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Nonlocal order parameters capture the presence of correlated fluctuations between specific degrees of freedom, in
otherwise disordered quantum matter. Here we provide a further example of their fundamental role, deriving the ground
state phase diagram of the filling one extended Bose Hubbard model exclusively in terms of their ordering. By means of
a density matrix renormalization group numerical analysis, we show that besides the (even) parity order characteristic
of the Mott insulating phase, and the string order non vanishing in the Haldane insulator, the recently proposed odd
parity order completes the picture, becoming nonvanishing at the transition from the normal superfluid to the paired
superfluid phase. The above three nonlocal parameters capture all the distinct phases, including the density wave phase
which local order is seen as the simultaneous presence of correlated fluctuations in different channels. They provide a
unique tool for the experimental observation of the full phase diagram of strongly correlated quantum matter, by means
of local density measurements.

PACS numbers: 05.30.Jp, 03.65.Aa, 67.85.Hj, 05.10.Cc

The full phase diagram of the one dimensional three body
constrained extended Bose Hubbard model is re-derived
here in terms of solely three nonlocal order parameters,
identified with the expectation values of appropriate disor-
der operators: the string operator, and the even and odd
parity operators. Their finiteness unveils the emergence
of distinct correlated density fluctuations for each disor-
dered phase, which can persist at non-zero temperatures
thanks to their nonlocal nature. These parameters can be
detected by simple local density measurements in real ex-
periments with quantum matter.

I. INTRODUCTION

The (1D) Hubbard model is the simplest paradigmatic model
capturing the complex physics of strongly correlated particles
(fermions or bosons) on a lattice. The model has been thor-
oughly studied in the last decades. In particular, at integer
fillings and low temperatures, for repulsive on site density-
density interaction U a Mott insulating (MI) phase is ob-
served, which escapes the Landau classification of sponta-
neous symmetry breaking (SSB) local orders1,2. Indeed, it has
been shown that the phase is characterized by a nonlocal order,
in 1D known as charge parity order, in both the bosonic3 and
the fermionic4 cases. Whereas in 2D it is captured by its gen-
eralization, namely the brane parity order5. Despite their non-
local nature, such orders are observed by local density mea-
surements in atomic matter trapped onto optical lattices6–8. In
fact, since they do not break any continuous symmetry, these
order persist at sufficiently low temperatures.
In the 1D fermionic extended Hubbard model9 the above MI
phase is challenged by other insulating phases, which turn out

to be associated to other types of nonlocal orders10,11, ulti-
mately capturing the fundamental role of correlated quantum
fluctuations in each of the possibly disordered distinct phases.
The mathematical framework for nonlocal orders is provided
by the concept of disorder operators12, which is not peculiar of
insulating phases. Examples are spin parity order, observed in
the Luther Emery liquid phase of 1D fermions11, or the brane
spin parity, which is non vanishing in the superconducting
phase of the 2D case13. Most notably, besides parity orders,
also string nonlocal orders appear in these systems, capturing
symmetry protected topological (SPT) phases with non trivial
topological features14. This is the case of the Haldane phase,
which can be observed in insulating (HI) phases of bosons10

and fermions11, as well as in conducting phases15,16. On more
general grounds -at least for correlated spinful fermions in one
dimension19 described in the low energy limit by decoupled
sine Gordon models- the framework of SPT phases can be
exploited to classify all distinct low temperature phases by
means of appropriate nonlocal order parameters. In fact, tak-
ing advantage of such observation also for bosonic models,
very recently it has been shown that another type of charge
parity order (named odd charge parity) is finite in the paired
superfluid (PSF) phase of the Bose-Hubbard model20.

Here we will explore the crucial role that nonlocal orders
play in the full phase diagram of the Extended Bose Hubbard
(EBH) model. Based on the theoretical framework, we will
provide numerical evidence that the different possible corre-
lated fluctuations shown in the right panel of Fig.(1) are in
fact associated to three different nonlocal order parameters.
Their finiteness uniquely identifies the disordered MI, HI, and
PSF phases, as well as the locally ordered density wave (DW)
phase. Each phase boundary is then identified by the vanish-
ing of one of these operators, as shown in Fig.(1). There for
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FIG. 1. Phase diagram obtained by analyzing the nonlocal operators in eqs.(2),(3) for 3-body constrained 1D EBH model (left panel). Our
results are represented by filled symbols, while the unfilled symbols correspond to the findings in17 for repulsive onsite interaction and18 for
attractive onsite interaction. The full symbols of different colors signal that the expectation value of the corresponding nonlocal operator is
different from zero (green for O(e)

P , red for OS, blue for O(o)
P ), separating phases with different nonlocal orders. The red dotted line close to

the origin is the SF border predicted in17. The cartoons to the right schematically represent the correlated density fluctuations underlying the
possible hidden nonlocal orders. The red ellipses highlight the two kind of pairs (holon-doublon or boson-boson) with finite correlation length
which correspond to parity order (even or odd respectively). The empty rectangles highlight the alternation of holons and doublons in the
background of single bosons characteristic of string order.

completeness also the phase separated (PS) region is repre-
sented, not investigated here.

Our results, besides reinforcing evidence on the fundamental
role of correlated fluctuations in disordered quantum matter,
provide an immediate tool for the observation of these dis-
tinct phases by local density measurements in experiments at
sufficiently low temperature.

II. MODEL

We will focus onto the study of the 1D Extended Bose-
Hubbard model, that can be described by the Hamiltonian op-
erator

H =− t ∑
i
(b†

i bi+1 +b†
i+1bi)+

U
2 ∑

i
ni(ni −1)+V ∑

i
nini+1

(1)

where bi, b†
i are the bosonic creation and annihilation opera-

tors, with algebra [bi,b
†
j ] = δi j, [bi,b j] = 0= [b†

i ,b
†
j ], ni = b†

i bi
is the number of particles at site i, t is the hopping matrix el-
ement, and U is the on-site interaction. In the following we
will set t = 1, and fix the average filling n̄ = 1. Moreover,
we assume the three body constraint (b†

i )
3 = 0 to hold, which

amounts to a truncation of the Hilbert space of each site to the
three lowest occupation states 0,1,2.

The model, besides capturing the SF-MI transition21 charac-
teristic of these systems for U ≳ 0, gained a lot of attentions
because for non vanishing nearest neighbor density-density
interaction V > 0 it also describes an HI phase, with non-
trivial topological properties3,10 and a finite nonlocal string
order.

For higher values of V > 0 also a DW phase appears22,23. For
moderately attractive values of V ≲ 0 instead, a SF phase is
expected, which was observed to turn into a PSF phase in case
of appropriate attractive U . The ground state phase diagram
is reported in Fig.(1).

The low energy effective-field theory developed in the con-
strained case3, correctly captures the three insulating phases
at filling n̄ = 1 in the repulsive interaction regime U,V > 0, as
well as a SF phase for weakly attractive U . The Hamiltonian
H is first mapped into a spin-1 model, then each spin-1 vari-
able is written as a sum of two spin-1/2, which are mapped
onto two spinless fermions via Jordan Wigner transforms. A
standard bosonization analysis can be applied to the result-
ing fermionic model, which associates bosonic fields to the
two fermionic degrees of freedom (DOF) and ends up in map-
ping the fermionic model into two sine Gordon Hamiltoni-
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ans –decoupled in the symmetric and anti-symmetric combi-
nations of the bosonic fields– and a coupling term negligi-
ble in the low energy limit. We refer to3 for the details of
the calculation and of the subsequent renormalization group
analysis. In fact, in case of fermions the above approach was
exploited exhaustively to derive a general framework for as-
sociating nonlocal string and parity order parameters to each
bosonic field11,19. More recently20, it was noticed that such
procedure, when applied to the Bose Hubbard case, provides
evidence of the transition to the PSF phase and of its character-
ization though a further nonlocal order parameter, named odd
charge parity. Here we will prove that within the same theo-
retical framework, the full phase diagram of the EBH model
can in fact be derived also at V ≥ 0 through the appropriate
nonlocal order parameters.

III. NONLOCAL ORDER PARAMETERS

The bosonization approach to constrained EBH model3 asso-
ciated to the symmetric (here even) bosonic field a local repre-
sentations through the parity and string operators, which can
be expressed in terms of local densities ni. The MI and HI
phases were identified with the pinning of such field to two
possible distinct values, implying a finite expectation value
of the even parity and string operators respectively. The pre-
vious mathematical property in fact signals the emergence
of an hidden order, i.e. the ordering of a subset of DOF
in the disordered background of the remaining DOF. In the
present case of 3 DOF per site, the different possible hidden
orders are shown in the left panel of Fig.(1). The bosonization
analysis3,20 proves that these correspond to finite expectation
values of one or more of the following nonlocal operators:

O(ν)
P ( j) =

j−1

∏
i=0

exp [iπδν ni] , ν = e,o (2)

OS( j) = δn j

j−1

∏
i=0

exp [iπδni] (3)

known as parity (OP) and string (OS) operators. The further
index ν in the parity operator, which can be even (e) or odd
(o), was introduced in20, and corresponds to a different type
of density fluctuation δν ni. Specifically,

δeni = δni
.
= ni −1

δoni = ni .
(4)

Let’s discuss first the parity operator. It is evident from the
definition of eq.(2) that the exponential factors assume either
value +1 or −1 depending on the δni on site i-th. Then the
even parity operator O(e)

P will maintain on average a finite
value only when the fluctuations with respect to the back-
ground of singly occupied sites, occur in the form of corre-
lated nearby empty (holon) and doubly occupied (doublon)
pairs. Reversely, for odd parity O(o)

P now the background
amounts to disordered holons and doublons, and fluctuations

must occur in pairs of nearby singly occupied sites to maintain
its expectation value finite. This is shown in the right panel of
Fig.(1).
Moreover, a non vanishing average value of the string operator
OS in eq.(3) is obtained when holons and doublons are alter-
nated though diluted in the disordered single site background.

The results are summarized in Tab.(I). Beyond the SF phase,
four possible distinct phases can be obtained at filling n̄ = 1
from the ordering of the above nonlocal order parameters, ac-
cording to the following table. Phases having just one non
vanishing nonlocal order (MI, HI, PSF) do not break any sym-
metry. The nonvanishing parameters become two in case of
the DW phase: the simultaneous presence of two nonlocal or-
ders ends up into the genuine local order of the DW phase,
which breaks the translational symmetry.

NLOP SF MI HI PSF DW

O(e)
P 0 ̸= 0 0 0 0

OS 0 0 ̸= 0 0 ̸= 0
O(o)

P 0 0 0 ̸= 0 ̸= 0

TABLE I. Summary of the expectation values of the nonlocal or-
der parameters (NLOP) in eqs.(2)(3) for each phase according to
bosonization analysis.

Also, in correspondence to each non vanishing nonlocal order
parameter, similarly to what happens in the fermionic case,
one or more excitation gaps are finite. In particular, we will
be interested in

∆n = E(1)(N;L)−E(0)(N;L)
∆α=1,2(L) = E(N +α;L)+E(N −α;L)−2E(N;L) ,

(5)

namely the neutral gap, and the single and double particle ex-
citation gaps for N bosons on L sites. These were already used
to discuss the phase diagram at U > 017,23 and at U < 018.
As shall be clarified, they behave differently in the different
phases but unlike the nonlocal order parameters their finite-
ness cannot be used to identify uniquely all distinct phases.

IV. RESULTS

This section presents the outcomes of our analysis of the ex-
tended Bose-Hubbard model in one dimension (1D). As men-
tioned earlier, the comprehensive phase diagram of this model
is here inferred by evaluating the expectation values of the
nonlocal operators described in previous section. To accom-
plish this, we represented the state using the matrix product
state (MPS)24–27 formalism and applied the Density Matrix
Renormalization Group (DMRG) algorithm to ascertain the
ground state26,28–32.
In particular, we employed the infinite DMRG algorithm33,34

to approximate an infinite-size chain in our simulations. This
approach enables us to circumvent significant issues related to
boundary effects35 when evaluating expectation of equations
(2),(3). Moreover there is no need for extrapolation to the
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(a) (b) (c)

FIG. 2. The analysis of the phase diagram depicted in Fig.(1) for U > 0 and varying V > 0 reveals four different possible phases: SF, MI, HI,
DW. The three distinct scenarios are: (a) Plot of the case U = 9, here there is a transition from a region dominated by even parity order (MI)
to one where both string and odd parity are present (DW). (b) Plot of the case U = 3, here between the two previous phases there is a region
where only the string is finite (HI). (c) Plot of the case U = 0.5, here there is first a region without any order (SF), then initially only the string
is finite and finally also the odd parity becomes greater than zero.

thermodynamic limit, requiring fewer DMRG states for ob-
taining the ground state; we specifically set a maximal bond
dimension of χ = 200. This is enough to obtain a converged
expectation value inside the phase characterized by the corre-
sponding nonlocal order. The situation differs in computing
the gaps, where the finite size algorithm is necessary.
To derive our results, we imposed a maximum limit of 2
bosons per site to prevent the collapse of bosons onto a single
site. While this restriction alters the model’s delocalization
of bosons in the lattice, the various phases identified in the
literature for U > 0 remain qualitatively consistent, as illus-
trated for larger maximal occupation numbers (nmax = 3 in23

and nmax = 8 in36). In fact, it has been demonstrated22 that
a maximum of nmax = 5 provides a reasonable approximation
of the system (in U > 0 regime) without a specific limit on
boson numbers.
The resulting phase diagram is presented in Fig.(1). Simi-
lar markers indicate equivalent transitions, with filled sym-
bols representing our findings and empty symbols denoting re-
sults from the literature for the extended Bose-Hubbard model
with the same three-body constraint. Besides a region of PS
in which empty and doubly occupied regions coexists, five
distinct phases emerge: MI, HI, DW, SF, PSF. Our transition
points are identified where the expectation value of the opera-
tors become greater than zero (actually we assume the expec-
tation is different from zero only when our estimate becomes
greater then 3×10−3 for j = 200 in eqs.(2),(3)). While for the
empty symbols we are referring to17 in the positive interaction
regimes, and for negative onsite interaction the data are taken
from18.

A. Repulsive U Regime

In the region of U > 0, it is possible to locate the following
phases: SF, MI, HI, DW.

In order to show the different behaviours of the operators de-
fined in eqs.(2) and (3), it is interesting to have a look at
some sections of the phase diagram. In particular we will
examine three different lines in the phase diagram, namely
U = 9,3,0.5.
For large onsite repulsion (U = 9), by increasing V from zero,
one goes, through a first order phase transition, from an initial
phase where the dominant order is captured by the even par-
ity (MI) to one where both the odd parity and the string are
greater than zero (DW), as presented in Fig.(2)(a).
When the onsite interaction is reduced, for instance to U = 3
as in Fig.(2)(b), at sufficiently weak nearest-neighbor interac-
tion the even parity is the only operator different from zero:
this is the MI phase. In this scenario, by further increasing the
nearest-neighbor interaction the system first enters –through a
Gaussian type phase transition– a phase where the string op-
erator is finite (HI), and then, upon an Ising type phase tran-
sition, also the odd parity becomes non vanishing in the DW
phase.
Further decreasing U towards the origin, for instance in the
case U = 0.5 shown in Fig.(2)(c), O(e)

P becomes vanishing. At
weak V there is neither local or nonlocal order and the system
is in a normal SF phase. By increasing V the string parameter
slowly becomes nonvanishing at the SF-HI transition. Then,
by further increasing V , also the odd parity becomes different
from zero and we are again in the DW phase. Even if both
transition are continuous they belong to different universality
classes. The SF-HI is a BKT transition while the HI-DW tran-
sition is an Ising one.
In the phase diagram Fig.(1), we compared our findings with
those reported in17 by determining the central charge37. Their
results closely align with ours, and the two phase diagrams
exhibit a significant overlap.
We also investigated the behavior of the gaps defined in equa-
tion (5) in this region. The results are summarized in the sub-



5

(a) (b)

FIG. 3. The analysis of the phase diagram depicted in Fig.(1) for U < 0 and varying V > 0 reveals four different possible phases: SF, PSF, HI,
DW. The two distinct scenarios are: (a) Plot of the case U = −5, here there is an initial absence of order (SF). Then the first finite operator
is the string (HI) and subsequently also the odd parity becomes non-zero (DW). (b) Plot of the case U = −6.5, here the odd parity is already
greater than zero (PSF), and the transition from PSF to DW is signalled by OS.

sequent Tab.(II), for the repulsive U region as well. Since the

Gap SF PSF MI HI DW
∆n 0 0 ̸= 0 ̸= 0 ̸= 0
∆1 0 ̸= 0 ̸= 0 ̸= 0 ̸= 0
∆2 0 0 ̸= 0 ̸= 0 ̸= 0

TABLE II. Gaps introduced in eq.(5) for each phase. As explained in
the text, the opening (or temporary vanishing) of the gaps supports
the results obtained by the nonlocal order parameters. A null gap is
intended in the thermodynamic limit.

SF phase is the only one where all gaps are zero, both SF-
MI and SF-HI are signaled by any of the three gaps becoming
finite. The scenario differs for other phase transitions in the
region of U > 0, since all MI, HI, DW phases possess a fi-
nite gap. Indeed the transition between the distinct MI and HI
phases is signaled by a temporary vanishing of both the charge
(∆1 and ∆2) and the neutral (∆n) gaps, since the two phases are
protected by different symmetries. While the transition to the
latter is signaled solely by the vanishing of the neutral gap.
In the repulsive U region of the phase diagram the gap ∆2 pro-
vides no additional information.

B. Attractive U Regime

Switching to the attractive interaction regime U < 0, it is pos-
sible to find the following phases: SF, PSF, HI, DW and the
PS region.
As before let’s have a look to the different behaviours of the
three nonlocal operators defined in eqs.(2)(3). Contrarily to
the case of U > 0, now the O(e)

P will be always zero and the
correspondent order is absent. Thus the phase diagram can be
discussed here through the behavior of O(o)

P and OS solely. We
can consider two representative lines of the phase diagram,
U =−5,−6.5, which are located above and below the transi-

tion line from SF to PSF phase. These are shown in Fig.(3).
In particular, in (a) we consider U = −5: there, increasing V
from zero, the system initially remains in the phase where all
nonlocal orders are zero (SF). Subsequently, similarly to the
weakly repulsive U regime, first the string OS becomes differ-
ent from zero (HI) and then also the odd parity (DW).
Moving down to stronger onsite attraction between bosons,
in Fig.(3)(b) we consider the case U = −6.5. There also at
weakly attractive V a PSF phase characterised by non-null odd
parity is present. Contrary to the SF phase, this phase now is
partly gapped and characterized by the emergence of the hid-
den order identified in20. By further increasing V , one enters
directly the region in which both string and odd parity orders
are finite (DW).
Also for the U < 0 region we can compare our findings with
existing results18, obtaining a good agreement.
Moreover, also in this region we investigated the behavior of
the different gaps defined in eq.(5). The results were antici-
pated in Tab.(II). For sufficiently weakly attractive U , the sce-
nario is the same as for weakly repulsive U , in agreement with
the phase diagram of Fig.(1). Entering the PSF phase instead,
just the single particle gap opens, to signal the cost in energy
of adding an unpaired single particle fluctuation20. On the
contrary, the neutral gap remains zero (for an infinite chain),
since the PSF phase is still superfluid. So that the transition
from PSF to DW is in fact signaled by ∆n becoming different
from zero. The same happens if instead one moves from PSF
to PS.

V. CONCLUSIONS

In summary, we presented an alternative numerical derivation
of the full phase diagram of the extended Bose Hubbard model
in 1D, which is based solely on the behavior of three nonlocal
order parameters. These amount, besides the string and (even)
parity disorder operators introduced in3 to describe the MI and
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HI insulator phases, also to the odd parity operator introduced
in20 to describe the PSF phase. The latter captures the cor-
related fluctuations of pairs of single particles in a disordered
background of holons and doublons. Besides describing the
PSF phase, odd parity is here found to be non vanishing also
in presence of a finite string order, describing the alternation
of holons and doublons. In this case, a true local order ap-
pears, and the system enters a SSB DW phase.
The phase diagram obtained by the interplay of the three
above disorder operators is shown in Fig.(1) and is in full
accordance with previous results in literature17,18. Thus our
analysis is capable of characterizing distinct conducting and
insulating phases of these systems by the appropriate order or
disorder operator, at the same time identifying all the transi-
tion lines and the type of transition.
Notably, since the presence of nonlocal orders does not vio-
late Mermin Wagner theorem, the MI, HI, and PSF nonlocal
orders could persist even at non zero temperature, and can
thus be observed in experiments with quantum matter. An-
other significant advantage of the identified nonlocal orders
discussed here is that their measurement can be gained by just
local density measures. Indeed, in case of the MI phase, the
(even) parity order was already measured in this way both in
1D and in 2D6–8. We expect that a similar result could be ob-
tained also in case of the odd parity characteristic of the PSF
phase, which in principle can be generalized also to 2D as a
odd brane parity order5.
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