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Abstract

We establish that every monadic second-order logic (MSO) formula on graphs with bounded treedepth
is decidable in a constant number of rounds within the CONGEST model. To our knowledge, this
marks the first meta-theorem regarding distributed model-checking. Various optimization problems
on graphs are expressible in MSO. Examples include determining whether a graph G has a clique
of size k, whether it admits a coloring with k colors, whether it contains a graph H as a subgraph
or minor, or whether terminal vertices in G could be connected via vertex-disjoint paths. Our
meta-theorem significantly enhances the work of Bousquet et al. [PODC 2022], which was focused
on distributed certification of MSO on graphs with bounded treedepth. Moreover, our results can be
extended to solving optimization and counting problems expressible in MSO, in graphs of bounded
treedepth.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
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1 Introduction

Distributed decision [12, 29, 30] and distributed certification [31, 42, 50] are two comple-
mentary fields of distributed computing, closely associated with distributed fault-tolerant
computing [3, 19, 49]. Both fields are addressing the problem of checking whether a dis-
tributed system is in a legal state with respect to a given specification, or not. We examine
this problem in the classical context of distributed computing in networks, under the standard
CONGEST model [59]. Recall that this model assumes networks modeled as simple connected
n-node graphs, in which every node is provided with an identifier on O(logn) bits that is
unique in the network. Computation proceeds synchronously as a sequence of rounds. At
each round, every node sends a message to each of its neighbors in the graph, receives the
messages sent by its neighbors, and performs some individual computation. A crucial point
is that messages are restricted to be of size O(logn) bits. While this suffices to transmit
an identifier, or a constant number of identifiers, transmitting large messages may require
multiple rounds, typically Θ(k/ logn) rounds for k-bit messages.
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Distributed Decision.
Given a boolean predicate Π on graphs, e.g., whether the graph is H-free for some fixed
graph H, a decision algorithm for Π takes as input a graph G = (V,E), and outputs whether
G satisfies Π or not. Specifically, every node v receives as input its identifier id(v), and, after
a certain number of rounds of communication with its neighbors, it outputs accept or reject,
under the constraint that G satisfies Π if and only if the output of each of the nodes v ∈ V

is accept. In other words,

G |= Π ⇐⇒ ∀v ∈ V (G), output(v) = accept.

Some predicates are easy to decide locally, i.e., in a constant number of rounds. A canonical
example is checking whether the (connected) graph G is regular, for which one round suffices.
However, other predicates cannot be checked locally, with canonical example checking whether
there is a unique node of degree 3 in the network. Indeed, checking this property requires
Ω(n) rounds in networks of diameter Θ(n), as two nodes of degree 3 may be at arbitrarily
large distances in the graph. Another example of a difficult problem is checking whether
the graph is C4-free, i.e., does not contain a 4-cycle as a subgraph, which requires Ω̃(

√
n)

rounds [13]. One way to circumvent the difficulty of local checkability, i.e., to address graph
predicates requiring a large number of rounds for being decided, is to consider distributed
certification.

Distributed Certification.
A certification scheme for a boolean predicate Π is a pair prover-verifier (see [19] for more
details). The prover is a centralized, computationally unbounded, non-trustable oracle. Given
a graph G = (V,E), the prover assigns a certificate c(v) ∈ {0, 1}⋆ to each node v ∈ V . These
certificates are forged by the prover using the complete knowledge of the graph G. The
verifier is a distributed 1-round algorithm. Each node v takes as sole input its identifier id(v)
and its certificate c(v). In particular, for distributed decisions, v is unaware of the graph G.
Every node v just exchanges once its identifier and certificate with its neighbors, and then it
must output accept or reject.

The certification scheme is correct if the following two conditions hold. The completeness
condition states that if G satisfies Π, then the oracle can provide the nodes with certificates
that they all accept. The soundness condition says that if G does not satisfy Π, then no
matter the certificates assigned by the oracle to the nodes, at least one of them rejects. That
is, the role of the verifier is to check that the collection of certificates assigned to the nodes
by the prover is indeed a global proof that the graph satisfies the predicate. In other words,

G |= Π ⇐⇒ ∃c : V (G) → {0, 1}⋆ : ∀v ∈ V (G), output(v) = accept.

The main measure of complexity of a certification scheme is the maximum size of the
certificates assigned by the prover to the nodes on legal instances, i.e., for graphs G satisfying
the given predicate. Ideally, to be implemented in a single round under the CONGEST model,
the certificates should be of size O(logn) bits. Interestingly, many graph properties can
be certified with such short certificates, including acyclicity [50], planarity [25], bounded
genus [17, 26], etc. On the other hand, basic graph properties require large certificates,
including diameter 2 vs. 3 (requiring Ω̃(n)-bit certificates [8]), non-3-colorability (requiring
Ω̃(n2)-bit certificates [42]), C4-freeness (requiring Ω̃(

√
n)-bit certificates [13]), etc. The

following question was thus raised, under different formulations (see, e.g., [20]): What are
the graph properties that admit certification schemes with O(logn)-bit certificates, or, to the
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least, certificates of polylogarithmic size? Answering this question requires formalizing the
notion of “graph predicate”.

Monadic Second-Order Logic.
Recall that, in the first-order logic (FO) of graphs, a graph property is expressed as a
quantified logical sentence whose variables represent vertices, with predicates for equality
(=) and adjacency (adj). An FO formula is therefore constructed according to the following
set of rules, where x and y are vertices, and φ and ψ are FO formulas:

x = y | adj(x, y) | φ ∨ ψ | φ ∧ ψ | ¬φ | ∃xφ | ∀xφ.

As an example, triangle-freeness can be formulated as

φ = ¬∃x1∃x2∃x3
(
adj(x1, x2) ∧ adj(x2, x3) ∧ adj(x3, x1)

)
.

The formula above assumes simple graphs (i.e., no loops nor multiple edges). If the graphs
may have loops, then one should add the predicate ¬(xi = xj) to the formula for every i ̸= j.

The monadic second-order logic (MSO) extends FO by allowing quantification on sets
of vertices and edges, with the incidence predicate inc(v, e) indicating whether vertex v

is incident to edge e, and the membership (∈) predicate. For instance, acyclicity can be
formulated as

φ = ¬∃X ̸= ∅ ∀x ∈ X ∃y1 ∈ X ∃y2 ∈ X
(
¬(y1 = y2) ∧ adj(x, y1) ∧ adj(x, y2)

)
.

Note that X ̸= ∅ can merely be written as ∃x ∈ X. Note also that acyclicity cannot be
expressed in FO as the length of the potential cycle is unbounded, from which it follows that
one cannot quantify on vertices only for expressing acyclicity, because one does not know
how many vertices should be considered. On the other hand, since FO can express properties
such as C4-freeness, which, as mentioned before, requires certificates on Ω̃(

√
n) bits, there

is no hope of establishing a meta-theorem about FO regarding compact certification in all
graphs. Nevertheless, a breakthrough in the theory of distributed certification was recently
obtained by Bousquet, Feuilloley, and Pierron [20], who showed that every MSO predicate
admits a distributed certification scheme with O(logn)-bit certificates in the family of graphs
with bounded treedepth.

Algorithmic Meta-Theorems.
A vibrant line of research in sequential computing is the development of algorithmic meta-
theorems. According to Grohe and Kreutzer [44], algorithmic meta-theorems assert that
certain families of algorithmic problems, typically defined by some logical and combinatorial
conditions, can be solved efficiently under some suitable definition of this term. Such theorems
play an essential role in the theory of algorithms as they reveal a profound interplay between
algorithms, logic, and combinatorics. One of the most celebrated examples of a meta-theorem
is Courcelle’s theorem, which asserts that graph properties definable in MSO are decidable
in linear time on graphs of bounded treewidth [10]. For an introduction to this fascinating
research area, we refer to the surveys by Kreutzer [51] and Grohe [43].

Bousquet, Feuilloley, and Pierron in [20] introduced the exploration of algorithmic meta-
theorems in distributed computing. Their primary result in this direction is that any MSO
formula can be locally certified on graphs with bounded treedepth using a logarithmic
number of bits per node, which represents the golden standard in certification. This
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G :

Figure 1 Embedding of a graph G into a tree T of depth 6.

theorem has numerous consequences for certification — for more details, we refer to [20].
Notably, the FO property C4-freeness, and the MSO property non-3-colorability, which both
necessitate certificates of polynomial size in general, can be certified with just O(logn)-bit
certificates in graphs of bounded treedepth. Bousquet et al.’s result has been extended to
more comprehensive classes of graphs, including graphs excluding a small minor [6], as well
as graphs of bounded treewidth, and graphs of bounded cliquewidth. However, this extension
comes at the cost of slightly larger certificates, of O(log2 n) bits, as seen in [33] and [32],
respectively.

With significant advances in developing meta-theorems for distributed certification, there’s
a notable absence of similar results for distributed decision. It prompts a natural question:
could such results be obtained for the round-complexity of CONGEST? More concretely,
the fundamental inquiry that remains unaddressed by Bousquet et al.’s paper, and by the
subsequent works regarding distributed certification of MSO predicates is:

Question. What is the round-complexity in CONGEST of deciding MSO formulas in
graphs of bounded treedepth?

A first step in answering this question was proposed in [58] where it is stated that, in any
graph class of treedepth at most d, for every fixed connected graph H, H-freeness can be
decided in O(1) rounds in CONGEST. In this paper, we offer a comprehensive answer to the
question. To elucidate our results, we first need to define the treedepth of a graph.

Treedepth.
For any non-negative integer d, a (connected) graph G has treedepth at most d if there exists
a rooted tree T spanning the vertices of G, with depth at most d, such that, for every edge
{u, v} in G, u is an ancestor of v in T , or v is an ancestor of u in T , see Fig. 1. The treedepth
of a graph G, denoted by td(G), is the smallest d for which such a tree exists.

The class of graphs with bounded treedepth, i.e., of treedepth d for some fixed d ≥ 0, has
strong connections with minor-closed families of graphs. Specifically, for any family F of
graphs closed under taking graph minors, the graphs in F have bounded treedepth if and only
if F does not include all the paths [57]. Similarly, the graphs with bounded treedepth have a
finite set of forbidden induced subgraphs, and any property of graphs monotonic with respect
to induced subgraphs can be tested in polynomial time on graphs of bounded treedepth [57].
Computing the treedepth of a graph is NP-hard, but since treedepth is monotonic under
graph minors, it is fixed-parameter tractable (FPT) [35]. Last but not least, MSO and FO
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have the same expressive power in graph classes of bounded treedepth [14].

1.1 Our Results
We prove that, for every MSO formula φ, there is an algorithm A that, for every n-node
graph G, decides whether G |= φ in O(22td(G)) rounds in the CONGEST model. That is, the
round-complexity of A depends only on the treedepth of the input graph, and on the MSO
formula, i.e., it does not depend on the size n of the graph. Thus A performs a constant
number of rounds in any class of graphs with bounded treedepth. In particular, deciding
non-3-colorability can be done in O(1) rounds in graphs of bounded treedepth, in contrast to
general graphs, for which deciding non-3-colorability requires a polynomial number of rounds
by [42].

Our meta-theorem is essentially the best that one may hope regarding distributed model
checking MSO formulas in a constant number of rounds in CONGEST. Indeed, the FO
predicate “there is at least one vertex of degree > 2” requires Ω(n) rounds to be checked
in this class. Hence our theorem cannot be extended to graphs of bounded treewidth or
bounded cliquewith, actually not even to bounded pathwith, and not even to the class P ∪ B
where P is the set of all paths, and B is the set of all graphs composed of a path to which is
attached a claw at one of its endpoints.

We also consider distributed model checking of labeled graphs. For instance, one can
check whether a given set of vertices is a feedback vertex set, i.e., whether the graph obtained
by removing this set of vertices is acyclic. For such a predicate, it is sufficient to add a unary
predicate to the logical structure used to mark the nodes, say mark(x) = true means that
vertex x is in the set. Using this unary predicate, φ can express the fact that there are no
cycles in G passing only trough nodes x for which mark(x) = false. As another example, the
fact that a graph is properly 2-colored can be expressed using two unary boolean predicates
red and blue, as

φ =
(

∀x
(
red(x)∨blue(x)

))
∧

(
∀x, y ¬

(
adj(x, y)∧

(
(red(x)∧red(y))∨(blue(x)∧blue(y)

)))
.

Since we also deal with MSO, we can also label edges. For instance, one can check whether a
given set of edges forms a spanning tree. Indeed, it is sufficient to introduce a unary predicate
used to mark the edges: mark(e) = true means that edge e is in the set. As for feedback
vertex set, using this unary predicate, φ can express the fact that the set of marked edges is
a spanning tree (i.e., every node is incident to at least one marked edge, and any two vertices
are connected by a path of marked edges). We show that deciding MSO formulas on labeled
graphs of bounded treedepth can be done in O(1) rounds in the CONGEST model.

More generally, we also consider the optimization variants of decision problems expressible
in MSO on graphs of bounded treedepth. For instance, an independent set can be expressed
as an MSO formula with a free variable S, such as φ(S) = ∀x ∈ S ∀y ∈ S ¬adj(x, y). Then,
maxφ, i.e., maximum independent set, consists in, given any graph G = (V,E), finding the
largest set S ⊆ V such that G |= φ(S). We show that, for every MSO formula φ(S) with
free variable S ⊆ V or S ⊆ E, there is an algorithm for graphs of bounded treedepth solving
maxφ (and minφ) in a constant number of rounds in the CONGEST model. This constant
is of the form O(g(td(G), φ)) for some function g. Due to the expressive power of MSO, our
results yield algorithms with a constant number of rounds in the CONGEST model on graphs
of bounded treedepth for numerous popular optimization problems including minimum vertex
cover, minimum feedback vertex set, minimum dominating set, maximum independent set,
maximum induced forest, maximum clique, maximum matching, minimum spanning tree,
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Hamiltonian cycle, cubic subgraph, planar subgraph, Eulerian subgraph, Steiner tree, disjoint
paths, min-cut, minor and topological minor containment, rural postman, k-colorability, edge
k-colorability, partition into k cliques, and covering by k cliques. We also extend our results
to counting problems, such as counting triangles or perfect matchings.

Finally, we briefly discuss some applications of our results to much larger classes of graphs,
namely graphs of bounded expansion (see [57] for an extended introduction). Graphs of
bounded expansion include planar graphs, and more generally, all classes of graphs defined
from excluding minor. It was shown [58] that, for every class G of graphs with bounded
expansion, and every positive integer p, there is an algorithms performing in O(logn) rounds
under the CONGEST model that partitions the vertex set V of any graph G = (V,E) ∈ G into
f(p) parts V1, . . . , Vf(p) such that every collection Vi1 , . . . , Viq

of at most p parts, 1 ≤ q ≤ p,
{i1, . . . , iq} ⊆ {1, . . . , f(p)}, induces a (not necessarily connected) subgraph of G with
treedepth at most p. The function f solely depends on the considered class G of bounded
expansion. The vertex partitioning V1, . . . , Vf(p) is called a low treedepth decomposition
with parameter p. Plugging in our techniques into this framework, we show that, for every
connected graph H, H-freeness can be decided in O(logn) rounds under the CONGEST
model in any class of graphs with bounded expansion. This result was claimed in [58] with
no proofs. We provide that claim with a complete formal proof.

1.2 Other Related Work
The quest for efficient (sublinear) algorithms for solving classical graph problems in the
CONGEST model dates back to the seminal paper by Garay, Kutten and Peleg [37], where an
algorithm for constructing an MST was designed. Since then, a long series of problems have
been addressed, such as connectivity decomposition [7], tree embeddings [40] k-dominating
set [52], stiener trees [53], min-cut [39, 55], max-flow [38], shortest path [46, 54], among others.
Additionally, algorithms tailored to specific classes of networks have also been developed:
DFS for planar graphs [41], MST for bounded genus graphs [45], MIS for networks excluding
a fixed minor [9], etc.

Distributed certification is a very vivid topic, and many results have appeared since the
survey [21]. A handful of recent papers considered approximate variants of the problem,
a la property testing [15, 16, 22]. In particular, it was shown that every monotone (i.e.,
closed under taking subgraphs) and summable (i.e., stable by disjoint union) property Π
has a compact approximate certification scheme in any proper minor-closed graph class [18].
Other recent contributions dealt with augmenting the power of the verifier in certification
schemes, which includes tradeoffs between the size of the certificates and the number of
rounds of the verification protocol [24], randomized verifiers [34], quantum verifiers [28],
and several hierarchies of certification mechanisms, including games between a prover and
a disprover [1, 23], interactive protocols [11, 48, 56], and even zero-knowledge distributed
certification [2], and distributed quantum interactive protocols [36].

2 Treedepth and treewidth

Throughout the paper, trees (or forests) are considered as rooted. The depth of a tree is the
number of vertices of a longest path from the root to a leaf. The depth of a forest is the
maximum depth among its trees. Let us recall the definition of the treedepth. The interested
reader can refer to the book of Nešetřil and Ossona de Mendez [57] for further insights.

▶ Definition 1 (treedepth). The treedepth of a graph G = (V,E) is the minimum depth of
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a forest T = (V, F ) on the same vertex set as G, such that, for any edge {u, v} of G, one
of the endpoints is an ancestor of the other in the forest T . Such a forest T is also called
elimination forest of G.

Observe that if G is connected then the forest T in the definition above is actually a tree.
The following statement is an alternative, equivalent definition for treedepth. This recursive
definition implicitly provides a recursive construction of an elimination tree.

▶ Lemma 2 ([57]). The treedepth of a graph G is:

td(G) =


1 if G has a unique vertex,
1 + minv∈V (G) td(G− v) if G is connected,
max{td(C) | C is a connected component of G} otherwise.

On the other hand, tree decompositions and treewidth of graphs were introduced by Robertson
and Seymour [60].

▶ Definition 3 (treewidth). A tree decomposition of a graph G = (V,E) is a pair (T,B)
where T = (I, F ) is a tree, and B = {Bi, i ∈ I} is a collection of subsets of vertices of G,
called bags, such that the following conditions hold:

For every vertex of G, there exists some bag containing this vertex;
For every edge e of G there is some bag containing both endpoints of e;
For every v ∈ V , the set {i ∈ I : v ∈ Bi} of bags containing v forms a connected subgraph
of T .

The width of a tree decomposition is the maximum size of a bag, minus one. The treewidth
of a graph G, denoted by tw(G), is the smallest width of a tree decomposition of G.

It is known [57] that the treedepth of a graph is at least its treewidth. Given an elimination
tree T of a graph G, we can define a canonical tree decomposition associated to this same
tree, such that the width of the decomposition corresponds to the depth of T , minus one.
The following lemma is a straightforward consequence of the definitions of elimination trees
and of tree decompositions.

▶ Lemma 4 (canonical tree decomposition). Let T = (V, F ) be an elimination tree of depth d
of a graph G = (V,E). Let us associate to each node u of T a bag B(u) containing u and all
the ancestors of u in T . Then T = (V, F ), and the corresponding set of bags (Bu)u∈V , form
a tree-decomposition of G, of width d− 1.

For instance, the treedepth of an n-vertex path Pn is exactly ⌈log(n+ 1)⌉ (see, e.g., [57]).
The treedepth of a graph does not increase when we delete some of its edges or vertices. Thus
graphs of treedepth d have no paths on 2d vertices. This observation yields the following
lemma.

▶ Lemma 5. Let T = (V, F ) be an elimination tree of a graph G = (V,E) with F ⊆ E. Then
the depth of T is at most 2td(G).

Proof. Let d = td(G). Assume, for the purpose of contradiction, that T has depth larger
than 2d. It follows that the longest path P in T from its root to a leaf contains at
least 2d vertices. The path P is also a path in G, so the treedepth of P is at most the
treedepth of G, i.e., at most d. This is a contradiction with the fact that, for n-node paths,
td(Pn) = ⌈log(n+ 1)⌉. ◀
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3 Tree decompositions and w-terminal recursive graphs

Courcelle’s theorem [10] states that any property expressible in MSO can be decided in linear
(sequential) time on graphs of bounded treewidth. We use an alternative proof of Courcelle’s
theorem, by Borie, Parker, and Tovey [5]. Indeed, this proof provides us with an explicit
dynamic programming strategy, which will be used in our distributed protocol.

Graphs of bounded treewidth can also be defined recursively, based on a graph grammar.
Let w be a positive integer. A w-terminal graph is a triple (V,W,E) where G = (V,E) is a
graph, and W ⊆ V is a totally ordered set of at most w distinguished vertices. Vertices of W
are called the terminals of the graph, and we denote by τ(G) the number of its terminals.
As the terminal set W is totally ordered, we can refer to the rth terminal, for 1 ≤ r ≤ w.
Moreover, since vertices are given distinct identifiers in CONGEST, one can view W as
ordered by these identifiers.

The class of w-terminal recursive graphs is defined, starting from w-terminal base graphs,
by a sequence of compositions, or gluings. A w-terminal base graph is a w-terminal graph
of the form (V,W,E) with W = V . A composition f acts on two1 w-terminal graphs, and
produces a new w-terminal graph, as follows (see Figure 2 for an example2, for w = 2).

The graph G = f(G1, G2) is obtained by, first, making disjoint copies of the two graphs
G1 and G2, and, second, “gluing” together some terminals of G1 and G2. In the gluing
operation, each terminal of G1 is identified with at most one terminal of G2. Formally, the
gluing performed by f is represented by a matrix m(f) having τ(G) ≤ w rows, and two
columns, with integer entries in {0, . . . , τ(G)}. At row r of the matrix, mr,c(f) indicates
which terminal of each graph Gc, c ∈ {1, 2} is identified to the rth terminal of graph G.
If mr,c(f) = 0, then no terminal of Gc is identified to terminal r of G (in particular, if
mr,1(f) = mr,2(f) = 0, then the rth terminal of G is a new vertex; Nevertheless, this
situation will not occur in our construction). Every terminal of Gc is identified to at most
one terminal of G, i.e., each non-zero value in {1, . . . , τ(Gc)} appears at most once in the
column c of m(f).

A simple but crucial observation is that the number of possible different matrices, and
hence of different composition operations f , is bounded by a function of w. Indeed the size
of each matrix is at most 2w, and each entry of the matrix is an integer between 0 and w.

The class of w-terminal recursive graphs is exactly the class of graphs of treewidth at
most w − 1 (see, e.g., Theorem 40 in [4]).

Let us briefly describe how a tree-decomposition of width w − 1 of a graph G can be
transformed into a description of G as a w-terminal recursive graph. This construction
will be crucial for efficiently deciding MSO properties of graph G. Let T = (I, F ) be a
tree-decomposition of G = (V,E) with bags of size at most w. The terminals correspond to
the root bag. For every node u of T , we use the following notations, depicted in Figure 3:

Tu is the subtree of T rooted at u;
Bu is the bag of node u, and Gbase

u = (G[Bu], Bu) is the w-terminal recursive base graph
induced by bag Bu;
Vu is the union of all bags of Tu, and Gu = (G[Vu], Bu) is the w-terminal graph induced
by Vu, with Bu as set of terminals.

1 The definition of [5] considers composition operations of arbitrary arity, i.e., they consider gluing on
three or more graphs simultaneously, and they also consider a special gluing, on a single graph which
allows to “forget” some terminals. Technically, all these operations can be replaced by operations of
arity 2, and we only use arity 2 for the sake of simplifying the presentation.

2 The figure is borrowed from [32] with the agreement of the authors.
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Figure 2 Paths as 2-terminal recursive graphs.

Figure 3 Tree-decompositions: graphs Gu, G=i
u and G≤i

u

Let us now show that Gu is indeed a w-terminal recursive graph. This is clear when u is
a leaf, since, in this case, Gu = Gbase

u is a base graph. Assume that u is not a leaf, and let
v1, . . . , vq be the children of node u in T . The ordering of the children is arbitrary, but fixed.
Let us introduce two new families of w-terminal recursive graphs as follows. Both are having
Bu as set of terminals, and, for every i ∈ {1 . . . , q}:

G=i
u = G[Bu ∪ Vvi

], and
G≤i

u = G[Bu ∪ Vv1 ∪ · · · ∪ Vvi ].
Observe that G=i

u is obtained by gluing Gvi
with the base graph Gbase

u . More precisely,

G=i
u = f(Bvi

,Bu)(Gvi
, Gbase

u ), (1)

where the gluing operation f(Bvi , Bu) glues the terminals of Bvi ∩Bu of Gvi to the corre-
sponding terminals of Bu, and the new set of terminals is Bu. Also, for all i ∈ {1, . . . , q− 1},
G≤i+1

u is obtained by gluing G≤i
u and G=i+1

u using the gluing function f(Bu,Bu) (which is the
identity function on |Bu| terminals), that is:

G≤i+1
u = f(Bu,Bu)(G≤i

u , G=i+1
u ). (2)

By construction, we get Gu = G≤q
u .
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4 MSO logic and Courcelle’s theorem

Recall that, using monadic second-order (MSO) logic formulas on graphs, we can express
graph properties such as “G is not 3-colorable” or “G contains no triangles”. In order to
solve optimization problems, we also consider MSO formulas with a free variable. That is,
we consider formulas of the form φ(S) where S is a set of vertices, or a set of edges. The
corresponding optimization problem aims at finding a set S with maximum (or minimum,
depending on the context) size satisfying G |= φ(S). More generally, we may assume that
the vertices, or edges of the input graph G = (V,E) have polynomial weights, that is the
weight assignment w : V ∪E → Z satisfies that, for every x ∈ V ∪E, w(x) can be encoded on
O(logn) bit. The problem maxφ then consists to compute the set S with maximum weight
satisfying G |= φ(S). In this framework we can express problems like maximum (weighted)
independent set, minimum (weighted) dominating set, or minimum-weight spanning tree
(MST).

4.1 Regular Predicates, Homorphism Classes, and Composition
To start, let us first consider closed formulae only, i.e., with no free variable, and formulas
with just one free (edge or vertex) set variable. Using closed formulae, we can refer to
graph predicates P(G), and, using formulas with free variables, we can refer to graph
predicates P(G,X), where X denotes a subset of vertices or a subset of edges of G. For each
possible assignment of X with corresponding values, P is either true or false.

Any composition operation f over two w-terminal recursive graphs G1 = (V1,W1, E1),
and G2 = (V2,W2, E2) naturally extends to a composition over pairs (G1, X1), and (G2, X2).
If G = f(G1, G2), we denote by ◦f the composition over pairs. More precisely,

◦f

(
(G1, X1), (G2, X2)

)
= (G,X),

the operation being valid only under some specific conditions. Let us consider the case when
X1 and X2 are vertex-set variables. For each terminal t of G, if terminals from both G1 and
G2 were mapped to t, say, terminals t1 ∈ W1 and t2 ∈ W2, then either t1 ∈ X1 and t2 ∈ X2,
or t1 ̸∈ X1 and t2 ̸∈ X2. The set X is interpreted as the union of X1 and X2, by identifying
pairs of terminal vertices t1 ∈ X1 and t2 ∈ X2 that have been mapped on a same terminal
of G. For edge-sets, the set X can also be seen as the union of two sets X1 and X2, up to
gluing the vertices specified by f . We refer to [5] for a description of the gluing operation,
and of the interpretation of the values of the variables.

▶ Definition 6 (regular predicate). A graph predicate P(G,X) is regular if, for any value w,
we can associate to w

a finite set C of homomorphism classes,
an homomorphism function h, assigning to each w-terminal recursive graph G, and to
any subset X of vertices or edges of G, a class h(G,X) ∈ C, and
an update function ⊙f : C × C → C for each composition operation f ,

such that:
1. If h(G1, X1) = h(G2, X2) then P(G1, X1) = P(G2, X2);
2. For any two w-terminal recursive graphs G1 and G2, and any two sets X1 and X2,

h
(

◦f

(
(G1, X1), (G2, X2)

))
= ⊙f

(
h(G1, X1), h(G2, X2)

)
.

A class c ∈ C is said to be an accepting class if there exists (G,X) such that h(G,X) = c,
and P(G,X) is true. By definition, the predicate P holds for every (G′, X ′) such that
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h(G′, X ′) = c. A non accepting class c is called a rejecting class. The same definitions applies
to predicates P(G), with no free variables.
Remark. Without loss of generality, we may assume that, in Definition 6, the class
c = h(G,X) with G = (V,W,E) encodes the intersection of X with G[W ]. Indeed, since
W is of constant size, if X is a vertex-set, then we can add the set of all the ranks of the
elements in Xj ∩ W , with respect to the totally ordered set W , to the class c. And if Xj

is an edge-set, then we can store each edge of Xj contained in G[W ] as the pair of ranks
of its endpoints. In particular, we can assume that we are given a function Selected(c,W )
which, given a class c, and a set of terminals W , returns the unique intersection of X with
the vertices, or the edges, of G[W ].

▶ Theorem 7 ([5]). Any predicate P(G,X) expressible by an MSO formula φ(X) is regular.
Moreover, given the formula φ(X) and a parameter w, one can compute the set of classes C, the
update functions ⊙f over all possible composition operations f , as well as the homomorphism
classes h(G,X) for all base graphs G, and all possible values of variable X. (The same holds
for predicates P(G) corresponding to closed formulas φ.)

Let us emphasize that the width parameter w, and the formula φ in Theorem 7 are
constants. Thereofore, the set of homomorphism classes C is of constant size, and can be
computed, as well as functions ⊙f and homomorphism classes of base graphs, in constant
time. This constant just depends on w and on φ.

4.2 Sequential Model-Checking
We have all ingredients to describe the key ingredient of the sequential model-checking
algorithm on graphs of bounded treewidth that we will use for designing our distributed
protocol. In a nutshell, the algorithm proceeds by dynamic programming, from the leaves of
the decomposition-tree to the root. When considering a node u, the program deals with the
graph Gu induced by all bags in the subtree rooted at u, which is viewed as a w-terminal
recursive graph with labels Bu. The program computes the homomorphism class of h(Gu)
using merely the homomorphism classes of its children, the bags of its children, and the
subgraph of G induced by the bag of u.

▶ Lemma 8 (bottom-up decision). Let P(G) be a regular predicate on graphs, corresponding
to a formula φ with no free variables. Let G be a graph, and let T = (I, F ) be a tree-
decomposition of G with bags {Bu | u ∈ I}. Let u be a node of the tree decomposition, with
children v1, . . . , vq for q ≥ 0. The homomorphism class of h(Gu) can be computed using only
Gbase

u , the values of Bvi
and h(Gvi

) for all i ∈ {1, . . . , q}.

Proof. Observe that h(Gbase
u ) can be computed directly by Theorem 7. In particular this

settles the case when u is a leaf. If u is an internal node, then, for each i = 1, . . . , q, we
can compute h(G=i

u ) using Bvi
, Bu, h(Gvi

) and h(Gbase
u ) as follows. By Equation 1, we have

G=i
u = f(Bvi

,Bu)(Gvi , G
base
u ). Since Bvi and Bu are known, one can construct the function

f(Bvi
,Bu), and, thanks to Theorem 7, one can retrieve the function ⊙f(Bvi

,Bu) . By Definition 6,
h(G=i

u ) = ⊙f(Bvi
,Bu)(h(Gvi

), h(Gbase
u )). Since the parameters on the right-hand side of the

equality are known, one can compute h(G=i
u ).

Let us now show how to compute the values h(G≤i
u ). For i = 1, G≤1

u = G=1
u , and thus

h(G≤1
u ) = h(G=1

u ). For every i ≥ 2, one can compute h(G≤i
u ) using Bu, h(G≤i−1

u ), and
h(G=i

u ). Indeed, by Equation 2, G≤i
u = f(Bu,Bu)(G≤i−1

u , G=i
u ), so again we have h(G≤i

u ) =
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⊙f(Bu,Bu)(h(G≤i−1
u ), h(G=i

u )), and all parameters on the right-hand side have been computed
previously.

Eventually, since Gu = G≤q
u , we get h(Gu) = h(G≤q

u ). ◀

4.3 Sequential Optimization
Let us now describe how, given an MSO formula φ(S) with a free variable S, one can solve
the problem maxφ, i.e., finding a set S with maximum weight satisfying G |= φ(S). Again,
the algorithm proceeds by dynamic programming, from the leaves of the decomposition tree
to the root. Let us consider a node u of the tree decomposition. For all homomorphism
classes c ∈ C, the goal is to maximize the weight of a set Su such that h(Gu, Su) = c,
using the information of the same nature retrieved from the children of u in the tree. The
corresponding dynamic programming table is denoted by OPT(Gu). At the root we get
obtain the maximum size of S by choosing the maximum value over all accepting classes.
▶ Definition 9. Let P = (G,X) be a regular predicate over graphs and sets of vertices or
edges, let w be an integer, and let C be the corresponding set of homomorphism classes over w-
terminal recursive graphs. We associate to each w-terminal recursive graph G an optimization
table OPT(G) of |C| entries, such that, for each c ∈ C, OPT(G)[c] = max{w(X) | h(G,X) =
c}. If no such set X exists, we set OPT(G)[c] = −∞.

Observe (see also [5, 33]) that, if G = (W,W,E) is a base graph, then

OPT(G)[c] = w(Selected(c,W )) (3)

for each c ∈ C (or −∞ if no such W exists). If G = f(G1, G2), then OPT(G) can be computed
based on OPT(G1),OPT(G2), and f . Indeed, for each c ∈ C, we have

OPT(G)[c] = max
c1,c2∈C s.t. c=⊙f (c1,c2)

OPT(G1)[c1] + OPT(G2)[c2]−

− w(Selected(c1,W1) ∩ Selected(c2,W2)) (4)

As previously, the maximum of empty sets is considered to be −∞. Similarly to Lemma 8,
we have:
▶ Lemma 10 (bottom-up optimization). Let P(G,X) be a regular predicate on graphs,
corresponding to a formula φ(X) with a free vertex-set or edge-set variable. Let G be a graph,
and let T = (I, F ) be a tree decomposition of G with bags {Bu | u ∈ I}. Let u be a node of the
tree decomposition, with children v1, . . . , vq, q ≥ 0). OPT(Gu) can be computed using only
Gbase

u , and the values Bvi
and OPT(Gvi

) for all i ∈ {1, . . . , q}. Moreover, for each c ∈ C, one
can compute the q-uple of homomorphism classes ARGOPTu[c] = (c1, . . . cq) such that the
optimal partial solution Xu of Gu satisfying h(Gu, Xu) = c was obtained by gluing optimal
partial solutions Xvi of Gvi satisfying h(Gvi , Xi) = ci, for all i ∈ {1, . . . , q}.
Proof. The proof is very similar to the one of Lemma 8. Again, OPT(Gbase

u ) can be computed
by brute force (Eq. (3)), which also settles the case when u is a leaf. If u is not a leaf,
then we first compute OPT(G=i

u ) for each 1 ≤ i ≤ q. Then we use the fact that, thanks to
Equation 1, G=i

u = f(Bvi
,Bu)(Gvi

, Gbase
u ), and the computation of OPT(G=i

u ) is performed
through Eq. (4). For i ≥ 2, we compute OPT(G≤i

u ) from OPT(G≤i−1
u ) and OPT(G=i

u ), based
on Equation 4, and the fact that G≤i

u = f(Bu,Bu)(G≤i−1
u , G=i

u ) (cf. Eq. (2)). Eventually,
OPT(Gu) = OPT(G≤q)u. Note that, at every application of Eq. (4), one can memorise, for
each homomorphism class c of the glued graph, the classes of the two subgraphs that produced
the maximum weight. In particular, one can deduce the classes (c1, . . . , cq) = ARGOPTu[c]
for each class c ∈ C. ◀
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Algorithm 1 Sequential decision/optimization for regular P on G

Require: tree decomposition T = (VE , FT ) of width w − 1 of G ; formula φ and the
corresponding homomorphism classes C, homomorphism function h on base graphs,
composition functions ⊙f , function Selected ▷ See Theorem 7

1: Bottom-up phase on tree T , computes h(Gu)/OPT(Gu),ARGOPTu for each node u
2: for each node u of T from the bottom to the root do
3: let v1, . . . , vq be the children of u in T ▷ These nodes have been treated before u
4: // Decision problems:
5: Compute h(Gu) from Gbase

u , Bvi
and h(Gvi

), 1 ≤ i ≤ q using Lemma 8
6: // Optimization problems:
7: Compute OPT(Gu) and ARGOPTu from Gbase

u , Bvi
and OPT(Gvi

), 1 ≤ i ≤ q by
Lemma 10

8: end for

9: Decision at the root r (decision problems only). Return true if h(Gr) is an
accepting class, otherwise return false.

10: Top-down phase (optimization only)
11: for each node u of T from the top to the bottom do
12: if u is the root then
13: choose class cu ∈ C such that cu is accepting and OPT(Gu)[c] is maximized
14: if no such class exists then reject end if
15: else
16: cu is the class received by u from its parent in T

17: end if
18: // Selects edges/vertices of the optimal solution:
19: Mark all edges/vertices of Selected(cu, Bu) as “selected"
20: if u is not a leaf then
21: let v1, . . . , vq be the children of u in T

22: let (c1, . . . , cq) = ARGOPTu[cu] ▷ ci is the optimal class for child vi, see
Lemma 10

23: Send to each vi value ci, for all i = 1, . . . , q
24: end if
25: end for

4.4 The Sequential Algorithm

Algorithm 1 simultaneously presents the model-checking of regular predicates on graphs, and
the optimization protocol for predicates on graphs and sets.

For the decision problem, we simply compute bottom-up, for each node u, the class of
h(Gu) using Lemma 8. At the root r, the algorithm accepts if h(Gr) is an accepting class.

For optimization problems we need to construct bottom-up the full optimization tables
OPT(Gu). At the root, it suffices to find an accepting class cr maximizing OPT(Gu). Then
the value OPT(Gu)[cr] is the maximum size of set X satisfying P(G,X). In order to retrieve
the optimal set XOPT itself, we “roll back” the whole dynamic programming process, in a
top-down phase. Specifically, at the root node u = r, we choose the class cu with maximum
value of OPT(Gu) over all accepting classes. In particular, Selected(c,Bu) indicates the
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vertices, or edges, of G[Bu] contained in the optimal solution. Moreover, by Lemma 10,
ARGOPTu[c] provides the tuple of classes (c1, . . . , cq) from which the optimal class cu has
been obtained through gluing of partial solutions of children of u. Therefore u can “inform”
the ith child that its optimal class is ci. Each node performs the same procedure by decreasing
depth, starting from the class received from its parent.

5 Distributed construction of the elimination tree

Our CONGEST protocol constructing an elimination tree of depth smaller than 2d for graphs
of treedepth at most d is depicted in Algorithm 2. A similar question was previously addressed
in [58] (see Section 8).

▶ Lemma 11. Let G = (V,E) be the (connected) input network, and let d ≥ 1 be an integer.
There exists an algorithm performing in O(22d) rounds in CONGEST that outputs either an
elimination tree T = (T, F ) of G with depth at most 2d, or reports that td(G) > d. In the
former case, each node u ∈ V knows its parent and its children in the tree T at the end of
the algorithm, as well as the depth of T .

Proof. Algorithm 2 constructs an elimination tree following the same approach as Lemma 2,
in a greedy manner. Since G is connected, it starts with a root vertex v = r (chosen
arbitrarily), and then constructs elimination trees of G ∖ v, by treating each component
separately. The components of G∖ v are identified by their leader with the smallest node’s
identifier of the component. Each unmarked node eventually knows its leader (Instruction 8).
For a component with leader ℓ, we choose as root of the component a vertex that is adjacent to
v (Instruction 12). In particular, every edge of the tree is also an edge of G (see Instruction 14).

The construction preserves the following invariant. The tree constructed after step i is
an elimination tree of the subgraph induced by the marked vertices. Moreover, for each
connected component of unmarked vertices, its outgoing edges are solely incident to a path
from the root and a vertex v of depth i. In particular, at the end, T is an elimination tree
of G. Furthermore, T is a subtree of G. Therefore, by Lemma 5, if td(G) ≤ d then the
depths of T is smaller than 2d as requested, and the algorithm marks all vertices in less
than 2d phases. Consequently, if some vertices remain unmarked after this many rounds
(Instruction 21), we correctly assert that td(G) > d.

Regarding the round-complexity, observe that, at each step, there is a call to Algorithm
leader on the set of unmarked nodes (see, e.g., [47] for a detailed description of a leader-
election algorithm). Its round complexity is O(diam(G)). The diameter of G is O(2td(G)),
and thus is it at most O(2d) (we can adapt algorithm leader such that, if it does not succeed
in O(2d) rounds, then it rejects, which is correct as, in this case, td(G) > d). ◀

▶ Lemma 12. Let G = (V,E) be the input network, and let us assume that an elimination
tree T = (F, V ) of depth smaller than 2d has been constructed as in Lemma 11. There is a
CONGEST algorithm constructing the canonical tree decomposition (T, (Bu)u∈V ) in O(2d)
rounds. At the end of the algorithm, each node u knows its bag Bu as well as the graph G[Bu]
induced by the bag.

Proof. The algorithm proceeds top-down. For each round i = 1, . . . , D = 2d − 1, every node
u at depth i computes Bu and G[Bu]. Observe that when u is the root, Bu is a singleton so
G[Bu] is trivial. If u is not the root, then u has received Bv and G[Bv] from its parent v.
Observe that Bu = Bv ∪ {u} and the edges of G[Bu] are the edges of G[Bv], plus the edges
incident to u. Therefore, node u is able to compute the information from its parent, and to
transmit it to its children. ◀
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Algorithm 2 CONGEST algorithm computing an elimination tree of G in O(22d) rounds

Require: Protocol leader(G = (V,E), U) with a set U ⊆ V of distinguished vertices (i.e.,
each vertex knows whether it belongs to U). After O(diam(G)) CONGEST rounds, each
vertex u will know leader(u), the minimum identifier in the component of G[U ] containing
u.

1: Apply leader on all vertices of G
2: Let r be the unique node such that r = leader(r) ▷ Unique since G is connected
3: Set parent(r) = r ▷ r is the root of the tree
4: Mark vertex r ▷ Marked vertices are those already placed in the tree
5: Set depth(r) = 1
6: for step i = 2 to D = 2d − 1 do
7: // At step i we identify the nodes of T of depth i

8: Apply leader on all unmarked vertices of G ▷ O(2d) rounds
9: Each unmarked vertex u broadcasts (leader(u), u) to its neighbours ▷ One round

10: for each marked vertex v of depth i do ▷ All in a same round
11: for each ℓ among values leader(u) received by v do
12: v picks the corresponding u(ℓ) of minimum id ▷ u(ℓ) is a new node of depth i

13: v adds u(ℓ) to the list of its children
14: v sends to u(ℓ) a message with its id indicating that it becomes its parent.
15: end for
16: end for
17: for each vertex u that receives such a message from some v do ▷ All in a same round
18: u sets parent(u) = v, depth(u) = i and marks itself
19: end for
20: end for
21: if some vertex u is still unmarked then
22: u rejects because td(G) > d ▷ G contains a path with more than D vertices
23: end if

6 Distributed model checking and optimization

We have now all ingredients to prove our main result.

▶ Theorem 13 (Distributed decision and optimization).
For any closed MSO formula φ, there exists an algorithm which, for any n-node graph G,
and any d ≥ 0, decides whether G |= φ, or reports “large treedepth” if td(G) > d, running
in O(22d) rounds in the CONGEST model.
For any MSO formula φ(S) with a free variable S representing a vertex-set, or an edge-set,
there exists an algorithm which, for any n-node graph G, and any d ≥ 0, selects a set
S of maximum weight satisfying G |= φ(S), or reports “large treedepth” if td(G) > d,
running in g(d, φ) rounds in the CONGEST model for some function g.

Proof. By Lemmas 11 and 12, one can construct a canonical tree decomposition T = (V, F )
of G = (V,E), with bags {Bu | u ∈ V } of width at most 2d (or correctly reject because
td(G) > d), in O(22d) rounds. Moreover each node u knows its parent parent(u), its bag Bu,
the graph G[Bu], and its depth in T . By construction, the tree T is a subgraph of G. It
remains to show that, based on these elements, one can implement the sequential algorithm
(cf. Algorithm 1) in CONGEST.
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Let us first consider model-checking of a closed formula φ. We describe how the bottom-up
phase, and the decision at the root in Algorithm 1 can be implemented in depth(T ) rounds.
Let us consider all steps j ∈ {1, . . . , depth(T )}, where each step consists of a single round.
At step j, all nodes u of depth k = depth(T ) − j + 1 can compute the homomorphism
classes h(Gu) in parallel (k decreases from depth(T ) to 1), and can send the results of this
computation to their parents. Indeed, if u of depth k is a leaf, then it has all information
needed to compute h(Gu) already, because it only needs to know graph Gbase

u = G[Bu] (see
Instruction 5 of Algorithm 1, and Lemma 8). If u it is not a leaf, then it also needs the
bags Bvi

, and the homomorphism classes h(Gvi
) from all its children vi, {1, . . . , q}. But, at

step j, node u has precisely already received these information from its children, who have
sent them at the previous step j − 1. The decision at the root can be performed at round 1.
The root accepts or rejects depending on its homoporphism class, as in Algorithm 1, and all
other nodes accept. Therefore, if G |= S, then all nodes accept, otherwise the root rejects.
Note that each message consists of a homomorphism class, thus the size of the messages is a
constant. More precisely, messages are of size log |C| bits.

Next, we consider optimization problems φ(S). In the bottom-up phase of Algorithm 1,
the main difference with the model-checking case is that each step j now requires |C| rounds
to be performed. Again, nodes of depth k = depth(T ) − j+ 1 can perform their computations
in parallel (cf. Instruction 7 of Algorithm 1, and see Lemma 10). However, they need to
broadcast the whole table OPT (Gu), which contains |C| entries of size O(logn) because
each entry corresponds to the weight of an edge or vertex subset (recall that the weights
are supposed to be polynomial in n). Therefore, when a node u aims at performing its
computation, it has indeed received all necessary inputs from its children. The top-down
phase (Instructions 10 to 25) only requires depth(T ) rounds. At phase j, all nodes at depth j
work in parallel. From its own optimal class cu, every node u can retrieve the corresponding
optimal classes cvi

, for each of its children vi, i ∈ {1, . . . , q}. Thus, in a single communication
round, u can send the class cvi to each child vi. Also, at round j = depth(u), node u

computes Selected(cu, Bu). If the set S that we are aiming at optimizing is a vertex set. If
u ∈ Selected(cu, Bu), then u must be in the optimal solution SOPT, and it thus selects itself.
Note that other notes of bag Bu might be in SOPT. However, since they are ancestors of u in
the tree T , they have selected themselves at some previous step. If the set S is an edge set,
then u just selects the edges incident to it that belong to Selected(cu, Bu).

The correctness of the distributed protocol, and hence the proof of Theorem 13, follows
directly from the correctness of Algorithm 1. ◀

Let us complete the section by extensions to labeled graphs, and to counting problems.

Labeled graphs.

Definition 6, and Theorem 7 extend to formulas on labeled graphs, i.e., one can add to the
input graph a constant number of labels L1, . . . , Lℓ on vertices, and on edges. Labels are
expressed as unary predicates that can be used in the MSO formulas, in addition to the
binary predicates adj(x, y) and inc(x, e). So, as incidence and adjacency, labels are part of
the input. For example, one can use vertex labels red and blue, and ask for the minimum
set of blue vertices that dominates all red vertices. This corresponds to solving the problem
maxφ(S) for the following formula, with all weights set to −1:

φ(S) =
(
∀x ∈ S blue(x)

)
∧

(
∀y ¬

(
red(y) ∧ (∀x ∈ S ¬adj(x, y))

))
.

Theorem 13 on distributed decision and optimization also applies to labeled graphs.
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A slightly different application of labeled graphs is problem optmarkedφ in which we are
given a set of vertices (or edges), marked via a unary predicate Mark, and a formula φ(S), and
the question is whether the marked set corresponds to a maximum weight set satisfying φ. In
this setting, we can express problems such as: Is the marked set a minimum feedback vertex
set? Is the marked set a minimum-weight spanning tree? For answering such questions in
the CONGEST model, it is sufficient to modify the bottom-up phase of our algorithm such
that the root r of the decomposition tree collects:
1. the optimization table OPT(Gr) for formula φ(S), by executing the optimization protocol;
2. the decision for a closed formula ψ obtained from φ by replacing S by Mark;
3. the total weight of the marked set, obtained by summing up, at every node u, the weight

of the marked vertices of G[u], which are obtained from the weights at the children nodes.
Eventually, the root accepts if (1) ψ is accepted (indicating that the marked set of nodes or
edges satisfies the formula), and (2) the weight of the marked set is equal to the maximum
of OPT(Gr) (confirming that the set is indeed an optimal one). All other vertices accept.

Therefore, problem optmarkedφ can also be solved in g(d, φ) rounds in CONGEST.

Counting.

The results of Borie, Parker and Tovey [5] actually concern formulas with an arbitrary number
of free variables, each variable being of type “vertex” or “edge”, or “vertex set” or “edge
set”. For example, by considering three vertex variables x1, x2, x3, one can easily express a
formula φ(x1, x2, x3) stating that x1, x2 and x3 form a triangle.

Definition 6 and Theorem 7 extend to predicates P(G1, X11, . . . , X1p), and to formulae
φ(X11, . . . , X1p) with an arbitrary number of variables, where each variable Xi denotes a
vertex or an edge, or a vertex subset or an edge subset of G. For each possible assignment of
variables with corresponding values, P is either true or false. Gluing functions f naturally
extend to tuples (G1, X11, . . . , X1p) and (G2, X21, . . . , X2p), the operation being valid only
under some specific conditions. We refer again to [5] for a full description of the gluing, and
of the interpretation of the values of the variables.

In Definition 6, the two conditions for regularity become:
1. If h(G1, X11, . . . , X1p) = h(G2, X21, . . . , X2p) then

P(G1, X11, . . . , X1p) = P(G2, X21, . . . , X2p);

2. For any two w-terminal recursive graphs G1 and G2 and variables X11, . . . , X1p of G1,
and X21, . . . , X2p of G2,

h
(

◦f

(
(G1, X11, . . . , X1p), (G2, X21, . . . , X2p)

))
=

= ⊙f

(
h(G1, X11, . . . , X1p), h(G2, X21, . . . , X2p)

)
.

Borie, Parker and Tovey [5], propose a sequential algorithm for problem countφ, counting
the number of different true assignments of a formula φ(X1, . . . , Xp), on w-terminal recursive
graphs. We can restate their technique in our framework, as follows. Let COUNT(G) be
the table counting, for each homomorphism class c ∈ C, the number of different partial
assignments to variables X1, . . . , Xp such that h(G,X1, . . . , Xp) = c. This table can be
computed in constant time on base graphs. Similarly to Equation 4 for optimization problems,
[5] proposes an approach to compute, for graph G = f(G1, G2), the table COUNT(G), using
only function f , and tables COUNT(G1) and COUNT(G2). Similarly to Lemma 10, we can
derive a lemma for counting problems, describing, at each node u, the computation of table
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COUNT(Gu) from tables COUNT(Gvi
) of children nodes vi, together with their bags Bvi

and the base graph Gbase
u .

Therefore, problem countφ can be solved in g(d, φ) = O(1) rounds on graphs of treedepth
at most d, which is the same round-complexity as for optimization. In particular, triangle
counting can be performed in a constant number of rounds in CONGEST, on bounded
treedepth graphs. Note that for the triangle counting problem, the design of the dynamic
programming tables, and of the update functions is a simple but enriching exercise.

7 Applications to H-freeness for graphs of bounded expansion

For the many alternative definitions of graphs of bounded expansion, we refer to the book of
Nešetřil and Ossona de Mendez in [57]. In terms of applications, we simply recall that the
class of planar graphs, and, more generally, every class of graphs excluding a fixed minor,
are classes of graphs of bounded expansion. It is known that graphs of bounded expansion
admit so-called low treedepth decompositions.

▶ Theorem 14 ([57]). Let G be a class of graphs of bounded expansion. There is a function
f : N → N such that, for every integer p > 0, and every graph G = (V,E) ∈ G, the vertex set
of G can be partitioned into at most f(p) parts V1, . . . , Vf(p), such that the union of any q
parts, 1 ≤ q ≤ p parts induces a subgraph of G with treedepth at most q.

A partition satisfying the property of Theorem 14 is called a low treedepth decomposition
of G for parameter p. Interestingly, low treedepth decompositions can be efficiently computed
in CONGEST, i.e., each vertex can compute the index i ∈ {1, . . . , f(p)} of the part to which
it belongs.

▶ Theorem 15 ([58]). For every graph class G with bounded expansion, and every positive
integer p, a low treedepth decomposition of G for parameter p can be computed in O(logn)
rounds in CONGEST.

The constant hidden in the big-O notation in the statement of Theorem 15 depends
on the class G and on the parameter p, and it is quite huge. The proof of Theorem 15 is
sophisticated, but the algorithm is actually quite simple. It is merely based on the fact
that graphs with bounded expansion have bounded degeneracy, and on the use of standard
distributed tools for approximating the degeneracy of a graph in CONGEST. Combining
Theorem 13 with Theorem 15, we can establish the following.

▶ Corollary 16. Let G be a class of graphs with bounded expansion, and let H be a connected
graph. Deciding H-freeness for graphs in G can be achieved O(logn) rounds under the
CONGEST model.

Proof. The algorithm works as follows. Let p be the number of vertices of H. First, compute
a low treedepth decomposition V1, . . . , Vf(p) of the input graph G = (V,E) into f(p) parts
for parameter p using Theorem 15. Then, for every non-empty set I ⊆ [f(p)] with |I| ≤ p,
let GI = G[∪i∈IVi] be the graph induced by the parts Vi, i ∈ I. Note that there are at most(

f(p)
p

)
such subsets I, that is, a constant number of choices for I. Also observe that if a copy

of H exists in graph G, then this copy of H belongs to one of the graph GI , where I is the
set of the parts that are containing at east one vertex of the copy. It is therefore sufficient to
run the algorithm in Theorem 13 on each graph GI in parallel, and to reject if one of the
parallel executions finds a copy of H. This is doable because (1) GI is of treedepth at most
p, (2) if a copy of H exists, then it will be found in a connected component of GI , thanks to
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the fact that H is connected, and (3) the property “GI is H-free” can be expressed as an
MSO formula (actually, even as an FO formula), with p variables, one for each vertex of H.
For instance, for a graph H = (VH , EH) with VH = {1, 2, . . . , p}, we can use the formula

φH = ¬∃x1, x2, . . . , xp

 ∧
{i,j}∈EH

adj(xi, xj)

 ∧

 ∧
{i,j}/∈EH

¬adj(xi, xj)

 .

Consequently, the algorithm rejects if and only if the input graph G contains a copy of H, as
desired. ◀

In particular, Corollary 16 proves that H-freeness can be solved in O(logn) rounds in
planar graphs under CONGEST. In contrast, for arbitrary graphs, even C4-freeness requires
Ω(

√
n) rounds, and, for every p ≥ 2, there are O(p)-vertex graphs H for which H-freeness

requires Ω(n2−1/p) rounds [27]. Note that H-freeness as considered in Corollary 16 can
be considered in the usual sense (i.e., the input graph does not contain any copy of H
as an induced subgraph), but also in the mere sense that there are no copies of H as a
(non necessarily induced) subgraphs, by a straightforward adaptation of the MSO formula
describing the problem.

8 Conclusion

In this paper, we established a meta-theorem about MSO formulas on graphs with bounded
treedepth within the CONGEST model. Treedepth plays a fundamental role in the theory of
sparse graphs of Nešetřil and Ossona de Mendez [57]. In particular, decomposing a graph
in graphs of bounded treedepth is the crucial step in deriving a linear-time model-checking
algorithm for FO on graphs of bounded expansion in the sequential computational model.
Graphs of bounded expansion contain bounded-degree graphs, planar graphs, graphs of
bounded genus, graphs of bounded treewidth, graphs that exclude a fixed minor, etc. Model-
checking for FO on graphs of bounded expansion cannot be achieved in the CONGEST
model since, as we already mention, checking an FO predicate as simple as “there is at least
one vertex of degree > 2” requires Ω(n) rounds in n-node trees. Nevertheless, there might
exist some fragments of FO that could be tractable on graphs of bounded expansion in the
distributed setting. It would be interesting to identify the exact boundaries of intractability
in this context, regarding both distributed decision, and distributed certification. An initial
step in this direction was taken by Nešetřil and Ossona de Mendez in [58], resulting in a
distributed algorithm for computing a low treedepth decomposition of graphs of bounded
expansion, running in O(logn) rounds under CONGEST. As we illustrated, this results allows
to efficiently decide FO-expressible decision problems (such as H-freeness, for H connected)
for classes of graphs with bounded expansion, in O(logn) rounds. We restate the open
question of [58]: Given a local FO formula φ(x), i.e., a formula where φ(x) depends on a
fixed-radius neighborhood of vertex x only, can we mark all vertices satisfying φ in O(logn)
rounds?
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