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A NOTE ON ADJOINT REALITY IN SIMPLE COMPLEX LIE

ALGEBRAS

KRISHNENDU GONGOPADHYAY AND CHANDAN MAITY

Abstract. Let G be a Lie group with Lie algebra g. In [GM], an infinitesimal version
of the notion of classical reality, namely adjoint reality, has been introduced. An element
X ∈ g is adjoint real if −X belongs to the adjoint orbit of X in g. In this paper, we
investigate the adjoint real and the strongly adjoint real semisimple elements in complex
simple classical Lie algebras. We also prove that every element in a complex symplectic
Lie algebra is adjoint real.

1. Introduction

In the group theoretical set-up an element g in a group G is called real or reversible if
it is conjugate to g−1 in G. An element g is strongly real or strongly reversible in G if it
is conjugate to g−1 by an involution. Classification of real and strongly real elements in
a group is a problem of wide interest; see [OS], [ST].

Let G be a Lie group with Lie algebra g. Consider the natural Ad(G)-representation
of G on its Lie algebra g

Ad: G −→ GL(g) .

For X ∈ g, the adjoint orbit of X in g is defined as OX := {Ad(g)X | g ∈ G}. If X ∈ g

is semisimple, then OX is called semisimple orbit. Understanding the adjoint orbits in a
semisimple Lie group has been an intense area of research, cf. [CM], [Mc]. For various
results related to semisimple orbits, see [CM, Chapter 2].

In [GM], the authors introduced the notion of adjoint reality which we recall now.
Consider the Ad(G)-representation of G on g. For a linear Lie groupG, Ad(g)X = gXg−1.

Definition 1.1 ([GM, Definition 1.1]). An element X ∈ g is called AdG-real if −X ∈ OX .
An AdG-real element is called strongly AdG-real if −X = Ad(τ)X for some τ ∈ G so that
τ 2 = Id.

This is an infinitesimal analogue of the reality in Lie groups. It was shown in [GM] that
the reality of the unipotent elements in a Lie group and the AdG-reality of the nilpotent
elements in the corresponding Lie algebras are equivalent via the exponential map. This
correspondence was used to classify unipotent real elements in classical Lie groups in
[GM]. However, this correspondence does not necessarily hold in general. Nevertheless,
classifying the adjoint reality in Lie agebras is a problem of independent algebraic interest,
and it also helps to understand the real and strongly real elements in the image of the
exponential map, thus providing understanding of reality in the Lie group to a large
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2 K. GONGOPADHYAY AND C. MAITY

extent. The above notion of adjoint reality has turned useful in classifying the strongly
real elements in GLn(H), GLn(D) ⋉ Dn for D = R, C or H, respectively, cf. [GLM1],
[GLM2].

With this motivation, it is a natural problem to investigate the adjoint reality for
semisimple orbits. The aim of this note is to classify the adjoint real and strongly adjoint
real semisimple elements in the complex simple classical Lie algebras; see Theorem 3.5,
Theorem 3.9, Theorem 3.12. The adjoint real nilpotent elements in these Lie algebras are
classified in [GM].

By the Jordan decomposition, every element in a semisimple Lie algebra decomposes
as a unique sum of a semisimple and a unipotent element. Thus, classifying an arbi-
trary adjoint real element in a Lie algebra is intimately related to such classification of
semisimple and nilpotent elements. We demonstrate this for the symplectic Lie algebras,
i.e. semisimple Lie algebras of type Cn. Recall that symplectic group plays an vital role
in many branch of Mathematics. Thus the characterisation of adjoint real elements in
the symplectic Lie algebra are fundamentally important which is done in Theorem 4.2
by using description of the centralizers. We note here that classifying strongly real ele-
ments using this idea might require further technicalities as we have seen for the type An

Lie algebras in [GLM3]. Other than Lie algebras of type An and Cn, adjoint reality for
arbitrary elements in other semisimple Lie algebras are yet to be fully understood.

Given X ∈ g one defines the following subsets of G. The centralizer and the reverser
of an element X in G are respectively defined as

ZG(X) := {s ∈ G | sXs−1 = X}, and RG(X) := {r ∈ G | rXr−1 = −X}.

Note that ZG(X) is a subgroup but the set RG(X) is a right coset of the centralizer
ZG(X). Thus the reversing symmetry group or the extended centralizer EG(X) :=
ZG(X)∪RG(X) is a subgroup of G in which ZG(X) has index 1 or 2. The group EG(X)
is an extension of ZG(X) of degree at most two. In the group theoretical set-up we refer
to [OS, §2.1.4], [BR] on reversing symmetries for groups.

To find the reversing symmetric group EG(X), it is enough to construct one reversing
element which is not in the centralizer. We have explicitly constructed an element in
RG(X) for each adjoint real semisimple element. Recall that for a simply connected
complex semisimple Lie group G, the centralizer ZG(X) of a semisimple element X is
connected; see [CM, Theorem 2.3.3, p.28]. Thus the centralizer is determined by its
Lie algebra which has a nice description in terms of Cartan subalgebra and certain root
vectors; see [CM, Lemma 2.1.2, p. 20]. Therefore, our construction also classifies the
reverser of adjoint real semisimple elements in simple Lie groups.

2. Notation and background

The Lie groups will be denoted by the capital letters, while the Lie algebra of a Lie
group will be denoted by the corresponding lower case German letter. For a subgroup
H of G and a subset S of g, the subgroup ZH(S) of H that fixes S pointwise under the
adjoint action is called the centralizer of S in H . Similarly, for a Lie subalgebra h ⊂ g and
a subset S ⊂ g, by zh(S) we will denote the subalgebra of h consisting of all the elements
that commute with every element of S. For A ∈ Mn(C), A

t denotes the transpose of the
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matrix A. Let In denote the n× n identity matrix, and

Jn :=

(
−In

In

)

. (2.1)

Here we will work with the following classical simple Lie groups and Lie algebras over C:

SLn(C) := {g ∈ GLn(C) | det(g) = 1}, sln(C) := {z ∈ Mn(C) | tr(z) = 0};
SO(n,C) := {g ∈ SLn(C) | gtg = In}, so(n,C) := {z ∈ sln(C) | ztIn + Inz = 0};
Sp(n,C) := {g ∈ SL2n(C) | gtJng = Jn}, sp(n,C) := {z ∈ sl2n(C) | ztJn + Jnz = 0}.

For any group H , let Hn
∆ denote the diagonally embedded copy of H in the n-fold direct

product Hn. Similarly, for a matrix A ∈ Mn(C), let A
n
∆ denote the diagonally embedded

copy of A in the n-fold direct sum A ⊕ · · · ⊕ A. For a pair of disjoint ordered sets
(v1, . . . , vn) and (w1, . . . , wm), the ordered set (v1, . . . , vn, w1, . . . , wm) will be denoted
by

(v1, . . . , vn) ∨ (w1, . . . , wm) .

For a Lie algebra g over C, a subset {X,H, Y } ⊂ g is said to be a sl2-triple if X 6= 0,
[H, X ] = 2X , [H, Y ] = −2Y and [X, Y ] = H . Note that for a sl2-triple {X,H, Y } in
g, SpanC{X,H, Y } is isomorphic to sl2(C). We now recall a well-known result due to
Jacobson and Morozov.

Theorem 2.1 (Jacobson-Morozov, cf. [CM, Theorem 9.2.1]). Let X ∈ g be a non-zero
nilpotent element in a semisimple Lie algebra g over C. Then there exist H, Y ∈ g such
that {X,H, Y } is a sl2-triple.

3. Adjoint reality for semisimple elements

Let G be a complex simple Lie group with Lie algebra g. Let H ∈ g be a semisimple
element, and h be a Cartan subalgebra in g. Further we may assume H ∈ h as Ad(g)(H) ∈
h for some g ∈ G.

3.1. Semi-simple elements in sln(C). Let g := sln(C) and h be the subalgebra con-
sisting of all diagonal matrices in g. Then h is a Cartan subalgebra in g.

Lemma 3.1. Let H be a semisimple element in gln(C). Then H is AdGLn(C)-real in
gln(C) if and only if whenever λ is an eigenvalue of H, −λ is also an eigenvalue of H
with the same multiplicity.

Remark 3.2. A semisimple element H ∈ gln(C) is AdGLn(C)-real if and only if H is
AdSLn(C)-real in sln(C). The analogous statement is also true in the group theoretic
sense; see [OS, p. 77].

Theorem 3.3. Every real semisimple element in Lie( PSLn(C)) is strongly AdPSLn(C)-real.

Proof. Let H ∈ Lie( PSLn(C)) be a AdPSLn(C)-real semisimple element. We may

assume H = diag(h1, . . . , hm,−h1, . . . ,−hm, 0, . . . , 0). Then σ := diag(Jm,
√
−1 Is) will

conjugate H and −H , where 2m+ s = n, and Jn is as in (2.1). �
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Example 3.4. Consider the semi-simple element H = diag(x1,−x1). Let g ∈ GL2(C) so
that gH = −Hg. Then g is of the form ( 0 b

c 0 ). Hence H is a strongly AdGL2(C)-real element
in gl2(C), and is an AdSL2(C)-real element but not strongly AdSL2(C)-real in sl2(C). Note
that g ∈ Sp(1,C) if bc = −1. Similarly, H is a AdSp(1,C)-real element but not strongly
AdSp(1,C)-real element in sp(1,C). �

The next result classifies strong AdSLn(C)-reality in the Lie algebra sln(C); see [GLM3,
Proposition 2.5]. Here we provide a detailed proof.

Theorem 3.5. An AdSLn(C)-real semisimple element in sln(C) is strongly AdSLn(C)-real if
and only if either 0 is an eigenvalue or n 6≡ 2 (mod 4).

Proof. Let H ∈ sln(C) be a AdSLn(C)-real semisimple element. If 0 is an eigenvalue
of H , then using Example 3.4 it follows that H is strongly AdSLn(C)-real. Suppose 0
is not an eigenvalue of H , and n 6≡ 2 (mod 4), then n = 4m for m ∈ N and we can
assume H = diag(h1, . . . , h2m,−h1, . . . ,−h2m). Then, H and −H will be conjugated by
g =

(
I2m

I2m

)
.

Next assume that H is strongly AdSLn(C)-real and 0 is not an eigenvalue of H . We will
show n ∈ 4N. Without loss of generality, we can assumeH = diag(h1, . . . , hm,−h1, . . . ,−hm)
and gH = −Hg for some involution. Let ej be the standard column vector in Cn with 1
in jth place and 0 elsewhere. For 1 ≤ j ≤ m,

Hgej = −gHej = −ghjej = −hjgej.

Let Vj := Cej ⊕ Cgej and Cj := {ej , gej}. Since g2 = I2, g(Vj) ⊂ Vj . Then {ej , gej | 1 ≤
j ≤ m} forms a basis of C2m. Set C := C1 ∨ · · · ∨ Cm. Then the matrix [g]C is a 2 × 2
block-diagonal matrix and det [g]C = (−1)m. As det g = 1, it follows that m ∈ 2N. This
completes the proof. �

3.2. Semi-simple elements in o(n,C) and so(n,C). Up to conjugacy, any semisimple
element in o(n,C) or so(n,C) belongs to the following Cartan subalgebra h, see [Kn, p.
127]:

h :=

{

diag(H1, . . . , Hm, 0) if n = 2m+ 1

diag(H1, . . . , Hm) if n = 2m
, whereHj =

(
0 xj

−xj 0

)

, xj ∈ C. (3.1)

Example 3.6. Consider H = ( 0 x
−x 0 ) ∈ so(2,C) = o(2,C), where x ∈ C. Let g ∈ GL2(C)

so that gHg−1 = −H . Then g is of the form
(
a b
b −a

)
. Hence, det g = −a2 − b2, and

ggt = g2 = (− det g)I2. Thus, one can choose g ∈ O(2,C) with det g = −1. This shows
that H is a AdO(n,C)-real, as well as strongly AdO(n,C)-real, element in o(2,C) but not
AdSO(n,C)-real in so(2,C). �

The following result follows from the construction done in the above example.

Lemma 3.7. Every semisimple element in o(n,C) is AdO(n,C)-real.

Next we investigate strongly AdO(n,C)-real elements in o(n,C).

Proposition 3.8. Every semisimple element in o(n,C) is strongly AdO(n,C)-real.
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Proof. Enough to consider the elements of h. For the elements in h one can easily
construct the required involution using the Example 3.6. �

Now we classify the strongly AdSO(n,C)-real semisimple element in so(n,C).

Theorem 3.9. Let H ∈ so(n,C) be a semisimple element. ThenH is a strongly AdSO(n,C)-
real if and only if either 0 is an eigenvalue of H or n 6≡ 2 (mod 4).

Proof. Since H is semisimple, there exists σ ∈ SO(n,C) such that Ad(σ)H =
diag(H1, . . . , Hm, 0, . . . , 0

︸ ︷︷ ︸

r-many

), r ≥ 1 where Hj is as in (3.1).

First assume that 0 is an eigenvalue of H . Let g := diag(I1,1, . . . , I1,1
︸ ︷︷ ︸

m-many

, Ir), where I1,1 :=

diag(1,−1). Then Ad(σ−1gσ)H = −H . Note that g2 = In. If det g = 1, then we are
done. Otherwise replace g by diag(I1,1, . . . , I1,1, Ir−1,−1) to get the required involution
in SO(n,C). Next assume that 0 is not an eigenvalue, and n 6≡ 2 (mod 4). Thus n ≡ 0
(mod 4), and hence up to conjugacy H is of the form diag(H1, . . . , H2k), 4k = n. By
choosing an involution g as above with m = 2k, r = 0, we have that H is strongly
AdSO(n,C)-real.

Next suppose that H is strongly AdSO(n,C)-real. Further assume that 0 is not an eigen-
value of H , and H = diag(H1, . . . , Hm) where Hj is as in (3.1). Let ej be the stan-
dard column vector in Cn. Then e2j−1 +

√
−1e2j and g(e2j−1 +

√
−1e2j) are eigenvector

of H corresponding to the eigenvalues
√
−1xj and −

√
−1xj , respectively. Let Vj :=

C(e2j−1+
√
−1e2j)⊕Cg(e2j−1+

√
−1e2j), and Cj := {e2j−1+

√
−1e2j , g(e2j−1+

√
−1e2j)}.

Since g2 = I2, g(Vj) ⊂ Vj . Then {e2j−1 +
√
−1e2j , g(e2j−1+

√
−1e2j) | 1 ≤ j ≤ m} forms

a basis of Cn. Set C := C1 ∨ · · · ∨ Cm. Then the matrix [g]C is a 2 × 2 block-diagonal
matrix and det [g]C = (−1)m. As det g = 1, it follows that m ∈ 2N. This completes the
proof. �

3.3. Semi-simple elements in sp(n,C). Recall that in Example 3.4, diag(x,−x) is not
strongly AdSp(1,C)-real in but we can choose a conjugating involution g from PSp(1,C).
Thus, we will first consider the semisimple element in the Lie algebra of PSp(n,C). Let
h := {diag(h1, . . . , hm,−h1, . . . ,−hm) | hj ∈ C}.
Theorem 3.10. Every semisimple element in Lie (PSp(n,C)) is strongly AdPSp(n,C)-real.

Proof. Let X ∈ Lie (PSp(n,C)). Then Ad(g)X ∈ h for some g ∈ PSp(n,C). Thus we
define required involution using Example 3.4. �

The following corollary is immediate.

Corollary 3.11. Every semisimple element in sp(n,C) is AdSp(n,C)-real.

Theorem 3.12. A semisimple element in sp(n,C) is strongly AdSp(n,C)-real if and only
if the multiplicity of each non-zero eigenvalue is even.

Proof. Let H be a strongly real semisimple element in sp(n,C). We can assume
H = diag(h1, . . . , hn,−h1, . . . ,−hn), and gH = −Hg for some involution g ∈ Sp(n,C).
Suppose hj 6= 0 and multiplicity of hj is m. Let Cj := {ej1, . . . , ejm} be an ordered basis of
the eigenspace of H corresponding to the eigenvalue hj . Then Cn+j := {en+j1, . . . , en+jm}
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is an ordered basis of the eigenspace corresponding to the eigenvalue −hj . Let Vj be the
C-span of Cj ∨ Cn+j. Then the involution g keeps Vj invariant and (g|Vj

)tJm(g|Vj
) = Jm,

where Jm is as in (2.1). As H(gejl) = −hjgejl for 1 ≤ l ≤ m, we can write

[g]Cj∨Cn+j
:=

(
0 B
C 0

)
, for someB,C ∈ GLm(C) . (3.2)

Since g|Vj
is an involution and (g|Vj

)tJm(g|Vj
) = Jm, it follows that C−1 = B = −Bt.

Hence, m (the multiplicity of hj) has to be even.

Next assume that multiplicity of each non-zero eigenvalue is even. Can assume any
semisimple element H = diag(h1, . . . , hn,−h1, . . . ,−hn), where h2j−1 = h2j for j =

1, . . . , n/2. In this case to define a required involution g, set B :=





J1
...

J1



 in

(3.2). This completes the proof. �

4. AdSp(n,C)-reality in sp(n,C)

The aim of this section is to prove that every element in sp(n,C) is adjoint real. For
this, we need to recall some known construction and results, cf. [BCM1]. The structure
of the centralizer of nilpotent elements play an important role here.

Let 0 6= X ∈ sp(n,C) be a nilpotent element. Let a be a sl2-triple in sp(n,C) containing
X ; see Theorem 2.1. Note that C2n is C-module over a. By decomposing C

2n as direct
sum of irreducible a-module, let Nd := {d1, . . . , ds} be the dimensions of irreducible a-
modules. Let M(d − 1) denote the sum of all C-subspaces of C2n which are irreducible
a-submodule of dimension d. Then M(d−1) is the isotypical component of C2n containing
all the irreducible submodules of C2n with highest weight d− 1. Let

L(d− 1) := SpanC{v ∈ M(d− 1) | weight of v is 1− d } .
Then it follows that M(d− 1) = L(d− 1)⊕XL(d− 1)⊕· · ·⊕Xd−1L(d− 1); see [BCM1,
Lemma A.1]. Let td := dimC L(d − 1). Then

∑

d∈Nd
dtd = 2n, and let {X lvdj | 0 ≤ l <

d, 1 ≤ j ≤ td, d ∈ Nd} be a basis of C2n as constructed in [BCM1, Lemma A.6]. We need
to fix an ordering of the above basis. Let (vd1 , . . . , v

d
td
) be an ordered C-basis of L(d− 1)

for d ∈ Nd. Then it follows that

Bl(d) := (X lvd1 , . . . , X
lvdtd)

is an ordered C-basis of X lL(d− 1) for 0 ≤ l ≤ d− 1 with d ∈ Nd. Define

B(d) := B0(d) ∨ · · · ∨ Bd−1(d) ∀ d ∈ Nd , and B := B(d1) ∨ · · · ∨ B(ds) .
Let 〈·, ·〉 : C

2n × C
2n −→ C be the symplectic form given by 〈x, y〉 := xtJny. Define

another form on L(d − 1) below, as in [CM, p. 139],

(·, ·)d : L(d− 1)× L(d− 1) −→ C ; (v, u)d := 〈v , Xd−1u〉 . (4.1)

The following result is due to Springer-Steinberg, which describes the structure of the
centralizer of the sl2-triple in Sp(n,C) and sp(n,C).

Lemma 4.1 (cf. [CM, Theorem 6.1.3], [BCM1, Lemma 4.4]). The following isomorphisms
hold:
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(1) If a is a sl2-triple in sp(n,C), then

ZSp(n,C)(a) =







g ∈ SL(C2n)

∣
∣
∣
∣
∣
∣
∣

g(X lL(d− 1)) ⊂ X lL(d− 1),
[
g|XlL(d−1)

]

Bl(d)
=

[
g|L(d−1)

]

B0(d)
, (gx, gy)d = (x, y)d

for all d ∈ Nd, 0 ≤ l ≤ d− 1, and x, y ∈ L(d − 1)







;

here (·, ·)d is as in (4.1).
(2) In particular,

ZSp(n,C)(a) ≃
{

g ∈
∏

d∈Nd

GL(L(d− 1))
∣
∣ (gx, gy)d = (x, y)d, χd

(g) = 1
}

≃
{ ∏

d∈Od

Sp(td/2, C)
d
∆ ×

∏

d∈Ed

O(td, C)
d
∆

}

. (4.2)

(3)

zsp(n,C)(a) =







A ∈ sl(C2n)

∣
∣
∣
∣
∣
∣
∣

A(X lL(d− 1)) ⊂ X lL(d− 1),
[
A|XlL(d−1)

]

Bl(d)
=

[
A|L(d−1)

]

B0(d)
, (Ax, y)d + (x,Ay)d = 0

for all d ∈ Nd, 0 ≤ l ≤ d− 1, and x, y ∈ L(d− 1)







.

(4) In particular,

zsp(n,C)(a) ≃
{( ⊕

d∈Od

sp(td/2, C)
d
∆

) ⊕ ( ⊕

d∈Ed

o(td, C)
d
∆

)}

.

Now we will characterize the AdSp(n,C)-real elements in sp(n,C).

Theorem 4.2. Every element of sp(n,C) is AdSp(n,C)-real.

Proof. Let X ∈ sp(n,C), and X = Xs + Xn be the Jordan decomposition of X
where Xs and Xn are the semisimple and nilpotent part of X , respectively. In view of
Corollary 3.11 and [GM, Lemma 4.2], we may further assume that Xs 6= 0, Xn 6= 0. We
will construct below two elements σ and τ in Sp(n,C) so that

• σXnσ
−1 = −Xn and σXsσ

−1 = Xs,
• τXsτ

−1 = −Xs and τXnτ
−1 = Xn.

Then στ will do the job, i.e., στX(στ)−1 = −X .

Construction of σ. Define σ ∈ GL (C2n) below, as done in [GM, (4.3)] :

σ(X lvdj ) :=

{

(−1)lX lvdj if d ∈ Od ,

(−1)l
√
−1X lvdj if d ∈ Ed .

(4.3)

Note that σXn = −Xnσ, and 〈σx, σy〉 = 〈x, y〉 for all x, y ∈ C2n. This shows that
σ ∈ Sp(n,C); cf. [GM, Section 4.3].

The element Xs is a semisimple element and commutes with Xn, and zsp(n,C)(a) is
reductive part (Levi part) of zsp(n,C)(Xn); see [CM, Lemma 3.7.3]. Thus, Xs ∈ zsp(n,C)(a).
Write [Xs|L(d−1)]B0

d
:= Xsd. Then using Lemma 4.1(3), Xs = ⊕d∈Nd

(Xsd)
d
∆. Also [σ]B0(d)

is a scalar matrix; see (4.3). Thus from Lemma 4.1(3), it follows that σXsσ
−1 = Xs.
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Construction of τ . Note that

Xsd ∈
{

sp(td/2, C) for θ ∈ Od

o(td, C) for θ ∈ Ed .

In view of Corollary 3.11 and Proposition 3.8, there exists τd ∈
{

Sp(td/2, C) for θ ∈ Od

O(td, C) for θ ∈ Ed

such that τdXsdτ
−1
d = −Xsd for all d ∈ Nd. Finally set τ := χ(τd), where χ is an

isomorphism in (4.2); see [BCM2, Section 3.4] for such isomorphism. Then τXsτ
−1 = −Xs

and τXnτ
−1 = Xn. This completes the proof. �

Acknowledgment. Gongopadhyay acknowledges SERB grant CRG/2022/003680. The
authors thank Tejbir for his comments.
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