
Snake Learning: A Communication- and
Computation-Efficient Distributed Learning

Framework for 6G
Xiaoxue Yu, Xingfu Yi, Rongpeng Li, Fei Wang, Chenghui Peng, Zhifeng Zhao and Honggang Zhang

Abstract—In the evolution towards 6G, integrating Artificial
Intelligence (AI) with advanced network infrastructure emerges
as a pivotal strategy for enhancing network intelligence and
resource utilization. Existing distributed learning frameworks
like Federated Learning and Split Learning often struggle with
significant challenges in dynamic network environments including
high synchronization demands, costly communication overheads,
severe computing resource consumption, and data heterogeneity
across network nodes. These obstacles hinder the applications of
ubiquitous computing capabilities of 6G networks, especially in
light of the trend of escalating model parameters and training
data volumes. To address these challenges effectively, this paper
introduces “Snake Learning”, a cost-effective distributed learning
framework. Specifically, Snake Learning respects the heterogene-
ity of inter-node computing capability and local data distribution
in 6G networks, and sequentially trains the designated part of
model layers on individual nodes. This layer-by-layer serpentine
update mechanism contributes to significantly reducing the re-
quirements for storage, memory and communication during the
model training phase, and demonstrates superior adaptability
and efficiency for both Computer Vision (CV) training and Large
Language Model (LLM) fine-tuning tasks across homogeneous
and heterogeneous data distributions.

Index Terms—Communication- and Computation-efficient, 6G,
Snake learning, Split learning, Federated learning, Collective
learning, Large language model.

I. INTRODUCTION

Envisioned to build an inclusive information society, 6G
is expected to serve as a fundamental infrastructure for new
service and application trends. One important pillar of 6G is
the integration of Artificial Intelligence (AI)-related capabil-
ities into communications [1], thus fully reaping the steady
progress and fast spread of technologies in AI and particularly
machine learning. Besides, benefiting from the impressive
evolution of computing technologies and advancements in
chip design, data processing in 6G networks is anticipated to
expand to the edge (e.g., Base Stations [BSs]) and devices
(e.g., User Equipment [UE]) that are closer to the origin
of data and support for the proliferation of ubiquitous in-
telligence. Notably, such an expansion will encompass the
implementation of parallel computing-oriented AI function-
alities, considering that the NVIDIA DRIVE Thor SoC for
autonomous driving has already delivered 500 FP16 (16-
bit Floating Point) Tera-Floating-Point-Operations (TFLOPS).
Consequently, future connected AI-empowered nodes (e.g.,
BSs and UEs) can become fully context-aware for more
intuitive and efficient interactions among humans, machines,
and the environment. Correspondingly, as shown in Fig. 1,
6G will capably orchestrate the computing power distributed
across networks and possess advanced functions of model

inference, training, and deployment, thus contributing to the
improvements for emerging applications requiring real-time
responses and data transport [1].

Meanwhile, the scaling law [2], which has been validated
in the field of Large Language Models (LLMs), implies the
necessity of escalating data volumes and model parameters
for a more powerful AI model. Training and/or fine-tuning an
LLM is never a trivial task from both technical and energy-
effective perspectives, as it inevitably adds substantial commu-
nication, computational, and memory demands. Consequently,
an appropriate training (fine-tuning) method, which incorpo-
rates the need for efficient distributed learning techniques
[3], becomes a key focus of AI research [4]. Furthermore,
the inherent variability of the wireless network environment,
along with the heterogeneity of computing nodes and data,
introduce considerable extra challenges, destabilizing existing
distributed learning frameworks (e.g., Federated Learning [FL]
[5] or Split Learning [6]) and exacerbating the communica-
tion burden due to frequent, real-time synchronization [7].
Although asynchronous methods can relax synchronization
requirements, they give rise to certain complications [8] such
as model inconsistency, potentially leading to convergence
difficulties and affecting models’ overall quality.

On the other hand, model training (fine-tuning) and infer-
ence in a distributed manner exhibit significantly distinctive
demands for memory bandwidth and computing resources [9].
Hence, it leaves flexible room to orchestrate computing re-
sources for training (fine-tuning). Meanwhile, considering the
traffic “tidal effect” in telecommunication networks, dynamic
switching operations have been conventionally adopted to save
energy consumption [10]. But, as anticipated for the widely
deployed computing resources in 6G with far more capital
expenditure, it deserves a re-thinking in harnessing the full
potential. Therefore, instead of changing the operational status,
it is necessary to establish a qualified training (fine-tuning)
framework that efficiently leverages the dynamically avail-
able communication and computational resources and ensures
model consistency. This framework can not only ameliorate
the fluctuating resource utilization but also greatly complement
the development of AI-as-a-Service (AIaaS) in 6G [11].

In a nutshell, this article proposes “Snake Learning”, a
novel distributed collaborative learning framework tailored for
6G networks that integrate wireless network characteristics
from the outset. In resemblance to the classic “Snake” game,
where a snake maneuvers through the game space to eat
items and grow in size, Snake Learning progressively utilizes
distributed network nodes’ computational capability and local

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version
may no longer be accessible.

ar
X

iv
:2

40
5.

03
37

2v
1

 [
cs

.N
I]

 6
 M

ay
 2

02
4

2

Data Collection

Simple Data Analysis

D
ev

ic
e

E
dg

e
C

lo
ud

Immediate Processing

Data Storage

Computing Management

Model Inference

Server Inference

......

Device Inference

Model Training (Fine-Tuning)

Server Training (Fine-Tuning)

Device Training
(Fine-Tuning)

Service Delivery

Core Networks

Edge Networks

Data Center Management

Resource Orchestration

Centralized Learning

……

……

……

……

Real-time or computationally
intensive AI services provision:

Voice Translation
Autonomous Driving Assistance

Smart Logistics

Localized or personalized
 AI tasks Optimization or

extra AI computing services provision

Speech Recognition Optimization
Custom Image Recognition

User Behavior Prediction
......

Fig. 1: The integration of AI and 6G networks spans the cloud,
edge and device layers. The lifecycle of AI computing services
provided by 6G networks, including data collection, model
inference and training (fine-tuning), circulates among the core
and edge networks.

data, gradually enhancing model performance from incremen-
tally acquired data. Meanwhile, Snake Learning coincides
with the underlying directions for efficient distributed learning
design that employs model partial updates and quantization
to reduce resource consumption and decrease storage and
memory demands, making it ideal for training or fine-tuning
on resource-constrained nodes. Specifically, model layers are
sequentially updated according to data located across multiple
nodes, each of which can independently iterate multiple times
based on its computational power and time, without the need
for real-time synchronization. Distinct from parallel-oriented
FL [5], relay-based Split Learning [6], and many variants
[12]–[14], Snake Learning’s progressive characteristic is more
suitable for the dynamic resource availability induced by “tidal
effect” of traffic demands. Finally, Snake Learning supports
both Client-Server (CS) and Peer-to-Peer (P2P) modes to
distribute AI tasks across multiple nodes effectively, with
proven effectiveness in evaluations of Computer Vision (CV)
and language domains.

II. KEY CHALLENGES OF DISTRIBUTED LEARNING
WITHIN 6G NETWORKS AND DISCUSSIONS OF EXISTING

FRAMEWORKS

In this section, we define some evaluations for the ap-
propriateness of a distributed learning framework in 6G and
discuss the corresponding pros and cons of several prevalent
frameworks.

A. Key Challenges and Evaluation Dimension

1) Reliance on Communication Synchronization: Wire-
less network bandwidth fluctuates significantly due to fac-
tors like user density and mobility. These fluctuations im-
pact the transfer of essential data for distributed learning,

as the incurred unstable communication delays undermine
the common assumption that local model training and data
transmission across nodes is accomplished within a specific
and stable synchronization time window. While asynchronous
methods ameliorate real-time synchronization requirements,
they introduce complexities like “model staleness” due to
delayed updates, which leads to model inconsistency and non-
convergence, ultimately destabilizing training processes [8].
Hence, the reliance on synchronous communication heavily
hinders the applicability of some distributed learning frame-
works.

2) Heterogeneous, Dynamic and Limited Resource Avail-
ability: Besides the vital importance of minimizing com-
munication loads, the effectiveness of distributed learning is
also constrained by the heterogeneously varying computa-
tional capabilities of network nodes, due to the limitation of
hardware, processing power, storage, and energy consump-
tion. This heterogeneity, in combination with unexpected user
disengagement or unstable connectivity, results in significant
disparities in the nodes’ ability to perform learning tasks and
makes distributed learning frameworks fall short of process-
ing computation-intensive tasks promptly. Additionally, the
dynamical availability of computational and communication
resources necessitates that distributed learning frameworks
flexibly accommodate various resources, aligning with fluc-
tuating traffic demands and changing user mobility patterns.

3) Heterogeneity in Data Distribution: Data from diverse
network nodes exhibit unique distributions, commonly known
as Non-Independent and Identically Distributed (Non-IID),
due to differences in user behavior, preferences, and geo-
graphic locations, etc. Such heterogeneity introduces biases
during model training, affecting the stability of the training
process and diminishing the generalization ability of the
model [15]. To counteract these issues, simply adopting data-
level techniques, such as augmentation or synthesizing under-
represented class samples, proves inadequate. Instead, more
advanced strategies must be incorporated into the design of
distributed learning frameworks.

B. Existing Frameworks

1) Federated Learning: FL is a mainstream distributed
learning framework that enables clients to independently train
complete models on their unique datasets and then share the
updated model weights or gradients with a central server
for aggregation. As depicted in Fig. 2, this central aggre-
gation usually adopts strategies like FedAvg [5], where the
significance of each client’s contribution is weighted by their
data size. Implementing FL on resource-constrained 6G nodes
poses significant challenges due to the high local computa-
tional and communication demands, as well as the necessity
for precise communication synchronization. Besides, FL has
limited accommodation to computing power heterogeneity and
often struggles with the “straggler problem” in compulsory ag-
gregation synchronization, where slower nodes delay the entire
training process. Therefore, much of the literature focuses on
reducing communication costs to enhance the feasibility of
deploying FL in 6G.

3

Activations
and labels

Client-
side

model

Full model
exchange

Activations’
gradients

Model
aggregation

Auxiliary
network

Client
parameters
exchange

SplitFed Accelerated FL

Main
Server

Server-
side

model

Fed
Server

Global
model

Wireless channel

Server

Client

Communication
Overhead

Main
Server

Fed
Server

Updated
Parameters Training Frozen

 E
v

a
lu

a
ti

o
n

 Communication
Synchronization

Heterogeneous,
Dynamic and Limited
Computing Resource

Data
HeterogeneityR

o
b

u
st

n
es

s
o

f
Parameter

-related
Data

-related

 Split Learning
…

…

RWSSnake Learning

Server

CS

P2P

FL

Fig. 2: Comparison of distributed learning frameworks.

2) Split Learning: Split Learning [6] optimizes for
resource-limited scenarios by offloading most Deep Neural
Network (DNN) computations to a central server, while clients
process only a few early layers (called client-side model) using
raw data. Each training iteration involves a client transmitting
the “smashed data” (i.e., intermediate activations from the cut
layer and data labels) to the server, which then calculates
loss and sends back gradients for model updates. Furthermore,
Random Walking Snakes (RWS) [12] bypass the reliance on a
central server by finely segmenting the model and sequentially
activating a set of clients (a ”snake”). The “head of snake”
client alone holds the training data, and offloads computing
tasks (i.e., some model segments) to other clients in a snake, as
depicted in Fig. 2. Notably, the “snake” configuration in RWS
is periodically re-shuffled with newly selected heads. Albeit
the reduction in computing and memory demands, it highly
increases communication overheads due to frequent exchanges
of inter-layer activations and gradients. This kind of relay-
based model training process, heavily relies on continuous,
high-reliability, and low-latency communications to finish the
forward and backward propagation of each iteration, thus
vulnerable to communication disruptions. Moreover, its update
mechanism can face severe data distribution heterogeneity
issues due to the incremental exploitation of data, as the model
may overfit to the data distribution held by the last client,
posing a risk of catastrophic forgetting.

3) Combination of Federated Learning and Split Learning:
Various hybrid approaches that integrate FL and Split Learning
are also being explored. With the main server responsible for
extensive server-side model computations, SplitFed Learning
[13] introduces an additional federal server to synchronize
client-side local updates utilizing FedAvg [5]. This dual-
server setup enhances parallel processing but exacerbates the
communication complexity. On the contrary, Accelerated FL
[14] further reduces reliance on communication by adopting

a local-loss-based training method. Notably, it utilizes two
different local loss functions (one for the auxiliary network
[e.g., Multi-Layer Perceptrons] connected to the cut layer on
the client-side model, and the other for the server-side model’s
output layer) for separately updating two split models, which
are further concatenated to form a final model. Therefore, it
avoids receiving gradients from the main server and reduces
the need for real-time synchronization. Nevertheless, the com-
munication problem on the federal server remains unchanged.

In summary, as analyzed at the bottom part of Fig. 2, these
existing distributed learning frameworks still fail to address all
the challenges highlighted in Section II-A.

III. SNAKE LEARNING: A DISTRIBUTED COLLABORATIVE
LEARNING FRAMEWORK IN 6G NETWORKS

This section outlines the details of the Snake Learning
framework, along with its feasibility study on image classi-
fication and LLM fine-tuning tasks.

A. Overview

Snake Learning shifts the paradigm from the real-time
exchange of complete model updates in FL or smashed data
in Split Learning, by enabling nodes to selectively update
and transmit partial model parameters. As depicted in Fig. 3,
Snake Learning supports both centralized and self-organizing
(i.e., CS or P2P) modes. Specifically, in Snake Learning, each
node with distinct local data particularly focuses on training
some specific middle layers as well as the first and last layers
of a DNN model, since the first layer extracts fundamental
features, while the last layer tailors task-specific decision
boundaries for new tasks. This layer assignment for distributed
training facilitates the adaptation to resource availability and
heterogeneity, and greatly reduces computing, storage, and

4

Client-Server Mode Peer-to-Peer Mode

Server

Initialization

Task Allocation

Resource
Management

Storage

Node 1

KD ModuleLoss

Node 2
KD Module

Loss

Node N

KD ModuleLoss

……

Node 1

KD Module
Loss

Node 2

KD Module

Loss

Node N

KD ModuleLoss

……

R
ou

nd
 1

R
ou

nd
 2

R
ou

nd
 N

R
ou

nd
 1

R
ou

nd
 2

R
ou

nd
 N

Data AI Task A

……

Round 1

Round 2

Time

AI Task B

……

Round 1

Round 2

Round N Round N

Data Teacher
Logits

Distillation Loss

Non-updated model

Partial updated model

Student
Logits

Total Loss Loss

Distillation Loss

…

Next-hop Node Selection

KD Module

Layer Assignment

Initialization

Time

Local Training

Data Distribution

Updated Parameter Transmission

Fig. 3: Snake Learning’s operation details in both client-server and peer-to-peer communication modes. The KD module, an
abbreviation for Knowledge Distillation, activates or deactivates according to the inter-node data heterogeneity.

communication requirements on individual nodes. In case
of communication and computation disruptions, the chain of
training can seamlessly transit to an alternative idle node, thus
ensuring continuity of model training.

As the execution process illustrated in Fig. 3, Snake Learn-
ing typically involves initialization, layer assignment, local
training, and updated parameter transmission during each
communication round.

1) Initialization: Snake Learning process begins with a
server-side initialization of AI model and training tasks. In
CS mode, each node verifies its connectivity and capability
during each communication round, with the server assessing
and confirming its computational resources. In P2P mode,
after acquiring an initial model and tasks from the server,
nodes undertake localized node discovery to form a self-
organizing network, selecting next-hop nodes with minimal
central server dependence. Additionally, to address data het-
erogeneity and prevent catastrophic forgetting, a Knowledge
Distillation (KD) module, which computes a distillation loss,
is conditionally activated according to the measured inter-
node data distribution discrepancy (e.g., Kullback–Leibler
divergence, Jensen–Shannon distance or hyperparameter fitting
differences).

2) Layer Assignment: For a model with N layers, each
node gets informed of the specific “middle layer” (i.e., one
of the 2nd to N − 1-th layers) to be learned. Specifically,
in CS mode, the server retains the centralized control and
takes charge of the layer assignment; while in P2P mode,
the server distributes the initial model to one node in the
first communication round, and subsequent layer assignments
are negotiated among neighboring nodes. Both modes take
into account the differences in training complexities of middle
layers, and determine the assigned layers proportionate to the
computational capability and communication connectivity of
nodes. Notably, those non-updated layers’ parameters can be
quantized to further reduce storage demands.

3) Local Training: Nodes train the assigned layers using
their locally stored data. Prior to updating the model, the
computed gradients undergo a clipping operation to avoid
gradient explosion. If the KD module is triggered in initializa-
tion, it conducts an extra distillation operation by calculating
the cross-entropy loss. This loss measures the discrepancy
between the model previously received by the node (as the
“teacher”) and the model currently undergoing local train-
ing iterations (as the “student”), thus preventing catastrophic
forgetting while maintaining learning stability. Besides, the
learning rate for updating the parameters of each middle layer
remains constant, while the adjustment (e.g., decaying the
learning rate) is performed after updating all layers once (i.e.,
one cycle), thus leading to uniform inter-layer learning speed
and boosting model stability across cycles.

4) Updated Parameter Transmission: Upon a node com-
pleting the designated training epochs, each consisting of
several local training iterations, the updated parameters will
be exchanged. In CS mode, nodes upload the updated param-
eters to the server, which then strategically disseminates the
received parameters along with layer identifiers to the selected
subsequent node. In P2P mode, nodes autonomously choose
a suitable next-hop node from adjacent nodes to minimize
communication latency and energy consumption. Meanwhile,
only updated parameters need to be transmitted if the next
node has the latest model cached.

B. Feasibility Study

1) Training of Image Classification Tasks in CV:
To demonstrate Snake Learning’s effectiveness, we consider

a common classification task in CV using the Convolu-
tional Neural Network (CNN) VGG-11 model and CIFAR-
10 dataset. In particular, VGG-11 comprises N = 11 layers,
including 8 Convolutional (Conv) and 3 Fully Connected (FC)
layers, with the last FC layer corresponding to the number
of classification categories (set to 10 in this case). In Snake

5

Node 2

Input X

3×3 Conv3, 256

3×3 Conv2, 128

3×3 Conv3, 256

3×3 Conv1, 64

3×3 Conv5, 512

3×3 Conv4, 256

3×3 Conv2, 128

3×3 Conv6, 512

3×3 Conv7, 512

3×3 Conv8, 512

FC9 4096

FC10 4096

FC11 10

Update:
Activations

Gradient of Gradient of

Parameter

Parameter

Update:
Parameter

3×3 Conv1, 64

3×3 Conv5, 512

3×3 Conv4, 256

3×3 Conv6, 512

3×3 Conv7, 512

3×3 Conv8, 512

FC9 4096

FC10 4096

FC11 10

Input X

Update:
Activations

...

Parameter

Update:
Parameter

Update:
Parameter

*Analysis on Dataset:CIFAR-10; Total data:50,000 ; Input Size:3*32*32 ; Nodes:9 ;
 Epoch on each node:1 ; Synchronization times:D .

Framework Communication Overhead

FL
28,144,010(full)

*2(upload/download)
*9(nodes)*D

506.6*D million

Split Learning
128(filter)*8(height)*8(width)

*2(activation/gradient)
*50,000(data)

819.2 million

SplitFed
128*8*8*2*50,000+(1,792

+73,856)*2*9(first two
 layer's aggregation)

819.2+1.4*D million

Accelerated FL
128*8*8(activation)*50,000

+(1,792+73,856+10,250
(AuxiliaryFClayer))*2*9

409.6+1.5*D million

RWS
50,000*2*(64*16*16+(128+

256)8*8+(256+512)*4*4+512
*(2*2*2+1*1)+4096+4096)

6.604 biilion

Snake
Learning

Client-Server
(CS)

≤ 28,144,010*9(download)+
28,144,010+(1792+40970)
*8(first/last layer)(upload)

≤ 281.8 million

Peer-to-Peer
(P2P)

≤ 28,144,010*10 ≤ 281.4 million

Node 1

Optimizer State
Storage

Optimizer State
Storage

including momentum,
gradients, adaptive
rates, etc.
according to different
type of optimizer.

weight activation

Update:
Parameter

...

Layer Layer Weight Size Layer

Conv 1 1,792 Conv 5 1,180,160 FC 9 2,101,248
（Related to data)

Conv 2 73,856 Conv 6 2,359,808 FC 10 16,781,312

Conv 3 295,168 Conv 7 2,359,808 FC 11 40,970
（Related to task)

Conv 4 590,080 Conv 8 2,359,808 28,144,010Total
Parameters

Parameter
Size

Parameter
SizeComputing Process Computing Process

Fig. 4: The illustration of Snake Learning’s workflow under VGG-11 model.

Learning, as illustrated in Fig. 4, the 9 middle layers (i.e.,
VGG-11 excluding the 1st and 11th layers) are assigned to
distributed nodes, each with distinct local data. For IID data
distribution, 50, 000 samples with 32×32 pixels in each image
are uniformly spread among 9 nodes. Meanwhile, for Non-
IID scenarios, we partition the datasets by using the Dirichlet
distribution as the class priors. We allocate data Dk to k-th
node based on a sampled D ∼ Dir(α), where α determines
the degree of Non-IID, with a default setting of α = 2.0
throughout our experiments. Snake Learning is compared with
FL, which distributes and updates entire VGG-11 model across
9 nodes. Both methods use a batch size of 32 per node, and for
each node, one epoch (i.e., E = 1) refers to one entire passing
of local dataset by its training iterations. After the designated
epochs of training, FL executes FedAvg aggregation [5] during
communication phase, while Snake Learning transfers the
updated parameters. The results, shown in Fig. 5, demonstrate
that Snake Learning swiftly achieves 60% accuracy with a
fewer number of training iterations. More importantly, Snake
Learning maintains acceptable final performance (more than
95% of FL) but reduces almost half of the communication
overhead per communication round as analyzed in the right
table of Fig. 4, corroborating that Snake Learning’s promise
for distributed learning under limited communication and
computation resources.

Moreover, we investigate layer update sequence impact on
Snake Learning in Fig. 5. It can be observed from Fig. 5 that
while sequential and random training yield similar outcomes
for IID scenarios, sequential training excels in Non-IID scenar-
ios, highlighting its versatility. Reverse middle layer training
(i.e., from deep to early layers) consistently underperforms,
aligning with the insight that early layers capture basic features
while deep layers learn complex ones. In other words, DNNs
exhibit a hierarchical feature learning phenomenon. Therefore,
sequential training contributes to a robust feature foundation
adaptable to heterogeneous data distribution.

2) Fine-Tuning of LLMs :
As increasingly ongoing industrial efforts try to integrate

LLMs with sub-10 billion parameters into consumer devices
like smartphones and autonomous vehicles, the criticality of
fine-tuning these large models escalates. However, the feasi-
bility of fine-tuning an LLM on an edge node in 6G networks
primarily hinges on peak memory usage, which is dominated
by model parameters, gradients, optimizer states, data batch
size, intermediate activations, and fragmented memory from
residual states. Consequently, fine-tuning LLMs requires sig-
nificantly more memory than model inference, and the frequent
exchanges of gradients or parameters, often in millions or bil-
lions, exacerbate communication issues in existing distributed
learning frameworks.

Thus, such LLMs can gain from Snake Learning by op-
timizing the fine-tuning process across multiple nodes with
lower computing, memory, and communication demands. Our
experiments employ Supervised Fine-Tuning (SFT) on the
1.3 billion parameters’ open-source OPT model for causal
language tasks. The fine-tuning performance is measured by
perplexity (ppl), with lower values indicating greater model
certainty and effectiveness. The model architecture features an
embedding layer, 24 transformer blocks, and a linear output
layer for generating predictions. The intermediate transformer
blocks are assigned to 24 distinct network nodes for fine-
tuning, with each node updating a specific transformer block
and employing strategies like freezing or 8-bit quantization
on non-updated parameters to further reduce memory. We
use 4 distinct datasets comprising high-quality query-answer
pairs, including Dahoas/rm-static, Dahoas/synthtic-instruct-
gptj-pairwise, Dahoas/full-hh-rlhf, and yitingxie/rlhf-reward-
datasets. They are uniformly distributed across the nodes in
IID settings; while in Non-IID settings, each node holds only
2 types of datasets, with a batch size of 6 per node. Besides,
rather than simply using the typical cosine learning schedule
strategy in LLMs, Snake Learning maintains a constant learn-

6

0k 50k 100k 150k 200k 250k
Total iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

FL vs SL IID

0k 50k 100k 150k 200k 250k
Total iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SL E=20 IID

0k 50k 100k 150k 200k 250k
Total iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SL E=30 IID

0k 50k 100k 150k 200k 250k
Total iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

FL vs SL Non-IID

0k 50k 100k 150k 200k 250k
Total iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SL E=20 Non-IID

0k 50k 100k 150k 200k 250k
Total iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SL E=30 Non-IID

FL E=20
SL E=20

FL E=30
SL E=30

FL E=40
SL E=40 SL Sequential Training SL Random Training SL Reverse Training

Fig. 5: Image classification performance comparison of FL and Snake Learning (SL) across varying training epochs E. Non-IID
data are simulated under a Dirichlet Distribution (α = 2).

101 102 103 104

Total iterations

2.0

2.5

3.0

3.5

4.0

4.5

pp
l

FL vs SL IID

FL E=1
SL E=1
FL E=3
SL E=3

101 102 103 104

Total iterations

2.0

2.5

3.0

3.5

4.0

4.5

pp
l

FL vs SL Non-IID

FL E=1
SL E=1
FL E=3
SL E=3

Fig. 6: LLM fine-tuning performance comparison of FL and
Snake Learning (SL) across varying training epochs E.

ing rate throughout the cycle updating of all blocks, while
using the systematic decay for the next cycle to guarantee
consistent training across layers. Experimental results show
that such a design contributes to avoiding overfitting and
enhancing model stability. To further enhance computing and
memory efficiency, we complement Snake Learning with the
parameter-efficient Low-Rank Adaptation (LoRA) technique
[11], decomposing weight updates for all linear layers into
the product of two low-rank matrices. Each matrix has a
rank of 128 and employs a scaling factor of 1, significantly
reducing the complexity of the model while maintaining
performance. Additionally, given the variability in computing
power among distributed nodes, assigning a personalized rank
to each node could enable a more efficient balance between
model size, computational cost, and performance. This aspect
warrants further exploration. Fig. 6 provides the comparison
between Snake Learning and FL, showing that compared to
FL, Snake Learning achieves a more rapid decline in ppl in
both IID and Non-IID cases. Furthermore, this performance
improvement becomes increasingly apparent as the number of
epochs increases. Thus it indicates that Snake Learning is a
promising framework for collaboratively fine-tuning LLMs.

IV. DISCUSSIONS ON ADVANTAGES OF SNAKE LEARNING

Besides the performance improvement shown in Section
III-B, Snake Learning also has the following merits.

A. Relaxed Synchronization Requirements

Instead of parallel learning-oriented FL or relay-based
Split Learning, Snake Learning adopts a sequential learning
methodology and performs complete iterative processes on
individual nodes. This eliminates the necessity of synchro-
nization during parameter aggregation, allowing for flexible
training schedules such as off-peak time fine-tuning.

B. Computation Savings

During the training of neural network models, each training
iteration encompasses both forward and backward propaga-
tion. Layers that are not involved in training at specific nodes
still require forward propagation to supply input features to
subsequent layers. However, as gradients of activations for
these layers are also calculated during backward propagation
to ensure updates, the computation of gradients for their
weights can be saved. For instance, using the VGG-11 model,
Fig. 4 verifies substantial computation savings, leading to
near-linear acceleration relative to the reduction in FLOPs.
Additionally, integrating this approach with techniques like
pruning and quantization can further amplify these benefits.

C. Memory Savings

As the peak memory usage discussed in Section III-B2,
in the mainstream mixed precision training for LLMs, both
model parameters and gradients are stored in FP16 format
consuming 2 bytes per parameter, while states of the AdamW
optimizer (i.e., backup of high-precision model parameters,
momentum, and variance of gradients) are in FP32. Therefore,

7

the memory cost sums up to 16Φ bytes, with Φ denoting
the parameter size. Snake Learning dramatically cuts mem-
ory costs by storing only updated parameter gradients and
corresponding optimizer states. If each node updates roughly
1/N of the full model parameters, it only costs memory of
2Φ+14Φ/N . For example, a single node’s memory occupied
for fine-tuning the OPT1.3B model can shrink from about
19.37 GB for conventional FL to only 3.13 GB for Snake
Learning. Moreover, the additional consideration of forward
activations, batch size, and sentence length can yield more
obvious memory savings. Besides, the quantization of non-
updated parameters can contribute to further reducing memory
requirements.

D. Communication Savings
As demonstrated in Fig. 4, Split Learning’s communication

costs depend on data size and specific tasks. When the training
dataset is large, it incurs large volumes of smashed data
proportional to the data size. Meanwhile, during real-time
synchronization in FL, significant communication overhead is
also required due to frequent and full model transmissions.
On the contrary, Snake Learning transfers only locally updated
partial parameters, naturally reducing communication costs per
communication round. Besides, its elimination of compulsory
synchronization for parameter aggregation further leads to sig-
nificant reduction of total communication overhead, especially
with the increasing number of local training iterations.

E. Data Heterogeneity Adaptation and Scalability
As shown in Fig. 5 and Fig. 6, the employment of KD

module as well as gradient clipping leads to the superiority of
Snake Learning in handling Non-IID data. Meanwhile, Snake
Learning does not presume the adequacy of a single node’s
data for training. Therefore, it better aligns with the real-world
scenarios of gradually garnering data and training the model.

V. CONCLUSIONS

In this paper, we have proposed “Snake Learning”, an inno-
vative distributed collaborative learning framework. By lever-
aging the idle computational resources of distributed network
nodes and assigning partial layers of model updates across
them, Snake Learning decentralizes computational workload
and reduces storage, memory, and communication demands
on individual nodes during model training or fine-tuning. Its
serpentine training mechanism mitigates reliance on continu-
ous aggregation synchronization and heavy data transmission,
which are common limitations of traditional frameworks like
FL and Split Learning. Besides, knowledge distillation and
gradient clipping help prevent catastrophic forgetting caused
by data heterogeneity and gradient explosion. Evaluations
across different domains validate that Snake Learning not only
enhances resource utilization but also maintains robust model
performance amid data heterogeneity. Overall, Snake Learning
sets a new framework for future distributed learning models in
6G environments, promoting efficient AI model training and
harnessing distributed data effectively. As moving forward, its
adaptability to various applications suggests a broad potential
for a more resource-efficient AI-native 6G infrastructure with
fruitful AIaaS.

REFERENCES

[1] International Telecommunication Union - Radiocommunication Sector
(ITU-R), “New Recommendation ITU-R M.2160 on the ‘IMT-2030
Framework’ – Framework and overall objectives of the future
development of IMT for 2030 and beyond,” Nov. 2023, accessed
on May 5, 2024. [Online]. Available: https://www.itu.int/en/ITU-R/
study-groups/rsg5/rwp5d/imt-2030/Pages/default.aspx

[2] J. Kaplan, et al., “Scaling laws for neural language models,” arXiv:
2001.08361, 2020, accessed on May 5, 2024.

[3] S. Jere, et al., “Distributed learning meets 6G: A communication and
computing perspective,” IEEE Wireless Commun., vol. 30, no. 1, pp.
112–117, Feb. 2023.

[4] A. de Vries, “The growing energy footprint of artificial intelligence,”
Joule, vol. 7, no. 10, pp. 2191–2194, 2023.

[5] B. McMahan, et al., “Communication-efficient learning of deep net-
works from decentralized data,” in Proc. AISTATS, Fort Lauderdale, FL,
United States, Apr. 2017.

[6] O. Gupta, et al., “Distributed learning of deep neural network over
multiple agents,” J. Netw. Comput. Appl., vol. 116, pp. 1–8, Aug. 2018.

[7] H. Woisetschläger, et al., “Federated fine-tuning of LLMs on the very
edge: The good, the bad, the ugly,” arXiv:2310.03150, 2023, accessed
on May 5, 2024.

[8] W. Kuang, et al., “FederatedScope-LLM: A comprehensive package for
fine-tuning large language models in federated learning,” arXiv preprint
arXiv:2309.00363, 2023, accessed on May 5, 2024.

[9] X. Miao, et al., “FlexLLM: A system for co-serving large language
model inference and parameter-efficient finetuning,” arXiv: 2402.18789,
2024, accessed on May 5, 2024.

[10] Z. Niu, “TANGO: Traffic-aware network planning and green operation,”
IEEE Wireless Commun., vol. 18, no. 5, pp. 25–29, Oct. 2011.

[11] Y. Chen, et al., “NetGPT: An AI-native network architecture for provi-
sioning beyond personalized generative services,” IEEE Network, Mar.
2024.

[12] A. B. Ardic, et al., “Random walking snakes for decentralized learning at
edge networks,” in IEEE Workshop Local Metrop. Area Netw., London,
United kingdom, Jul. 2023.

[13] C. Thapa, et al., “Splitfed: When federated learning meets split learning,”
in Proc. AAAI, Virtual, Online, Jun. 2022.

[14] D.-J. Han, et al., “Accelerating federated learning with split learning on
locally generated losses,” in Proc. ICML, Virtual, Online, Jul. 2021.

[15] A. M. Abdelmoniem, et al., “A comprehensive empirical study of
heterogeneity in federated learning,” IEEE Internet Things J., vol. 10,
no. 16, pp. 14 071–14 083, Aug. 2023.

AUTHOR BIOGRAPHIES

Xiaoxue Yu (sdwhyxx@zju.edu.cn) is a PhD Candidate in
Zhejiang University, Hangzhou, China. Her research interests
currently focus on communications in distributed learning.

Xingfu Yi (yixingfu@zju.edu.cn) was a master student in
Zhejiang University, Hangzhou, China, and graduated in Mar.
2024.

Rongpeng Li (lirongpeng@zju.edu.cn) is an Associate
Professor in Zhejiang University, Hangzhou, China. His re-
search interests currently focus on networked intelligence for
communications-efficiency enhancement.

Fei Wang (wangfei76@huawei.com) is a Chief Researcher
of Huawei Technologies. His research directions include 6G
wireless network architecture, wireless distributed learning
paradigm, etc.

Chenghui Peng (pengchenghui@huawei.com) is a Principal
Researcher of Huawei Technologies. His current research
interests focus on 6G native AI architecture design.

Zhifeng Zhao (zhaozf@zhejianglab.com) is the Chief En-
gineer with Zhejiang Lab, Hangzhou, China. His research area
includes collective intelligence and software-defined networks.

Honggang Zhang (honggangzhang@zju.edu.cn) is cur-
rently involved in research on cognitive green communica-
tions.

