles, predicted body
cage, pred upper cage, pred lower cage, 3D Gaussians, garment parts,
final image [81].

Jena et al. in [82] extended the skinning of the underlying
Skinned Multi-Person Linear (SMPL) geometry to arbi-
trary locations in the canonical space to model the human ar-

ticulation. Lei et al. similarly inGaussian Articulated Tem-
plate Models (GART) [83] is an approach for rendering
and capturing from monocular videos of non-rigidly ar-
ticulated subjects. GART explicitly approximates the shape
and appearance of a deformable subject by using a mixture
of moving 3D Gaussians. Hu et al. introduced GauHuman
in [84], a method that uses Gaussian Splatting in canonical
space and transforms 3D Gaussians to posed space using
linear blend skinning (LBS). This approach incorporates ef-
fective pose and LBS refinement modules to learn fine details
of 3D humans at minimal computational cost. To expedite
optimization, the authors initialize and prune 3D Gaussians
with a 3D human prior, employ splitting/cloning guided by
KL divergence, and introduce a novel merge operation.
Abdal et al. introduced Gaussian Shell Maps (GSMs)

in [85] as a framework that connects SOTA generator network
architectures with emerging 3D Gaussian rendering primi-
tives using an articulable multi shell–based scaffold. In this
setting, a CNN generates a 3D texture stack with features that
are mapped to the shells. The latter represent inflated and
deflated versions of a template surface of a digital human
in a canonical body pose. Instead of rasterizing the shells
directly, the authors sample 3DGaussians on the shells whose
attributes are encoded in the texture features.

2) Animatable
These approaches typically train pose-dependent Gaussian
maps to capture intricate dynamic appearances, including
finer details in clothing, resulting in high-quality avatars.
Some of these methods also support real-time rendering
capabilities.

Jiang et al. came up with HiFi4G in [86], this method
efficiently renders a realistic human. HiFi4G combines
3D Gaussian representation with non-rigid tracking, em-
ploying a dual-graph mechanism for motion priors and a
4D Gaussian optimization with adaptive spatial-temporal
regularizers. They achieved a compression rate of approxi-
mately 25 times and requiring less than 2MB of storage per
frame, HiFi4G excels in optimization speed, rendering qual-
ity, and storage overhead, as shown in Figure 10. It presents
a compact 4D Gaussian representation bridging Gaussian
Splatting and non-rigid tracking. However, dependencies on
segmentation, sensitivity to poor segmentation that causes
artifacts, and the need for per-frame reconstruction and mesh
tracking pose limitations. Future research may focus on ac-
celerating optimization processes and reducing GPU sorting
dependencies for broader deployment on web viewers and
mobile devices.
Li et al. in [87] leverages powerful 2D CNNs that learn

a parametric template from the input videos which is
adaptive to the wearing garments for modeling looser clothes
like dresses. The authors employ a powerful StyleGAN-
based CNN to learn the pose-dependent Gaussian maps for
modeling detailed dynamic appearances. Very similar no-
table works are by Moreau et al. [88], Kocabas et al. [89]
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FIGURE 10. 4D Gaussian rendering from HiFi4G [86].

and Pang et al. [90]. Zheng et al. in [91] proposes a fully
differentiable framework composed of an iterative depth
estimation module and a Gaussian parameter regression
module. The intermediate predicted depth map bridges the
two components and makes them promote mutually. Also,
the authors developed a real-time NVS system that achieves
2K-resolution rendering by directly regressing Gaussian pa-
rameter maps. Hu et al. in [92] came up with an approach
leveraging differentiable motion conditions, enabling the
joint optimization of motions and appearances during
avatar modeling. This addresses the persistent challenge of
inaccurate motion estimation in single view settings.

3) Head based
Previous head avatar methods have mostly relied on fixed
explicit primitives (mesh, point) or implicit surfaces (SDFs).
Gaussian Splatting based models will pave the way for
AR/VR and the rise of filter based application, that let the
user try on different makeup, shades, hairstyles etc.
Wang et al. leveraged canonical gaussians in [93], to repre-
sent dynamic scenes. Using explicit "dynamic" tri-plane as
an efficient container for parameterized head geometry,
aligned well with factors in the underlying geometry and
triplane, the authors obtain aligned canonical factors for the
canonical Gaussians. With a tiny MLP, factors are decoded
into opacity and spherical harmonic coefficients of 3D Gaus-
sian primitives. Quin et al. in [94] created hyper-realistic
head avatars with controllable view, pose, and expression.
During avatar reconstruction, the author optimize morphable
model parameters and Gaussian splat parameters simultane-
ously. The work demonstrated the animation capabilities of
avatar in various challenging scenarios. Dhamo et al. pro-
poses HeadGaS [95], a hybrid model extending the explicit
representation from 3D-GS with a base of learnable latent
features. These features can then be linearly blended with
low-dimensional parameters from parametric head models to
derive expression-dependent final color and opacity values.
Some example images are shown if Figure 11

To model the finer facial details and expression Xiang et al.
proposed FlashAvatar in [96] that uses geometric priors, and
used an initialization technique for reducing number of Gaus-
sian. Saito et al. [97] proposed relighting of faced model,
and Chen et al. in [98] introduced head avatars characterized
by Gaussian points with adaptable shapes, allowing for

FIGURE 11. HeadGaS framework generating realistic head avatars [95].

flexible topology.These points undergomovement according
to a Gaussian deformation field aligned with the target pose
and expression, enabling efficient deformation.

B. SIMULTANEOUS LOCALIZATION AND MAPPING
SLAM is a technique employed in autonomous vehicles to
concurrently build a map and determine the vehicle’s lo-
cation within that map. It enables vehicles to navigate and
map unknown environments. Visual SLAM (vSLAM), as the
name implies, relies on images from cameras and various
image sensors. This approach accommodates diverse camera
types, including simple, compound eye, and RGB-D cam-
eras, making it a cost-effective solution. Landmark detection,
facilitated by cameras, can be combined with graph-based
optimization, enhancing flexibility in SLAM implementation.
Monocular SLAM, a subset of vSLAMusing a single camera,
faces challenges in depth perception, which can be addressed
by incorporating additional sensors like encoders for odome-
try and inertial measurement units (IMUs). Key technologies
related to vSLAM encompass SFM, visual odometry, and
bundle adjustment. Visual SLAM algorithms fall into two
main categories: sparse methods, employing feature point
matching (e.g., Parallel Tracking and Mapping [117], ORB-
SLAM [118]), and dense methods, which utilize overall
image brightness (e.g., DTAM [119], LSD-SLAM [120],
DSO [121], SVO [122]).
GS-SLAM [68] by Yan et al. a novel approach to SLAM

by leveraging a 3D Gaussian representation and a differ-
entiable splatting rasterization pipeline, achieving real-time
tracking and mapping on GPU. This method shown in Figure
12 outperforms SOTA alternatives with a remarkable 100×
faster rendering FPS and superior full-image quality. GS-
SLAM strikes a balance between efficiency and accuracy
by employing a real-time differentiable splatting rendering
pipeline, offering accelerated map optimization and RGB-
D re-rendering compared to recent SLAM methods utilizing
neural implicit representations. The proposed adaptive expan-
sion strategy dynamically adjusts the 3DGaussian representa-
tion, efficiently reconstructing observed scene geometry and
improving mapping. This dynamic approach extends beyond
synthesizing static objects and contributes to reconstructing
entire scenes. The coarse-to-fine camera tracking technique
enhances runtime efficiency and robust pose estimation. GS-
SLAM demonstrates competitive performance on datasets
like Replica [29] and TUM-RGBD [123], showcasing its
efficacy in both reconstruction and localization with signifi-
cantly reduced time consumption. However, GS-SLAM’s de-
pendence on high-quality depth information for 3D Gaussian

16 VOLUME 11, 2023



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

initialization and updates may be a limitation in environments
lacking such data. Future work aims to address this challenge
by designing improved optimization methods for on-the-fly
updates of 3D Gaussian positions. Additionally, efforts will
be directed toward optimizing memory usage for large-scale
scenes through the incorporation of neural scene representa-
tions.

FIGURE 12. GS-SLAM Framework [68].

Splat, Track & Map 3D Gaussians, SplaTAM [69] by
Keetha et al. introduces an innovative approach to dense
SLAM, achieving precise camera tracking and high-fidelity
reconstruction in challenging real-world scenarios. This is
accomplished through online optimization of a unique vol-
umetric representation, 3D Gaussian Splatting, utilizing
differentiable rendering. The method demonstrates sub-
centimeter localization, even in texture-less environments
with substantial camera motion, a challenging scenario for
other state-of-the-art baselines. SplaTAM is the pioneering
dense RGB-D SLAM solution using 3D Gaussian Splatting,
representing the world as a set of 3D Gaussians for rendering
high-fidelity color and depth images. Despite its state-of-the-
art performance, the method exhibits sensitivity to motion
blur, large depth noise, and aggressive rotation, prompting
future exploration into temporally modeling these effects.
SplaTAM’s scalability to large-scale scenes through efficient
representations like OpenVDB [124] is noted, and the method
currently relies on known camera intrinsics and dense depth
for SLAM, suggesting future work could address reducing
these dependencies. The approach achieves a remarkable
rendering speed of 400 FPS for a resolution of 876×584,
showcasing its efficiency in generating photo-realistic views.

The work by Matsuki et al. [70] proposes 3D scene re-
construction using a single moving monocular or RGB-D
camera. Operating at 3 FPS, the SLAM method utilizes
Gaussians as the sole 3D representation, unifying accurate
tracking, mapping, and high-quality rendering. Key inno-
vations include formulating camera tracking through direct
optimization against 3DGaussians, enabling fast and robust
trackingwithout relying on offline SFMposes.The explicit
nature of Gaussians is leveraged for geometric verification
and regularization, addressing ambiguities in incremental 3D
dense reconstruction. The presented SLAM system achieves

state-of-the-art results in NVS, trajectory estimation, and
reconstruction of intricate details, including tiny and trans-
parent objects, thereby significantly advancing the fidelity
attainable by a live monocular SLAM system. The visual
representations showcase the system’s ability to capture com-
plex material properties and details, such as transparency and
thin structures, demonstrating its effectiveness in real-time
3D scene reconstruction.
Yugay et al. introduce Gaussian-SLAM in [71], a novel

dense SLAMmethod incorporatingGaussian splats as a scene
representation, enabling rapid, photo-realistic rendering of
both real-world and synthetic scenes. This approach achieves
unprecedented rendering quality, particularly evident in com-
plex real-world datasets like TUM-RGBD frames with intri-
cate details. Novel strategies for seeding and optimizing
Gaussian splats are proposed, facilitating their adaptation
frommulti-view offline scenarios to sequential monocular
RGBD input setups. The method extends Gaussian splats to
encode geometry and demonstrates competitive reconstruc-
tion performance and runtime. Gaussian-SLAM outperforms
existing solutions in rendering accuracy while maintaining a
favorable balance of memory and compute resource usage,
showcasing its efficacy for modern neural SLAM applica-
tions.

C. MESH EXTRACTION AND PHYSICS
Gaussian Splatting can be used in physics based simulation
and rendering. By addingmore parameters in the 3DGaussian
kernel velocity, strain, and other mechanical properties can
be modeled. This is why a variety of methods have been
developed in the few months involving simulation of physics
using Gaussian Splatting.
Xie et al. introduce a approach to 3DGaussian kinematics

based on continuummechanics, employing Partial Differ-
ential Equations (PDEs) in [99] to drive the evolution of
Gaussian kernels and their associated spherical harmonics.
This innovation allows for a unified simulation-rendering
pipeline, streamlining motion generation by eliminating the
need for explicit object meshing. Their method showcases
versatility through comprehensive benchmarks and experi-
ments across various materials, demonstrating real-time per-
formance in scenes with simple dynamics. The authors
presents PhysGaussian, a framework that seamlessly gen-
erates physics-based dynamics and photo-realistic ren-
derings simultaneously. While acknowledging limitations
such as the absence of shadow evolution in the framework
and the use of one-point quadrature for volume integrals, the
authors propose avenues for future work, including the adop-
tion of high-order quadratures in the Material Point Method
(MPM) and exploring the integration of neural networks for
more realistic modeling. This framework can be extended
to handle diverse materials like liquids and incorporate user
controls leveraging advancements in Large LanguageModels
(LLMs). Figure 13 shows the training process of PhysGaus-
sian framework. .;p-
Guedon et al. proposed a method [100] to address the
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FIGURE 13. PhysGaussian Framework training [99].

challenge of extracting a precise and rapidly obtainable
mesh from the widely adopted 3D Gaussian Splatting. While
Gaussian Splatting offers realistic rendering and quicker
training compared to NeRFs, mesh extraction from the
optimized and unorganized Gaussians proves difficult. The
key contribution involves introducing a regularization term
that encourages Gaussian alignment with the scene’s surface.
Leveraging this alignment, the authors present an efficient
algorithm employing Poisson reconstruction for rapid and
scalable mesh extraction, surpassing traditional methods like
Marching Cubes. Additionally, Guedon et al. introduce an
optional refinement strategy that binds Gaussians to themesh,
enabling joint optimization for seamless editing, sculpting,
animation, and relighting through Gaussian Splatting render-
ing. This method achieves the retrieval of an editable mesh for
realistic rendering within minutes, a significant improvement
over state-of-the-art SDFmethods that take hours, thereby en-
hancing rendering quality and offering versatile scene editing
capabilities.

Duisterhof et al. introduces MD-Splatting [101]. This
novel approach combines 3D tracking and NVS by lever-
aging video captures from multiple camera angles. MD-
Splatting utilizes Gaussian Splatting, employing a defor-
mation function based on neural-voxel encoding and a
multilayer perceptron to project Gaussians into metric
space. The incorporation of physics-inspired regularization
terms ensures trajectories with reduced errors. Empirical re-
sults demonstrate MD-Splatting’s superior performance in
simultaneous 3D metric tracking and NVS, achieving an
average improvement of 16%. The method is showcased on
six synthetic scenes with large deformations, shadows, and
occlusions, contributing a dataset to the research community.
While highlighting its achievements, the team acknowledges
the need for further exploration in real-world scenarios, con-
sidering factors like camera setup complexity and the ex-
tension to soft objects in larger environments as promising
avenues for future research.

Chen et al. introduces a novel pipeline in [125] that com-
bines the strengths of 3D-GS and neural implicit models
(NeuS) [126]. While previous methods often result in over-
smoothed depth maps or sparse point clouds, the proposed
approach leverages 3D Gaussian Splatting to generate dense
point clouds with intricate details. To overcome challenges
where the generated points may not precisely align with the
surface, the paper [125] introduces a scale regularizer to
enforce thin 3D Gaussians and refines the point cloud using

normal’s predicted by neural implicit models. This joint op-
timization of 3D-GS and NeuS enhances surface reconstruc-
tion, generating complete and detailed surfaces. The empir-
ical validation on Tanks&Temples datasets demonstrates the
effectiveness of the proposed NeuSG framework, showcasing
significant improvements over previous methods in surface
reconstruction quality.

D. EDITABLE
Gaussian Splatting has also extend it’s wings to 3D editing
and point manipulation of a scene. Even prompt based 3D
editing of a scene is possible using the latest advancement that
will be discussed. These methods not only represent the scene
as 3D Gaussians, but also have a semantic and contectual
understanding of the scene.
In the study [102] Chen et al. introduces GaussianEditor,

a novel 3D editing algorithm based onGaussian Splatting,
designed to overcome the limitations of traditional 3D
editing methods. While conventional methods relying on
meshes or point clouds struggle with realistic depiction,
implicit 3D representations like NeRF face challenges
related to slow processing speeds and limited control.
GaussianEditor addresses these issues by leveraging 3D-GS,
enhancing precision and control through Gaussian seman-
tic tracing and introducing Hierarchical Gaussian Splatting
(HGS) for stabilized and refined results under generative
guidance. The algorithm includes a specialized 3D inpainting
approach for efficient object removal and integration, show-
casing superior control, efficacy, and rapid performance in
extensive experiments. Figure 14 shows various text promts
tested by Chen et al. GaussianEditor marks a significant
advancement in 3D editing, offering enhanced effectiveness,
speed, and controllability. The contributions of the study
include the introduction of Gaussian semantic tracing for
detailed editing control, the proposal of HGS for stable con-
vergence under generative guidance, the development of a
3D inpainting algorithm for swift object removal and addi-
tion, and extensive experiments demonstrating the method’s
superiority over previous 3D editing approaches. Despite its
advancements, GaussianEditor relies on 2D diffusion models
for effective supervision, posing limitations in addressing
complex prompts, a common challenge shared with other 3D
editing methods based on similar models.

FIGURE 14. GaussianEditor changing scenes with various text
prompts [102].

In the study [103] Fang et al. introduces a system-
atic framework designed for delicate 3D scene editing
based on 3D Gaussian Splatting, addressing limitations
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of current diffusion models. Unlike existing methods, this
method enables precise and localized editing for 3D scenes
by leveraging the explicit properties of 3D Gaussians. The
framework extracts the region of interest (RoI) from text in-
structions, aligns it with 3D Gaussians, and utilizes the Gaus-
sian RoI for control during the editing process. GaussianEdi-
tor achieves more accurate and exquisite editing results com-
pared to previous methods, such as Instruct-NeRF2NeRF,
while boasting faster training speeds, completing within 20
minutes on a single V100 GPU. The contributions include
being one of the first systematic methods for delicate 3D
scene editing based on 3D Gaussian Splatting, proposing
techniques for precise RoI localization, and achieving supe-
rior editing results with significantly reduced training time.
However, some challenges persist, such as discrepancies in
scene description generation from different views and poten-
tial difficulties in scenes where grounding segmentation or
diffusion models fail. Future optimizations will target these
issues, and the paper suggests extending Gaussian Splatting
to dynamic scenes as a potential avenue for future work.

Huang et al. present Point’n Move in [127], a technique
that utilizes 3D-GS for interactive object manipulation
featuring exposed region inpainting. The method facilitates
intuitive object selection, high-quality inpainting, and real-
time editing through a dual-stage self-prompting mask prop-
agation process. Despite its effectiveness in both forward-
facing and 360° scenes, limitations include a focus on geome-
try editing without handling lighting or texture, and potential
darkening of inpaintings due to precision issues in segmenta-
tion.

In [41], Yi et al. extend Gaussian Splatting with Gaus-
sian Grouping, addressing limitations in appearance and
geometry modeling. Identity Encoding facilitates object in-
stance or stuff membership grouping, allowing efficient seg-
mentation supervised by 2D mask predictions. Compared to
implicit NeRF representations, Gaussian Grouping demon-
strates reconstructive, segmentative, and editable capabilities
in 3D scenes. A local Gaussian Editing scheme showcases
effectiveness in diverse scene editing applications.

Cen et al. introduce Segment Any 3D Gaussians (SAGA)
in [128] for interactive 3D segmentation, integrating 2D
segmentation results into 3D Gaussians. Achieving nearly
1000× acceleration compared to previous state-of-the-art,
SAGA provides real-timemulti-granularity segmentation, ac-
commodating prompts like points, scribbles, and 2D masks.
Challenges include ambiguity in 3DGS-learned Gaussians
and noise in SAM-extracted masks, suggesting areas for fu-
ture improvements.

Zou et al. integrate 3D Gaussian Splatting with feature
field distillation, advancing 3D scene representation for se-
mantic tasks [129]. The framework achieves notable effi-
ciency gains, being up to 2.7× faster than NeRF-based ap-
proaches. Experimental results demonstrate improved mIoU
for semantic segmentation tasks and introduce novel capa-
bilities like point and bounding-box prompting. While ac-
knowledging limitations, the research signifies a significant

step forward in explicit 3D feature field representation for
interactive and semantically enhanced 3D scene applications.

VI. DISCUSSION
Traditionally, 3D scenes have been represented using meshes
and points due to their explicit nature and compatibility
with rapid GPU/CUDA-based rasterization. However, recent
advancements like NeRF methods settles on for continu-
ous scene representations, employing techniques such as
multi layerd perceptron optimization through volumetric ray-
marching for novel view synthesis. While continuous repre-
sentations aid optimization, the stochastic sampling neces-
sary for rendering introduces costly noise. Gaussian Splatting
bridges this gap by leveraging a 3D Gaussian representation
for optimization, achieving state-of-the-art visual quality and
competitive training times. Additionally, a tile-based splatting
solution ensures real-time rendering with top-tier quality.
Gaussian Splatting has delivered some of best results in term
of quality and efficiency while rendering 3D scenes.
Gaussian Splatting has evolved to handle dynamic and

deformable objects by modifying its original representation.
This involves incorporating parameters like 3D position, ro-
tation, scaling factor, and spherical harmonics coefficients
for color and opacity. Recent progress in this domain in-
cludes the introduction of a sparsity loss to encourage ba-
sis trajectory sharing, a dual-domain deformation model to
capture time-dependent residuals, and Gaussian Shell Maps
linking generator networks with 3D Gaussian rendering. Ef-
forts have also been made to address challenges such as
non-rigid tracking, avatar expression variation, and rendering
realistic human performance efficiently. These advancements
collectively aim for real-time rendering, optimized efficiency,
and high-quality outcomes when dealing with dynamic and
deformable objects.
In other aspect, diffusion and Gaussian Splatting synergize

to create 3D objects from text prompts. Diffusion models,
a type of neural network, learn to generate images from
noisy inputs by reversing the process of image corruption
through a sequence of increasingly clean images. In the text-
to-3D pipeline, a diffusion model generates an initial 3D
point cloud from a text description, which is then transformed
into Gaussian spheres using Gaussian Splatting. Rendered
Gaussian spheres produce the final 3D object image. Ad-
vances in this field include using structured noise to tackle
multi-view geometric challenges, introducing a variational
Gaussian Splatting model to address convergence issues, and
optimizing denoising scores for enhanced diffusion priors,
aiming for unparalleled realism and performance in text-
based 3D generation.
Gaussian Splatting has been extensively applied to the

creation of digital avatars for AR/VR applications. This in-
volves capturing subjects from a minimal number of view-
points and constructing 3D models. The technique has been
used to model human body articulation, joint angles, and
other parameters, enabling the generation of expressive and
controllable avatars. Advancements in this area include the
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development of methods to capture high-frequency facial
details, preserve exaggerated expressions, and efficiently de-
form avatars. Additionally, hybrid models have been pro-
posed, combining explicit representations with learnable la-
tent features to achieve expression-dependent final color and
opacity values. These advancements aim to enhance the ge-
ometry and texture of generated 3D models, catering to the
increasing demand for realistic and controllable avatars in
AR/VR applications.

Gaussian Splatting also finds versatile applications in
SLAM, providing real-time tracking and mapping capabili-
ties on GPUs. By employing a 3D Gaussian representation
and a differentiable splatting rasterization pipeline, it achieves
swift and photorealistic rendering of both real-world and
synthetic scenes. The technique extends to mesh extraction
and physics-based simulation, allowing for the modeling of
mechanical properties without explicit object meshing. Ad-
vancements in continuum mechanics and PDEs have enabled
the evolution of Gaussian kernels, streamlining motion gen-
eration. Notably, optimizations involve efficient data struc-
tures like OpenVDB, regularization terms for alignment, and
physics-inspired terms for reduced errors, enhancing the over-
all efficiency and accuracy. Other works have been done on
compression, and improving rendering efficiency of Gaussian
Splatting.

A. COMPARISON

From Table 2, it is clear that at the time of writing, Gaussian
Splatting is the closest option to real time rendering and
dynamic scene representation. Occupancy network are not at
all tailored for NVS use case. Photogrammetry is ideal for
creating highly accurate and realistic models with a strong
sense of context. NeRFs excel in generating novel views
and realistic lighting effects, offering creative freedom and
handling complex scenes. Gaussian Splatting shines in its
real-time rendering capabilities and interactive exploration,
making it suitable for dynamic applications. Each method has
its niche and complements the others, offering a diverse range
of tools for 3D reconstruction and visualization.

TABLE 2. Comparison of Photogrammetry, Occupancy Network, NeRFs,
and Gaussian Splatting.

Method Advantages Disadvantages

Photogra-
mmetry

Accurate measurements,
detailed surface textures,
realistic context

Processing time, computa-
tional resources

Occupancy
Network

Efficient representation,
handles occlusions well,
scalable

Limited to discrete occu-
pancy information, strug-
gle with detailed geometry

NeRFs
Novel view generation, re-
alistic lighting effects, cre-
ative freedom

High training time, com-
putational resources, ac-
cessibility

Gaussian
Splatting

Real-time rendering, inter-
active exploration, accu-
rate representations

Less photorealistic

B. CHALLENGES AND LIMITATIONS
Although Gaussian Splatting is a very robust technique, it
have some caveats. Some of these are listed below:

1) Computational complexity: Gaussian Splatting re-
quires evaluating Gaussian functions for each pixel,
which can be computationally intensive, especially
when dealing with a large number of points or particles.

2) Memory usage: Storing intermediate results for Gaus-
sian Splatting, such as the weighted contributions of
each point to neighboring pixels, can consume a sig-
nificant amount of memory.

3) Edge artifacts: Gaussian Splatting can produce unde-
sirable artifacts near edges or high-contrast regions in
the image, such as ringing or blurring.

4) Performance vs. accuracy trade-off:Achieving high-
quality results may require using a large kernel size or
evaluatingmultiple Gaussian functions per pixel, which
impacts performance.

5) Integration with other rendering techniques: Inte-
grating Gaussian Splatting with other techniques like
shadow mapping or ambient occlusion while maintain-
ing performance and visual coherence can be complex.

C. FUTURE DIRECTIONS
Real-time 3D reconstruction techniques will enable several
capabilities in computer graphics and related fields, such as
interactively exploring 3D scenes or models in real time, ma-
nipulating viewpoints and objects with immediate feedback.
It will also enable rendering of dynamic scenes with moving
objects or changing environments in real time, enhancing
realism and immersion. Real-time 3D reconstruction can be
utilized in simulations and training environments, providing
realistic visual feedback for virtual scenarios in fields such as
automotive, aerospace, andmedicine. It will also support real-
time rendering of immersive AR and VR experiences, where
users can interact with virtual objects or environments in
real time. Overall, real-time Gaussian Splatting enhances the
efficiency, interactivity, and realism of various applications in
computer graphics, visualization, simulation, and immersive
technologies.

VII. CONCLUSION
In this paper, we discuss various functional and applica-
tional aspects related to Gaussian Splatting for 3D reconstruc-
tion and novel view synthesis. It covers topics such as dy-
namic and deformationmodeling, motion tracking, non-rigid-
/deformable objects, expression/emotion variation, diffusion
for text-based generation, denoising, optimization, avatars,
animatable objects, head-based modeling, simultaneous lo-
calization and planning, mesh extraction and physics, opti-
mization techniques, editing capabilities, rendering methods,
compression, and more.
Specifically, the paper delves into the challenges and ad-

vancements in image-based 3D reconstruction, the role of
learning-based methods in improving 3D shape estimation,

20 VOLUME 11, 2023



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and the potential applications and future directions of Gaus-
sian Splatting techniques in handling dynamic scenes, in-
teractive object manipulation, 3D segmentation, and scene
editing.

Gaussian Splatting has transformative implications across
diverse fields, including computer-generated imagery ,
VR/AR, robotics, film and animation, automotive design, re-
tail, environmental studies, and aerospace applications. How-
ever, it is important to note that Gaussian Splatting may
have limitations in terms of achieving photorealism compared
to other methods such as NeRFs. Additionally, challenges
related to overfitting, computational resources, and limita-
tions in rendering quality should be considered. Despite these
limitations, ongoing research and advancements in Gaussian
Splatting continue to address these challenges and further
improve the method’s effectiveness and applicability.
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