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THE PERIOD-INDEX CONJECTURE FOR ABELIAN THREEFOLDS

AND DONALDSON–THOMAS THEORY

JAMES HOTCHKISS AND ALEXANDER PERRY

Abstract. We prove the period-index conjecture for unramified Brauer classes on abelian
threefolds. To do so, we develop a theory of reduced Donaldson–Thomas invariants for 3-
dimensional Calabi–Yau categories, with the feature that the noncommutative variational
integral Hodge conjecture holds for classes with nonvanishing invariant. The period-index
result is then proved by interpreting it as the algebraicity of a Hodge class on the twisted
derived category, and specializing within the Hodge locus to an untwisted abelian threefold
with nonvanishing invariant. As a consequence, we also deduce the integral Hodge conjecture
for generically twisted abelian threefolds.
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1. Introduction

The goal of this paper is to introduce a new approach to the period-index and integral Hodge
conjectures based on Donaldson–Thomas theory, and to use this perspective to prove the un-
ramified case of the period-index conjecture for abelian threefolds. As an important ingredi-
ent, we develop a general theory of reduced Donaldson–Thomas invariants for 3-dimensional
Calabi–Yau categories.

1.1. The period-index conjecture. Let K be a field. The Brauer group Br(K) is a fun-
damental invariant of K with numerous applications in geometry and arithmetic. The most
elementary definition is in terms of central simple algebras over K, which are unital, associa-
tive K-algebras with finite dimension over K, center K, and no nontrivial two-sided ideals.
Two such algebras A and B are called Morita equivalent if there exists an isomorphism of
matrix algebras Mr(A) ∼= Ms(B) for some positive integers r and s. Then Br(K) is the abelian
group of central simple algebras over K modulo Morita equivalence, with group operation in-
duced by tensor product over K. Any central simple algebra over K is Morita equivalent to a
central division algebra over K which is unique up to isomorphism, so Br(K) can be thought
of as a group classifying central division algebras.

The complexity of a Brauer class α ∈ Br(K) can be measured by two integer invariants.
The first is the period per(α), equal to the order of α in Br(K); this is a positive integer
because Br(K) is a torsion group. The second is the index ind(α), equal to the

√
dimK D

where D is the unique central division algebra of class α; this is a positive integer because,
more generally, any central simple algebra A satisfies A⊗KK ∼= Mn(K) and hence has square
dimension over K.

It is an elementary result that per(α) | ind(α) (where for integers a, b we use the standard
notation a | b to mean a divides b), and that per(α) and ind(α) share the same prime factors.
The period-index problem is to determine an integer e such that ind(α) | per(α)e. This problem
plays a central role in the study of Brauer groups and has drawn much attention over the past
century; see [ABGV11, §4] or below for a partial survey of results. In particular, the following
folklore conjecture has emerged.
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Conjecture 1.1 (Period-index conjecture). Let K be a field of transcendence degree d over
an algebraically closed field k. For any α ∈ Br(K), we have

ind(α) | per(α)d−1.

To our knowledge, Conjecture 1.1 was first raised in print by Colliot-Thélène [CT01] (see
also [CT06, Lie08]). Despite an abundance of work, the number of known cases is still quite
sparse:

• For d ≤ 1 the conjecture is vacuous, as Br(K) = 0 by an easy argument when d = 0
and by Tsen’s theorem when d = 1.

• For d = 2 the conjecture is true by work of de Jong [dJ04] when per(α) is prime to
the characteristic of k, and building on this, by Lieblich [Lie08] and de Jong–Starr
[SdJ10] in general.

• For d ≥ 3 the conjecture is not known for any field K whatsoever.

For arbitrary d, Matzri [Mat16] proved that ind(α) divides per(α)e for an exponent e that can
be bounded by a polynomial in per(α) (depending on d); however, the bound falls far short of
the conjectural one in that e it is not uniform in per(α) and is very large even for small per(α).
Finally, we note that Conjecture 1.1 is sharp, with examples achieving the bound going back
to 1935 [Nak35] (see also [CT02, Hot22, dJP22]).

It is natural to consider Conjecture 1.1 for classes α ∈ Br(K) that come from a global
model of K, where more structure is available. Namely, by Grothendieck [Gro68] there is an
extension Br(X) of the Brauer group to any scheme X, classifying Azumaya algebras on X
up to Morita equivalence. If X is a smooth projective variety over k with function field K,
then the restriction map Br(X) → Br(K) is injective, with image independent of the chosen
model X. The classes in Br(K) arising in this way are said to be unramified. They are the
crucial classes to consider for the period-index problem, as work of de Jong–Starr [SdJ10]
implies that for a fixed d, Conjecture 1.1 for every K is equivalent to the following a priori
weaker conjecture for every X:

Conjecture 1.2 (Unramified period-index conjecture). Let X be a smooth projective variety
of dimension d over an algebraically closed field k. For any α ∈ Br(X), we have

ind(α) | per(α)d−1,

where the period and index are defined as those of the class over the generic point.

In this paper, we prove the conjecture for abelian threefolds, under a mild assumption on
the characteristic.

Theorem 1.3. Let X be an abelian threefold over an algebraically closed field k. For any
α ∈ Br(X) with per(α) prime to the characteristic of k, we have

ind(α) | per(α)2.
This appears to be the first nontrivial case of the unramified period-index conjecture estab-

lished in dimension greater than 2. Note that the Brauer group of an abelian threefold X is
indeed far from trivial; over the complex numbers, Br(X) ∼= (Q/Z)15−ρ where ρ is the Picard
number of X (Lemma 2.1). By an elementary argument one can show that ind(α) | per(α)3
holds in the situation of the theorem (Lemma 23.3), but the improvement to exponent 2 seems
to lie much deeper. In fact, in the analytic setting this improvement fails: by [Hot23] for a
general complex torus of dimension 3 there exist Brauer classes with ind(α) = per(α)3.
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Remark 1.4. We expect the hypothesis that per(α) is prime to the characteristic of k can
be removed in Theorem 1.3. It would be enough to show that when the characteristic of k is
positive, then every twisted abelian threefold lifts to characteristic 0 (see Remark 17.3).

Our proof of Theorem 1.3 places it in a larger framework that we explain in the rest of the
introduction.

1.2. Hodge theory of categories. Let C ⊂ Dperf(X) be a semiorthogonal component of
the category of perfect complexes on a smooth proper complex variety X. By [Per22], there

is a canonically associated finitely generated abelian group Ktop
0 (C) (equal to π0 of Blanc’s

topological K-theory [Bla16]) equipped with a weight 0 Hodge structure. There is a natural

map K0(C) → Ktop
0 (C) from the Grothendieck group of C; classes in the image are called

algebraic, and they lie in the subgroup Hdg(C,Z) ⊂ Ktop
0 (C) of integral Hodge classes. This

motivates the statement of the integral Hodge conjecture for C, which asserts that the map
K0(C) → Hdg(C,Z) is surjective. Similarly, the Hodge conjecture for C asserts surjectivity
after tensoring with Q.

In the geometric case when C = Dperf(X), the construction K0(C) → Hdg(C,Z) rationally
recovers the usual cycle class map CH∗(X) ⊗ Q → Hdg∗(X,Q), where the target denotes
the group of rational Hodge classes on X; in particular, the Hodge conjecture for Dperf(X) is
equivalent to the usual Hodge conjecture for X in all degrees. There is also a close relationship
between the integral Hodge conjectures for Dperf(X) and X, explained in [Per22].

The connection to the period-index conjecture arises when C = Dperf(X,α) is the derived

category of α-twisted sheaves for a Brauer class α ∈ Br(X), in which case we write Ktop
0 (X,α),

Hdg(X,α,Z), and K0(X,α) for the above invariants applied to Dperf(X,α). Indeed, since
the index of α can be computed as the minimal positive rank of an element of K0(X,α)
(Lemma 2.9), the period-index conjecture for α may be divided into two steps:

Step 1. Construct a Hodge class v ∈ Hdg(X,α,Z) of rank per(α)dimX−1.

Step 2. Show that v is algebraic.

In [Hot22], the Hodge structure Ktop(X,α) was described explicitly when α is topologically
trivial and used to solve Step 1 for per(α) prime to (dimX − 1)!. In some cases, like when X
is an abelian variety, this method refines to a solution to Step 1 for all α.

In this paper, we introduce a method to solve Step 2 above, or more generally to show
that a given Hodge class on a category is algebraic. The method is variational in nature,
and depends on the notion of an S-linear category C over a base space S (discussed in §4),
which formalizes the idea of a family of categories parameterized by S. There is a base change
operation for such categories, giving rise to a fiber category Cs for every s ∈ S. When C is
smooth and proper of geometric origin over S, meaning it arises as an S-linear semiorthogonal
component of Dperf(X) for a smooth proper morphism X → S, then by [Per22] there is a

local system Ktop
0 (C/S) on S underlying a weight 0 variation of Hodge structures, with fibers

Ktop
0 (Cs) for s ∈ S(C).

Conjecture 1.5 (Noncommutative variational integral Hodge conjecture). Let C be a smooth
proper S-linear category of geometric origin, where S is a complex variety. Let v be a section
of the local system Ktop

0 (C/S) on S. Assume that there exists a point 0 ∈ S(C) such that the

fiber v0 ∈ Ktop
0 (C0) is algebraic. Then vs ∈ Ktop

0 (Cs) is algebraic for every s ∈ S(C).
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Like the (variational) integral Hodge conjecture for varieties, this statement is false in
general, but in keeping with tradition we still refer to it as a “conjecture”. Nonetheless, one
can hope to prove that Conjecture 1.5 holds in special situations.

For instance, by [Per22, Proposition 8.1] it holds when v0 is not only algebraic, but can
be realized as class of an object E0 ∈ C0 at which the morphismMgl(C/S) → S is smooth,
where Mgl(C/S) is the relative moduli space of gluable objects in C (reviewed in §7.1). As
shown in [Per22], this criterion can be effectively applied when C is a CY2 category over S,
which roughly means that it has the same homological properties as the derived category of a
family of Calabi–Yau surfaces (see Definition 6.1 for the precise meaning of a CYn category
in general). There are two key ingredients:

(1) A general version of Mukai’s smoothness theorem, asserting that the moduli space
sMgl(C/S, v) of simple gluable objects of class v is smooth over S.

(2) The existence of many simple gluable objects on K3 and abelian surfaces, which follows
from nonemptiness of moduli spaces of Bridgeland stable objects.

The upshot is that Conjecture 1.5 holds essentially whenever C is a CY2 category over S and
C0 ≃ Db(T ) for a K3 or abelian surface T [Per22, Theorem 1.1]. In particular, this leads to a
proof of the integral Hodge conjecture for CY2 categories that can be suitably specialized to
the derived category of a K3 or abelian surface.

The above method fails badly in higher dimensions. Namely, for CYn categories of dimen-
sion n ≥ 3, moduli spaces of objects are rarely smooth and nonemptiness of moduli spaces
of stable objects is far from understood, even when C = Dperf(X) is geometric. We develop a
new approach in the CY3 case, which is roughly to count the number solutions to v0 = [E0]
with E0 ∈ C0 a stable object, and to show that Conjecture 1.5 holds when it is nonzero. The
precise meaning of this count depends on new foundations for Donaldson–Thomas theory.

1.3. Donaldson–Thomas theory. Let X be a smooth projective complex threefold which
is Calabi–Yau in the sense that ωX ∼= OX . Let v ∈ Ktop

0 (X) be a topological class and H a
polarization on X such that Gieseker H-semistability and H-stability coincide for sheaves on
X of class v. The expected dimension of the moduli space MH(v) of such semistable sheaves
at a point E is dimExt1(E,E) − dimExt2(E,E), which vanishes by Serre duality and the
Calabi–Yau assumption. The actual dimension of MH(v), however, is often much larger. To
remedy this, Thomas [Tho00] showed that MH(v) carries a symmetric perfect obstruction
theory in the sense of Behrend–Fantechi [BF97, BF08], which gives rise to a cycle of the
expected dimension, the virtual fundamental class

[MH(v)]
vir ∈ CH0(MH(v)).

The degree of this 0-cycle is the Donaldson–Thomas (DT) invariant of MH(v), which plays
a central role in modern enumerative geometry. There are also important extensions of these
invariants to other settings, for instance to moduli spacesMσ(v) of stable objects with respect
to a stability condition σ on Db(X) [JS12, KS08].

DT invariants are typically studied on Calabi–Yau threefolds which are strict in the sense
that h1(OX) = 0. Indeed, when h1(OX) > 0 then there are extra symmetries which often
force the DT invariants to vanish. In such cases, one can instead hope to construct interesting
reduced DT invariants by suitably modifying the space MH(v) and its obstruction theory.
This was done by Gulbrandsen [Gul13] for abelian threefolds and by Oberdieck [Obe18] for
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the product of a K3 surface and elliptic curve; their constructions, however, are ad hoc and
depend on the geometry of the specific situation.

In this paper, we develop a general theory of reduced DT invariants for CY3 categories.
The main construction is summarized in the following theorem.

Theorem 1.6. Let C be a CY3 category of geometric origin over C. Let σ be a stability
condition on C over C with respect to a topological Mukai homomorphism. Let v ∈ Ktop

0 (C)
be a class for which no strictly σ-semistable objects of class v exist. Let Aut0(C) denote the
identity component of the group of autoequivalences of C.

Then if the quotient stack Mσ(v)/Aut
0(C) is Deligne–Mumford, it carries a canonical sym-

metric perfect obstruction theory and hence virtual fundamental class

[Mσ(v)/Aut
0(C)]vir ∈ CH0(Mσ(v)/Aut

0(C)).

If moreover Aut0(C) is proper, then so is Mσ(v)/Aut
0(C), and thus the virtual class can be

integrated to define a reduced DT invariant

DTσ(v) :=

∫

[Mσ(v)/Aut0(C)]vir
1.

Remark 1.7. We have chosen to denote the reduced DT invariant by DTσ(v), without any
adornment, as we believe it is the “true” DT invariant in general. Indeed, for C = Dperf(X) it
recovers the classical DT invariant when X is a strict Calabi–Yau threefold and the previously
studied reduced DT invariant when X has an abelian factor.

In the formulation of Theorem 1.6, we use the notion of a stability condition relative to a
base developed in [BLM+21]; in particular, this guarantees that a proper moduli spaceMσ(v)
of σ-semistable objects of class v does indeed exist. The Mukai homomorphism of σ being
topological is always satisfied in practice, and means that its value on any class in K0(C)

is determined by its image in Ktop
0 (C) (Definition 11.2). The construction and properties of

the group algebraic space of autoequivalences Aut(C) and its identity component Aut0(C)
are discussed in §8; in particular, the assumption that Aut0(C) is proper is mild, and holds
automatically for twisted derived categories of Calabi–Yau varieties (Lemma 8.14).

In the body of the text, we prove a more general version of Theorem 1.6 that applies to
suitable quotients of substacks of the moduli stack of all objects in C (Theorem 14.4 and
Definition 15.1). In particular, we also obtain an analog of Theorem 1.6 for moduli spaces
of Gieseker semistable sheaves (Definition 15.6). Our general result also works in families,
leading to the constancy of our DT invariants under deformations of C.

Theorem 1.8. Let C be a CY3 category of geometric origin over a smooth complex variety S.
Let σ be a stability condition on C over S with respect to a topological Mukai homomorphism.
Let v be a section of the local system Ktop

0 (C/S) such that for every s ∈ S(C), the fiber

vs ∈ Ktop
0 (Cs) is a Hodge class and there are no strictly σs-semistable objects in Cs of class vs.

Let Aut0(C/S) denote the identity component of the group of S-linear autoequivalences of C.
Then if the quotient stack Mσ(v)/Aut

0(C/S) is Deligne–Mumford, it carries a canonical
symmetric perfect obstruction theory over S. If moreover Aut0(C/S)→ S is proper, then the
reduced DT invariants DTσs(vs) of the fibers are independent of s ∈ S(C).

We construct the obstruction theory in Theorem 1.8 in terms of the “cohomology” of a
natural 3-term “complex of complexes” (14.4) on the moduli stack of σ-semistable objects,
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involving the action of Hochschild cohomology on the endomorphisms of the universal object.
To do so, we use derived algebraic geometry — in particular a derived enhancement of the
quotient stack Mσ(v)/Aut

0(C/S) — combined with Pridham’s semiregularity results [Pri22].
Our method should also be useful for constructing reduced obstruction theories in other
settings; see §1.6.2 for an upcoming example.

Now we can state our criterion in terms of DT invariants for the validity of the noncom-
mutative variational integral Hodge conjecture.

Theorem 1.9. Let C be a CY3 category of geometric origin over a smooth complex variety S.
Let σ be a stability condition on C over S with respect to a topological Mukai homomorphism.
Let v be a section of Ktop

0 (C/S) whose fibers vs ∈ Ktop
0 (Cs) are Hodge classes for all s ∈ S(C).

Assume there exists a point 0 ∈ S(C) such that:

(1) There do not exist strictly σ0-semistable objects of class v0.

(2) Mσ0(v0)/Aut
0(C0) is Deligne–Mumford.

(3) DTσ0(v0) 6= 0.

Then for every s ∈ S(C) the moduli space Mσs(vs) is nonempty, and in particular, the class

vs ∈ Ktop
0 (Cs) is algebraic.

Again, in the body of the text we prove a more general version of Theorem 1.9 that applies
to suitable quotients of substacks of the moduli stack of all objects in C (Theorem 16.1). In
particular, we also obtain an analog of Theorem 1.9 for moduli spaces of Gieseker semistable
sheaves (Corollary 16.3). The key input for the proof of the above criterion is the deformation
invariance of reduced DT invariants from Theorem 1.8.

1.4. The period-index conjecture for abelian threefolds. Now we can complete the
sketch of our proof of Theorem 1.3, the period-index conjecture for abelian threefolds. By a
lifting argument, the theorem reduces to the case where the base field is the complex numbers.
As explained in §1.2, given any complex abelian threefold X1 and Brauer class α1 ∈ Br(X1),
it suffices to construct a Hodge class v1 ∈ Hdg(X1, α1,Z) of rank per(α1)

2 such that v1 is
algebraic. To do so, we construct: a family X → S of abelian threefolds with a Brauer class
α ∈ Br(X); a stability condition σ on C = Dperf(X,α) over S, a section v of Ktop

0 (C/S), and
a point 0 ∈ S(C) satisfying the hypotheses of Theorem 1.9; and a point 1 ∈ S(C) such that
(X1, α1) is the fiber of (X,α) over 1 and v1 has rank per(α1)

2. Then by Theorem 1.9 the class
v1 is algebraic.

The construction of the data (X,α, S, σ, v, 0, 1) is quite intricate, but the main idea is
that by specializing X1 into a suitable Hodge locus in the moduli space of polarized abelian
threefolds, we are able to choose the family (X,α)→ S so that α0 ∈ Br(X0) vanishes, and thus
reduce to computing a classical invariant DTσ0(v0) on an abelian threefold X0. There is still
the issue that v0 is a higher rank class, whose DT invariant is difficult to access directly, but
by using results from [OPT22] on the behavior of DT invariants under the action of derived
equivalences and wall-crossing, we are able to further reduce to the case of a curve class. For
a very careful choice of v, we are able to ensure the DT invariant of the resulting curve class
is computable and nonzero, using results from [OS20, BOPY18]. This argument illustrates a
powerful, and somewhat surprising, feature of our theory of DT invariants for CY3 categories:
it allows one to deduce algebraicity results for a priori inaccessible “noncommutative” objects
from purely geometric arguments, like curve counting.
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The above summary elided a number of subtleties in the proof of Theorem 1.3. For in-
stance, in order to construct σ we generalize the known constructions of stability conditions
on varieties, and in particular on abelian threefolds [BMS16], to the twisted setting. To ensure
that strictly σ0-semistable objects of class v0 do not exist, we use the deformation theorem
for relative stability conditions from [BLM+21]; in fact, the ability to make such an argument
dictated our use of stability conditions, as it is not possible to arrange the analogous condi-
tion only using a relative polarization and Gieseker stability. For a more detailed discussion
of Theorem 1.3 and its proof, we refer to §17.

1.5. The integral Hodge conjecture for twisted Calabi–Yau threefolds. In §1.2 we
explained that for a smooth proper complex variety X and a Brauer class α ∈ Br(X), the
period-index conjecture can be regarded as an instance of the integral Hodge conjecture for
(X,α). As a complement to the above results, when X is a Calabi–Yau threefold we show
that conversely the integral Hodge conjecture for (X,α) is completely controlled by the index
of α.

More precisely, consider the Voisin group

V(X,α) = coker(K0(X,α)→ Hdg(X,α,Z)),

which measures the failure of the integral Hodge conjecture for (X,α), and the Hodge-theoretic
index

indHdg(α) = min { rk v | v ∈ Hdg(X,α,Z), rk v > 0 } ,
which is the Hodge-theoretic incarnation of the formula for ind(α) in terms of the ranks
of objects in Dperf(X,α). The Hodge-theoretic index was introduced in [Hot22], where it
is observed that in general indHdg(α) | ind(α) and the integral Hodge conjecture for (X,α)
implies equality. When X is a Calabi–Yau threefold, we show that conversely the only possible
obstruction to the integral Hodge conjecture for (X,α) is whether indHdg(α) = ind(α).

Theorem 1.10. Let X be a complex Calabi–Yau threefold and let α ∈ Br(X). Then

#V(X,α) =
ind(α)

indHdg(α)
·

The proof builds on the fact that the usual integral Hodge conjecture holds for Calabi–
Yau threefolds [Voi06, Gra04, Tot21]. Since in general per(α) | indHdg(α) | ind(α) [Hot22,
Lemma 5.8], by combining Theorem 1.3 and Theorem 1.10 we deduce the integral Hodge
conjecture for many twisted abelian threefolds.

Corollary 1.11. Let X be a complex abelian threefold and let α ∈ Br(X). Then

#V(X,α) | per(α).
Moreover, if indHdg(α) = per(α)2, then the integral Hodge conjecture holds for (X,α).

When (X,α) is sufficiently generic, the equality indHdg(α) = per(α)2 holds (see Lemma 22.7
and Example 22.8); the only remaining case of the integral Hodge conjecture for twisted
abelian threefolds is thus along the special loci where indHdg(α) = per(α). As an interesting
consequence of Corollary 1.11, we give an example of a Severi–Brauer variety P for which the
classical integral Hodge conjecture fails, but the integral Hodge conjecture for Dperf(P ) holds
(Corollary 22.9).

1.6. Further directions. Our work suggests several further directions.
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1.6.1. Derived enhancements. Many obstruction theories are known to arise from derived al-
gebraic geometry in the following sense: given a derived enhancement i : X → X of an algebraic
stack X , the induced morphism between cotangent complexes provides an obstruction theory
for X (Remark 13.4). A natural question is whether the obstruction theory from Theorem 1.8
arises from a derived enhancement of Mσ(v)/Aut

0(C/S).
In a sequel to this paper, we will provide a positive answer to this question. In fact, our

proof of Theorem 1.8 already provides some of the ingredients for the construction of the
desired derived enhancement (see Remark 14.7).

1.6.2. Dimension 4. It is natural to wonder whether our approach to the period-index conjec-
ture can be extended to higher dimensions. The main missing ingredient is a suitable version
of DT theory. In dimension 4, a theory of DT invariants for Calabi–Yau varieties was recently
developed by Borisov and Joyce [BJ17] from a differential geometric perspective, and sub-
sequently by Oh and Thomas [OT23] from an algebraic one. More recently, Bae, Kool, and
Park [BKP22] observed that these DT invariants typically vanish for classes not supported
on curves, and constructed a reduced theory to obtain nontrivial invariants.

In a sequel to this paper, we will extend our theory of reduced DT invariants to the setting
of CY4 categories; in fact, some of the necessary ingredients are already contained in this
paper. In particular, we will construct a generalization of the DT theory from [BKP22] which
allows a CY4 category C in place of a Calabi–Yau fourfold and incorporates an additional
reduction when Aut0(C) is nontrivial. This opens a potential route to proving the unramified
period-index conjecture for abelian fourfolds, along the lines of our proof of Theorem 1.3.

1.6.3. Other threefolds. Theorem 1.3 can be regarded as a proof of concept for the use of DT
theory in the study of the period-index problem for threefolds. In principle, our method could
be applied directly to the period-index conjecture for unramified topologically trivial Brauer
classes on a threefold X with the following properties:

(1) X is Calabi–Yau.

(2) X admits stability conditions.

(3) X admits deformations along which any topologically trivial Brauer class can be killed.

(4) X has computable reduced DT invariants for sufficiently many higher rank classes.

We have formulated the last two properties loosely, since the precise form in which they are
needed could depend subtly on the geometry of the situation, as indicated in §1.4.

The most restrictive condition above is that X is Calabi–Yau. Without it, we do not know
how to define DT invariants for higher rank classes, so our approach to the period-index
conjecture cannot get off the ground.

Question 1.12. Does there exist a theory of DT invariants for higher rank classes on smooth
projective threefolds which are not necessarily Calabi–Yau?

More precisely, one might hope for the existence of a natural virtual fundamental class (not
necessarily of degree 0) on moduli spaces of stable objects on any smooth projective threefold
X, which could then be used to define enumerative invariants. Another possibility is to pass
to the local Calabi–Yau fourfold Y = Tot(KX), and then to study DT invariants on Y .

1.6.4. The integral Hodge conjecture for CY3 categories. If X is a complex Calabi–Yau three-
fold, then the usual integral Hodge conjecture holds for X [Voi06, Gra04, Tot21]. It follows
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that the integral Hodge conjecture holds for Dperf(X). This is the special case of Theorem 1.10
when α = 0. This suggests:

Question 1.13. Does the integral Hodge conjecture hold for any CY3 category of geometric
origin over C?

Categories of the form Dperf(X,α) for a Calabi–Yau threefoldX and Brauer class α ∈ Br(X)
provide an interesting source of test cases for Question 1.13. As mentioned above, in this paper
we reduce the question to the equality indHdg(α) = ind(α), and provide a positive answer for
generically twisted abelian threefolds.

Another interesting source of test cases for Question 1.13 come from Kuznetsov components
of certain Fano varieties [Kuz19]. For these examples, it seems that one can often provide a
positive answer by elementary geometric means. For instance, in Lemma 6.6 we explain that
the integral Hodge conjecture holds for the Kuznetsov component of any cubic sevenfold (as
well as for the cubic sevenfold itself).

1.7. Organization of the paper. Part I, consisting of §2-§6, concerns preliminaries on
noncommutative algebraic geometry. We develop the theory in the correct generality for the
rest of the paper, and prove some auxiliary results for which we could not find a suitable
reference, like Lemma 5.12 describing the dual of a Chern character valued in Hochschild
homology, or Lemmas 5.6 and 5.17 computing the Hochschild (co)homology of a Brauer-
twisted scheme.

Part II, consisting of §7-§9, concerns moduli spaces of objects in smooth proper categories.
In §7 we recall general existence results for such moduli spaces and their derived enhancements.
In §8 we study the structure of the group of autoequivalences of smooth proper categories. In §9
we study quotients of (open subspaces of) the moduli space of objects by (open subgroups of)
the group of autoequivalences; in particular, we describe the cotangent complex of a derived
version of this quotient.

Part III, consisting of §10-§12, concerns notions of stability. Except for notation, it is
independent from Part II. In §10 we review the theory of stability for twisted sheaves. In §11 we
discuss the theory of stability conditions on linear categories; along the way, we introduce the
notion of a topological Mukai homomorphism and study the action of the identity component
of the group of autoequivalences on stability conditions. In §12 we extend the previously
known constructions of stability conditions to the twisted setting.

Part IV, consisting of §13-§16, develops reduced Donaldson–Thomas theory for CY3 cate-
gories, combining ingredients from Parts II and III. In §13 we cover preliminaries on obstruc-
tion theories and virtual fundamental classes. In §14 we construct a reduced symmetric perfect
obstruction theory on a suitable quotient of the moduli space of objects in a CY3 category.
We use this in §15 to define reduced DT invariants that are preserved under deformations,
completing in particular the proofs of Theorems 1.6 and 1.8. In §16 we deduce the criterion
of Theorem 1.9 for the validity of the noncommutative variational integral Hodge conjecture.

Part V, consisting of §17-§21 and Appendix A, is devoted to the proof of Theorem 1.3.
A reader primarily interested in the period-index conjecture may wish to skip directly to
Part V, referring back to the material from Parts I-IV as necessary. In §17 we explain how
Theorem 1.3 reduces to the case of complex abelian threefolds, and outline the proof in this
case. The rest of Part V consists of assembling the ingredients to complete this outline. In
§18 we discuss the Hodge structure Ktop

0 (X,α) associated to a twisted abelian variety and
construct Hodge classes of the rank predicted by the period-index conjecture, compatibly in
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families. In §19 we discuss a quartic form, known as Igusa’s discriminant, on the rational even
cohomology of an abelian threefold, which is invariant under autoequivalences and plays an
important technical role in our analysis of DT invariants. In §20 we prove the nonvanishing of
many curve class DT invariants on abelian threefolds. Finally, in §21 we prove Theorem 1.3
along the lines sketched in §1.4 above; this relies on some technical auxiliary results about
abelian threefolds, gathered in Appendix A.

Part VI, consisting of §22-§24, contains several complements to Theorem 1.3. In §22 we
discuss applications to the integral Hodge conjecture, and in particular prove Theorem 1.10
concerning the conjecture for twisted Calabi–Yau threefolds. In §23-§24 we explain why naive
approaches based on symbol length or twisted Fourier–Mukai partners do not suffice to prove
Theorem 1.3.

1.8. Conventions. A variety over a field k is an integral scheme which is separated and of
finite type over k. A variety is Calabi–Yau if it is smooth, proper, and ωX ∼= OX . We follow
[Sta24] for our conventions on algebraic stacks.

We suppress the analytification of varieties over C. For instance, given a variety X over C
and a sheaf of abelian groups A, H∗(X,A) refers to the sheaf cohomology of A in the analytic
topology. Similarly, if f : X → S is a morphism, then the higher pushforwards R∗f∗A are
taken in the analytic topology.

Our conventions on derived algebraic geometry are laid out in §3; in particular, our fiber
products are derived (Convention 3.2). All functors between derived categories are also derived
by convention; in particular, for a morphism f : X → Y we write simply f∗ and f∗ for derived
pushforward and pullback, and we write ⊗ for the derived tensor product of complexes. For
a morphism α : E → F in a stable ∞-category C, we write fib(α) and cofib(α) for its fiber
and cofiber; in particular, we apply this convention when C is a derived category, in which
case fib(α) and cofib(α) are classically denoted cone(α)[−1] and cone(α). Given a morphism
X → Y and a complex E on Y , we sometimes denote its pullback to X by E ⊗OX , to avoid
a proliferation of names of morphisms.
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feng Jiang, Johan de Jong, Bruno Klingler, Max Lieblich, Jacob Lurie, Emanuele Macr̀ı,
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completed while the authors were in residence at the Simons Laufer Mathematical Sciences
Institute in Spring 2024 under the support of NSF grant DMS-1928930 and Sloan Foundation
grant G-2021-16778.
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Part I. Noncommutative algebraic geometry

2. Twisted sheaves

The derived category of twisted sheaves is a motivating example for noncommutative alge-
braic geometry, which plays a central role in our results on the period-index conjecture later in
the paper. In this section, we give a concise account of the theory tailored to our applications.
This material has been extensively developed by Lieblich [Lie07], to which we refer for further
details.

2.1. Brauer groups. For a scheme X, the Brauer group

Br(X) := H2
ét(X,Gm)tors

is the torsion subgroup of the étale cohomology group H2
ét(X,Gm). In the literature Br(X) is

sometimes called the cohomological Brauer group, to distinguish it from the Brauer–Azumaya
group BrAz(X) defined as the group of Azumaya algebras on X modulo Morita equivalence.
However, when X admits an ample line bundle, as will be the case for the examples of interest
in this paper, the natural map BrAz(X)→ Br(X) is an isomorphism [dJ].

The n-torsion in the Brauer group can be described by étale cohomology with finite coeffi-
cients. Namely, if n is an integer invertible on X, then there is an exact sequence

0→ Pic(X)/n→ H2
ét(X,µn)→ Br(X)[n]→ 0, (2.1)

obtained by taking cohomology of the Kummer sequence. Taking limits and comparing to
usual cohomology, we obtain the following topological description of the Brauer group for
complex varieties.

Lemma 2.1. Let X be a complex variety. Then there is an exact sequence

0→ H2(X,Z)

Pic(X)
⊗Q/Z→ Br(X)→ H3(X,Z)tors → 0.

Proof. Using µn
∼= Z/n and the comparison with singular cohomology, by taking the colimit

of the sequences (2.1) we obtain the exact sequence

0→ Pic(X)⊗Q/Z→ H2(X,Q/Z)→ Br(X)→ 0.

On the other hand, the exact sequence 0 → Z→ Q → Q/Z→ 0 gives an exact sequence on
cohomology

0→ H2(X,Z) ⊗Q/Z→ H2(X,Q/Z)→ H3(X,Z)tors → 0.

The two sequences fit together in a commutative diagram

0 // Pic(X)⊗Q/Z //

c1
��

H2(X,Q/Z) // Br(X) //

��

0

0 // H2(X,Z) ⊗Q/Z // H2(X,Q/Z) // H3(X,Z)tors // 0.

which gives the result. �

Definition 2.2. Let X be a complex variety, and let α ∈ Br(X). Then α is topologically
trivial if it lies in the kernel of the morphism to H3(X,Z)tors.
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Remark 2.3. When X is a scheme and ℓ is a prime invertible on X, then there is a similar
sequence describing the ℓ-power torsion in Br(X):

0→ H2
ét(X,Zℓ(1))

Pic(X)⊗ Zℓ
⊗Qℓ/Zℓ → Br(X)[ℓ∞]→ H3

ét(X,Zℓ(1))tors → 0.

The following useful observation says that Brauer classes can be killed after passage to a
finite cover.

Lemma 2.4. Let X be a smooth projective variety and α ∈ BrAz(X). Then there exists
a smooth projective variety Y and a surjective finite flat morphism f : Y → X such that
f∗(α) = 0.

Proof. Let p : P → X be a Severi–Brauer variety of class α. Then p∗(α) = 0, so it suffices
to construct a smooth subvariety Y ⊂ P such that the map Y → X is surjective and finite.
This can be done by taking Y to be a sufficiently generic complete intersection of very ample
divisors in P (see [Lie07, Lemma 3.2.2.1]). �

2.2. Categories of twisted sheaves. Given a scheme X and a class α ∈ H2
ét(X,Gm), there

are several models for the category of α-twisted sheaves, each depending on an auxiliary
choice:

(1) One can choose a Gm-gerbe X → X of class α, and consider sheaves on X for which
the inertial action is given by the standard character [Lie07]. When α is n-torsion,
one can instead choose a µn-gerbe X → X whose class maps to α under the map
H2

ét(X,µn)→ H2
ét(X,Gm), and consider sheaves on X for which the inertial action is

given by the standard character.

(2) One can choose a (hyper)covering and a cocycle a representing α, and consider sheaves

on the cover satisfying an a-twisted cocycle condition [C0̆0].

(3) When α is represented by an Azumaya algebra A (which is automatic, for instance, if
X is a smooth quasi-projective variety), one can consider sheaves of A-modules.

All of these models result in equivalent theories of α-twisted sheaves, which are independent of
the choices involved (see [Lie07]). For concreteness, in this paper we adopt the first approach.

Definition 2.5. Given a Gm-gerbe or µn-gerbe π : X → X over a scheme and an integer
k ∈ Z, we define Dk

perf(X ) as the full subcategory of Dperf(X ) spanned by complexes whose

cohomology sheaves have inertial action given by χk, where χ is the standard character of Gm

or µn. We refer to an object of Dk
perf(X ) as a k-twisted perfect complex, or simply a twisted

perfect complex when k = 1. We similarly define Dk
qc(X ) and, when X is locally noetherian,

Cohk(X ) and Db,k(X ).
If α ∈ Br(X), then we may choose a Gm-gerbe or µn-gerbe π : X → X of class α, and

consider the twisted categories defined above. By abuse of notation, we shall often suppress
the choice of X in our notation and write simply Dperf(X,α) for D1

perf(X ), and use similar

abbreviations for Dk
qc(X ), Cohk(X ), and Db,k(X ).

Remark 2.6. We will typically use the model for α-twisted sheaves in terms of a µn-gerbe
π : X → X, instead of a Gm-gerbe. The advantage is that X is then a Deligne–Mumford stack.
Note, however, that while the representation of α as a Gm-gerbe is unique, the representation
as a µn-gerbe is not. The nonuniqueness is measured by those µn-gerbes π : X → X with
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class [X ] ∈ ker(H2
ét(X,µn) → H2

ét(X,Gm)). Such a µn-gerbe is called essentially trivial, and
can be geometrically characterized as follows [Lie07, Lemma 2.3.4.2].

Lemma 2.7. A µn-gerbe X → X over a scheme X is essentially trivial if and only if there
exists an invertible twisted sheaf on X .

Twisted sheaves satisfy the expected functoriality. Concretely, let f : X → Y be a morphism
of schemes, let α ∈ Br(X) be a Brauer class represented by a µn-gerbe π : X → X, and form
the pullback diagram

Y f ′
//

π′

��

X
π
��

Y
f

// X

The class β = f∗(α) ∈ Br(Y ) is represented by the µn-gerbe π
′ : Y → Y . The pullback and

pushforward functors

f ′∗ : Dqc(X )→ Dqc(Y) and f ′∗ : Dqc(Y)→ Dqc(X )
respect k-twisted complexes, and hence induce functors between Dqc(X,α) and Dqc(Y, β). The
functor f ′∗ restricts to a functor on categories of perfect complexes, while f ′∗ restricts to a
functor on bounded derived categories of coherent sheaves when f is proper. By a slight abuse
of notation, we often simply write f∗ or f∗ instead of f ′∗ or f ′∗ for the pullback or pushforward
functors between twisted derived categories.

Remark 2.8. We shall frequently encounter the following situation: Let f : Y → X be a
morphism of schemes, and let α ∈ Br(X) be a Brauer class such that f∗α = 0. Choose an
f∗α-twisted line bundle L (on a representative gerbe Y as above), and consider the functors

f∗L : Dqc(X,α)→ Dqc(Y ), E 7→ f∗E ⊗ L∨

fL∗ : Dqc(Y )→ Dqc(X,α), F 7→ f∗(L⊗ F ).
Clearly, these functors depend on the choice of L, but any two f∗α-twisted line bundles differ
by an element of Pic(Y ), so the dependence is only up to the usual action of Pic(Y ) on Dqc(Y ).

In the literature, these functors are often denoted simply by f∗ and f∗, eliding the depen-
dence on L.

2.3. K-theory. Given a Brauer class α ∈ Br(X) on a scheme, we use the notation

K0(X,α) := K0(Dperf(X,α)) and G0(X,α) := K0(D
b(X,α))

for the Grothendieck groups of the categories of α-twisted perfect and bounded coherent
complexes. When X is connected, taking the rank of a coherent sheaf on our chosen gerbe
X → X induces a rank homomorphism

rk: G0(X,α)→ Z,

in terms of which we can give a global description of the index of α. Recall that the index of
α is defined by restriction to the generic point, i.e. ind(α) := ind(αk(X)) where k(X) denotes
the function field of X.

Lemma 2.9. Let X be an integral noetherian scheme and let α ∈ Br(X). Then ind(α) equals
the positive generator of the image of the rank homomorphism rk : G0(X,α) → Z.
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Proof. Equivalently, we must show that

ind(α) = gcd { rk(F ) | F is a coherent α-twisted sheaf of positive rank } .
When X = Spec(K) is the spectrum of a field, this holds by [Lie08, Proposition 3.1.2.1]. The
general case follows since any αk(X)-twisted coherent sheaf over the generic point can be lifted
to a coherent α-twisted sheaf by [Lie08, Lemma 3.1.3.1]. �

When X is a proper variety over a field k, for E ∈ Dperf(X,α) and F ∈ Db(X,α) the Euler
characteristic

χ(E,F ) =
∑

i

(−1)i dimkHom(E,F [i]) ∈ Z

induces a pairing

χ : K0(X,α) ×G0(X,α)→ Z.

Using this, we can define numerical versions of the above Grothendieck groups.

Definition 2.10. If X is a proper variety and α ∈ Br(X), then Knum(X,α) is the quotient
of K0(X,α) by the kernel of χ on the left, and Gnum(X,α) is the quotient of G0(X,α) by the
kernel of χ on the right.

Remark 2.11. Let us record two simple properties.

(1) WhenX is Gorenstein, Serre duality shows that the natural map K0(X,α)→ G0(X,α)
descends to a map

Knum(X,α) → Gnum(X,α),

which is an isomorphism if X is smooth.

(2) Knum is functorial with respect to pullback and Gnum is functorial with respect to
pushforward. More precisely, if f : Y → X is a morphism between proper varieties
and β = f∗(α), then pullback and pushforward induce homomorphisms

f∗ : Knum(X,α)→ Knum(Y, β)

f∗ : Gnum(Y, β)→ Gnum(X,α).

Indeed, this follows easily from the adjunction between pullback and pushforward.

3. Derived algebraic geometry

We will occasionally need the language of derived algebraic geometry, as developed by Lurie
[Lur04, Lur17, Lur18] and Toën–Vezzosi [TV05, TV08]; for surveys, see for instance [GR17,
Part I] and [Toë09, Toë10, Toë14]. Here we briefly lay out our conventions, and refer to the
preceding references for more details.

3.1. Derived and higher stacks. Let dRing denote the ∞-category of animated rings,
defined as the animation (in the sense of [ČS24, §5.1]) of the category of commutative rings,
or equivalently as the∞-category obtained from the category of simplicial commutative rings
by inverting weak equivalences. Let dAff denote the ∞-category of derived affine schemes,
defined as the opposite category of dRing. Let Grpd∞ denote the∞-category of∞-groupoids.
A derived stack is a functor X : dAffop → Grpd∞ which satisfies descent with respect to the
étale topology. A derived algebraic stack is a derived stack X for which there exists (in
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an appropriate sense) a smooth surjection from a disjoint union of derived affine schemes.1

Slightly more general still is the notion of a derived locally algebraic stack X, which is a
derived stack that can be written as a filtered colimit of derived algebraic stacks Xi such that
each Xi → X is a monomorphism.2 A derived locally algebraic stack is called locally of finite
presentation if each Xi can be chosen so; in this case, the Xi → X are in fact Zariski open
immersions (see the discussion following [TV07, Definition 2.17]), so X is a union of open
derived algebraic stacks which are locally of finite presentation.

To relate derived stacks to classical ones, it is useful to consider the intermediate notion
of a higher stack, which is a functor X : Affop → Grpd∞ which satisfies descent with respect
to the étale topology, where Aff is the category of classical affine schemes. Note that a stack
in the classical sense is simply a higher stack which is 1-truncated, i.e. takes values in the
subcategory Grpd ⊂ Grpd∞ of 1-groupoids. Similarly to the case of derived algebraic stacks,
one can define the notion of higher algebraic stacks and higher locally algebraic stacks; an
algebraic stack in the classical sense can then be regarded as a 1-truncated higher algebraic
stack.

Let dStk and Stk denote the ∞-categories of derived stacks and higher stacks. Then re-
striction along the inclusion Aff →֒ dAff induces the functor

(−)cl : dStk→ Stk

called classical truncation. For example, for A ∈ dRing we have Spec(A)cl = Spec(π0(A)).
The functor (−)cl admits a fully faithful left adjoint

ι : Stk→ dStk

called derived extension. The classical truncation and derived extension functors preserve the
property of being (locally) algebraic. By abuse of notation, we often simply write X instead
of ι(X) when we think of a higher stack as a derived stack; in particular, any classical scheme
or algebraic stack may be regarded as a derived algebraic stack.

Remark 3.1 (Derived (co)limits of stacks). The categories Stk and dStk admit all colimits
and limits. Classical truncation (−)cl : dStk→ Stk commutes with colimits and limits [TV08,
Lemma 2.2.4.2]. Derived extension commutes with colimits (being a left adjoint), and with
pullbacks along flat morphisms of higher algebraic stacks [TV08, Proposition 2.2.4.4(3)], but
in general it does not commute with limits.

Convention 3.2 (Derived fiber products). Given a diagram X → S ← Y of schemes, alge-
braic stacks, or in general higher stacks, we write X ×S Y for the fiber product taken in the
category dStk of derived stacks. In particular, X×S Y may no longer be an object of Stk, even
when X and Y are schemes. The truncation (X ×S Y )cl recovers the classical fiber product
in view of Remark 3.1.

Remark 3.3 (Derived enhancements). Given X ∈ Stk, a derived enhancement is a derived
stack X ∈ dStk equipped with an equivalence Xcl ≃ X. In this case, by adjunction there is a
canonical morphism X → X. If X is a derived algebraic stack, then the morphism X → X is in

1The complete definition is of a slightly complicated inductive nature; see e.g. [Toë10, §5] or [GR17, Part I,
Chapter 2, §4]. We warn the reader that the terminology is not consistent in the literature; for instance, what
we call a derived algebraic stack corresponds to a “D−-stack which is n-geometric for some n” in [TV07, TV08],
and to a “Artin stack” in [GR17, Part I].

2A derived locally algebraic stack is a “D−-stack which is locally geometric” in the terminology of [TV07].
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fact a closed immersion that induces an equivalence between the Zariski sites of X and X (see
[TV08, Proposition 2.2.4.7 and Lemma 2.2.2.10]). In this sense, derived algebraic geometry
can be thought of as a framework for formally thickening classical algebro-geometric objects
in a derived direction.

3.2. Derived categories. For an affine derived scheme X = Spec(A) corresponding to an
animated ring A ∈ dRing, the derived category of quasi-coherent sheaves is defined to be
derived category of A-modules Dqc(X) = D(A), and the category of perfect complexes is the
full subcategory Dperf(X) ⊂ Dqc(X) generated by A under finite colimits and retracts. For
a general derived stack X, the derived category of quasi-coherent sheaves is defined by right
Kan extension from the case of derived affine schemes, namely

Dqc(X) = lim
U∈dAff/X

Dqc(U)

where the limit (taken in the∞-category of stable∞-categories) is over the category of derived
affine schemes over X. The category of perfect complexes is the full subcategory

Dperf(X) ⊂ Dqc(X)

consisting of objects whose restriction along any morphism U → X from a derived affine
scheme is perfect; in other words,

Dperf(X) = lim
U∈dAff/X

Dperf(U).

The following definition, introduced in [BZFN10], isolates a class of derived stacks with
well-behaved derived categories, which contains most examples of interest.

Definition 3.4. A derived algebraic stack X is perfect if the following conditions hold:

(1) The diagonal of X is affine.

(2) Dqc(X) is compactly generated.

(3) The compact and perfect objects of Dqc(X) coincide.

The results of [BZFN10] show that the category of perfect stacks is stable under fiber
products, and that derived pullback and pushforward along morphisms between perfect stacks
satisfy the base change and projection formulas. To state a useful criterion for perfectness,
we use the terminology that a group scheme is nice if it is an extension of a finite étale tame
group scheme by a group scheme of multiplicative type.

Theorem 3.5 ([BKRS22, Theorem A.3.2]). A quasi-compact derived algebraic stack with
affine diagonal and nice stabilizers is perfect.

Example 3.6. For instance, if X is a quasi-compact scheme with affine diagonal and X → X
is a Gm-gerbe or a µn-gerbe with n invertible on X, then X is perfect.

4. Linear categories

This section concerns a formalism for “noncommutative algebraic geometry” in terms of
linear categories. We largely follow [Per19], which is based on Lurie’s work [Lur17], but we
include various auxiliary results required later in the paper.
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Fix a perfect derived algebraic stack3 S, which will serve as the base space for our discussion.
For most purposes in this paper, the case where S is a complex variety suffices.

4.1. Small linear categories. The category Dperf(S), equipped with the operation of tensor
product, may be regarded as a commutative algebra object in the category Catst of small
idempotent-complete stable∞-categories. An S-linear category is a Dperf(S)-module object of
Catst. In particular, an S-linear category C is equipped with an action functor C×Dperf(S)→ C

whose action on objects is denoted by (E,F ) 7→ E ⊗ F .
The the collection of all S-linear categories is organized into an ∞-category

CatS = ModDperf(S)(Catst),

and admits a symmetric monoidal structure with unit Dperf(S) and tensor product denoted

C⊗Dperf(S) D.

A morphism C→ D in CatS is called an S-linear functor ; the collection of all such form the
objects of an S-linear category FunS(C,D), which is the internal mapping object in CatS .

For any morphism T → S of perfect derived algebraic stacks, the tensor product

CT = C⊗Dperf(S) Dperf(T ) (4.1)

is naturally a T -linear category, called the base change of C along T → S; similarly, for any
S-linear functor Φ: C→ D, by base change we obtain a T -linear functor ΦT : CT → DT . There
is a natural functor C → CT , whose action on objects we often denote by E 7→ ET . For any
point s ∈ S, the base change along Spec(κ(s))→ S gives a κ(s)-linear category Cs called the
fiber of C over s. In this way, an S-linear category can be thought of as a family of categories
parameterized by S, or as a “noncommutative scheme” over S.

Example 4.1. Let f : X → S be a morphism of perfect derived algebraic stacks. Then
Dperf(X) is naturally an S-linear category, with the action of F ∈ Dperf(S) given by − ⊗
f∗F : Dperf(X)→ Dperf(X). For any morphism T → S from a perfect derived algebraic stack
T , by [BZFN10] there is an equivalence

Dperf(X)T ≃ Dperf(XT )

of T -linear categories.

An S-linear category C is enriched over Dqc(S): for objects E,F ∈ C, there is a mapping
object

HomS(E,F ) ∈ Dqc(S)

characterized by equivalences

MapDqc(S)(G,HomS(E,F )) ≃ MapC(E ⊗G,F ) (4.2)

for G ∈ Dperf(S), where Map(−,−) denotes the space of maps in an ∞-category.

Example 4.2. In the situation of Example 4.1, for E,F ∈ Dperf(X) we have

HomS(E,F ) ≃ f∗HomX(E,F ),

where HomX(E,F ) ∈ Dqc(X) is the derived sheaf Hom on X.

3In [Per19] the base S is assumed to be a quasi-compact and separated scheme, but everything goes through
verbatim for perfect derived algebraic stacks.
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4.2. Semiorthogonal decompositions. One of the most fundamental examples of an S-
linear category is an S-linear semiorthogonal component C ⊂ Dperf(X) where X → S is a
morphism of perfect derived algebraic stacks. Recall that for C ∈ CatS , a semiorthogonal
decomposition

C = 〈C1, . . . ,Cm〉
is called S-linear if each component Ci is preserved by the Dperf(S)-action on C, in which
case each Ci inherits the structure of an S-linear category. Base change of linear categories is
compatible with semiorthogonal decompositions, i.e. given T → S there is an induced T -linear
semiorthogonal decomoposition CT = 〈(C1)T , . . . , (Cm)T 〉.

Lemma 4.3 ([Ber09, BS21]). Let X be a scheme, let α ∈ BrAz(X), and let π : P → X be
a Severi–Brauer scheme for α of relative dimension n over X. Then there is an X-linear
semiorthogonal decomposition

Dperf(P ) = 〈D0, . . . ,Dn−1〉
where for each i there is an X-linear equivalence Di ≃ Dperf(X,α

i).

Lemma 4.4 ([BS21, Theorem 5.4]). Let X be a scheme, let α ∈ Br(X)[n] with n invert-
ible on X, and let π : X → X a µn-gerbe of class α. Then there is an X-linear orthogonal
decomposition

Dperf(X ) =
〈
Dk

perf(X )
〉
k∈Z/n

.

Using semiorthogonal decompositions, we can prove the compatibility of tensor products
of categories of twisted sheaves with geometric fiber products, by reducing to the case of
Example 4.1.

Lemma 4.5. Let X → S ← Y be flat morphisms of perfect schemes, and let α ∈ Br(X)[m]
and β ∈ Br(Y )[n] where m and n are invertible on S. Then there is an X ×S Y -linear
equivalence

Dperf(X,α) ⊗Dperf(S) Dperf(Y, β)→ Dperf(X ×S Y,pr∗X(α) + pr∗Y (β)).

Proof. There is a natural X ×S Y -linear functor

Dperf(X,α) ⊗Dperf(S) Dperf(Y, β)→ Dperf(X ×S Y,pr∗X(α) + pr∗Y (β)) (4.3)

induced by (E,F ) 7→ pr∗X(E) ⊗ pr∗Y (F ) for E ∈ Dperf(X,α) and F ∈ Dperf(Y, β), which we
claim is an equivalence. Choose X → X a µm-gerbe of class α and Y → Y a µn-gerbe of
class β. By Lemma 4.4, there are orthogonal S-linear decompositions

Dperf(X ) =
〈
Dk

perf(X )
〉
k∈Z/m

and Dperf(Y) =
〈
Dℓ

perf(Y)
〉
ℓ∈Z/n

.

Tensoring over Dperf(S) we obtain an orthogonal decomposition

Dperf(X ×S Y) ≃ Dperf(X )⊗Dperf(S) Dperf(Y) =
〈
Dk

perf(X )⊗Dperf(S) D
ℓ
perf(Y)

〉
(k,ℓ)∈Z/m×Z/n

,

where the first equivalence holds by Example 4.1, since X and Y are perfect stacks by Exam-
ple 3.6 and our assumption on m and n. Explicitly, the resulting fully faithful functor

Dk
perf(X ) ⊗Dperf(S) D

ℓ
perf(Y)→ Dperf(X ×S Y) (4.4)
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is induced by (E,F ) 7→ pr∗X(E) ⊗ pr∗Y (F ) for E ∈ Dk
perf(X ) and F ∈ Dℓ

perf(Y). On the other
hand, since X ×S Y → X ×S Y is a µm × µn-gerbe, similar to Lemma 4.4 we also have an
orthogonal decomposition

Dperf(X ×S Y) =
〈
D

(k,ℓ)
perf (X ×S Y)

〉
(k,ℓ)∈Z/m×Z/n

,

where D
(k,ℓ)
perf (X ×S Y) denotes the subcategory on which the inertial µm×µn acts with weight

(k, ℓ). The functor (4.4) has image contained in D
(k,ℓ)
perf (X ×S Y), and hence induces a fully

faithful functor
Φk,ℓ : D

k
perf(X )⊗Dperf(S) D

ℓ
perf(Y)→ D

(k,ℓ)
perf (X ×S Y).

Since the image and target of Φk,ℓ both give orthogonal decompositions of Dperf(X ×S Y) as
we vary over (k, ℓ) ∈ Z/m × Z/n, the functor Φk,ℓ must be essentially surjective, and hence
an equivalence. Finally, we note that there is an equivalence

D
(1,1)
perf (X ×S Y) ≃ Dperf(X ×S Y,pr∗X(α) + pr∗Y (β))

(see [Lie06, Proposition 2.1.2.6]), under which the functor Φ1,1 is identified with (4.3). �

Remark 4.6. We have taken unnecessarily strong hypotheses in Lemma 4.5, for ease of
reference to the literature. For instance, the assumption that X and Y are flat over S is only
needed to ensure that X ×S Y is a classical scheme.

4.3. Smooth, proper, and dualizable categories.

Definition 4.7. Let C be an S-linear category.

(1) C is proper (over S) if HomS(E,F ) ∈ Dperf(S) for all E,F ∈ C, and

(2) C smooth (over S) if idInd(C) ∈ FunS(Ind(C), Ind(C)) is a compact object.

The above notions are closely related to their usual geometric counterparts. For example,
if X → S is a smooth proper morphism of schemes, then Dperf(X) is smooth and proper over
S [Per19, Lemma 4.9]. Furthermore, semiorthogonal components of a smooth proper S-linear
category are smooth and proper [Per19, Lemma 4.15]. In particular, this yields the following
rich source of smooth proper categories.

Lemma 4.8. Let X → S be a smooth proper morphism. If C is an S-linear semiorthogonal
component of Dperf(X), then C is smooth and proper over S.

Definition 4.9. A smooth proper S-linear category C is of geometric origin (over S) if there
exists a smooth proper morphism X → S and a fully faithful functor C →֒ Dperf(X) realizing
C as an S-linear semiorthogonal component.

Remark 4.10. In this paper, the relevance of being of geometric origin is that it ensures
C has well-behaved Hodge theory when S is a complex variety, in the form of Theorem 5.20
below. Nonetheless, we expect that Theorem 5.20 remains true for any smooth proper S-linear
category. In fact, it is an open question of Orlov [Orl16, Question 4.4] whether there exists
any smooth proper category that is not of geometric origin.

Example 4.11. If X → S is a smooth proper morphism of schemes and α ∈ BrAz(X), then
by Lemma 4.3 we see that Dperf(X,α) is smooth and proper of geometric origin over S.

As in the geometric case, smoothness and properness are stable under base change.
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Lemma 4.12 ([Per19, Lemma 4.10]). Let C be an S-linear category. Let T → S be a morphism
of perfect derived algebraic stacks.

(1) If C is smooth over S, then CT is smooth over T .

(2) If C is proper over S, then CT is proper over T .

Remark 4.13. The property of being of geometric origin is also stable under base change,
as a consequence of base change for semiorthogonal decompositions.

The condition that an S-linear category is smooth and proper can be characterized purely
categorically in terms of the monoidal structure on CatS, via the following general notion.

Definition 4.14. Let (A,⊗,1) be a symmetric monoidal ∞-category. An object A ∈ A is
called dualizable if there exist an object A∨ ∈ A and morphisms

coevA : 1→ A⊗A∨ and evA : A
∨ ⊗A→ 1.

such that the compositions

A
coevA ⊗idA−−−−−−−→A⊗A∨ ⊗A idA⊗evA−−−−−−→ A,

A∨ idA∨⊗coevA−−−−−−−−→A∨ ⊗A⊗A∨ evA⊗idA∨−−−−−−−→ A∨,

are equivalent to the identity morphisms of A and A∨.

The dual A∨ and the coevaluation and evaluation morphisms coevA and evA are uniquely
determined in the homotopy category of A.

Remark 4.15. If A and B are dualizable objects of A, then so is A∨ (with dual A) and A⊗B
(with dual A∨ ⊗B∨).

Lemma 4.16. Let C be an S-linear category. Then C is smooth and proper over S if and only
if it is dualizable as an object of CatS, in which case:

(1) The dual is given by the opposite category C∨ = Cop.

(2) There is an equivalence

FMC : C
∨ ⊗Dperf(S) C

∼−→ FunS(C,C)

induced by the functor Cop × C→ FunS(C,C), (E,F ) 7→ HomS(E,−)⊗ F .
(3) Under the equivalence FMC (composed with transposition of the factors), the coevalu-

ation morphism

coevC : Dperf(S)→ C⊗Dperf(S) C
∨

is the unique S-linear functor taking OS to idC.

(4) The evaluation morphism

evC : C
∨ ⊗Dperf(S) C→ Dperf(S)

is induced by the functor HomS(−,−) : Cop × C→ Dperf(S).

Proof. The first statement is [Per19, Lemma 4.8], and the rest follows from the discussion
there. �
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Example 4.17. When C = Dperf(X) for X → S a smooth proper morphism of schemes, we
can describe FMC, coevC, and evC more explicitly as follows. Namely, Example 4.1 combined
with duality (−)∨ = HomX(−,OX ) : Dperf(X)op ≃ Dperf(X) gives an equivalence

Dperf(X)op ⊗Dperf(S) Dperf(X) ≃ Dperf(X ×S X),

under which FMC is identified with the functor of taking Fourier–Mukai transforms

Dperf(X ×S X)→ FunS(Dperf(X),Dperf (X)), K 7→ pr2∗(pr
∗
1(−)⊗K),

and coevC and evC are identified with the functors

∆∗ ◦ p∗ : Dperf(S)→ Dperf(X ×S X) and p∗ ◦∆∗ : Dperf(X ×S X)→ Dperf(S)

where p : X ×S X → S is the projection and ∆: X → X ×S X is the diagonal.

Definition 4.18 (Kernel functors). Let C and D be S-linear categories, with C proper over S.
Consider the functor

FMC�D : Cop ⊗Dperf(S) D→ FunS(C,D)

induced by the functor Cop×D→ FunS(C,D), (E,F ) 7→ HomS(E,−)⊗F . We call an object
K ∈ Cop ⊗Dperf(S) D a Fourier–Mukai kernel and write ΦK = FMC�D(K) : C → D for the
associated Fourier–Mukai functor.

Remark 4.19. The functor ΦK can alternatively be described as the composition

ΦK : C
idC⊗K−−−−−→ C⊗Dperf(S) C

op ⊗Dperf(S) D ≃ C
op ⊗Dperf(S) C⊗Dperf(S) D

evC⊗idD−−−−−−→ D

where the middle equivalence is given by transposition of the first two factors, and evC is as
in Lemma 4.16 (which is well-defined since C is proper over S).

The claim of Lemma 4.16(2) admits the following amplification.

Lemma 4.20. Let C and D be S-linear categories, with C smooth and proper over S. Then the
functor FMC�D is an equivalence. Explicitly, the inverse equivalence sends Φ ∈ FunS(C,D) to
the image KΦ of OS under the composition

Dperf(S)
coevC−−−−→ C⊗Dperf(S) C

∨ Φ⊗id
C∨−−−−−→ D⊗Dperf(S) C

∨ ≃ C
∨ ⊗Dperf(S) D.

Proof. This is a formal consequence of the dualizability of C, cf. [Per19, Lemma 4.4]. �

Lemma 4.21. Let C be a smooth proper S-linear category, and let K ∈ C∨ ⊗Dperf(S) C with

associated Fourier–Mukai functor ΦK ∈ FunS(C,C). Then for E,F ∈ C there is a functorial
equivalence

HomS(E ⊠ F,K) ≃ HomS(F,ΦK(E)).

Proof. Under the equivalence FMC : C
op⊗Dperf(S)C

∼−→ FunS(C,C) of Lemma 4.16(2), the kernel

E ⊠ F corresponds to HomS(E,−)⊗ F ; thus, we find

HomS(E ⊠ F,K) ≃ HomS(HomS(E,−) ⊗ F,ΦK)
On the other hand, a version of Yoneda’s lemma says

HomS(HomS(E,−) ⊗ F,ΦK) ≃ HomS(F,ΦK(E)).
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More precisely, this corresponds to the usual form of Yoneda’s lemma under the equivalence
FunS(C,C) ≃ FunS(C⊗Dperf(S) C

∨,Dperf(S)) deduced from the dualizability of C, under which
ΦK corresponds to the functor induced by

C× C
op → Dperf(S), (C,D) 7→ HomS(D,ΦK(C)),

and HomS(E,−) ⊗ F corresponds to the representable functor

HomS(E ⊠ F,−) : C⊗Dperf(S) C
op → Dperf(S). �

4.4. Serre functors.

Definition 4.22. Let C be a proper S-linear category. A relative Serre functor for C over S
is an S-linear autoequivalence SC/S : C→ C such that there are equivalences

HomS(E,F )
∨ ≃ HomS(F,SC/S(E)) (4.5)

functorial in E,F ∈ C, where (−)∨ = HomS(−,OS) is the derived dual on Dperf(S).

The source of the terminology is the following example.

Example 4.23. Let f : X → S be a proper Gorenstein morphism of noetherian schemes.
of relative dimension n. Then − ⊗ ωf [n] : Dperf(X) → Dperf(X) is a relative Serre functor,
where ωf is the dualizing sheaf (a line bundle by the Gorenstein assumption). Indeed, for
E ∈ Dperf(X), Grothendieck duality gives

(f∗G)
∨ ≃ f∗HomX(G,ωf [n]).

Now taking G = HomX(E,F ) for E,F ∈ Dperf(X) we obtain the required equivalence

HomS(E,F )
∨ ≃ HomS(F,E ⊗ ωf [n]).

More generally, if α ∈ Br(X), then − ⊗ ωf [n] : Dperf(X,α) → Dperf(X,α) is a relative Serre
functor; this follows from the untwisted case, because for E,F ∈ Dperf(X,α) we have

HomX(E,F ) = E∨ ⊗ F ∈ Dperf(X).

When C is smooth proper S-linear category, a Serre functor always exists and is given by
a Fourier–Mukai kernel (in the sense of Definition 4.18) described explicitly in terms of the
duality data of C. To formulate this, note that the category C∨ ⊗Dperf(S) C is smooth and

proper over S by Lemma 4.16 and Remark 4.15, and thus by [Per19, Lemma 4.13] the functor
evC : C

∨ ⊗Dperf(S) C→ Dperf(S) admits an S-linear right adjoint ev!
C
.

Lemma 4.24. Let C be a smooth proper S-linear category. Then a relative Serre functor SC/S
over S exists, and its Fourier–Mukai kernel is given by ev!

C
(OS) ∈ C∨ ⊗Dperf(S) C, i.e.

SC/S ≃ Φev!
C
(OS)

.

Proof. Let E,F ∈ C. Since evC(E ⊠ F ) = HomS(E,F ), we find

HomS(E,F )
∨ ≃ HomS(E ⊠ F, ev!C(OS)).

On the other hand, by Lemma 4.21 we have

HomS(E ⊠ F, ev!C(OS)) ≃ HomS(F,Φev!
C
(OS)

(E)). �

Lemma 4.25. Let C be a smooth proper S-linear category. Let T → S be a morphism of
perfect derived algebraic stacks. Then the functor (SC/S)T : CT → CT obtained by base change
from the relative Serre functor for C over S is a relative Serre functor for CT over T .
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Proof. Note that CT is smooth and proper over S by Lemma 4.12. By Lemma 4.24, the relative
Serre functor SCT /T is given by the kernel

ev!CT
(OT ) ∈ C

∨
T ⊗Dperf(T ) CT .

The duality data for CT (realizing it as a dualizable object of CatT ) are obtained by base
change from those of C. In particular, there is a T -linear equivalence

(
C
∨ ⊗Dperf(S) C

)
T
≃ C

∨
T ⊗Dperf(T ) CT (4.6)

under which (evC)T corresponds to evCT
. The right adjoint of (evC)T is obtained by base change

to T from the right adjoint ev!
C
[Per19, Lemma 2.12], and thus (evC)

!
T (OT ) = (ev!

C
(OS))T

corresponds to ev!
CT

(OT ) under the equivalence (4.6). Here, (ev!
C
(OS))T denotes the image of

ev!
C
(OS) under C∨ ⊗Dperf(S) C →

(
C∨ ⊗Dperf(S) C

)
T
. Unwinding the definitions we find that

in general, for any kernel K ∈ C∨ ⊗Dperf(S) C, its image KT ∈
(
C∨ ⊗Dperf(S) C

)
T
corresponds

under the equivalence (4.6) to the kernel for the base changed functor (ΦK)T : CT → CT . Since
by Lemma 4.12 we have Φev!

C
(OS)

≃ SC/S, we conclude SCT /T ≃ (SC/S)T . �

4.5. Presentable linear categories. It is sometimes4 useful to consider a “large” version
of linear categories, which corresponds to working over Dqc(S) instead of Dperf(S). Namely,
Dqc(S) is a commutative algebra object in the category PrCatst of presentable stable ∞-
categories, with morphisms concontinuous functors (i.e. those preserving small colimits). A
presentable S-linear category is a Dqc(S)-module object of PrCatst, and the collection of all
such categories forms an ∞-category PrCatS = ModDqc(S)(PrCatst).

The formalism of presentable S-linear categories is parallel to that of S-linear categories
described in §4.1, which for clarity we sometimes refer to as “small S-linear categories”. The
category PrCatS admits a symmetric monoidal structure with unit Dqc(S) and tensor product
denoted

C⊗Dqc(S) D.

A morphism C → D in PrCatS is called a presentable S-linear functor ; the collection of all
such forms a presentable S-linear category FunS(C,D), which is the internal mapping object
in PrCatS. If C is a presentable S-linear category and E,F ∈ C, then there is a mapping object
HomS(E,F ) ∈ Dqc(S) characterized by equivalences as in (4.2) where we allow G ∈ Dqc(S).

For C ∈ CatS there is a category Ind(C) ∈ PrCatS , called its ind-completion, which is
roughly obtained by freely adjoining all filtered colimits to C. This gives a symmetric monoidal
functor

Ind: CatS → PrCatS .

In fact, Ind factors through an equivalence onto the category PrCatωS of compactly generated
presentable S-linear categories, with morphisms the cocontinuous S-linear functors which
preserve compact objects; the inverse equivalence (−)c : PrCatωS → CatS is given by passage
to compact objects.

Remark 4.26. In the above terms, conditions (2) and (3) in Definition 3.4 of a perfect derived
algebraic stack X are together equivalent to the condition that the canonical morphism

Ind(Dperf(X))→ Dqc(X)

4In this paper, we will only need such categories for our discussion of Hochschild homology in §5.1.
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is an equivalence.

There is also notion of a presentable S-linear semiorthogonal decompositions, which is com-
patible with S-linear decompositions of small S-linear categories via ind-completion [Per19,
Lemma 3.12].

Lemma 4.27 ([BS21, Theorem 5.4]). Let X be a scheme, let α ∈ Br(X)[n] with n invertible on
X, and let π : X → X a µn-gerbe of class α. Then there is a presentable X-linear orthogonal
decomposition

Dqc(X ) =
〈
Dk

qc(X )
〉
k∈Z/n

.

Lemma 4.28. Let X be a quasi-compact scheme with affine diagonal. Then there is an
equivalence

Ind(Dperf(X,α)) ≃ Dqc(X,α).

Proof. By Example 3.6 the stack X is perfect. Thus, taking the ind-completion of the decom-
position of Lemma 4.4 gives a presentable X-linear orthogonal decomposition

Dqc(X ) =
〈
Ind(Dk

perf(X ))
〉
k∈Z/n

.

Since the fully faithful functor Ind(Dk
perf(X )) → Dqc(X ) has image contained in Dk

qc(X ), it
therefore must factor via an equivalence

Ind(Dk
perf(X )) ≃ Dk

qc(X ).
For k = 1 we obtain the claim of the lemma. �

In the case of small S-linear categories, dualizability is a strong finiteness condition, equiv-
alent to being smooth and proper. In the presentable case, however, dualizability is automatic
for most categories of interest.

Lemma 4.29 ([Per19, Lemma 4.3]). Let C be a compactly generated presentable S-linear
category. Then C is dualizable as an object of PrCatS, with dual

C
∨ = Ind((Cc)op).

Moreover, there is an equivalence

FMC : C
∨ ⊗Dqc(S) C

∼−→ FunS(C,C)

under which coevC corresponds to the object idC ∈ FunS(C,C), and evC is induced by the
functor HomS(−,−) : (Cc)op × Cc → Dqc(S)

By Lemma 4.29, Dqc(X) is dualizable for any perfect derived algebraic stack X over S; as
in Example 4.17, we can explicitly describe the duality data in this geometric case.

Example 4.30. Let C = Dqc(X) for f : X → S a morphism of perfect derived algebraic
stacks. By Example 4.1 combined with duality (−)∨ : Dperf(X)op ≃ Dperf(X), we have an
equivalence

Dperf(X)op ⊗Dperf(S) Dperf(X) ≃ Dperf(X ×S X).

Passing to ind-completion gives an equivalence

C
∨ ⊗Dqc(S) C ≃ Dqc(X ×S X),
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under which coevC and evC are identified with the functors

∆∗ ◦ f∗ : Dqc(S)→ Dqc(X ×S X) and f∗ ◦∆∗ : Dqc(X ×S X)→ Dqc(S)

where ∆: X → X ×S X is the diagonal (cf. [BZFN10, Corollary 4.8]).

We also have a twisted variant of Example 4.30.

Example 4.31. Let C = Dqc(X,α) where f : X → S is a flat quasi-compact morphism from
a quasi-compact scheme with affine diagonal to a perfect scheme and α ∈ Br(X)[n] with n
invertible on X. By Lemma 4.5 (which applies since X is perfect by Example 3.6) combined
with duality (−)∨ : Dperf(X,α)

op ≃ Dperf(X,−α), we have an equivalence

Dperf(X,α)
op ⊗Dperf(S) Dperf(X,α) ≃ Dperf(X ×S X,pr∗2(α)− pr∗1(α)).

Passing to ind-completion and using Lemma 4.28 (which applies since by our assumptions
X ×S X is quasi-compact with affine diagonal) gives an equivalence

C
∨ ⊗Dqc(S) C ≃ Dqc(X ×S X,pr∗2(α)− pr∗1(α)),

We now describe coevC and evC. Note that since ∆∗(pr∗2(α) − pr∗1(α)) = 0, there are by
Remark 2.8 many choices of pushforward and pullback functors

Dqc(X)→ Dqc(X ×S X,pr∗2(α) − pr∗1(α)),

Dqc(X ×S X,pr∗2(α) − pr∗1(α))→ Dqc(X),

which could assume the roles played by ∆∗ and ∆∗ in Example 4.30.
In fact, in our particular situation, there is a natural choice. Let X be a µn-gerbe of Brauer

class α. There is a dual gerbe X∨ of Brauer class −α. The dual gerbe may be described as the
relative moduli stack of 1-twisted line bundles L for the morphism X → X, equipped with
trivializations L⊗n ≃ O. The product X∨ ×X X carries a canonical (1, 1)-twisted line bundle
P (the universal bundle). Writing

π : X∨ ×X X → X, ι : X∨ ×X X → X∨ ×S X
we obtain functors

∆α
∗ : Dqc(X)→ D(1,1)

qc (X∨ ×S X ), E 7→ ι∗(P ⊗ π∗E)

∆∗
α : D

(1,1)
qc (X∨ ×S X )→ Dqc(X), F 7→ π∗

(
ι∗(F )⊗P∨) ,

Note that D
(1,1)
qc (X∨ ×S X ) is the twisted derived category Dqc(X ×S X,pr∗2α− pr∗1α).

With this notation, coevC and evC are identified with the functors

∆α
∗ ◦ f∗ : Dqc(S)→ Dqc(X ×S X,pr∗2(α)− pr∗1(α)),

f∗ ◦∆∗
α : Dqc(X ×S X,pr∗2(α) − pr∗1(α))→ Dqc(S).

As in the case of small linear categories, when C is a dualizable presentable S-linear category,
we can describe functors out of C in terms of kernels.

Lemma 4.32. Let C,D be presentable S-linear categories, with C dualizable. Then there is
an equivalence

FMC→D : C∨ ⊗Dqc(S) D
∼−→ FunS(C,D)

which sends K ∈ C∨ ⊗Dqc(S) D to the composition

ΦK : C
idC⊗K−−−−−→ C⊗Dqc(S) C

∨ ⊗Dqc(S) D ≃ C
∨ ⊗Dqc(S) C⊗Dqc(S) D

evC⊗idD−−−−−−→ D,
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and whose inverse equivalence sends Φ ∈ FunS(C,D) to the image KΦ of OS under the
composition

Dqc(S)
coevC−−−−→ C⊗Dqc(S) C

∨ Φ⊗id
C∨−−−−−→ D⊗Dqc(S) C

∨ ≃ C
∨ ⊗Dqc(S) D.

Finally, we note a generalization of Lemma 4.21, which holds by the same argument, where
the S-linear category is not required to be smooth and proper and the Fourier–Mukai kernel
is only required to exist after ind-completion.

Lemma 4.33. Let C be small S-linear category, and let K ∈ Ind(C)∨ ⊗Dqc(S) Ind(C) with
associated Fourier–Mukai functor ΦK ∈ FunS(Ind(C), Ind(C)). Then for E,F ∈ C there is a
functorial equivalence

HomS(E ⊠ F,K) ≃ HomS(F,ΦK(E)).

5. (Co)homological invariants

In this section, we study some (co)homological invariants of linear categories, namely
Hochschild (co)homology and topological K-theory.

Fix a perfect derived algebraic stack S, which will serve as the base space for our discussion.
In our discussion of Hodge theory in §5.3, we will specialize to the case where S is a complex
variety.

5.1. Hochschild homology. Given a symmetric monoidal∞-category (A,⊗,1) and a dual-
izable (in the sense of Definition 4.14) object A ∈ A, the trace of an endomorphism F : A→ A
is the map Tr(F ) ∈ MapA(1,1) given by the composition

1
coevA−−−−→ A⊗A∨

F⊗idA∨−−−−−→ A⊗A∨ ≃ A∨ ⊗A evA−−−→ 1.

When A = PrCatS then 1 = Dqc(S) and the functor Tr(F ) is determined by its value on OS .
Definition 5.1. If C is a dualizable presentable S-linear category and Φ ∈ FunS(C,C) is an
endomorphism, the Hochschild homology of C over S with coefficients in Φ is the complex

HH∗(C/S,Φ) = Tr(Φ)(OS) ∈ Dqc(S).

The Hochschild homology of C over S is the complex

HH∗(C/S) = HH∗(C/S, idC) ∈ Dqc(S).

If instead C is a small S-linear category and Φ ∈ FunS(C,C) is an endomorphism, then by
Lemma 4.29 the category Ind(C) ∈ PrCatS is dualizable, so we may define

HH∗(C/S,Φ) = HH∗(Ind(C)/S, Ind(Φ))

HH∗(C/S) = HH∗(C/S, idC).

In either case, we use the notation

HHi(C/S,Φ) = H−i(HH∗(C/S,Φ)),

HH∗(C/S,Φ) = RΓ(HH∗(C/S,Φ)),

HHi(C/S,Φ) = H−i(HH∗(C/S,Φ)),

for the degree −i cohomology sheaf, the derived global sections, and the degree −i cohomology
of HH∗(C/S,Φ), and when Φ = idC we omit it from all of these notations.
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Remark 5.2. Strictly speaking, for the applications in this paper the case of trivial coefficients
Φ = idC suffices, but our results on Chern characters below hold for arbitrary coefficients and
may be useful elsewhere in that generality.

Remark 5.3. If C is a smooth proper S-linear category, then by Lemma 4.16 it is a dualizable
object of CatS , so for any Φ ∈ FunS(C,C) we may form the trace Tr(Φ): Dperf(S)→ Dperf(S).
There is a canonical equivalence Ind(Tr(Φ)) ≃ Tr(Ind(Φ)): Dqc(S) → Dqc(S) [Per22, Re-
mark 3.2]; in particular HH∗(C/S,Φ) ≃ Tr(Φ)(OS) ∈ Dperf(S).

Remark 5.4. Let C be either a dualizable presentable S-linear category or a smooth proper
small S-linear category. Let Φ ∈ FunS(C,C) and let KΦ be the corresponding kernel, given by
Lemma 4.32 or Lemma 4.20. From the description of KΦ in those lemmas, it follows that

HH∗(C/S,Φ) ≃ evC(KΦ).

The following result summarizes some important properties of Hochschild homology.

Theorem 5.5. Let C be an S-linear category.

(1) If C is a smooth and proper over S, then HH∗(C/S) ∈ Dperf(S) and there is a canonical
nondegenerate pairing HH∗(C/S)⊗HH∗(C/S)→ OS, called the Mukai pairing, which
thus induces an equivalence HH∗(C/S) ≃ HH∗(C/S)∨.

(2) If C is smooth and proper over S and S is a Q-scheme, then HHi(C/S) is a finite
locally free sheaf for any i ∈ Z.

(3) For any morphism of perfect derived algebraic stacks g : T → S, there is a canonical
equivalence

g∗HH∗(C/S) ≃ HH∗(CT /T ),

and if C is smooth and proper over S and S is a Q-scheme, then for any i ∈ Z there
is a canonical isomorphism

g∗HHi(C/S) ≃ HHi(CT /T ).
Proof. See [Per22, Lemma 3.6, Lemma 3.4, and Theorem 3.5]. The main content is (2), which
is a consequence of the the degeneration of the noncommutative Hodge-to-de Rham spectral
sequence [Kal08, Kal17, Mat20]. �

For further background on Hochschild homology, see [Per22, §3] and the references therein.5

Below we detail some additional properties for which we do not know an adequate reference.
The first concerns the invariance of the Hochschild homology of a scheme under twisting by a
Brauer class. In fact, such a result was proved for an arbitrary additive invariant by Tabuada
and Van den Bergh [TVdB15], but their argument does not apply to Hochschild cohomology,
which we will also need. We supply an alternative argument, due to Vadim Vologodsky, which
gives a more precise statement and also applies to cohomology (see Lemma 5.17).

Lemma 5.6 (Vologodsky). Let f : X → S be a flat morphism from a noetherian scheme with
affine diagonal to a perfect noetherian scheme. Let α ∈ Br(X)[n], where n is invertible on S.
Then there are equivalences

HH∗(Dperf(X,α)/S) ≃ f∗∆∗
α∆

α
∗OX ≃ f∗∆∗∆∗OX ≃ HH∗(Dperf(X)/S), (5.1)

5As a warning, in [Per22] the complex HH∗(C/S,Φ) is denoted instead by HH∗(C/S,Φ), which we have
reserved for its global sections.
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where ∆: X → X×SX is the diagonal and ∆α
∗ , ∆

∗
α are the functors described in Example 4.31.

In fact, there is an equivalence

∆∗
α∆

α
∗OX ≃ ∆∗∆∗OX . (5.2)

Proof. The outer two equivalences in (5.1) follow from Lemma 4.28 and Examples 4.30
and 4.31, so it suffices to prove the identity (5.2). The idea of the proof is to work over
the formal completion of the diagonal.

We adopt the notation of Example 4.31, so that X is a µn-gerbe of class α, X∨ is the dual
gerbe, and P is the universal bundle on X∨ ×X X . There is a diagram

X∨ ×X X (X∨ ×S X )∧

X∨ ×S X ,
ι

ι̂

g

where (X∨ ×s X )∧ is the formal completion of X∨×S X along the closed substack X∨ ×X X .
The identity (5.2) can be checked after pullback to the gerbe X∨ ×X X , where it may be
written as

P∨ ⊗ ι∗ι∗(P) ≃ ι∗ι∗(OX∨×XX ). (5.3)

The natural completion maps

P∨ ⊗ ι∗ι∗(P)→ P∨ ⊗ ι̂∗ι̂∗(P),
ι∗ι∗(OX∨×XX )→ ι̂∗ι̂∗(OX∨×XX )

are equivalences, because of the observation that

g∗g∗ι̂∗(M) ≃ ι̂∗M,

for any coherent sheaf M on X∨×X X . Étale-locally on X∨×S X , the observation boils down
to the fact that if A is a noetherian ring and M is a finitely generated A/I-module for an
ideal I, then the natural map

M →M ⊗A Â
is an isomorphism, where Â is the I-adic completion of A.

From the previous paragraph, it remains to show the completed version of (5.3):

P∨ ⊗ ι̂∗ι̂∗(P) ≃ ι̂∗ι̂∗(OX∨×XX ). (5.4)

Suppose that there exists a line bundle P̂ on the completion (X∨×S X )∧ which pulls back to

P. (The existence of P̂ is shown in the next paragraph.) Then (5.4) follows:

P∨ ⊗ ι̂∗ι̂∗(P) ≃ P∨ ⊗ ι̂∗ι̂∗ι̂∗(P̂)
≃ P∨ ⊗ ι̂∗(ι̂∗(OX∨×XX )⊗ P̂)
≃ P∨ ⊗ ι̂∗(ι̂∗(OX∨×XX ))⊗ P
≃ ι̂∗(ι̂∗(OX∨×XX )).

In the second line, we have used the projection formula for a ringed topos [Sta24, Section 0943].

This proves the identity (5.4), assuming the existence of P̂ .
To conclude the proof, we show that there exists a line bundle P̂ on (X∨ ×S X )∧ which

pulls back to P along ι̂. The (µn ×µn)-gerbe X∨ ×S X over X ×S X may be “multiplied” to

a µn-gerbe G on X ×S X of class pr∗2[X ]− pr∗1[X ]. Let Ĝ be the formal completion of G along

https://stacks.math.columbia.edu/tag/0943
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the preimage of the diagonal, so that Ĝ is a µn-gerbe over (X ×S X)∧. In fact, Ĝ is a trivial
µn-gerbe. Indeed, on one hand the natural pullback map

∆̂∗ : H2
ét((X ×S X)∧,µn)→ H2

ét(X,µn)

is an isomorphism, because of the invariance of the étale site under nilpotent thickening. On

the other hand, [Ĝ] lies in the kernel.

By the previous paragraph, there exists a 1-twisted line bundle L on Ĝ. (This is Lemma 2.7

for formal schemes; the proof is identical.) Let P̂ ′ be the pullback of L to (X∨ ×S X )∧. Then
P̂ ′ is a (1, 1)-twisted line bundle, and its restriction to X∨×X X differs from P by an element
L0 of Pic(X). Then

P̂ = P̂ ′ ⊗ pr∗1(L
−1
0 )

is the desired line bundle. �

Remark 5.7. If n is not invertible on S, then the conclusion of Lemma 5.6 does not hold in
general [ABM21, Theorem 1.3].

Remark 5.8. If X is a Deligne–Mumford stack then the conclusion of Lemma 5.6 often fails.
For example, if X = BG over C for G = Z/2×Z/2, then Br(X) = Z/2, and the nonzero class
α comes from the µ2-gerbe

BD8 → BG,

where D8 is the dihedral group of order 8. The twisted derived category Dperf(X,α) is iden-
tified with the subcategory 〈V 〉 of Dperf(BD8) generated by the irreducible 2-dimensional
representation of D8. In particular, HH0(Dperf(X,α)) = C, whereas HH0(Dperf(X)) = C4.

Lemma 5.9. Let C be a smooth proper S-linear category, let Φ ∈ FunS(C,C), and let SC/S be
the relative Serre functor (which exists by Lemma 4.24). Then there is an equivalence

HH∗(C/S,Φ)
∨ ≃ HomS(Φ,SC/S)

where the right side is the mapping object computed in FunS(C,C).

Proof. By Remark 5.4 we find

HH∗(C/S,Φ)
∨ ≃ HomS(evC(KΦ),OS) ≃ HomS(KΦ, ev

!
C(OS)).

By Lemma 4.16(2) there is an equivalence FMC : C
∨ ⊗Dperf(S) C

∼−→ FunS(C,C), under which

FMC(KΦ) ≃ Φ by the definition of KΦ and FMC(ev
!
C
(OS)) ≃ SC/S by Lemma 4.24, so the

claim follows. �

Hochschild homology is a recipient for a generalized Chern character, defined out of the
complex HomS(E,Φ(E)) for any object E of an S-linear category. A construction can be
found for instance in [Per22, §3.2], but we give a direct description in terms of Fourier–Mukai
kernels below.

Construction 5.10 (Chern characters). Let C be an S-linear category, let Φ ∈ FunS(C,C),
and let E ∈ C. Let KInd(Φ) ∈ Ind(C)∨ ⊗Dqc(S) Ind(C) be the Fourier–Mukai kernel for the
functor Ind(Φ) ∈ FunS(Ind(C), Ind(C)), which exists by Lemma 4.29. By Lemma 4.33 we have
an equivalence

HomS(E ⊠ Φ(E),KInd(Φ)) ≃ HomS(Φ(E),Φ(E)),

and thus a canonical morphism
E ⊠ Φ(E)→ KInd(Φ) (5.5)
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corresponding to idΦ(E). Note that evC(E ⊠ Φ(E)) ≃ HomS(E,Φ(E)), while by Remark 5.4
we have evC(KInd(Φ)) ≃ HH∗(C/S,Φ). The Chern character of E with coefficients in Φ is the
morphism

chE,Φ : HomS(E,Φ(E))→ HH∗(C/S,Φ)

obtained by applying evC to (5.5). We write chE = chE,idC for the case when Φ = idC.

Remark 5.11. When C is smooth and proper over S, then we may avoid the use of ind-
completion in the definition of the Chern character, using the kernel KΦ ∈ C∨ ⊗Dperf(S) C for

Φ given by Lemma 4.16(2) in place of KInd(Φ), and Lemma 4.21 in place of Lemma 4.33. In
this situation, the Chern character also admits the following simple description in terms of
Serre duality.

Lemma 5.12. Let C be a smooth proper S-linear category, let Φ ∈ FunS(C,C), and let E ∈ C.
Then there is a commutative diagram

HH∗(C/S,Φ)∨ HomS(E,Φ(E))∨

HomS(Φ,SC/S) HomS(Φ(E),SC/S(E))

ch∨
E,Φ

∼ ∼

ηE

where ηE is the morphism given by evaluating a natural transformation at E, the left vertical
arrow is the equivalence of Lemma 5.9, and the right vertical arrow is Serre duality.

Proof. Let KΦ ∈ C∨ ⊗Dperf(S) C be the Fourier–Mukai kernel for Φ. We consider the diagram

HH∗(C/S,Φ)∨ HomS(E,Φ(E))∨

HomS(evC(KΦ),OS) HomS(evC(E ⊠ Φ(E)),OS)

HomS(KΦ, ev
!
C
(OS)) HomS(E ⊠ Φ(E), ev!

C
(OS))

HomS(Φ,SC/S) HomS(Φ(E),SC/S(E)).

ch∨
E,Φ

∼ ∼

∼ ∼

∼ ∼

ηE

where:

• The top square is given by dualizing the definition of chE,Φ.

• The middle square is given by adjunction.

• The bottom left vertical arrow arises from the equivalence C∨⊗Dperf(S)C
∼−→ FunS(C,C)

of Lemma 4.16(2), which sends KΦ to Φ by construction and ev!
C
(OS) to SC/S by

Lemma 4.24.

• The bottom right vertical arrow is given by Lemma 4.21, using again that ev!
C
(OS) is

the kernel for SC/S .

The top square and middle square commute by definition. Unwinding the equivalences invoked
in the construction of the diagram, it is straightforward to check that the bottom square
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commutes, the composition of the left vertical arrows is the equivalence of Lemma 5.9, and
the composition of the right vertical arrows is Serre duality. The outer square thus gives the
desired diagram. �

5.2. Hochschild cohomology.

Definition 5.13. Let C be a small or presentable S-linear category. The Hochschild cohomol-
ogy of C over S is the complex

HH∗(C/S) = HomS(idC, idC) ∈ Dqc(S).

We use the notation

HHi(C/S) = Hi(HH∗(C/S)),

HH∗(C/S) = RΓ(HH∗(C/S)),

HHi(C/S) = Hi(HH∗(C/S)),

for the degree i cohomology sheaf, the derived global sections, and the degree i cohomology
of HH∗(C/S).

Remark 5.14. If C is a small S-linear category, then HH∗(C/S) ≃ HH∗(Ind(C)/S) [Per22,
Remark 4.2].

Remark 5.15. There is also a version of Hochschild cohomology with coefficients in an
endomorphism Φ ∈ FunS(C,C) [Per22, Definition 4.1], but we do not discuss it since we do
not need it for our applications and we have no new results to add in this context.

Below we recall some basic results about Hochschild cohomology, and compute it for twisted
derived categories. For further background, see [Per22, §5] or [BP23, §2.1] and the references
therein.6

Lemma 5.16 ([BP23, Remark 2.5 and Lemma 2.6]). Let C be an S-linear category.

(1) If C is smooth and proper over S, then HH∗(C/S) ∈ Dperf(S).

(2) For any morphism of perfect derived algebraic stacks g : T → S, there is a canonical
equivalence

g∗HH∗(C/S) ≃ HH∗(CT /T ).

Vologodsky’s argument from Lemma 5.6 also applies to the cohomological setting:

Lemma 5.17 (Vologodsky). Let f : X → S be a flat morphism from a noetherian scheme
with affine diagonal to a perfect noetherian scheme, and let α ∈ Br(X)[n] with n invertible
on X. Then there are equivalences

HH∗(Dperf(X,α)/S) ≃ HomS(∆
α
∗OX ,∆α

∗OX) ≃ HomS(∆∗OX ,∆∗OX) ≃ HH∗(Dperf(X)/S)

where ∆: X → X×SX is the diagonal and ∆α
∗ , ∆

∗
α are the functors described in Example 4.31.

6The same notation warning about [Per22] as for Hochschild homology applies: there the complex HH
∗(C/S)

is denoted instead by HH∗(C/S).
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Proof. By Remark 5.14 and Lemma 4.28, we may pass to the unbounded quasi-coherent
derived category for the computation. Then the outer two equivalences follow from Exam-
ples 4.30 and 4.31. Adopting the notation of the proof of Lemma 5.6, we have

HomS(∆
α
∗OX ,∆α

∗OX) ≃ HomS(ι∗(P), ι∗(P))
≃ HomS(ι

∗ι∗(P),P)
≃ HomS(P∨ ⊗ ι∗ι∗(P),OX∨×XX )

≃ HomS(∆
∗
α∆

α
∗OX ,OX),

and similarly
HomS(∆∗OX ,∆∗OX) ≃ HomS(∆

∗∆∗OX ,OX).
Since ∆∗

α∆
α
∗OX ≃ ∆∗∆∗OX by Lemma 5.6, this finishes the proof. �

Using Hochschild cohomology, Anel and Toën [AT09] introduced an analog for categories
of the geometric notion of connectedness. To formulate it, note that if C is an S-linear cate-
gory, then there is a canonical morphism OS → HH0(C/S) (corresponding to the identity in
HomS(idC, idC)).

Definition 5.18. Let C be an S-linear category. Then C is connected over S if for every
morphism T → S from a perfect scheme T , HHi(CT /T ) = 0 for i < 0 and the morphism
OT →HH0(CT /T ) is an isomorphism.

Lemma 5.19. Let f : X → S be a flat proper surjective morphism of noetherian schemes with
geometrically reduced and connected fibers. Let α ∈ Br(X) be a Brauer class. Then Dperf(X,α)
is a connected S-linear category.

Proof. This follows from Lemma 5.17. �

Many interesting semiorthogonal components of derived categories of varieties can be shown
to be connected by combining Lemma 5.19 with Kuznetsov’s results on heights of exceptional
collections [Kuz15]; see for instance [BP23, §2.3] and Example 6.5 below.

5.3. Hodge theory. In what follows, all local systems are taken with respect to the ana-
lytic topology, although following our conventions (§1.8) we suppress analytification from the
notation

Theorem 5.20. Let C be a smooth proper S-linear category of geometric origin, where S is a
complex variety. Then there is functorially associated local system of finitely generated abelian
groups Ktop

0 (C/S) on S (for the analytic topology), which underlies a weight 0 variation of
Hodge structures and satisfies the following:

(1) If C = 〈C1, . . . ,Cm〉 is an S-linear semiorthogonal decomposition, then there is an
isomorphism

Ktop
0 (C/S) ≃ Ktop

0 (C1/S)⊕ · · · ⊕Ktop
0 (Cm/S)

induced by the projection functors onto the components Ci.

(2) When f : X → S is a smooth proper morphism of complex varieties, Ktop
0 (Dperf(X)/S)

is the local system U 7→ Ktop
0 (XU ) of topological K-theory groups of the family, and

there is an isomorphism

Ktop
0 (Dperf(X)/S) ⊗Q ≃

⊕

k∈Z
R2kf∗Q(k)
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of variations of rational Hodge structures on S (where (k) denotes the Tate twist).

(3) If S = Spec(C), in which case we write simply Ktop
0 (C) for Ktop

0 (C/S), then the p-

th graded piece of the Hodge filtration on Ktop
0 (C) ⊗ C is isomorphic to HH2p(C) :=

H−2p(HH∗(C)). For general S, the fiber of Ktop
0 (C/S) over s ∈ S(C) is Ktop

0 (Cs).

Proof. The construction of Ktop
0 (C/S) is due to Blanc in the absolute case [Bla16] and to

Moulinos [Mou19] in general. The essential ingredient in constructing the Hodge structure is
the degeneration of the noncommutative Hodge-to-de Rham spectral sequence [Kal08, Kal17,
Mat20]. For details, see [Per22, §5.1]. �

Remark 5.21. When C = Dperf(X,α) for a Brauer class α ∈ BrAz(X), and X → S is a
smooth proper morphism of complex varieties, then Theorem 5.20 implies that there is a
variation of Hodge structure on the local system Ktop

0 (Dperf(X,α)/S), which we shall denote

simply by Ktop
0 ((X,α)/S). Indeed, Dperf(X,α) is of geometric origin by Lemma 4.3.

When the Brauer class is topologically trivial (Definition 2.2), the results of [Hot22] calcu-
late the associated variation of Hodge structure in terms of twisted Mukai structures. This is
explained in the special case when X → S is a family of abelian varieties in §18.

6. Calabi–Yau categories

In this short section we introduce (families of) Calabi–Yau categories and specialize some
of our earlier results to this setting. The main results of this paper only require 3-dimensional
Calabi–Yau categories, but as it is no harder we consider arbitrary dimensions.

Fix a perfect derived algebraic stack S, which will serve as the base space for our discussion.

6.1. Definition and examples.

Definition 6.1. Let n ∈ Z. An n-dimensional Calabi–Yau (CYn) category over S is an
S-linear category C such that:

(1) C is smooth, proper, and connected over S.

(2) SC/S = (−⊗ L)[n] for a line bundle L on S.

This property is preserved under base change; in particular, the fibers Cs of C are CYn over
κ(s) for all s ∈ S.
Lemma 6.2. Let C be a CYn category over S. Let T → S be a morphism from a perfect
derived algebraic stack. Then CT is a CYn category over T .

Proof. Connectedness is preserved under base change by Definition 5.18, smoothness and
properness are preserved under base change by Lemma 4.12, and condition (2) in Definition 6.1
is preserved under base change by Lemma 4.25. �

Remark 6.3. A variant of Definition 6.1 in case n = 2 appears in [Per22, §6.1]. The definition
there is stronger in that C is required to be smooth and proper of geometric origin, but weaker
in that condition (2) is replaced with its fibral version and connectedness is replaced by a
slightly weaker fibral condition (only requiring that HH0 is the scalars). Whenever we use
Hodge theory for categories in the sense of §5.3, we will restrict to CYn categories of geometric
origin, but we have not included this condition in our definition as it is not needed for other
results.

The following is the most important example of a CY category for this paper.
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Lemma 6.4. Let f : X → S be a smooth proper morphism of noetherian schemes of relative
dimension n, with geometrically connected fibers and ωf = f∗L for a line bundle L on S. Let
α ∈ BrAz(X). Then Dperf(X,α) is a CYn category of geometric origin over S.

Proof. By Example 4.11, the category Dperf(X,α) is smooth and proper of geometric origin
over S. By Lemma 5.19, the category Dperf(X,α) is connected over S. Finally, by Example 4.23
the relative Serre functor of Dperf(X,α) is (−⊗ L)[n]. �

Many other examples of CY categories can be constructed as semiorthogonal components
of Fano varieties, using the results of [Kuz19]. For a survey of the known CY2 examples, see
[Per22, §6.2]. Below we spell out an interesting CY3 example.

Example 6.5. Let f : X → S be a smooth family of cubic sevenfolds, defined by a section of
L⊠OP8(3) on S ×P8 for some line bundle L on S. Then OX ,OX (1), . . . ,OX (5) is a relative
exceptional collection over S (in the sense of [BLM+21, §3.3]). The Kuznetsov component
Ku(X) ⊂ Dperf(X) is defined by the S-linear semiorthogonal decomposition

Dperf(X) = 〈Ku(X), f∗Dperf(S), f
∗Dperf(S)⊗OX(1), . . . , f∗Dperf(S)⊗OX(5)〉 .

The category Ku(X) is CY3 of geometric origin over S. Indeed, Ku(X) is smooth and proper
of geometric origin over S by definition, connected over S by [BP23, Corollary 2.11], and has
relative Serre functor SKu(X)/S ≃ (−⊗ L⊗2)[3] by the results of [Kuz19].7

As mentioned in §1.6.4, the integral Hodge conjecture holds for cubic sevenfolds and their
Kuznetsov components:

Lemma 6.6. Let X ⊂ P8 be a complex smooth cubic sevenfold. Then the integral Hodge
conjecture holds for X (in all degrees), as well as for Ku(X).

Proof. By [Per22, Proposition 5.16], it suffices to prove the integral Hodge conjecture for X
in all degrees. By the Lefschetz hyperplane theorem, it is enough to show that X contains a
line, a 2-plane, and a 3-plane. By a dimension count, the only nontrivial case is a 3-plane. The
expected dimension of the space of 3-planes is 0, and a standard Chern class computation
shows that the virtual number of such planes is nonzero (equal to 321489), so 3-planes must
exist on X. �

6.2. Hochschild (co)homology and Chern characters. The Calabi–Yau condition im-
plies a close relation between Hochschild homology and cohomology. Note that for any object
E ∈ C of an S-linear category, there is a canonical morphism

aE : HH∗(C/S)→HomS(E,E) (6.1)

given by evaluation at E.

Corollary 6.7. Let C be a CYn category over S with SC/S = (−⊗ L)[n] for a line bundle L
on S.

(1) There is an equivalence HH∗(C/S)∨ ≃ HH∗(C/S)⊗ L[n].

7The results of [Kuz19] are stated for smooth varieties over a field, but they extend directly to the relative
setting.
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(2) For any E ∈ C, there is a commutative diagram

HH∗(C/S)∨ HomS(E,E)∨

HH∗(C/S)⊗ L[n] HomS(E,E) ⊗ L[n]

ch∨
E

∼ ∼

aE⊗id

where the left vertical arrow is the equivalence of (1) and the right vertical arrow is
Serre duality.

(3) If S is a Q-scheme, then we have HH∗(C/S) ∈ D
[−n,n]
qc (S).

Proof. (1) and (2) follow from Lemmas 5.9 and 5.12 with Φ = idC. For part (3), note that
HH∗(C/S) ∈ D≥0

qc (S) by the connectedness of C over S, and therefore HH∗(C/S)∨ ∈ D≥−n
qc (S)

by (1). But HH∗(C/S) is self-dual by Theorem 5.5(1) and has locally free cohomology sheaves
if S is a Q-scheme by Theorem 5.5(2), so (3) follows. �
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Part II. Moduli

7. Moduli of objects in a category

Fix a perfect scheme S and a smooth proper S-linear category C. In this section, we discuss
the moduli space of objects in C, following work of Lieblich [Lie06] and Toen–Vaquié [TV07].
We will consider three incarnations of this space: as a derived stack, as a stack, and as an
algebraic space. For applications later in the paper, we will primarily be interested in the
latter two more classical incarnations, but the enhancement as a derived stack will be useful
for proving results, as its deformation theory is more natural.

7.1. Classical moduli spaces. We consider the moduli functor

Mgl(C/S) : (Sch/S)
op → Grpd

T 7→
{
E ∈ CT | Ext<0

κ(t)(Et, Et) = 0 for all t ∈ T
}
, (7.1)

where the right-hand side is considered as a groupoid (by truncating the∞-groupoid spanned
by the displayed objects in CT ). Following Lieblich, we call Mgl(C/S) the moduli stack of
gluable objects in C. We also consider the moduli stack of simple gluable objects

sMgl(C/S) ⊂Mgl(C/S)

defined by the extra condition that E ∈ CT is simple, i.e. Homκ(t)(Et, Et) = κ(t) for all t ∈ T .

Theorem 7.1. The functorMgl(C/S) is an algebraic stack which is locally of finite presenta-
tion over S. Moreover, sMgl(C/S) ⊂Mgl(C/S) is an open substack (hence also algebraic and
locally of finite presentation over S), and is a Gm-gerbe over an algebraic space sMgl(C/S)
locally of finite presentation over S.

Proof. In the case where C = Dperf(X) for X → S a smooth proper morphism, this was first
proved in [Lie06, Theorem 4.2.1 and Corollary 4.3.3]. As explained in [BLM+21, Proposition
9.2 and Lemma 9.8], this can be used to deduce the result in case C ⊂ Dperf(X) is an S-linear
semiorthogonal component (which is the only case needed for the applications in this paper).
The general case is proved in [TV07]. �

Remark 7.2. As shown in [Lie06, TV07], a moduli stack of objects in C can be defined under
weaker hypotheses than C being smooth and proper. However, the definition of the moduli
stack then becomes more complicated. As we will not need this generality for our main results,
we stick to the smooth and proper case.

7.2. Derived moduli spaces. We use the language of derived algebraic geometry, our con-
ventions on which are recalled in §3. The derived moduli stack of objects in C is the functor

M(C/S) : (dAff/S)op → Grpd∞

whose value on T is the ∞-groupoid (CT )
≃ obtained from CT by discarding non-invertible

1-morphisms.

Remark 7.3. The T -points of M(C/S) for a derived algebraic stack T can be described by
the same formula as in the case when T is a derived affine scheme. Indeed, we may write
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T = colimU∈dAff/T U as the colimit of the derived affine schemes over T . Then

Hom(T,M(C/S)) ≃ lim
U∈dAff/T

Hom(U,M(C/S))

≃ lim
U∈dAff/T

(CU )
≃

≃
(

lim
U∈dAff/T

CU

)≃
,

where the last line holds since the operation (−)≃ of passing to the maximal sub-∞-groupoid
is right adjoint to the inclusion Grpd∞ → Cat∞ of ∞-groupids into ∞-categories. On the
other hand, we have

lim
U∈dAff/T

CU = lim
U∈dAff/T

C⊗Dperf(S) Dperf(U)

≃ C⊗Dperf(S)

(
lim

U∈dAff/T
Dperf(U)

)

≃ C⊗Dperf(S) Dperf(T )

= CT ,

where the second line holds since by dualizability of C ∈ CatS the operation C ⊗Dperf(S) −
admits a left adjoint given by C∨⊗Dperf(S)−, and the third and fourth lines hold by definition.

Now we can state the main foundational result about the derived moduli stack of objects.

Theorem 7.4 ([TV07, Theorem 3.6]). The functor M(C/S) is a derived locally algebraic
stack which is locally of finite presentation over S.

One of the key advantages of the derived moduli stack M(C/S) is that its (co)tangent
complex admits a simple description.

Theorem 7.5 ([TV07, Corollary 3.17]). Let g : T → M(C/S) be a morphism from a de-
rived algebraic stack T , corresponding to an object E ∈ CT . Then the pullback of the relative
cotangent complex LM(C/S)/S of M(C/S)→ S to T is given by

g∗LM(C/S)/S ≃ (HomT (E,E)[1])∨ .

7.3. Derived enhancements. We define the higher moduli stack of object in C to be the
classical truncation

M(C/S) := M(C/S)cl : (Aff/S)
op → Grpd∞,

which by Theorem 7.4 is a higher locally algebraic stack locally of finite presentation over S.

Example 7.6. LetM→M(C/S) be a Zariski open immersion. Then by Remark 3.3 there
is a corresponding Zariski open immersion of derived locally algebraic stacks

M→M(C/S)

which recovers M → M(C/S) upon taking classical truncations. As observed in [TV07,
Corollary 3.21 and 3.22], the natural morphisms sMgl(C/S) → Mgl(C/S) → M(C/S) are
Zariski open immersions; thus for example we may takeM = sMgl(C/S) orM =Mgl(C/S),
giving Zariski open immersions of derived enhancements

sMgl(C/S)→Mgl(C/S)→M(C/S).
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As illustrated by Theorem 7.5, derived moduli problems often have well-behaved cotangent
complexes. This leads to control on the cotangent complex of the underived moduli problem,
via the following observation.

Lemma 7.7 ([STV15, Proposition 1.2]). Let X be a derived algebraic stack over S, let X be
its truncation, and let i : X → X be the canonical map. Then the cone LX/X of the morphism

i∗LX/S → LX/S

satisfies LX/X ∈ D≤−2
qc (X ).

8. Groups of autoequivalences

Fix a perfect scheme S and a smooth proper S-linear category C. In this section, we discuss
the geometric structure of the group of autoequivalences of C, which, like the moduli space
of objects in C, comes in three guises. In particular, we describe its cotangent complex and
study properties of its identity component.

8.1. Groups of autoequivalences. We denote by AutS(C) ∈ Grpd∞ the space of automor-
phisms of C considered as an object of the ∞-category CatS of S-linear categories. The stack
of autoequivalences of C is the functor

Aut(C/S) : (Sch/S)op → Grpd∞

T 7→AutT (CT ). (8.1)

In Proposition 8.2 below we explain the basic properties of Aut(C/S). Recall FunS(C,C) is
the S-linear category of S-linear endofunctors of C.

Lemma 8.1. The S-linear category FunS(C,C) is smooth and proper over S. Further, if
T → S is a morphism from a locally algebraic derived stack T , then there is an equivalence

(FunS(C,C))T ≃ FunT (CT ,CT ).

of T -linear categories.

Proof. As C is assumed smooth and proper over S, the first claim holds by the (proof of)
[BP23, Lemma 2.6], while the second holds by the (proof of) [Per22, Lemma 4.3]. �

Proposition 8.2. The functor Aut(C/S) is a higher locally algebraic stack which is locally
of finite presentation over S and admits a Zariski open immersion

Aut(C/S)→M(FunS(C,C)/S). (8.2)

Moreover, if C is a connected S-linear category (in the sense of Definition 5.18), then Aut(C/S)
is 1-truncated (i.e. takes values in Grpd), is an algebraic stack locally of finite presentation
over S, and is a Gm-gerbe over a group algebraic space Aut(C/S) locally of finite presentation
over S.

Proof. This essentially follows from the arguments in the proof of [TV07, Corollary 3.24], but
for convenience we sketch the proof. The morphism Aut(C/S) →M(FunS(C,C)/S) is given
on T ∈ Sch/S by the natural morphism AutT (CT ) → FunT (CT ,CT ) ≃ (FunS(C,C))T , where
the equivalence is given by Lemma 8.1. That this morphism is a Zariski open immersion is
shown just after Lemma 3.25 in [TV07]. It follows that Aut(C/S) is a locally algebraic stack
locally of finite presentation over S, asM(FunS(C,C)/S) is one.
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If C is connected, then [BP23, Lemma 3.3] implies that for any point Φ ∈ AutT (CT ) we
have

πi(AutT (CT ),Φ) ∼=
{
OT (T )× if i = 1,

0 if i ≥ 2.

Therefore, Aut(C/S) is 1-truncated. It follows that Aut(C/S) is an algebraic stack by [TV07,
Lemma 2.19]. Finally, the algebraic space Aut(C/S) can be obtained as the Gm-rigidification
of Aut(C/S). �

By our discussion of derived enhancements in §7.3, it follows that the Zariski open immer-
sion (8.2) corresponds to a Zariski open immersion of derived locally algebraic stacks

Aut(C/S)→M(FunS(C,C)/S)

which recovers (8.2) upon taking classical truncations. Explicitly,

Aut(C/S) : (dAff/S)op → Grpd∞

is defined by the same formula (8.1) as Aut(C/S) but on derived schemes T . We call Aut(C/S)
the derived stack of autoequivalences of C.

Remark 8.3. By construction, Aut(C/S) is a group stack over S (i.e. a group object in the
category Stk/S) which acts on the stacks

sMgl(C/S) ⊂Mgl(C/S) ⊂M(C/S)

while Aut(C/S) is a group derived stack over S (i.e. a group object in the category dStk/S)
which acts on the derived enhancements

sMgl(C/S) ⊂Mgl(C/S) ⊂M(C/S).

When C is a connected S-linear category, then the action of Aut(C/S) on sMgl(C/S) induces
an action of the group algebraic space Aut(C/S) on sMgl(C/S).

8.2. The cotangent complex.

Lemma 8.4. Let G be a group derived algebraic stack over S, with identity section e : S → G.
Then there is an equivalence

LG/S ≃ e∗LG/S ⊗OG.

Proof. Consider the cartesian diagram

G×S G G

G S

m

pr1 π

π

wherem is the multiplication map, pr1 is the first projection, and π is the structure morphism.
If b = (idG, e◦π) : G→ G×SG, thenm◦b = idG and hence pulling back we find an equivalence

LG/S ≃ b∗m∗LG/S .

On the other hand, base change for the cotangent complex gives

m∗LG/S ≃ LG×SG/G ≃ pr∗2LG/S .

Since pr2 ◦ b = e ◦ π, combining the above two observations gives

LG/S ≃ b∗pr∗2LG/S ≃ π∗e∗LG/S . �
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Corollary 8.5. Let G be a group derived algebraic stack over S which is an open subgroup
of Aut(C/S). Then there is an equivalence

LG/S ≃ (HH∗(C/S)[1])∨ ⊗OG.

Proof. By Lemma 8.4, it suffices to show that e∗LG/S ≃ (HH∗(C/S)[1])∨ where e : S → G is
the identity section. By assumption, G is a Zariski open inside the derived locally algebraic

stack M(FunS(C,C)/S), and the composition S
e−→ G→M(FunS(C,C)/S) is classified by the

object idC ∈ FunS(C,C). Therefore, by Theorem 7.5 we have

e∗LG/S ≃ (HomS(idC, idC)[1])
∨ = (HH∗(C/S)[1])∨,

where the final equality holds by the definition of Hochschild cohomology. �

Lemma 8.6. Let G be a group higher algebraic stack over S which is an open subgroup of
Aut(C/S). Assume that G → S is smooth. Then there is an equivalence

LG/S ≃ τ≥0((HH∗(C/S)[1])∨ ⊗OG)

Proof. Let G be the open subgroup of Aut(C/S) corresponding to G ⊂ Aut(C/S), so that

i : G → G is a derived enhancement. As G → S is smooth we have LG/S ∈ D
[0,1]
qc (G), and

therefore the morphism i∗LG/S → LG/S factors via a morphism α : τ≥0i∗LG/S → LG/S. By
Lemma 7.7 the morphism α induces an isomorphism on cohomology sheaves in degrees ≥ 0,
while by Corollary 8.5 the source of α is precisely τ≥0((HH∗(C/S)[1])∨ ⊗OG). �

As we explain in Lemma 8.10 below, in nice situations there is a canonical choice of G
satisfying the hypotheses of Lemma 8.6.

8.3. The identity component.

Definition 8.7 (Identity component). If G → Spec(k) is a group algebraic space locally of
finite type over a field, we denote by G0 ⊂ G the identity component of G, i.e. the open sub-
group given by the connected component of the identity. If G→ S is a group algebraic space
locally of finite type over a scheme S, we consider the union of the the identity components
G0
s ⊂ Gs, s ∈ S, of all fibers; when this is an open subset G0 ⊂ G, then it is a subgroup called

the identity component of G→ S, and we say “the identity component exists” to signify this
situation.

Remark 8.8. When it exists, the formation of the identity component commutes with base
change [Kle05, Lemma 5.1].

Definition 8.9 (Identity component of the stack of autoequivalences). If C is a connected
S-linear category, then Proposition 8.2 shows there is a Gm-gerbe Aut(C/S)→ Aut(C/S) of
the stack of autoequivalences over the space of autoequivalences. If the identity component
of Aut(C/S)→ S exists, then we denote it by Aut0(C/S), and define the identity component
Aut0(C/S) of Aut(C/S) as the subgroup given by the fiber product diagram

Aut0(C/S) //

��

Aut(C/S)

��

Aut0(C/S) // Aut(C/S),

where the horizontal arrows are open immersions and the vertical arrows are Gm-gerbes.
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Lemma 8.10. Let C be a connected, smooth, and proper S-linear category over a locally
noetherian Q-scheme S. Assume that the function s 7→ dimκ(s)HH

1(Cs/κ(s)) is constant on
S, say equal to d ∈ Z.

(1) The identity component Aut0(C/S) of Aut(C/S)→ S exists, and is of finite type and
relative dimension d over S.

(2) If S is reduced, then Aut0(C/S) (and hence also Aut0(C/S)) is smooth over S.

Proof. (1) By construction, the fiber of Aut(C/S) over s ∈ S is Aut(Cs/κ(s)). This is a group
algebraic space locally of finite presentation over the field κ(s), which has characteristic 0 by
assumption. Therefore Aut(Cs/κ(s)) is smooth over κ(s) (see [Sta24, Tag 047N]). Combining
Corollary 8.5, Lemma 7.7, and the fact that Aut(Cs/κ(s))→ Aut(Cs/κ(s)) is a Gm-gerbe, we
find that the tangent space to Aut(Cs/κ(s)) at the identity is isomorphic to HH1(Cs/κ(s)),
whose dimension is independent of s ∈ S. In particular, we have shown that the Aut0(Cs/κ(s))
are all smooth of the same dimension d. Now applying [Gro66, 15.6.3 and 15.6.4]8, we find that
the union Aut0(C/S) of the Aut0(Cs/κ(s)) is open in Aut(C/S), and the structure morphism
Aut0(C/S)→ S is universally open. That Aut0(C/S)→ S is of finite type follows by the same
argument as in [Kle05, Proposition 5.20] for Picard schemes. Finally, if S is reduced, then
Aut0(C/S)→ S is flat by [Gro66, 15.6.7], and hence smooth by [Gro67, 17.5.1]. �

The hypotheses of Lemma 8.10 are automatic in the CY setting:

Lemma 8.11. Let C be a CYn category over a locally noetherian Q-scheme S. Then the func-
tion s 7→ dimκ(s)HH

1(Cs/κ(s)) is locally constant on S. In particular, the identity component

Aut0(C/S) exists and is of finite type over S, and if S is reduced it (as well as Aut0(C/S)) is
smooth over S.

Proof. By Theorem 5.5(1) and Corollary 6.7(1), we have HH1(Cs/κ(s)) ≃ HHn−1(Cs/κ(s))
∨.

But by Theorem 5.5 the vector spaces HHn−1(Cs/κ(s)) are the fibers of the finite locally free
sheaf HHn−1(C/S), and hence their dimensions are locally constant. �

When it exists, the identity component of a linear category must preserve all semiorthogonal
decompositions:

Lemma 8.12. Let C be a connected, smooth, and proper S-linear category over a scheme
S such that Aut0(C/S) → S exists. Let C = 〈C1, . . . ,Cn〉 be an S-linear semiorthogonal
decomposition. Then restriction to any subcategory Ci ⊂ C determines a homomorphism

Aut0(C/S)→ Aut0(Ci/S).

Proof. For a scheme T over S, a T -point of Aut0(C/S) corresponds to a T -linear autoequiv-
alence Φ of CT such that for every t ∈ T the autoequivalence Φt of the fiber Ct is contained
in Aut0(Ct). We must show that for any i, Φ restricts to a T -linear autoequivalence of (Ci)T
(as it then follows that the restriction is indeed a T -point of Aut0(Ci)). By renaming, we may
assume T = S. The claim is equivalent to the vanishing of the composite functor prj ◦Φ ◦ pri
for all j 6= i, where prk : C → Ck is the projection functor of the semiorthogonal decomposi-
tion. In general, the vanishing of an S-linear functor Ψ: C→ C may be checked on geometric
fibers. Indeed, for any object C ∈ C and geometric point s of S, by base change we have

HomS(Ψ(C),Ψ(C))s ≃ Homκ(s)(Ψs(Cs),Ψs(Cs));

8Technically, here and below the results invoked from [Gro66] are stated for schemes, but they are also valid
for algebraic spaces, cf. [Rom11].

https://stacks.math.columbia.edu/tag/047N
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if Ψs vanishes for every s, then so must the complex HomS(Ψ(C),Ψ(C)) ∈ Dperf(S) as its
fibers do, which implies Ψ vanishes. Therefore, the claim that Φ restricts to an S-linear
autoequivalence of Ci reduces to the case where S = Spec(k) is the spectrum of an algebraically
closed field, in which case it follows from Lemma 8.13 below. �

Lemma 8.13. Let C be a connected, smooth, and proper k-linear category over an algebraically
closed field k. Let D ⊂ C be k-linear semiorthogonal component. Let T be a connected scheme
of finite type over k. Let Φ ∈ AutT (CT ) be a T -linear autoequivalence. Assume there exists a
point 0 ∈ T (k) such that Φ0(D) = D. Then Φt(D) = D for all t ∈ T (k).
Proof. The proof is essentially the same as that of [KO18, Theorem 3.9], but we include the
argument for convenience.

First we claim that for any k-linear semiorthogonal component D′ ⊂ C, the set

U(D′) =
{
t ∈ T (k) | Φt(D) = D

′ }

is open in T (k). It suffices to show that the locus of t ∈ T (k) with Φt(D) ⊂ D′ is open,
since then by replacing D with D′ and Φ with Φ−1 we also find that the locus of t ∈ T (k)
with Φ−1

t (D′) ⊂ D is open. Let E′ = ⊥D′ be the left orthogonal of D′, so that there is a
semiorthogonal decomposition C = 〈D′,E′〉. Then we must show that the locus of t ∈ T (k) such
that Homk(E

′,Φt(D)) = 0 for all E′ ∈ E′,D ∈ D is open. It follows from [AG14, Lemma 3.9]
(see also [Toë12, Lemma 2.6]) that C admits a generator, and hence (by projection) so does
any semiorthogonal component. The vanishing Homk(E

′,Φt(D)) = 0 for all E′ ∈ E′,D ∈ D

is equivalent to the vanishing when E′ ∈ E′ and D ∈ D are chosen generators. Let E′
T ∈ CT

and DT ∈ CT be the pullbacks of E′ and D along T → Spec(k). Then by base change, the
fiber of the complex

HomT (E
′
T ,Φ(DT )) ∈ Dperf(T )

over t ∈ T (k) is Homk(E
′,Φt(D)), and hence its vanishing is an open condition on t. This

completes the proof that U(D′) ⊂ T (k) is open.
Now let Λ denote the set of semiorthogonal components of C obtained as images of Φt for

t ∈ T (k), i.e. Λ = {Φt(D) | t ∈ T (k) }. Then T (k) = ∐
D′∈Λ U(D′) is a disjoint union of open

sets. By connectedness of T we deduce that T (k) = U(D). �

Lemma 8.14. Let f : X → S be a smooth proper morphism of constant relative dimension
n with geometrically connected fibers and ωf = f∗L for a line bundle L on S, where S
is a reduced locally noetherian Q-scheme. Let α ∈ BrAz(X). Then the identity component
Aut0(Dperf(X,α)/S) exists and is smooth and proper over S.

Proof. The category Dperf(X,α) is CYn over S by Lemma 6.4. Hence Aut0(Dperf(X,α)/S)
exists and is smooth and of finite type over S by Lemma 8.11. To show properness, we first
prove two related group spaces are proper.

Choose a µn-gerbe π : X → X of class α. Consider the automorphism and Picard stacks of
X over S, denotedAut(X/S) and Pic(X/S), which are gerbes over algebraic spaces Aut(X/S)
and Pic(X/S). Arguing as in Lemma 8.11 shows that the identity components Aut0(X/S)
and Pic0(X/S) exist and are of finite type, smooth, and of constant relative dimension over
S. We claim that both are also proper over S. For Pic0(X/S), this holds for instance because
the pullback map Pic0(X/S) → Pic0(X/S) is an isomorphism. For Aut0(X/S), we instead
have a natural morphism Aut0(X/S)→ Aut0(X/S). In order to show that Aut0(X/S)→ S is
proper, by [Gro66, 15.7.11] we may pass to geometric fibers and assume that S = Spec(k) for
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an algebraically closed field k. On Lie algebras, the homomorphism Aut0(X/k)→ Aut0(X/k)
induces the map H0(TX/k) → H0(TX/k), which is an isomorphism since TX/k → π∗TX/k
is. It follows that Aut0(X/k) → Aut0(X/k) is étale with kernel a finite group scheme H
over k; in fact, since Aut0(X/k) is connected, the homomorphism Aut0(X/k) → Aut0(X/k)
must be surjective, and is identified with the quotient by H. In particular, the morphism
Aut0(X/k) → Aut0(X/k) is proper, so we reduce to showing that Aut0(X/k) is proper over
k. For this, it suffices to show that that Aut0(X/k) does not contain a copy of G = Ga or
G = Gm. If so, then X would be birational to a product G× Y by [Ros56, Theorem 10], but
X cannot be ruled since ωX ∼= OX .

The actions of Aut0(X/S) and Pic0(X/S) on Dperf(X ) give rise to a homomorphism

Aut0(X/S)×S Pic0(X/S)→ Aut0(Dperf(X )/S).
By Lemma 4.4 the category Dperf(X,α) is an S-linear semiorthogonal component of Dperf(X ),
so by Lemma 8.12 there is an induced homomorphism

Aut0(Dperf(X )/S)→ Aut0(Dperf(X,α)/S).

Consider the composition

ρ : Aut0(X/S) ×S Pic0(X/S)→ Aut0(Dperf(X,α)/S)

of the above homomorphisms. By the previous paragraph the source of ρ is proper over S, so
by [Sta24, Tag 08AJ] to show that Aut0(Dperf(X,α)/S) is proper over S it suffices to show
ρ is surjective, for which we may reduce to the case where S = Spec(k) for an algebraically
closed field k. On Lie algebras, this induces a map

H0(TX/k)⊕H1(OX )→ HH1(Dperf(X,α)/k).

Under the isomorphisms H0(TX/k) ∼= H0(TX/k) and H1(OX ) ∼= H1(OX) and the HKR isomor-

phism HH1(Dperf(X)/k) ∼= H0(TX/k) ⊕ H1(OX), the map on Lie algebras is identified with

the isomorphism HH1(Dperf(X)/k) ∼= HH1(Dperf(X,α)/k) from Lemma 5.17. It follows that
ρ is étale, and hence surjective as the target is a connected group. �

Remark 8.15. It seems plausible that in the setting of Lemma 8.11, Aut0(C/S) is necessarily
proper over S. Lemma 8.14 gives the (Brauer twisted) geometric case of this statement.

9. Moduli of objects modulo autoequivalences

Fix a perfect scheme S and a smooth proper S-linear category C. So far in §7-§8 we have
constructed various incarnations of the moduli space of objects in C, as well as corresponding
group spaces that act on them. Our interest now is in their quotient spaces. In particular, in
Proposition 9.4 we describe under certain hypotheses the cotangent complex of the derived
version of the quotient; this forms a key ingredient in our theory of reduced DT invariants
developed in Part IV.

9.1. Generalities on quotients. Let X ∈ dStk/S be a derived stack over S and G ∈ dStk/S
a group derived stack over S that acts on X. The action defines a simplicial diagram

· · ·
//
//
//
//
X×S G×S G

//
//
// X×S G

//
// X

in dStk/S, whose colimit X/G is by definition the quotient derived stack of X by G. Note
that dStk/S admits all colimits (and limits), so this definition makes sense. Similarly, for

https://stacks.math.columbia.edu/tag/08AJ
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X ∈ Stk/S a higher stack acted on by a group higher stack G ∈ Stk/S, we may form the
quotient higher stack X/G.
Remark 9.1. Suppose as above that X is a derived stack acted on by a group derived stack G.
Let X = Xcl and G = Gcl be the classical truncations. Then G is a group higher stack and we
have (X/G)cl ≃ X/G. Indeed, this follows from the commutation of classical truncation with
colimits and limits (Remark 3.1).

Conversely, let X be a higher stack acted on by a group higher stack G, and let X = ι(X )
and G = ι(G) be their derived extensions. Then G does not automatically inherit the struc-
ture of a group derived stack which acts on X, because in general derived extension does not
preserve fiber products. However, if G → S is flat, then G is naturally a group higher stack
which acts on X and ι(X/G) ≃ X/G; indeed, this follows from the fact that derived extension
preserves pullbacks along flat morphisms of higher algebraic stacks and commutes with col-
imits (Remark 3.1). Thus, in this situation there is no harm in our usual abuse of notation
by which we omit ι when thinking of a higher stack as a derived stack.

Lemma 9.2. Let G be a group derived algebraic stack over S whose structure morphism
G → S is flat and locally of finite presentation. Let X be a derived algebraic stack on which
G acts. Then the quotient X/G is a derived algebraic stack over S. Similarly, if G is a group
higher algebraic stack over S, flat and locally of finite presentation over S, which acts on a
higher algebraic stack X , then the quotient X/G is a higher algebraic stack over S.

Proof. Consider the cartesian diagram

X×S G
a

//

pr
X

��

X

q

��

X
q

// X/G

(9.1)

where q : X → X/G is the quotient morphism, a : X ×S G → X is the action morphism, and
prX : X×SG→ X is the projection. The morphism pr: X×SG→ X is flat and locally of finite
presentation, being a base change of G→ S, and thus q : X→ X/G is a flat and locally of finite
presentation surjection. It follows by a result of Toën [Toë11] that X/G is a derived algebraic
stack. (The use of [Toë11] can be avoided at the expense of assuming instead that G→ S is
smooth.) This proves the first claim of the lemma, and the second follows similarly. �

Lemma 9.3. Let G be a group derived algebraic stack over S whose structure morphism
G → S is flat and locally of finite presentation. Let X be a derived algebraic stack on which
G acts. Then the relative cotangent complex of X→ X/G is given by

LX/(X/G) ≃ e∗LG/S ⊗OX

where e : S → G is the identity section and the right-hand side denotes the pullback of e∗LG/S

along the structure morphism X→ S.

Proof. First note that by Lemma 9.2, the quotient X/G is indeed a derived algebraic stack.
Considering the diagram (9.1), base change for the cotangent complex gives

a∗LX/(X/G) ≃ LX×SG/X ≃ pr∗GLG/S

where prG : X×S G→ G is the projection. If b = (idX, e ◦π) : X→ X×S G where π : G→ S is
the structure morphism, then a ◦ b = idX and hence pulling back the above equivalence along
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b gives

LX/(X/G) ≃ b∗pr∗GLG/S .

Now the result follows from Lemma 8.4. �

9.2. Quotient of the moduli space of objects. Now we can describe the cotangent com-
plex of a quotient of a moduli stack of objects in C.

Proposition 9.4. Let G be a group higher algebraic stack over S which is an open subgroup
of Aut(C/S), and assume that G → S is smooth. Let M→M(C/S) be a Zariski open which
is preserved by the action of G. Let M→M(C/S) be the corresponding Zariski open.

(1) The derived algebraic stack M inherits a G-action such that the canonical derived
enhancement morphism i :M→M is G-equivariant. The quotient M/G is a derived
enhancement ofM/G, with the derived enhancement morphismM/G →M/G induced
by i upon passing to quotients.

(2) Let E ∈ CM be the universal object. Consider the morphism

β : (HomM(E , E)[1])∨ (aE [1])
∨

−−−−−→ (HH∗(CM/M)[1])∨ −→ τ≥0((HH∗(C/S)[1])∨)⊗OM (9.2)

in Dqc(M), where (aE [1])∨ is the dual of the shift of the canonical morphism (6.1) and
the last morphism is the pullback to M of the truncation map

(HH∗(C/S)[1])∨ → τ≥0((HH∗(C/S)[1])∨). (9.3)

Then if q : M→M/G is the quotient morphism, there is an exact triangle

q∗L(M/G)/S −→ (HomM(E , E)[1])∨ β−→ τ≥0((HH∗(C/S)[1])∨)⊗OM. (9.4)

(3) The exact triangle (9.4) descends to an exact triangle

L(M/G)/S −→ (HomM(E , E)[1])∨ β−→ τ≥0((HH∗(C/S)[1])∨)⊗OM. (9.5)

in Dqc(M/G), where by abuse of notation we denote the second and third term by the
same symbol as their pullbacks to M.

Proof. (1) Because G → S is smooth, as noted in Remark 9.1 its derived extension ι(G) is a
group derived algebraic stack, and as usual we may safely conflate G and ι(G). Note that G
acts on M(C/S) via the homomorphism G → Aut(C/S)→ Aut(C/S). By the correspondence
between Zariski opens inM(C/S) andM(C/S), it follows that G acts onM such thatM→M

is G-equivariant. That M/G is a derived enhancement ofM/G follows from Remark 9.1.
(2) Consider the exact triangle

q∗L(M/G)/S → LM/S → LM/(M/G)

associated to the morphism q : M→M/G. By Theorem 7.5, we have an identification

LM/S ≃ (HomM(E , E)[1])∨.

By Lemmas 9.3 and 8.6, we have an identification

LM/(M/G) ≃ τ≥0((HH∗(C/S)[1])∨)⊗OM.
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Now we explain why, under these identifications, the map γ : LM/S → LM/(M/G) is given by
β. Let G be the open subgroup of Aut(C/S) corresponding to G, so that G acts on M, and
consider the commutative diagram

M×S G

a′

%%❑
❑❑

❑❑
❑❑

❑❑
❑

M
b

// M×S G a
//

prM
��

i
88qqqqqqqqqq

M

q

��

M
q

// M/G

(9.6)

where b = (idM, e) with e : S → G the identity section, i is the closed embedding induced by
G → G, a and a′ are the corresponding action morphisms, and the square is cartesian. Then
a◦ b = idM, so γ : LM/S → LM/(M/G) is identified with its pullback along a◦ b. Let us consider
its pullback along a. Under the base change isomorphism a∗LM/(M/G) ≃ LM×SG/M, a∗γ is
identified with the composition of the natural maps

a∗LM/S → LM×SG/S → LM×SG/M.

In view of the upper triangle in (9.6), this factors as

a∗LM/S → i∗LM×SG/S → i∗LM×SG/M → LM×SG/M.

Using that LM×SG/M ≃ LG/S ⊗ OM×SG
and LM×SG/M ≃ LG/S ⊗ OM×SG

, and pulling back
along b, we find that γ factors as

LM/S
γ1−−→ LG/S ⊗OM

γ2−−→ LG/S ⊗OM,

where the γ2 is the pullback to M of the morphism LG/S⊗OG → LG/S induced by G → G. By
Corollary 8.5 and (the proof of) Lemma 8.6, γ2 is identified with the pullback toM of the trun-
cation morphism (9.3). Note that by base change for Hochschild cohomology (Lemma 5.16),
the pullback of (HH∗(C/S)[1])∨ to M can be identified with (HH∗(CM/M)[1])∨, the middle
term in the composition (9.2) defining β. Finally, tracing through the above description of γ1
and using the identification LM/S ≃ (HomM(E , E)[1])∨ of Theorem 7.5 shows that γ1 is dual
to the natural morphism HH∗(CM/M)[1]→HomM(E , E)[1].

(3) As shown above, the triangle (9.4) is precisely the exact triangle

q∗L(M/G)/S → LM/S → LM/(M/G)

associated to the morphism q : M → M/G. As the first morphism in this triangle naturally
descends to M/G, so does the second. �

Remark 9.5. Suppose that, in the situation of Proposition 9.4, the Hochschild cohomology
HH∗(C/S) has locally free cohomology sheaves; for instance, by Corollary 6.7 and Theo-
rem 5.5(2), this holds if C is CY and S is a Q-scheme. Then

τ≥0((HH∗(C/S)[1])∨)⊗OM ≃ τ≥0((HH∗(CM/M)[1])∨)).

Moreover, in this case all of the objects appearing in the triangles (9.4) and (9.5) are in fact
perfect, as the second two objects in each triangle are always so by our assumption that C is
smooth and proper over S.
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9.3. Preservation by the identity component. The following observation is useful for
constructing pairs G andM to which Proposition 9.4 applies.

Lemma 9.6. Let C be a connected S-linear category such that Aut0(C/S) exists (see Defi-
nition 8.7). Let M ⊂ Mgl(C/S) be a Zariski open substack which is universally closed over

S. Then the action of the identity component Aut0(C/S) of the stack of autoequivalences on
Mgl(C/S) preserves M.

Remark 9.7. In particular, if Aut0(C/S) → S is smooth (a condition for which we gave
simple criteria in Lemmas 8.10 and 8.11), the hypotheses of Proposition 9.4 are satisfied.

Proof. The question is topological so we may check it on fibers and reduce to the case where
S = Spec(k). Let G = Aut0(C/k) and G = Aut0(C/k). Let E ∈ CM be the universal object,
and let Φ ∈ AutG(CG) be the universal autoequivalence. Let EG×kM ∈ CG×kM be the pullback
of E , let ΦG×kM ∈ AutG×kM(CG×kM) be the base changed autoequivalence, and set

F := ΦG×kM(EG×kM) ∈ CG×kM.

Then F is a family of gluable objects in C parameterized by G ×kM, whose fiber over any
point (g,m) ∈ G ×kM is

F(g,m) = Φg(Em),
where Φg is the fiber of Φ over g (i.e. the autoequivalence of C corresponding to g).

As M ⊂ Mgl(C/S) is an open substack, the locus of points (g,m) ∈ G ×kM such that
F(g,m) ∈ M is open. AsM→ Spec(k) is universally closed, the locus U ⊂ G of points g such
that F(g,m) ∈ M for all m ∈ M is therefore also open. If 1 ∈ G denotes the identity element,
then F(1,m) = Em for all m ∈M, so U is an open neighborhood of 1. Let U ⊂ G be the image

of U under the Gm-gerbe G → G. Replacing U by U ∩ U−1, it follows that for all g ∈ U we
have

Φg(M) =M,

where here we regard Φg as an automorphism ofMgl(C/S). Therefore, the locus of g ∈ G such
that Φg(M) =M is an open subgroup of G, and hence equal to G, as G is connected. �

Any moduli spaceM of semistable objects of fixed class with respect to a reasonable notion
of stability will satisfy the hypotheses of Lemma 9.6. In §10.4 we will spell out the case of
moduli of semistable twisted sheaves, and in §11.3 the case of moduli of semistable objects in
a category.
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Part III. Stability

10. Stability of twisted sheaves

In this section we set up our conventions on slope and Gieseker stability of twisted sheaves,
mostly following [Lie07].

10.1. Chern characters. We will use Vistoli’s theory of rational Chow groups for DM stacks
over a field [Vis89], which we denote by CH∗(−)Q. This theory is formally similar to that of
Chow groups of varieties, and in particular comes equipped with a formalism of Chern classes
for perfect complexes. As the notation suggests, when applied to a variety CH∗(X)Q agrees
with the rationalization of the usual Chow group.

We apply this to a µn-gerbe π : X → X over a variety X representing a class α ∈ Br(X). In
this case, the results of [Vis89] show that the pushforward map π∗ : CH∗(X )Q → CH∗(X)Q
is an isomorphism. As any E ∈ Dperf(X,α) is in particular a perfect complex on X , we may
consider its Chern character ch(E) ∈ CH∗(X )Q; this construction gives a homomorphism

ch : K0(X,α)→ CH∗(X )Q.
Of course, ch0(E) = rk(E) is simply the rank.

Lemma 10.1. If X is a smooth proper variety, then the Chern character descends to a
homomorphism

ch : Knum(X,α)→ CH∗
num(X )Q,

where CH∗
num(X )Q denotes the quotient of CH∗(X )Q by numerical equivalence.

Proof. Given E ∈ Dperf(X,α) be a numerically trivial object, we must show ch(E) ∈ CH∗(X )Q
is numerically trivial. Let f : Y → X be a finite cover killing α as in Lemma 2.4, and consider
the pullback diagram

Y f ′
//

π′

��

X
π
��

Y
f

// X

Since f ′∗ ◦ f ′∗ is multiplication by deg(f) on CH∗(X )Q, it suffices to show that the class
f ′∗ ch(E) = ch(f ′∗E) ∈ CH∗(Y)Q is numerically trivial.

Since f∗(α) = 0, there exists an invertible twisted sheaf L on Y (Lemma 2.7). Then f ′∗E⊗
L∨ ∈ D0

perf(Y) is an untwisted complex on Y, with ch(f ′∗E ⊗ L∨) = ch(f ′∗E). In this way,
we reduce to proving the lemma when α = 0. But in this case it follows from Hirzebruch–
Riemann–Roch that ch : K0(X)→ CH∗(X)Q induces a map Knum(X)→ CH∗

num(X)Q (which
is in fact an isomorphism after tensoring by Q). �

In our later discussion of stability conditions, it will be useful to consider Chern characters
twisted by a real divisor.

Definition 10.2. Let X be a smooth proper variety equipped with a Brauer class α ∈ Br(X),
represented by a µn-gerbe π : X → X, and a real divisor D ∈ Div(X)R. For a twisted perfect
complex E ∈ Dperf(X,α) = D1

perf(X ), the D-twisted Chern character is

chD(E) := e−π
∗(D) ch(E) ∈ CH∗(X )R

where e−π
∗(D) is the formal exponential of −π∗(D) ∈ CH1(X )R.
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By abuse of notation, we will often denote the pullback of a divisor along π : X → X by
the same symbol. With this convention, in low degrees we have

chD0 = ch0 = rk,

chD1 = ch1−D ch0,

chD2 = ch2−D ch1 +
D2

2
ch0,

chD3 = ch3−D ch2 +
D2

2
ch1−

D3

6
ch0 .

Let us also note that by Lemma 10.1, the D-twisted Chern character defines a homomorphism

chD : Knum(X,α)→ CH∗
num(X )R.

Remark 10.3. We have followed Lieblich [Lie07] in our definition of the Chern character for
twisted sheaves. There is another possible definition, going back to Yoshioka [Yos06], which
can be made when α ∈ BrAz(X) is represented by an Azumaya algebra, or equivalently when
there exists a locally free twisted sheaf V on a µn-gerbe π : X → X of class α. Given such a
V , for E ∈ Dperf(X,α) we may define

chV (E) :=
ch(π∗(E ⊗ V ∨))√
ch(π∗(V ⊗ V ∨))

∈ CH∗(X)Q.

In general chV differs from the Chern character ch defined above. For instance, chV depends
on the choice of V , whereas ch is canonically defined. However, for most purposes, including
ours in this paper, one could use chV in place of ch. For instance, both Chern characters lead
to the same notion of slope (semi)stability for twisted sheaves, which satisfy a Bogomolov
inequality, as studied in §10.2 below.

10.2. Slope stability. Slope stability of twisted sheaves is defined analogously to the classical
case.

Definition 10.4. Let X be a smooth projective variety equipped with a class α ∈ Br(X)
represented by a µn-gerbe π : X → X, a real ample divisor ω, and a real divisor D. For a
twisted coherent sheaf E ∈ Coh(X,α) = Coh1(X ), the (ω,D)-slope is

µω,D(E) :=

{
ωdimX−1·chD

1 (E)

ωdimX ·chD0 (E)
if chD0 (E) 6= 0,

+∞ if chD0 (E) = 0,

We say E is µω,D-semistable (or slope semistable if (ω,D) are understood) if for all nontrivial
α-twisted subsheaves F ⊂ E, the inequality µω,D(F ) ≤ µω,D(E) holds, and E is µω,D-stable
if for all F the inequality is strict. When D = 0 we write µω = µω,0.

Remark 10.5. The notion of µω,D-(semi)stability is independent of D. Classically only the
case D = 0 was considered, but the ability to vary D is useful when studying stability
conditions.

Many results for semistable sheaves have analogs in the twisted setting. For instance, the
same arguments as in the untwisted case show the existence of a Harder–Narasimhan (HN)
filtration with respect to µω,D-stability for any E ∈ Coh(X,α). That is, there exists a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E
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such that the factors Ai = Ei/Ei−1 are µω,D-semistable and

µω,D(A1) > µω,D(A2) > · · · > µω,D(Am).

We use the notation µ+ω,D := µω,D(A1) and µ
−
ω,D(E) = µω,D(Am).

Combined with Lemma 2.4, the following lemma sometimes allows one to reduce statements
to the untwisted setting, as we will illustrate in the proof of the twisted Bogomolov inequality
below.

Lemma 10.6. Let f : Y → X be a finite surjective morphism of smooth projective varieties
over a field of characteristic 0. Let α ∈ Br(X) and let H be an ample divisor on X. Let
E ∈ Coh(X,α) be a torsion free twisted sheaf. Then E is µH-semistable if and only if the
pullback f∗E ∈ Coh(Y, f∗α) is µf∗H-semistable.

Proof. This follows by the same argument as in [HL10, Lemma 3.2.2] which treats the un-
twisted version of the assertion. �

10.3. Bogomolov inequality. The Bogomolov inequality plays an important role in the
construction of stability conditions. To state it, we need to introduce the discriminant.

Definition 10.7. Let X be a smooth projective variety with a class α ∈ Br(X) represented
by a µn-gerbe π : X → X. For E ∈ Dperf(E,α) = D1

perf(X ), the discriminant is

∆(E) := ch1(E)2 − 2 ch0(E) ch2(E) ∈ CH2(X )Q.
Remark 10.8. If D is a real divisor on X, then we have

∆(E) = chD1 (E)2 − 2 chD0 (E) chD2 (E),

so allowing a twist by D leads to the same notion of discriminant.

Theorem 10.9 (Twisted Bogomolov inequality). Let X be a smooth projective variety over
a field of characteristic 0, equipped with a Brauer class α ∈ Br(X) and an ample divisor H.
Then for any a torsion free µH-semistable twisted sheaf E ∈ Coh(X,α), we have

HdimX−2∆(E) ≥ 0

Proof. This is a special case of [Lie07, Proposition 3.2.3.13] where the base field is allowed
to be of arbitrary characteristic; in that generality, the inequality is more complicated as it
requires a correction term. In our case, the argument is simple. Indeed, using Lemmas 2.4
and 10.6, by the argument from Lemma 10.1 we may reduce to proving the claim in the
untwisted case, which is nothing but the well-known Bogomolov inequality [HL10, Theorem
3.4.1]. �

10.4. Moduli of semistable twisted sheaves. There is also a version of Gieseker stability
for twisted sheaves. If α ∈ Br(X) is a class represented by a µn-gerbe π : X → X and H is
an ample divisor on X, then for E ∈ Coh(X,α) = Coh1(X ) one defines Gieseker H-stability
analogously to the untwisted case, using the geometric Hilbert polynomial

PH(E, t) := n

∫

X
ch(E ⊗OX (π

∗(tH))) tdX

in place of the Hilbert polynomial of a coherent sheaf. This reduces to usual Gieseker stability
for coherent sheaves when α = 0. We refer to [Lie07] for the details of this theory. Similarly
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to slope stability, one can more generally replace H by a real ample divisor ω and consider a
twist by a real divisor D in Gieseker stability, but we will not need this.

There is a well-behaved moduli space of Gieseker semistable sheaves:

Example 10.10 (Moduli of semistable twisted sheaves). LetX be a smooth projective variety
over a field k, equipped with a Brauer class α ∈ Br(X) and an ample divisor H. Let Knum(X)
denote the numerical K-theory of X, i.e. the quotient of the Grothendieck group K0(X) of
coherent sheaves by the kernel of the Euler pairing. For a class v ∈ Knum(X,α), let MH(v)
denote the moduli stack of Gieseker H-semistable α-twisted coherent sheaves of class v. Then
MH(v) is an open substack of the stackMgl(Dperf(X,α)/k) of gluable objects in Dperf(X,α),
and MH(v) → Spec(k) is finite type and universally closed. This holds by the results of
[Lie07], generalizing well-known results from the case when α = 0 [HL10].

To formulate a relative version of moduli of semistable twisted sheaves, we need to fix a
relative version of the numerical class v. There are various ways to do this. For instance, one
may fix the geometric Hilbert polynomial. Another possibility is to consider classes in the
relative numerical Grothendieck group, or a finite rank abelian group to which it maps, as
in our discussion of stability conditions relative to a base in §11.1 below. For applications to
the noncommutative variational Hodge conjecture or period-index problem, it will be useful
to consider a topological variant where we fix a section of the relative topological K-theory.

Example 10.11 (Relative moduli of semistable twisted sheaves). Let f : X → S be a smooth
proper morphism of complex varieties equipped with a Brauer class α ∈ Br(X) and a relatively

ample divisor H on X over S. Let v be a section of the local system Ktop
0 (Dperf(X,α)/S)).

Note that any object E ∈ Dperf(X,α) gives a section vE of Ktop
0 (Dperf(X,α)/S)) whose fiber

over s ∈ S(C) is the class of Es in Ktop
0 (Dperf(Xs, αs)). We denote by MH(v) the moduli

stack of Gieseker H-semistable α-twisted coherent sheaves of class v. Since v determines the
geometric Hilbert polynomial, it follows again from the results of [Lie07] that MH(v) is an
open substack ofMgl(Dperf(X,α)/S) which is finite type and universally closed over S.

11. Stability conditions

In this section, we discuss stability conditions on categories and their associated moduli
spaces of semistable objects, which provide the main examples to which we will apply the
general theory from §9. We also give a new proof of a variant of a result of Polishchuk [Pol07],
which says stability conditions are invariant under the identity component of the group of
autoequivalences (Proposition 11.6).

11.1. Stability conditions in a family. The notion of a stability condition on a triangulated
category C, due to Bridgeland [Bri07], gives rise to a well-behaved theory of semistable objects
in C. The definition depends on the choice of a homomorphism v : K0(C)→ Λ, called a Mukai
homomorphism, from the Grothendieck group of C to a finite rank free abelian group. A
stability condition σ on C with respect to v then consists of a pair (Z,A) where Z : Λ→ C is
a group homomorphism (the central charge of σ) and A is the heart of a bounded t-structure,
which satisfy certain compatibility conditions. When C is (the homotopy category of) a smooth
proper k-linear category for a field k, then it is often assumed that v factors through the map
K0(C)→ Knum(C) to the numerical Grothendieck group, defined as the quotient by the kernel
of the Euler pairing χ(E,F ) =

∑
i(−1)i dimk Ext

i(E,F ); in this case, σ is called a numerical
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stability condition. We say that σ is a full numerical stability condition when we can take
Λ = Knum(C), i.e. the support property holds with respect to Knum(C).

In [BLM+21] this notion was generalized to the relative setting, where instead of a tri-
angulated category we consider an S-linear category C. For simplicity, we will consider the
case where X → S is a smooth proper morphism of varieties and C ⊂ Dperf(X) is an S-
linear semiorthogonal component. We consider the relative numerical Grothendieck group
Knum(C/S), which is roughly the group obtained from

⊕
s∈S Knum(Cs) by identifying elements

in different summands that are the restriction of a global object E ∈ C; see [BLM+21] for the
precise definition. Then we fix a Mukai homomorphism v : Knum(C/S) → Λ to a finite rank
free abelian group. Note that for any s ∈ S, we obtain a homomorphism vs : Knum(Cs) → Λ
given as the composition of the canonical map Knum(Cs)→ Knum(C/S) with v.

A stability condition on C over S with respect to v : Knum(C/S) → Λ consists of a group
homomorphism Z : Λ→ C and a collection σ = (σs = (Zs,As))s∈S of numerical stability con-
ditions on the fibers Cs satisfying various compatibility and tameness conditions; in particular,
we require that Zs = Z ◦ vs. For the precise definition we refer to [BLM+21, Definitions 20.5
and 20.15].

Warning 11.1. In the case where S = Spec(k) for a field k, we can consider a stability
condition on C in the sense introduced by Bridgeland, or a stability condition on C over k
in the sense of [BLM+21]. These notions are not a priori equivalent. A stability condition on
C over k is a stability condition in Bridgeland’s sense satisfying some additional properties,
most importantly the existence of proper moduli spaces of semistable objects. However, the
results of [BLM+21] show that all known constructions of stability conditions in Bridgeland’s
sense actually give stability conditions over k.

11.2. Topological Mukai homomorphisms. Over the complex numbers, it will be useful to
consider stability conditions over S with respect to Mukai homomorphisms that are topological
in the following sense. Recall from Theorem 5.20 that we have a local system Ktop

0 (C/S) on

S whose fibers are Ktop
0 (Cs) for s ∈ S(C).

Definition 11.2. Let C ⊂ Dperf(X) be an S-linear semiorthogonal component, where X → S
is a smooth proper morphism of complex varieties. A Mukai homomorphism v : Knum(C/S)→
Λ is called topological if there is given an abelian group Λtop with an inclusion Λ ⊂ Λtop and
a morphism vtop : Ktop

0 (C/S)→ Λtop of local systems, where Λtop is the constant local system
with value Λtop, such that for every s ∈ S(C) the diagram

K0(Cs) Knum(Cs) Λ

Ktop
0 (Cs) Λtop

vs

v
top
s

commutes, where the maps out of K0(Cs) are the canonical ones and vtop
s is the fiber of vtop

over s.

Example 11.3. Let f : X → S be a smooth, projective morphism, where S is a quasi-
projective complex variety, and let π : X → X be a µn-gerbe whose restriction to the fibers
of f is essentially topologically trivial. Let ω and D be real divisors on X, with ω relatively
ample over S.
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For each s ∈ S, there is a commutative diagram

K0(Dperf(Xs)) Knum(Dperf(Xs)) CH∗(Xs)Q CH∗(Xs)Q

Ktop
0 (Dperf(Xs)) Hev(Xs,Q) Hev(Xs,Q).

∼
π∗

∼
π∗

Consider the two homomorphisms (given by the same formula)

chω,D : Knum(Dperf(Xs))→ Rn+1

chω,D,top : Ktop
0 (Dperf(Xs))→ Rn+1

E 7→ (ωn chD0 (E), . . . , ωn−i chDi (E), . . . , chDn (E)),

where we have used the Chern character for a Deligne–Mumford stack as in §10.1. Both
homomorphisms are induced (via the above diagram) by the map

Hev(Xs,Q)→ Rn+1, x 7→
n∏

k=0

∫

X
exp(D) · x · ωk, (11.1)

which (as s varies) assembles to a morphism of local systems

Revf∗Q→ Rn+1. (11.2)

We write Λtop
ω,D for the image of Ktop

0 (Xs) in Rn+1 under chω,D,top, which does not depend on
the point s.

Ranging over s, the maps chω,D form a homomorphism Knum(Dperf(X )/S)→ Qn+1, whose
image we denote by Λω,D, so that we have a Mukai homomorphism

chω,DX/S : Knum(Dperf(X )/S)→ Λω,D.

On the other hand, the results of [Hot22] show that there is a relative Chern character

chtopX/S : Ktop
0 (Dperf(X )/S)→ Revf∗Q,

defined as the relative θk-twisted Chern character on each summand Dperf(X,α
k) of Dperf(X ).

The composition of chtopX/S with (11.2) gives a homomorphism chω,D,topX/S landing in the con-

stant local system Λtop
ω,D, which at each fiber Xs fits into a commutative diagram

K0(Dperf(Xs)) Knum(Dperf(Xs)) Λω,D

Ktop
0 (Dperf(Xs)) Λtop

ω,D.

chω,D
X/S

chω,D,top
X/S

In particular, the Mukai homomorphism chω,DX/S is topological.

Finally, when ω = D = H, to simplify notation we write chH for chω,D.
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11.3. Moduli of semistable objects. For a stability condition over a field, we have the
following analog of Example 10.10.

Example 11.4 (Moduli of semistable objects). Let C ⊂ Dperf(X) be k-linear semiorthogonal
component whereX is a smooth proper k-scheme. Let σ be a numerical stability condition on C

over k in the sense of [BLM+21], with respect to a Mukai homomorphism v : Knum(C)→ Λ to a
finite rank abelian group. Fix v ∈ Λ and a compatible phase φ ∈ R, i.e. Z(v) ∈ R>0e

iπφ where
Z is the central charge of σ. Let Mσ(v, φ) denote the moduli stack of σ-semistable objects
in C of class v and phase φ. Then Mσ(v, φ) ⊂ Mgl(C/k) is an open substack by [BLM+21,
Lemma 21.12], andMσ(v, φ) is universally closed over k by (the proof of) [BLM+21, Theorem
21.24].

Similar to Example 10.11, we can also consider a relative variant of Example 11.4.

Example 11.5 (Relative moduli of semistable objects). Let C ⊂ Dperf(X) be an S-linear
semiorthogonal component where f : X → S a smooth proper morphism of complex varieties.
Let v ∈ Γ(S,Ktop

0 (C/S)) be a section. Suppose C is equipped with a stability condition σ over
a connected base S with respect to a topological Mukai homomorphism v : Knum(C/S) → Λ
in the sense of Definition 11.2. Let λ ∈ Λtop be the image of v under the map on global
sections Γ(vtop) : Γ(Ktop

0 (C/S))→ Λtop.
Then, on the one hand, we can consider the moduli stackMσ(λ, φ) of σ-semistable objects

in C of class λ and phase φ, where φ is a phase compatible with λ (we will also say φ is
compatible with v in this case); this is an open substack of Mgl(C/S) [BLM+21, Lemma
21.12] which is finite type and universally closed over S [BLM+21, Theorem 21.24]. Note that
by definitionMσ(λ, φ) is empty if λ /∈ Λ. On the other hand, we may consider a topological
variant: the moduli stackMσ(v, φ) of σ-semistable objects in C of class v and phase φ. This
is a connected component ofMσ(λ, φ), and hence also open inMgl(C/S) and finite type and
universally closed over S.

Often one requires the fibers vs ∈ Ktop
0 (Cs) of v to be Hodge classes for all s ∈ S(C), as

otherwise the above moduli spaces are empty.

11.4. Action of the identity component on stability conditions. We digress to explain
an interesting consequence of Lemma 9.6 for the action of the identity component of the group
of autoequivalences on stability conditions.

Let C and σ be as in Example 11.4. The group of pairs

AutΛ(C/k)(k) :=
{
(g, a) ∈ Aut(C/k)(k) ×Aut(Λ) | v ◦ ΦKnum

g = a ◦ v
}

acts on the space StabΛ(C/k) of all σ, where ΦKnum
g denotes the automorphism of Knum(C)

induced by the autoequivalence Φg ∈ Autk(C) corresponding to g. Namely, if σ = (P, Z), i.e.
P is the slicing and Z the central charge for σ, then

(g, a) · σ := (Φg(P), Z ◦ a−1)

where Φg(P) is the slicing Φg(P(φ)), φ ∈ R. Let Aut0Λ(C/k)(k) ⊂ AutΛ(C/k)(k) be the
subgroup where g ∈ Aut0(C/k)(k).

Proposition 11.6. Let C ⊂ Dperf(X) be a semiorthogonal component where X is a smooth
proper scheme over an algebraically closed field k, and assume that C is a connected as a k-
linear category. Let σ be a numerical stability condition on C over k with respect to a surjective
homomorphism v : Knum(C) → Λ. Then Aut0Λ(C/k)(k) acts trivially on StabΛ(C/k), i.e. for
every (g, a) ∈ Aut0Λ(C/k)(k) and σ ∈ StabΛ(C/k) we have (g, a) · σ = σ.
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Proof. For a scheme T over k, an autoequivalence Φ ∈ AutT (CT ) over T , and objects E,F ∈ C,
consider the function t 7→ χ(Ft,Φt(Et)) on T , where a subscript t denotes base change to
the residue field κ(t). This function is locally constant, as it computes the rank of the ob-
ject HomT (Φ(ET ), FT ). It follows that any g ∈ Aut0Λ(C/k)(k) acts trivially on Knum(C). As
v : Knum(C) → Λ is surjective, we then have Aut0Λ(C/k)(k) = Aut0(C/k)(k). Therefore, if
σ = (P, Z), we just need to show that Φg(P(φ)) = P(φ) for g ∈ Aut0(C/k)(k). But the ob-
jects of P(φ) are precisely the σ-semistable objects of phase φ, so we conclude by Lemma 9.6
and Example 11.4. �

Remark 11.7. Polishchuk proved a variant of Proposition 11.6 in [Pol07, Theorem 3.5.1
and Corollary 3.5.2], where C = Dperf(X) and the heart of the t-structure for σ is assumed
noetherian, but σ is only required to be a stability condition in the sense of Bridgeland (as
opposed to “over k” in the sense of [BLM+21]).

12. Construction of stability conditions

In general, it is a difficult problem to construct a stability condition on a given category.
For a smooth projective complex variety X, stability conditions conjecturally always exist
on Dperf(X). This is currently only known in general when dimX ≤ 2 [Bri08, AB15]. When
dimX = 3, a construction is known for special classes of varieties, like Fano threefolds [Li19b,
BMSZ17], abelian threefolds [MP15, MP16, BMS16], and quintic threefolds [Li19a], while in
higher dimensions much less is known. The strategy for proving these results was laid out in
[BMT14], which via a tilting construction reduced the problem to establishing a generalized
Bogomolov–Gieseker inequality for certain complexes. Our goal is to explain how these results
extend to the twisted setting. In most cases, the twisted result follows from the same proof
as in the untwisted case, or can be deduced from the untwisted case by a covering argument.

12.1. Central charge. Let X be a smooth projective variety equipped with a Brauer class
α ∈ Br(X). Let ω,D be real divisors on X with ω ample. We define a central charge
Zω,D : K0(X,α) → C by

Zω,D(E) = −
∫

X
e−iω · chD(E).

Explicitly, in low dimensions we have:

Zω,D = − chD1 +iω chD0 if dimX = 1,

Zω,D =

(
− chD2 +

ω2

2
chD0

)
+ iω chD1 if dimX = 2,

Zω,D =

(
− chD3 +

ω2

2
chD1

)
+ i

(
ω chD2 −

ω3

6
chD0

)
if dimX = 3.

Note that Zω,D factors via the Mukai homomorphism

chω,D : Knum(X,α) → Λω,D

from Example 11.3 (with S a point).
The following is a precise statement of the conjectural existence of stability conditions,

extending [BMT14, Conjecture 2.1.2] to the twisted case.

Conjecture 12.1. There exists a bounded t-structure on Dperf(X,α) with heart Aω,D such
that the pair (Zω,D,Aω,D) is a full numerical stability condition.
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When dimX = 1 the standard heart Aω,D = Coh(X,α) works, but in higher dimensions
the proposal is to take an (dimX − 1)-fold tilt of the category Coh(X,α).

12.2. The first tilt. We consider µω,D-stability for objects in Coh(X,α), as reviewed in
§10.2. There is a torsion pair (Tω,D,Fω,D) in Coh(X,α) defined by

Tω,D :=
{
E ∈ Coh(X,α) | µ−ω,D(E) > 0

}
,

Fω,D :=
{
E ∈ Coh(X,α) | µ+ω,D(E) ≤ 0

}
.

Since Coh(X,α) is the heart of the standard bounded t-structure on Dperf(X,α) = Db(X,α),
tilting at the above torsion pair produces a new bounded t-structure on Dperf(X,α), with
heart the extension closure

Cohω,D(X,α) := 〈Tω,D,Fω,D[1]〉.
This t-structure gives a solution to Conjecture 12.1 when dimX = 2 and the base field has
characteristic 0:

Theorem 12.2. Let X be a smooth projective surface defined over a field of characteristic 0,
equipped with a Brauer class α ∈ Br(X), a real ample divisor ω, and a real divisor D. Then

the pair (Zω,D,Coh
ω,D(X,α)) is a full numerical stability condition.

Proof. When α = 0, this result goes back to [Bri08] in the case of K3 surfaces and [AB15] in
general; see also [MS17, §6] for an exposition. The key input in the proof is the Bogomolov
inequality for semistable sheaves. When α ∈ Br(X) is arbitrary, it is straightforward to check
that the same proof works, using instead the twisted Bogomolov inequality of Theorem 10.9.

�

12.3. Tilt stability on threefolds. Now we focus on the case of threefolds. To construct a
tilt of Cohω,D(X,α), we will need a notion of stability which plays the role of slope stability
in the construction of the first tilt.

Definition 12.3. Let X be a smooth projective threefold equipped with a Brauer class
α ∈ Br(X), a real ample divisor ω, and a real divisor D. For E ∈ Cohω,D(X,α), the tilt slope
is

νω,D(E) :=




ω chD

2 (E)−ω3

6
chD

0 (E)

ω2 chD1 (E)
if ω2 chD1 (E) 6= 0,

+∞ if ω2 chD1 (E) = 0.

We say E is νω,D-semistable (or tilt semistable if (ω,D) are understood) if for all nontrivial

subobjects F →֒ E in Cohω,D(X,α), the inequality νω,D(F ) ≤ νω,D(E/F ) holds, and E is
νω,D-stable if for all F the inequality is strict.

By the argument of [BMT14, Lemma 3.2.4] (which treats the untwisted case), Harder–
Narasimhan filtrations exist with respect to νω,D-stability when D is rational. That is, for any
E ∈ Coh(X,α) there exists a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

such that the factors Ai = Ei/Ei−1 are νω,D-semistable and

νω,D(A1) > νω,D(A2) > · · · > νω,D(Am).

We use the notation ν+ω,D := νω,D(A1) and ν
−
ω,D(E) = νω,D(Am).
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Tilt stability behaves well under finite covers. This is analogous to Lemma 10.6 for slope
stability, except that we require the finite cover to be étale for one of the implications.

Lemma 12.4. Let X be a smooth projective threefold equipped with a Brauer class α ∈ Br(X),
a real ample divisor ω, and a real divisor D. Let f : Y → X be a finite surjective morphism
from a smooth variety Y . Let E ∈ Dperf(X,α).

(1) E ∈ Cohω,D(X,α) if and only if f∗E ∈ Cohf
∗ω,f∗D(Y, f∗α).

(2) If f∗E is νf∗ω,f∗D-semistable, then E is νω,D-semistable.

(3) If D is rational, f is étale, and E ∈ Cohω,D(X,α) is νω,D-semistable, then f∗E is
νf∗ω,f∗D-semistable.

Proof. This is essentially a twisted version of [BMS16, Proposition 6.1]; the proof is similar
but we include it for convenience.

By definition, for E ∈ Dperf(X,α) we have E ∈ Cohω,D(X,α) if and only if H0(E) ∈ Tω,D,
H−1(E) ∈ Fω,D, and Hi(E) = 0 for i /∈ { 0, 1 }, and there is an analogous criterion for

f∗E ∈ Cohf
∗ω,f∗D(Y, f∗α). Therefore, to prove (1) it suffices to show that for E ∈ Coh(X,α),

we have

E ∈ Tω,D ⇐⇒ f∗E ∈ Tf∗ω,f∗D
E ∈ Fω,D ⇐⇒ f∗E ∈ Ff∗ω,f∗D.

But µf∗ω,f∗D(f
∗E) = µω,D(E) for any E ∈ Coh(X,α) and Lemma 10.6 implies that f∗

preserves HN filtrations of objects in Coh(X,α), so both claims follow.
Similar to the usual slope, for E ∈ Cohω,D(X,α) the tilted slope satisfies

νf∗ω,f∗D(f
∗E) = νω,D(E). (12.1)

Since by (1) the pullback functor f∗ : Dperf(X,α)→ Dperf(X,α) is t-exact with respect to the
tilt t-structures, any destabilizing subobject of E must therefore destabilize f∗E; that is, E
is tilt semistable if f∗E is tilt semistable. This proves (2).

Now assume f is étale. By taking a finite étale Galois cover ofX which dominates f : Y → X
and using (2), we may reduce to proving (3) when f itself is Galois, say with Galois group G.
In this case, if E ∈ Cohω,D(X,α), then let F →֒ f∗E be the first step of the HN filtration with
respect to νf∗ω,f∗D. As f

∗E is G-equivariant and HN filtrations are unique and functorial,
the morphism F → f∗E is G-equivariant (for a natural G-equivariant structure on F ), and
thus descends to a morphism F ′ → E in Dperf(X,α). It follows from (1) that F ′ → E is an

injection in Cohω,D(X,α), which must destabilize E in view of (12.1). �

12.4. The generalized Bogomolov–Gieseker inequality. In the construction of stability
conditions on threefolds, the role of the Bogomolov inequality for sheaves is replaced by the
following inequality involving ch3.

Definition 12.5. Let X be a smooth projective threefold equipped with a Brauer class
α ∈ Br(X), a real ample divisor ω, and a real divisor D. Let E ∈ Cohω,D(X,α) be a νω,D-
semistable object with νω,D(E) = 0. We say E satisfies the generalized Bogomolov–Gieseker
inequality if

chD3 (E) ≤ ω2

18
chD1 (E).

If this holds for all such E, we say (X,α) satisfies the generalized Bogomolov–Gieseker in-
equality with respect to ω and D.
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For α = 0, the above inequality first appeared in [BMT14, Conjecture 1.3.1], where it was
conjectured to hold in general in characteristic 0. There are a number of threefolds, like abelian
threefolds [BMS16] or Fano threefolds of Picard number 1 [Li19b], for which the inequality
has been proved, but in [Sch17] an example was given where it fails. A more flexible modified
conjecture, which is expected to always hold, is stated in [BM23, Conjecture 4.7] and would
have similar consequences for the existence of stability conditions. We focus on the original
form of the generalized Bogomolov–Gieseker inequality as it suffices for our case of interest:

Theorem 12.6. Let X be an abelian threefold over a field of characteristic 0 equipped with
a Brauer class α ∈ Br(X). Then for any real ample divisor ω and rational divisor D on X,
(X,α) satisfies the generalized Bogomolov–Gieseker inequality with respect to ω and D.

Proof. The crucial result is [BMS16, Theorem 1.1], which handles the untwisted case, to which
we will reduce. If n = per(α) then the multiplication-by-n map [n] : A→ A is an étale cover of

degree n6 such that [n]∗α = 0. If E ∈ Cohω,D(X,α) is νω,D-semistable, then by Lemma 12.4(3)

the object [n]∗E ∈ Cohω,D(X) is νn2ω,n2D-semistable. By [BMS16, Theorem 1.1] we conclude
that [n]∗E satisfies the generalized Bogomolov–Gieseker inequality. But this is nothing but
the generalized Bogomolov–Gieseker inequality for E itself multiplied by n6 = deg([n]). �

Remark 12.7. In fact, [BMS16, Theorem 1.1] shows that when α = 0, Theorem 12.6 holds
even when D is a real divisor, not necessarily rational. Using deformation arguments as in
[BMS16, §7], it would be possible to extend Theorem 12.6 to the case of real divisors for
arbitrary α, but we will not need this.

12.5. The second tilt. Let X be a smooth projective threefold equipped with a Brauer class
α ∈ Br(X), a real ample divisor ω, and a rational divisor D. Then HN filtrations exist with

respect to νω,D-stability, so we obtain a torsion pair (T ′

ω,D,F ′
ω,D) in Cohω,D(X,α) defined by

T ′
ω,D :=

{
E ∈ Cohω,D(X,α) | ν−ω,D(E) > 0

}
,

F ′
ω,D :=

{
E ∈ Cohω,D(X,α) | ν+ω,D(E) ≤ 0

}
.

Tilting at this torsion pair produces a bounded t-structure on Dperf(X,α) with heart the
extension closure

Aω,D(X,α) := 〈T ′
ω,D,F ′

ω,D[1]〉.
In [BMT14, Corollary 5.2.4] it is shown that if (X,α) satisfies the generalized Bogomolov–

Gieseker inequality with respect to ω and D, then (Zω,D,Aω,D) satisfies the requirements of
being a stability condition, except possibly the support property. In [BMS16], the support
property is proved, at least when ω and D are suitably proportional to an ample divisor.

For ease of reference, we will follow the conventions of [BMS16], where the stability condition
is parameterized in a slightly different form. For an ample divisorH onX and rational numbers
a, b, c, d ∈ Q with a > 0, we write

Aa,b(X,α) := A
√
3aH,bH(X,α), chb := chbH ,

and consider the the central charge

Zc,da,b :=
(
− chb3 +dH chb2 +cH

2 chb1

)
+ i

(
H chb2−

a2

2
H3 chb0

)
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which factors through the Mukai homomorphism chH : Knum(X,α)→ ΛH from Example 11.3
(with S a point).

Theorem 12.8. Let X be a smooth projective threefold with a Brauer class α ∈ Br(X) and
an ample divisor H. Let a, b, c, d ∈ Q such that

a > 0 and c >
a2

6
+
|d|a
2
. (12.2)

Assume that for any real ample divisor ω and rational divisor D on X which are both propor-
tional to H, the generalized Bogomolov–Gieseker inequality holds for (X,α) with respect to ω

and D. Then (Aa,b(X,α), Zc,da,b ) is a stability condition on Dperf(X,α) with respect to chH .

Proof. In the untwisted case when α = 0, this is [BMS16, Theorem 8.2] combined with
[BMS16, Theorem 4.2]. The same arguments work when α is general. �

Remark 12.9. In Theorem 12.8, the assumption that the generalized Bogomolov–Gieseker
inequality holds for all real ω and rational D could be replaced with an a priori stronger
inequality for a particular choice of ω and D — see [BMS16, Conjecture 4.1 and Theorem
4.2].

Remark 12.10. In view of Theorem 12.6, we in particular find that stability conditions
exist on twisted abelian threefolds. By [OPT22], in the case of an untwisted abelian threefold
X, this construction gives full numerical stability conditions. In the space of all such, there
is a distinguished connected component Stab†(X) ⊂ Stab(X) which contains the stability
conditions arising from this construction and is preserved by autoequivalences of X.

12.6. Relative case. In [BLM+21, Part V], the untwisted versions of the above results were
upgraded to produce relative stability conditions in the sense of §11.1. The same arguments
go through directly in the twisted setting. We state the result for threefolds, but a similar
statement also holds for surfaces.

Theorem 12.11. Let f : X → S be a smooth projective morphism of varieties of relative
dimension 3. Let α ∈ Br(X) be a Brauer class, and let H be a relatively ample divisor on
X over S. Assume that for every s ∈ S, (Xs, αs) satisfies the generalized Bogomolv–Gieseker
inequality with respect to ω and D, whenever ω is a real ample divisor and D is a rational
divisor, both of which are proportional to Hs. Then for any a, b, c, d ∈ Q satisfying (12.2),
there is a stability condition σ on Dperf(X,α) over S with respect to the homomorphism

chH : Knum(Dperf(X,α)/S) → ΛH from Example 11.3 whose fiber σs over s ∈ S is the stability
condition on Dperf(Xs, αs) given by Theorem 12.8.

Together with Theorem 12.6, this has the following important consequence.

Corollary 12.12. Let f : X → S be a smooth projective family of complex abelian threefolds.
Let α ∈ Br(X) be a Brauer class. Then there exists a stability condition σ on Dperf(X,α) over

S with respect to the topological Mukai homomorphism chH : Knum(Dperf(X,α)/S) → ΛH .
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Part IV. Donaldson–Thomas theory

13. Obstruction theories and virtual fundamental classes

In this section we cover some preliminaries on obstruction theories and their associated
virtual fundamental classes.

13.1. Obstruction theories.

Definition 13.1. Let X be an algebraic stack over S. An obstruction theory for X over S is
a morphism φ : F → τ≥−1LX/S in Dqc(X ) such that cofib(φ) ∈ D≤−2

qc (X ). We say φ is perfect
if F is a perfect complex of Tor-amplitude [−1,∞].

Remark 13.2. As X is an algebraic stack, we have LX/S ∈ D≤1
qc (X ). If φ : F → τ≥−1LX/S is a

relative obstruction theory, then it follows that F has Tor-amplitude in [−∞, 1]; in particular,
if φ is perfect, then F has Tor-amplitude in [−1, 1]. If X is Deligne–Mumford, then we have
the stronger connectivity LX/S ∈ D≤0

qc (X ), so if φ is an obstruction theory then F has Tor-
amplitude in [−∞, 0], and in [−1, 0] if φ is perfect.

Remark 13.3. There are some slight variants of Definition 13.1 in the literature. Let us
compare with the original definition of Behrend and Fantechi [BF97]. There the target of φ
is taken to be the full cotangent complex LX/S instead of its truncation τ≥−1LX/S . However,

given such a F → LX/S, the composition F → LX/S → τ≥−1LX/S gives an obstruction
theory in the sense of Definition 13.1, and this is sufficient for all of the constructions in
[BF97]. In [BF97] Behrend and Fantechi also only consider obstruction theories for Deligne–
Mumford stacks; in this case our definition recovers theirs, modulo the discrepancy about
cotangent complexes just explained. More recently, others have studied obstruction theories
in the setting of (higher) algebraic stacks [AP23, Pom15]. For our main applications, we will
in fact only need the Deligne–Mumford case, but some intermediate results are more naturally
formulated in the context of general algebraic stacks.

Remark 13.4. Obstruction theories can be thought of as shadows of derived enhancements:
by Lemma 7.7, if X is a derived enhancement of an algebraic stack X over S and i : X → X

is the canonical map, then i∗LX/S → LX/S → τ≥−1LX/S is an obstruction theory.

Remark 13.5. Let φ : F → τ≥−1LX/S be an obstruction theory for an algebraic stack X
over S. Let u : S′ → S be a morphism, and consider the underived base change diagram

X ′ u′
//

��

X

��

S′ u
// S.

(13.1)

We claim that there is a natural way to base change φ to obtain an obstruction theory for X ′

over S′. To explain this, it is convenient to consider the derived fiber product

X
′ µ′

//

��

X

��

S′ u
// S.
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which is a derived enhancement of X ′, i.e. t0(X′) = X ′. By base change for the cotangent
complex we have (µ′)∗LX/S ≃ LX′/S′ ; note that for this to hold, it is important that we use
the derived base change X

′ instead of X ′. It follows that

τ≥−1LX′/S′ ≃ τ≥−1(µ′)∗τ≥−1LX/S .

Therefore, pullback of φ along µ′ followed by truncation in degrees ≥ −1 gives a morphism

(µ′)∗F → (µ′)∗τ≥−1LX/S → τ≥−1LX′/S′ (13.2)

whose cone is easily seen to lie in D≤−2
qc (X′) using cofib(φ) ∈ D≤−2

qc (X ). This can be considered
as an obstruction theory for X′ over S′.

To induce an obstruction theory for X ′, let i : X ′ → X
′ be the canonical closed immersion

and consider the composition i∗LX′/S′ → LX ′/S′ → τ≥−1LX ′/S′ . For degree reasons, this

factors via a morphism i∗τ≥−1LX′/S′ → τ≥−1LX ′/S′ , which by Lemma 7.7 has cone lying in

D≤−2
qc (X ′). Composing this morphism with the pullback of (13.2) along i we obtain a morphism

φS′ : (u′)∗F → τ≥−1LX ′/S′ .

Using the connectivity estimates above, we see cofib(φS′) ∈ D≤−2
qc (X ′), i.e. φS′ is an obstruction

theory for X ′ over S′ which we call the base change of φ. Note that φS is perfect if φ is. For
any point s ∈ S, we denote by φs the base change of φ along Spec(κ(s))→ S.

13.2. Virtual fundamental classes. The main upshot of an obstruction theory is that it
gives rise to a virtual fundamental class.

Theorem 13.6. Let X be a Deligne–Mumford stack over a pure-dimensional scheme S, with
both X and S of finite type over a field. Let φ : F → τ≥−1LX/S be a perfect obstruction
theory for X over S. Assume that the rank of F (a priori a locally constant function on X )
is constant, denoted rkF . Then there is a canonically associated virtual fundamental class

[X ]virφ ∈ CHdimS+rkF (X )

in the Chow group of X , which is compatible with base change in the following sense: if
u : S′ → S is a regular immersion or flat morphism from a pure-dimensional scheme of finite
type over the base field, and u′ : X ′ → X is the (underived) base change as in (13.1), then

(u′)∗[X ]virφ = [X ′]virφS′
.

Proof. The construction of the virtual fundamental class is the main result of [BF97], with
the caveat that there F is assumed to admit a global resolution, but this assumption was
removed in [Kre99]. The base change property is [BF97, Proposition 7.2]. �

Remark 13.7. A virtual fundamental class can also be defined for algebraic stacks that are
not necessarily Deligne–Mumford [AP23, Pom15], but we will not need this.

In the situation of Theorem 13.6, the number rkF is called the virtual dimension of X
over S with respect to φ. Note that the virtual dimension is preserved by base change on S
(see Remark 13.5), and hence determined on any fiber of X → S. In the case where S is a
point, we see that the virtual fundamental class is a cycle of (homological) degree given by
the virtual dimension. A particularly nice situation is when the virtual dimension is 0. In this
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case, if S is a point and X → S is proper, the virtual count of X with respect to φ is the
number

#vir
φ (X ) =

∫

[X ]virφ

1,

i.e. the degree of the virtual fundamental class. A fundamental property is that virtual counts
of fibers are deformation invariant when X is proper over S:

Corollary 13.8. Let X and φ be as in Theorem 13.6. Assume that X → S is proper and the
virtual dimension of X over S with respect to φ is 0. Then for s ∈ S a regular closed point,
the virtual count #vir

φs
(Xs) of the (underived) fiber Xs is independent of s.

Proof. This follows from Theorem 13.6, as the virtual fundamental classes [Xs]virφs are the fibers

of the family of 0-cycles [X ]virφ on X over S, and hence have the same degree. �

13.3. Symmetric obstruction theories. The vanishing of the virtual dimension can be
guaranteed by imposing a symmetry on the obstruction theory.

Definition 13.9. Let X be an algebraic stack over S. A symmetric obstruction theory for X
over S is a triple (φ,L, θ) where φ : F → τ≥−1LX/S is a relative obstruction theory, F is a

perfect complex, L is a line bundle on S, and θ : F → F∨ ⊗L[1] is an isomorphism satisfying
θ∨ ⊗ L[1] = θ.

Remark 13.10. The data of θ is equivalent to that of a degree 1 nondegenerate symmetric
bilinear form β : F ⊗F → OX ⊗ L[1]; see [BF08, Remark 1.2].

Remark 13.11. The virtual dimension of a Deligne–Mumford stack X over S with respect
to a symmetric perfect obstruction theory is indeed 0, because then rkF = rk(F∨ ⊗ L[1]) =
− rkF . The symmetry of an obstruction theory also has other important consequences by
Behrend’s work [Beh09], cf. Remark 15.3 below.

Remark 13.12. Parallel to Remark 13.5, if (φ,L, θ) is a symmetric obstruction theory for
an algebraic stack X over S, then for any morphism u : S′ → S we can form in an evident
way the base change (φS′ , LS′ , θS′) which is a symmetric obstruction theory for X ′ over S′.

In the Deligne–Mumford case, any symmetric obstruction theory is automatically perfect:

Lemma 13.13. Let (φ : F → τ≥−1LX/S , L, θ) be a symmetric obstruction theory for an
algebraic stack X over S. Then F has Tor-amplitude [−2, 1]. If X is Deligne–Mumford, then
F has Tor-amplitude [−1, 0], and hence φ is a perfect obstruction theory.

Proof. By Remark 13.2, F has Tor-amplitude in [−∞, 1]. Dualizing and using symmetry, we
find that F ∼= F∨ ⊗ L[1] also has Tor-amplitude [−2,∞], proving the first claim. If X is
Deligne–Mumford, then by Remark 13.2 again F has Tor-amplitude in [−∞, 0], so the same
symmetry argument shows that F has Tor-amplitude [−1, 0]. �

14. Obstruction theory for moduli of objects in a CY3 category

In this section, we construct a reduced symmetric perfect obstruction theory on a suitable
quotient of the moduli of objects in a CY3 category. This is the main technical ingredient in
our definition of reduced DT invariants in §15.
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14.1. Setup. Now we describe the setup for the rest of this section. Let C be a CY3 category
of geometric origin over a smooth complex variety S. By Theorem 5.20, we have a local system
Ktop

0 (C/S) on S whose fibers are Ktop
0 (Cs) for s ∈ S(C). Note that any object E ∈ C defines a

section vE ∈ Γ(S,Ktop
0 (C/S)) whose fiber over s ∈ S(C) is the class of Es in Ktop

0 (Cs), which is
a Hodge class for the Hodge structure described in Theorem 5.20 (see [Per22, Lemma 5.10]).

Fix a section v ∈ Γ(S,Ktop
0 (C/S)) whose fibers vs ∈ Ktop

0 (Cs) are Hodge classes for all
s ∈ S(C). We define sMgl(C/S, v) ⊂ sMgl(C/S) to be the open substack parameterizing
objects with class v, whereMgl(C/S) is the moduli stack of simple gluable objects introduced
in §7.1. Note that as C is connected over S, by Proposition 8.2 the stack of autoequivalences
Aut(C/S) is an algebraic stack. Finally, let M be an open substack of sMgl(C/S, v), and
let G be an open subgroup stack of Aut(C/S) which is smooth over S and whose action on
sMgl(C/S, v) preservesM.

Remark 14.1. As explained in §10.4 and §11.3, many such examples can be obtained by tak-
ingM to be a moduli space of semistable objects and G = Aut0(C/S) the identity component
of Aut(C/S). We will spell this out more explicitly in Examples 15.5 and 15.10 below.

Remark 14.2. Our goal is to construct a symmetric obstruction theory for the quotient stack
M/G, which is perfect when this quotient is Deligne–Mumford. A priori the quotient M/G
is a higher algebraic stack, but as we explain now our assumptions actually imply it is 1-
truncated, i.e. an ordinary algebraic stack. Indeed, by Proposition 8.2 the stack G is naturally
a Gm-gerbe G → G over a group algebraic space G, and by Theorem 7.1 the stack M is
naturally a Gm-gerbeM→ M over an algebraic space M . Said differently, the group stack
BGm is a subgroup of G with quotient G, and acts onM with quotient M . In particular, we
find that G acts on M , and there is an isomorphism

M/G ∼=M/G.

As M/G is an algebraic stack, this proves the above claim.

Remark 14.3. Let E ∈ CM be the universal object. Before passing to the quotient, the stack
M has a natural obstruction theory over S,

φM : (HomM(E , E)[1])∨ → τ≥−1LM/S, (14.1)

which arises via Remark 13.4 from the derived enhancement M ⊂M(C/S) (see Remark 7.6)
and the description of the cotangent complex of M(C/S) (Theorem 7.5). This can be thought
of as the starting point for the obstruction theory we will construct forM/G below.

14.2. Obstruction theory for M/G. Now we can formulate the main result of this sec-
tion. Let E ∈ CM be the universal object and let L be the line bundle on S such that
SC/S = (− ⊗ L)[n]. Consider the morphism

α : τ≤1HH∗(CM/M)⊗ L[2]→HomM(E , E)⊗ L[2] (14.2)

induced by the canonical morphism aE : HH∗(CM/M)→HomM(E , E), and the morphism

β : HomM(E , E)⊗ L[2]→ τ≥2(HH∗(CM/M)) ⊗ L[2] (14.3)

induced by the Chern character chE : HomM(E , E) → HH∗(CM/M). For degree reasons, the
composition

τ≤1HH∗(CM/M)⊗ L[2] α−→ HomM(E , E) ⊗ L[2] β−→ τ≥2(HH∗(CM/M)) ⊗ L[2] (14.4)
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vanishes, so we can consider the “cohomology” of this sequence defined by

F := cofib(τ≤1HH∗(CM/M) ⊗ L[2] α′

−−→ fib(β))

where α′ : τ≤1HH∗(CM/M)→ fib(β) is the morphism through which α factors.

Theorem 14.4. In the setup of §14.1, there is a canonical symmetric obstruction theory
(φ : F → τ≥−1L(M/G)/S , L, θ) for M/G over S, such that if q : M → M/G is the quotient

morphism then q∗F ≃ F . Moreover, ifM/G is Deligne–Mumford, then this obstruction theory
is perfect.

We will prove the theorem in several steps.

Step 1. Description of an obstruction theory coming from the derived enhancement ofM/G.
By Proposition 9.4, Remark 9.5, and Remark 13.4, we obtain an obstruction theory

φ′ : F ′ → τ≥−1L(M/G)/S

where

F ′
= fib((HomM(E , E)[1])∨ β−→ τ≥0((HH∗(CM/M)[1])∨))

and all terms are understood as objects in Dperf(M/G) (with their natural equivariant struc-

ture). Using Corollary 6.7(2), we see that the pullback toM of F ′
is given by

q∗F ′ ≃ fib(HomM(E , E) ⊗ L[2] β−→ τ≥2(HH∗(CM/M)) ⊗ L[2])
where β is the morphism (14.3) described above. The rest of the proof consists of “making φ′

symmetric”.

Step 2. Construction of F ∈ Dperf(M/G).
By construction, taking the dual of the morphism β from Step 1 and tensoring by L[1] gives

a morphism
α : τ≤1HH∗(CM/M)⊗ L[2]→HomM(E , E)⊗ L[2]

in Dperf(M/G) that descends the morphism α from (14.2) above. Note that by Serre duality,
we have

HomM(E , E) ⊗ L[2] ≃ (HomM(E , E)[1])∨.
Using this, we can define F as the “cohomology” of the sequence formed by α and β (whose
composition vanishes for degree reasons), i.e.

F := cofib(τ≤1HH∗(CM/M) ⊗ L[2] α′

−−→ F ′
)

where α′ is the morphism through which α factors. Then F ∈ Dperf(M/G) because all of the

terms in the sequence are perfect, and q∗F ≃ F by construction.

Step 3. Construction of the morphism φ : F → τ≥−1L(M/G)/S .

We claim that the composition

τ≤1HH∗(CM/M)⊗ L[2] α′

−−→ F ′ φ′−−→ τ≥−1L(M/G)/S (14.5)

vanishes. Since for degree reasons we also have

Hom(τ≤1HH∗(CM/M)⊗ L[3], τ≥−1L(M/G)/S)) = 0,

this implies that there is a unique morphism φ : F → τ≥−1L(M/G)/S such that φ′ = φ ◦ γ
where γ : F ′ → F is the canonical map.
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It remains to prove the claim. It suffices to prove that the pullback of the map (14.5) along
the faithfully flat cover q :M→M/G vanishes. Consider the exact triangle

q∗L(M/G)/S → LM/S → LM/(M/G).

Combining Lemma 9.3 with Lemma 8.6, we see that LM/(M/G) ∈ D
[0,1]
qc (M). In particular, the

mapH−1(q∗L(M/G)/S)→H−1(LM/S) on cohomology sheaves in degree −1 is an isomorphism.
On the other hand, for degree reasons the map (14.5) factors via a map

HH1(CM/M) ⊗ L[1]→H−1(L(M/G)/S).

Altogether, these observations imply that (14.5) vanishes if and only if the composition

HH1(CM/M)⊗ L[1]→ τ≥−1q∗L(M/G)/S → τ≥−1LM/S (14.6)

vanishes. As the source and target have bounded coherent cohomology, by Nakayama’s lemma
it suffices to check that (14.6) vanishes after pullback along any locally of finite type C-
point m : Spec(C) → M (such a point is sometimes called a “finite type point” of M, see
[Sta24, Tag 06FW]). By Corollary 6.7(1) and Theorem 5.5(3) we have the base change formula
m∗(HH1(CM/M)⊗ L[1]) = HH1(Cm/C)[1]. Therefore, it suffices to check the map

HH1(Cm/C)→ H−1(m∗τ≥−1LM/S) = H−1(m∗LM/S) (14.7)

vanishes. By construction this map can also be described as H−1 of the pullback along m of
the composition

HH∗(CM/M)⊗ L[2] aE⊗L[2]−−−−−→ HomM(E , E) ⊗ L[2] ≃ (HomM(E , E)[1])∨ φM−−−→ τ≥−1LM/S,

where the equivalence is Serre duality and φM is the obstruction theory (14.1) forM. There-
fore, using base change, (14.7) identifies with

HH1(Cm/C)
aEm−−−→ Ext1(Em, Em) ∼= Ext2(Em, Em)∨ → H−1(m∗LM/S).

Dualizing and using Corollary 6.7(2), this identifies with

Ext1(m∗LM/S,C)→ Ext2(Em, Em)
chEm−−−−→ HH−2(Cm/C). (14.8)

To show that (14.8) vanishes, we will use a general result which allows us to interpret the
source in terms of obstruction theory. Recall that for an algebraic stack X over S, if j : T → T ′

is a square-zero thickening of schemes defined by an ideal I, then given any solid commutative
diagram

T

j
��

g
// X

��

T ′
u

//

g′
>>⑥

⑥
⑥

⑥

S

(14.9)

there is an obstruction ω(g, j, u) ∈ Ext1(g∗LX/S , I) which vanishes if and only if a dotted
arrow g′ making the diagram commute exists, in which case the set of such lifts g′ forms a
torsor under Ext0(g∗LX/S, I). We say that a homomorphism A′ → A of artinian local C-
algebras with residue field C is a small extension if its kernel I is annihilated by mA′ and
isomorphic to C. Note that if T = Spec(A) and T ′ = Spec(A′) above and x : Spec(C) → X
is the restriction of g : T → X to the closed point, then Ext1(g∗LX/S ,C) = Ext1(x∗LX/S ,C),
so the obstruction space only depends on the C-point x.

https://stacks.math.columbia.edu/tag/06FW
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Lemma 14.5. Let X be an algebraic stack locally of finite type over S. Let x : Spec(C)→ X
be a locally of finite type C-point. Then every element of Ext1(x∗LX/S ,C) arises as ω(g, j, u)
for a diagram (14.9) with T → T ′ the map induced by a small extension of artinian local
C-algebras with residue field C such that x : Spec(C) → X is restriction of g to the closed
point.

Remark 14.6. We work with C because that is the setup of this section, but the result holds
more generally for any algebraically closed base field.

Proof. Choose p : U → X a smooth surjection from a scheme U . As x is a locally of finite
type C-point, we can lift it along p to a C-point u : Spec(C) → U [Sta24, Tag 06FX]. The
morphism p∗LX/S → LU/S induces a map

Ext1(u∗LU/S ,C)→ Ext1(x∗LX/S,C) (14.10)

which is easily seen to be an isomorphism. Given a diagram

T

j
��

g̃
// U

��

T ′
u

// S

with T → T ′ a square-zero thickening induced by a small extension, we obtain a diagram
as in (14.9) by taking g = p ◦ g̃, and by functoriality the map (14.10) takes the obstruction
ω(g̃, j, u) to ω(g, j, u). Therefore, to prove the result we may assume that X is a scheme.

Let π : X → S be the structure morphism, and let s = π ◦ x : Spec(C) → S. The exact
triangle π∗LS/C → LX/C → LX/S induces an exact sequence

Ext0(s∗LS/C,C)→ Ext1(x∗LX/S ,C)→ Ext1(x∗LX/C,C)→ 0 (14.11)

where the final term is 0 due to the smoothness of S over C. Given a solid commutative
diagram

T

j

��

g
// X

π
��

S

��

T ′
v

//

u

::✈
✈

✈
✈

✈
Spec(C)

with T → T ′ a square-zero thickening induced by a small extension, by the smoothness
of S over C a dotted arrow u making the diagram commute exists and the set of such u
form a Ext0(s∗LS/C,C)-torsor. For elements arising as obstructions from such a diagram,
the sequence (14.11) may be interpreted as follows: for varying u the elements ω(g, j, u) form
the fiber of the map Ext1(x∗LX/S ,C) → Ext1(x∗LX/C,C) over ω(g, j, v). Therefore, by the
sequence (14.11), to prove the result it suffices to treat the case S = Spec(C), which is handled
in [BF97, Proposition 4.7]. �

https://stacks.math.columbia.edu/tag/06FX
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Finally, we can finish the proof that (14.8) vanishes. By Lemma 14.8, it suffices to prove
the map vanishes when evaluated on ω(g, j, u) ∈ Ext1(m∗LM/S ,C) for a diagram

Spec(A)

j

��

g
//M

��

Spec(A′) u
// S

where A′ → A is a small extension of artinian local C-algebras with residue field C such
that m : Spec(C) → M is restriction of g to the closed point. Note that the morphism g is
classified by the pullback EA ∈ CA of the universal object E ∈ CM. By [Pri22, §2.5] (combined

with the description from Theorem 5.20 of the variation of Hodge structures Ktop
0 (C/S) as a

summand of that of X → S), we find that the image of ω(g, f, u) under (14.8) vanishes due to

our assumptions thatM⊂ sMgl(C/S, v) and v ∈ Γ(S,Ktop
0 (C/S)) is of Hodge type along S.

This completes Step 3 of the proof.

Step 4. φ : F → τ≥−1L(M/G)/S is an obstruction theory.

By construction, we have φ′ = φ◦γ where φ′ is the obstruction theory constructed in Step 1

and γ : F ′ → F is the canonical map. Therefore, we obtain an exact triangle

cofib(γ)→ cofib(φ′)→ cofib(φ).

As φ′ is an obstruction theory we have cofib(φ′) ∈ D≤−2
qc (X/G), and by construction we

have cofib(γ) = τ≤1HH∗(CM/M) ⊗ L[3], so also cofib(γ) ∈ D≤−2
qc (X/G). We conclude that

cofib(φ) ∈ D≤−2
qc (X/G), i.e. φ is an obstruction theory.

Step 5. Construction of θ such that (φ,L, θ) is a symmetric obstruction theory.

By the construction of Step 2, F is the perfect complex given by the “cohomology” of the
sequence

τ≤1HH∗(CM/M)⊗L[2] α−→ HomM(E , E)⊗L[2] ≃ (HomM(E , E)[1])∨ β−→ τ≥0((HH∗(CM/M)[1])∨),

which is self-dual up to tensoring with L[1]. It follows formally from this that there is an

induced isomorphism θ : F → F∨ ⊗ L[1] satisfying θ∨ ⊗ L[1] = θ, i.e. (φ,L, θ) is a symmetric
obstruction theory.

Step 6. φ is perfect ifM/G is Deligne–Mumford.

In view of Step 5, the claim follows from Lemma 13.13. This completes the proof of Theo-
rem 14.4. �

Remark 14.7. A natural question is whether the obstruction theory of Theorem 14.4 arises
from a derived enhancement ofM/G. Our proof goes halfway toward answering this question:
in Step 1 we obtain an obstruction theory using the derived enhancement of M/G from
Proposition 9.4, and in Steps 2-5 we “symmetrize” it by hand to obtain Theorem 14.4. The
question is whether the derived enhancement from Proposition 9.4 can itself be modified to
realize the symmetrized obstruction theory. We will address this in future work, where we will
provide a positive answer using ideas from [Pri22] (already invoked in Step 3) and derived
symplectic geometry.
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15. Reduced DT invariants of CY3 categories

In this section, we define reduced DT invariants of CY3 categories that are preserved
under deformations, using the obstruction theory constructed in §14. In particular, we prove
Theorems 1.6 and 1.8 from the introduction.

15.1. DT invariant of M/G.

Definition 15.1. In the setup of §14.1, assume that S = Spec(C) is a point and M/G is
Deligne–Mumford and proper over C. Then the Donaldson-Thomas (DT) invariant ofM/G
is the number

DT(M/G) := #vir
φ (M/G)

where φ is the obstruction theory constructed in Theorem 14.4.

Corollary 15.2. In the setup of §14.1, assume that M/G is Deligne–Mumford and proper
over S. Then the DT invariants DT(Ms/Gs) of the fibers are independent of s ∈ S(C).

Proof. Combine Theorem 14.4 and Corollary 13.8. �

Remark 15.3. In the situation of Definition 15.1, if M/G is also quasi-projective in the
sense of [Beh09, Definition 0.1], then by [Beh09, Proposition 4.16 and Theorem 4.18] the DT
invariant DT(M/G) can be computed in terms of the Behrend function, and in particular is
an intrinsic invariant ofM/G.

The following observation is useful for checking the properness hypothesis of Corollary 15.2
in examples. We recall that M → M is a Gm-gerbe over an algebraic space M over S and
G → G is a Gm-gerbe over a group algebraic space G over S.

Lemma 15.4. In the setup of §14.1, assume that M → S and G → S are proper. Then
M/G → S is proper.

Proof. By Remark 14.2 we haveM/G ∼=M/G, so it suffices to prove properness of the latter.
As M → M/G is a smooth cover and M → S is proper, if follows that M/G → S is finite
type (being locally finite type as M → S is and quasi-compact by [Sta24, Tag 050X]) and
universally closed by [Sta24, Tag 0CQK]. For separatedness of M/G→ S, we must show that
the diagonal is proper; equivalently, if T is an S-scheme and ρi : Pi → MT , i = 1, 2, are two
T -points of M/G (GT -torsors equipped with an equivariant map to MT ), we must show the
Isom-space I := Isom(P1, P2) → T is proper. Working étale locally on T , we may assume
the Pi are trivial, and then it is easy to see that I is given by the (underived) fiber product
diagram

I //

��

GT

(ρ1(1),ρ2)
��

MT
∆

// MT ×T MT

where ∆ is the diagonal and 1 ∈ GT (T ) is the identity section. The bottom arrow is a closed
immersion as M → S is separated, so I → GT is a closed immersion. As G→ S is proper, we
conclude that the composition I → GT → T is proper. �

https://stacks.math.columbia.edu/tag/050X
https://stacks.math.columbia.edu/tag/0CQK
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15.2. Reduced DT invariants for moduli of semistable objects. In the rest of this
section, we discuss the DT invariants defined above in the two main cases of interest: moduli
of Giesker semistable twisted sheaves and Bridgeland semistable objects.

Example 15.5 (Moduli of semistable twisted sheaves). Let f : X → S be a smooth proper
morphism of relative dimension 3 with geometrically connected fibers and ωf = f∗L for a line
bundle L on S, where S is a smooth complex variety. Let α ∈ BrAz(X) be a Brauer class.
Then C = Dperf(X,α) is a CY3 category of geometric origin over S by Lemma 6.4.

Let v ∈ Γ(S,Ktop
0 (C/S)) be a section whose fibers vs ∈ Ktop

0 (Cs) are Hodge classes for
all s ∈ S(C), and let H be a relatively ample divisor on X → S. Let MH(v) → S denote
the moduli stack of Gieseker H-semistable α-twisted sheaves of class v. Then, as noted in
Example 11.5,MH(v)→ S is an open substack ofMgl(C/S, v), universally closed over S.

By Lemma 8.14, the identity component Aut0(C/S) of Aut(C/S) exists and is smooth and
proper over S. The identity component Aut0(C/S) of the stack of autoequivalences (Defini-
tion 8.7) is a Gm-gerbe over Aut0(C/S), and in particular smooth over S. Moreover, it acts
on the stackMH(v) by Lemma 9.6.

If for all s ∈ S(C) there do not exist strictly Hs-semistable αs-twisted sheaves on Xs of class
vs, thenMH(v) parameterizes simple objects and hence is an open substack of sMgl(C/S, v)
with the structure of a Gm-gerbe MH(v) → MH(v) over an algebraic space; moreover, by
standard results on (twisted) sheaves,MH(v) is proper over S [HL10, Lie07]. Altogether, when
this holds we have shown that M = MH(v) and G = Aut0(C/S) satisfy the hypotheses of
the setup in §14.1, as well as Lemma 15.4. Therefore, we may make the following definition.

Definition 15.6. In the setup of Example 15.5, assume that S = Spec(C) is a point,
there do not exist strictly H-semistable α-twisted sheaves of class v, and the quotient stack
MH(v)/Aut0(Dperf(X,α)/C) is Deligne–Mumford. Then we define the reduced DT invariant
for H-semistable sheaves of class v by

DTH(v) := DT(MH(v)/Aut0(Dperf(X,α)/C)).

For simplicity, we have chosen the notation DTH(v) without any adornment to indicate it
is the reduced invariant. This should not cause any confusion as we will only consider reduced
DT invariants.

Corollary 15.7. In the setup of Example 15.5, assume that for all s ∈ S(C) there do not
exist strictly Hs-semistable αs-twisted sheaves of class vs, and MH(v)/Aut0(Dperf(X,α)/S)
is Deligne–Mumford. Then the reduced DT invariants DTHs(vs) of the fibers are independent
of s ∈ S(C).

Remark 15.8. In the absence of a Brauer class (i.e. when α = 0), reduced DT invariants
have been defined using virtual fundamental classes in special cases by various authors. Def-
inition 15.6 recovers these previous ad hoc definitions in a uniform way. Let us spell out the
comparison in two important cases:

(1) Suppose X is strict Calabi–Yau threefold, i.e. a smooth projective complex variety X
with ωX ∼= OX and h1(OX ) = 0. Then by the HKR isomorphism HH1(Dperf(X)/C)

vanishes, so by Lemma 8.10 the group Aut0(Dperf(X)/C) is trivial. Thus, in this case
Definition 15.6 recovers the classical DT invariant defined by Thomas [Tho00, BF08].
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(2) Suppose X is an abelian threefold. In this case, Gulbrandsen [Gul13] defined reduced
DT invariants under certain assumptions which imply that the conditions in our Defini-
tion 15.6 are satisfied. His construction goes through a slice for the Aut0(Dperf(X)/C)-
action onMH(v). More precisely, he constructs a spaceM ′ equipped with a symmetric
perfect obstruction theory ψ and an action by a finite group G′ such that

M ′/G′ ∼=MH(v)/Aut
0(Dperf(X)/C),

and then defines DTH(v) as #
vir
ψ (M ′)/|G′| [Gul13, Definition 3.2]. It is easy to see that

symmetric perfect obstruction theories pull back to symmetric perfect obstruction
theories along étale morphisms. Let φ′ be the pullback of the obstruction theory φ
from Theorem 14.4 along the étale morphism

M ′ →M ′/G′ ∼=MH(v)/Aut
0(Dperf(X)/C).

By Remark 15.3 we have #vir
φ′ (M

′) = #vir
ψ (M ′), so by functoriality of virtual funda-

mental classes [BF97, Proposition 5.10] we conclude

#vir
φ (MH(v)/Aut

0(Dperf(X)/C)) = #vir
φ′ (M

′)/|G′| = #vir
ψ (M ′)/|G′|.

This shows the agreement of Gulbrandsen’s definition with ours.

Remark 15.9. Using Hall algebra techniques, in [OPT22] reduced generalized DT invariants
are defined for Calabi–Yau threefolds. In the presence of strictly semistable objects, it is
not clear that their invariants are deformation-invariant. However, when there are no strictly
semistable objects, the invariants defined here coincide with theirs, and Corollary 15.7 implies
deformation-invariance.

Reduced DT invariants for moduli of semistable objects can be defined parallel to the case
of sheaves:

Example 15.10 (Moduli of semistable objects). Let C be a CY3 category of geometric

origin over a smooth complex variety S. Let v ∈ Γ(S,Ktop
0 (C/S)) be a section whose fibers

vs ∈ Ktop
0 (Cs) are Hodge classes for all s ∈ S(C). Let σ be a stability condition on C over S

with respect to a topological Mukai homomorphism. Let φ ∈ R be a phase compatible with
v. Then, as noted in Example 11.5, the moduli space Mσ(v, φ) of σ-semistable objects in C

of class v and phase φ is an open substackMgl(C/S, v), universally closed over S.

By Lemma 8.11, the identity component Aut0(C/S) of Aut(C/S) exists, and both it and
Aut0(C/S) are smooth over S. Further, Aut0(C/S) acts on the stackMσ(v, φ) by Lemma 9.6.

If for all s ∈ S(C) there do not exist strictly σs-stable objects of class vs, thenMσ(v, φ) is
an open substack of sMgl(C/S, v) with the structure of aGm-gerbeMσ(v, φ)→Mσ(v, φ) over
an algebraic space, which is proper over S by [BLM+21, Theorem 21.24]. Altogether, when
this holds we have shown that M = Mσ(v, φ) and G = Aut0(C/S) satisfy the hypotheses
of the setup in §14.1, and M satisfies the hypothesis of Lemma 15.4. If C = Dperf(X,α) is

as in Example 15.5, then as we discussed there Aut0(C/S) also satisfies the hypothesis of
Lemma 15.4, i.e. is proper over S, by Lemma 8.14; in general, we do not know whether this
holds (cf. Remark 8.15), so we take it as an assumption in the definition and corollary below.

The following definition and corollary complete the proofs of Theorems 1.6 and 1.8 promised
in the introduction, which we state here in terms of moduli stacks and automorphism stacks
instead of their corresponding algebraic spaces, cf. Remark 14.2.
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Definition 15.11. In the setup of Example 15.10, assume that S = Spec(C) is a point,
Aut0(C/C) is proper, there do not exist strictly σ-semistable objects of class v, and the
quotient stack Mσ(v, φ)/Aut0(C/C) is Deligne–Mumford. Then we define the reduced DT
invariant for σ-semistable objects of class v by

DTσ(v, φ) := DT(Mσ(v, φ)/Aut0(C/C)).

Corollary 15.12. In the setup of Example 15.10, assume that Aut0(C/S)→ S is proper, for
all s ∈ S(C) there do not exist strictly σs-semistable objects of class vs, and the quotient stack
Mσ(v, φ)/Aut0(C/S) is Deligne–Mumford. Then the reduced DT invariants DTσs(vs, φ) of
the fibers are independent of s ∈ S(C).

Remark 15.13. It is easy to see that DTσ(v, φ) is independent of the phase φ ∈ R compatible
with v, so it is natural to define

DTσ(v) := DTσ(v, φ)

for any such φ.

16. The variational integral Hodge conjecture for CY3 categories

In this section we prove the following criterion for the validity of the noncommutative
variational integral Hodge conjecture, and deduce Theorem 1.9 from the introduction.

Theorem 16.1. Let C be a CY3 category of geometric origin over a smooth complex variety S.
Let v be a section of Ktop

0 (C/S) whose fibers vs ∈ Ktop
0 (Cs) are Hodge classes for all s ∈ S(C).

Let M ⊂Mgl(C/S, v) be an open substack which is universally closed over S. Let U ⊂ S be
a nonempty open subset such that MU is contained in the substack sMgl(C/S, v) of simple
objects. Let GU be an open subgroup stack of Aut(CU/U) which is smooth over U and whose
action on sMgl(C/S, v) preservesMU , such thatMU/GU → U is proper. Assume there exists
a point 0 ∈ S(C) such that:

(1) M0/G0 is Deligne–Mumford.

(2) DT(M0/G0) 6= 0.

Then for every s ∈ S(C) the spaceMs is nonempty and, in particular, the class vs ∈ Ktop
0 (Cs)

is algebraic.

Proof. It suffices to show that the morphismM→ S is surjective. As it is universally closed
by assumption, it suffices to show that it is dominant. By Lemma 16.2 below, up to shrinking
U we may assume that MU/GU is Deligne–Mumford. Then by Corollary 15.2 the numbers
DT(Ms/Gs) are constant for s ∈ U(C), and hence nonzero as DT(M0/G0) 6= 0. In particular,
the spaceMs/Gs, and hence alsoMs, is nonempty for s ∈ U(C). �

The next lemma, invoked above, says that for an algebraic stack universally closed over a
base, the Deligne–Mumford locus is open on the base.

Lemma 16.2. Let π : X → S be a universally closed morphism from an algebraic stack X
to a scheme S. Let 0 ∈ S be a point such that the fiber X0 is Deligne–Mumford. Then there
exists an open neighborhood 0 ∈ U ⊂ S such that XU is Deligne–Mumford.
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Proof. Consider the diagonal morphism of π, which fits into a diagram

X ∆π
//

π
��
❄❄

❄❄
❄❄

❄❄
X ×S X

{{✈✈
✈✈
✈✈
✈✈
✈

S

The fiber over 0 is ∆π0 : X0 → X0 ×Spec(κ(0)) X0, the diagonal of X0, which by assumption is
unramified. As ∆π is locally of finite type [Sta24, Tag 04XS], there is an open subset V ⊂ X
where ∆π is unramified, which by the previous observation contains X0. Consider the closed
complement Z = X \ V and set U = S \ π(Z), which is open as π is universally closed. By
construction, 0 ∈ U and ∆πU : XU → XU×UXU is unramified, i.e. XU is Deligne–Mumford. �

Now we specialize Theorem 16.1 to the case of moduli spaces of sheaves.

Corollary 16.3. Let f : X → S be a smooth proper morphism to a smooth variety S, such that
f has relative dimension 3 with geometrically connected fibers and ωf = f∗L is the pullback of

a line bundle on S. Let α ∈ BrAz(X) be a Brauer class. Let v be a section of Ktop
0 ((X,α)/S)

whose fibers vs ∈ Ktop
0 (Xs, αs) are Hodge classes for all s ∈ S(C). Let H be a relatively ample

divisor on X → S. Assume there exists a point 0 ∈ S(C) such that:

(1) There do not exist strictly H0-semistable α0-twisted sheaves of class v0.

(2) MH0
(v0)/Aut0(Dperf(X0, α0)/C) is Deligne–Mumford.

(3) DTH0
(v0) 6= 0.

Then for every s ∈ S(C) the moduli space MHs(vs) is nonempty, and in particular, the class

vs ∈ Ktop
0 (Xs, αs) is algebraic.

Proof. We claim there exists a neighborhood 0 ∈ U ⊂ S such that for every u ∈ U(C) there do
not exist strictly Hu-semistable αu-twisted sheaves of class vu. Indeed, letMst

H(v) ⊂MH(v)
denote the open subspace parameterizingH-stable sheaves, let Z ⊂MH(v) be its complement,
and let Y ⊂ S be the image of Z, which is closed as MH(v) → S is universally closed; then
U = S \ Y is the desired neighborhood.

Set M :=MH(v) and G := Aut0(Dperf(X,α)/S). By the discussion in Example 15.5 and
Lemma 15.4, it follows thatMU =MHU

(vU ) and GU satisfy the hypotheses of Theorem 16.1.
Thus Theorem 16.1 applies and gives the result. �

By the same argument, we also obtain the following analogous result for moduli of stable
objects in a category, which gives the promised Theorem 1.9 from the introduction; for consis-
tency with the above, we restate the result here in terms of moduli stacks and automorphism
stacks, cf. Remark 14.2.

Corollary 16.4. Let C be a CY3 category of geometric origin over a smooth complex variety
S. Let v be a section of Ktop

0 (C/S) whose fibers vs ∈ Ktop
0 (Cs) are Hodge classes for all

s ∈ S(C). Let σ be a stability condition on C over S with respect to a topological Mukai
homomorphism. Let φ ∈ R be a phase compatible with v. Assume there exists a point 0 ∈ S(C)
such that:

(1) There do not exist strictly σ0-semistable objects of class v0.

(2) Mσ0(v0, φ)/Aut0(C0/C) is Deligne–Mumford.

https://stacks.math.columbia.edu/tag/04XS
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(3) DTσ0(v0) 6= 0.

Then for every s ∈ S(C) the moduli space Mσs(vs, φ) is nonempty, and in particular, the

class vs ∈ Ktop
0 (Cs) is algebraic.

Assumption (1) in Corollary 16.4 is mild. Indeed, if the image of v0 in the lattice for the
stability condition is primitive, then the assumption can be achieved up to deforming σ, due
to the following general observation.

Lemma 16.5. Let C ⊂ Dperf(X) be an S-linear semiorthogonal component, where X → S
is a smooth proper morphism of complex varieties. Let σ be a stability condition on C over S
with respect to a Mukai homomorphism v : Knum(C/S) → Λ. Let λ ∈ Λ be a primitive class.
Then for any 0 ∈ S(C), there exists a stability condition σ′ on C over S with respect to v
such that there do not exist strictly σ′0-semistable objects of class λ.

Proof. Let StabΛ(C/S) denote the space of stability conditions over S with respect to v. Let
v0 : Knum(C0) → Λ be the Mukai homomorphism obtained by composing the canonical map
Knum(C0)→ Knum(C/S) with v, and let StabΛ(C0/C) denote the space of stability conditions
on C0 over C with respect to v0. We have maps

StabΛ(C/S)→ StabΛ(C0/C)→ Hom(Λ,C),

where the first map sends a stability condition over S to its fiber over 0, and the second
map sends a stability condition to its central charge. By the deformation theorem for rela-
tive stability conditions [BLM+21, Theorem 1.2], StabΛ(C/S) and StabΛ(C0/C) are complex
manifolds such that the above two maps are local isomorphisms. Therefore, it suffices to show
there exists a small deformation σ′0 of σ0 such that there do not exist strictly σ′0-semistable
objects of class λ. But this follows from the wall and chamber structure for StabΛ(C0/C)
[BLM+21, Lemma 12.13]: it suffices to take σ′0 to be a nearby stability condition that does
not lie on a wall for λ. �

Remark 16.6. Even if λ ∈ Λ is not primitive, one can often construct a stability condition
over S for which there do not exist strictly semistable objects of class λ, after possibly enlarging
the lattice Λ, cf. [BLM+21, Example 2.17 and Remark 30.7]. However, for our applications,
we will not need such a result.
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Part V. The period-index conjecture for abelian threefolds

With the exception of Corollary 17.2, throughout Part V we work over the complex num-
bers.

17. The main result

We now state our main result on the period-index conjecture.

Theorem 17.1. Let X be a complex abelian threefold and let α ∈ Br(X) be a Brauer class.
Then

ind(α) | per(α)2.
Since the index of a Brauer class may only drop under specialization, we obtain an analogous

result in positive characteristic by lifting, which was stated as Theorem 1.3 in the introduction.

Corollary 17.2. Let X be an abelian threefold over an algebraically closed field k. For any
α ∈ Br(X) such that per(α) is prime to the characteristic of k, we have

ind(α) | per(α)2.
Proof. The case of an algebraically closed field k of characteristic 0 follows from Theorem 17.1
and the Lefschetz principle. When k may have positive characteristic, X lifts to an abelian
scheme XR over an integral local domain R of characteristic 0 with residue field k [NO80].

The class α lies in the image of a class θ ∈ H2(X,µn), where n is the period of α. Since n is
invertible on R, smooth and proper base change implies that θ lifts to a class θR ∈ H2(XR,µn).
Writing η ∈ SpecR for the generic point, the restriction of θR to the geometric generic fiber
Xη̄ gives a Brauer class αη̄ ∈ Br(Xη̄)[n]. Since κ(η̄) is algebraically closed of characteristic 0,
by the previous paragraph we have

ind(αη̄) | per(αη̄)2,
so ind(αη̄) divides n2. Then observe that ind(α) | ind(αη̄), since the index of a Brauer class
may only decrease under specialization [dJ04, Lemma 6.2]. �

Remark 17.3. As the proof shows, when per(α) is divisible by the characteristic of k, the
result still holds as long as α ∈ Br(X) admits a lift along with X to characteristic 0. It is
plausible that such a lift always exists.

We make a few comments on Theorem 17.1. First, for an abelian threefold X and a Brauer
class α ∈ Br(X), it is not difficult to see that

ind(α) | per(α)3.
This follows from symbol length considerations, and the analogous result holds more generally
for an abelian variety of arbitrary dimension. Symbol length bounds are discussed in §23, where
we show that they do not suffice to prove Theorem 17.1.

A different approach to proving Theorem 17.1 might be to show that for any twisted abelian
threefold (X,α), the twisted derived category Dperf(X,α) is equivalent to Dperf(X

′), for X ′ an
abelian threefold. Since the integral Hodge conjecture holds for X ′ [Voi06, Gra04, Tot21] and
the cohomology of X ′ is torsion free, the integral Hodge conjecture holds for Dperf(X

′) [Per22,
Corollary 5.18] and thus also for Dperf(X,α). From there, Theorem 17.1 would follow from

the observation that there are Hodge classes in Ktop
0 (X,α) of rank per(α)2. Unfortunately, we
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show in §24 that Dperf(X,α) is not generally equivalent to Dperf(Y ) for any smooth proper
variety Y .

17.1. Outline of the proof. The basic premise of the argument is the following. For each
abelian threefold X1 and Brauer class α1 ∈ Br(X1), the goal is to construct a family of

twisted abelian threefolds (X,α) over a base S, a section v ∈ Γ(Ktop
0 ((X,α)/S)) whose fibers

are Hodge classes, a stability condition σ on (X,α) over S (with respect to a topological
Mukai homomorphism), and points 0, 1 ∈ S(C) such that the following conditions hold:

(1) The fiber over 1 ∈ S(C) is the original twisted abelian threefold (X1, α1), and the
rank of v1 is equal to per(α1)

2.

(2) One has α0 = 0 ∈ Br(X0), where X0 is the fiber over 0 ∈ S(C).

(3) At 0 ∈ S(C), there do not exist strictly σ0-semistable objects of class v0.

(4) The quotient stackMσ0(v0)/Aut0(Dperf(X0)/C) is Deligne–Mumford.

(5) DTσ0(v0) 6= 0.

If all of these conditions are satisfied, then Corollary 16.4 shows that v1 is algebraic. In
particular, there exists an object in Dperf(X1, α1) of rank per(α1)

2, so ind(α1) | per(α1)
2.

The condition that α0 = 0 is not necessary in order to apply Corollary 16.4; rather, we have
included it here because it plays an important role in making the computation (5) possible.

Let us now address how to arrange for conditions (1)–(5). Condition (1) is handled through
the theory of twisted Mukai structures, which computes explicitly the variation of Hodge
structure Ktop

0 ((X,α)/S) and allows one to construct global sections of Hodge type. This is
explained in §18 below. The precise choice of v is rather intricate, as will be explained when
we address condition (5).

Condition (2) is arranged as follows. The Brauer class α1 on X1 lies in the image of a class

θ1 ∈ H2(X1,µn),

where n = per(α). If X0 is a deformation of X1, then α1 deforms to the trivial Brauer class
on X0 if and only if a parallel transport θ0 of θ1 lies in the image of Pic(X0)/n. Therefore,

in order to find such a deformation of X1, we first lift θ1 to a class θ̃1 ∈ H2(X1,Z), and then

choose X0 to lie in the Hodge locus of θ̃1 in a suitable moduli space of polarized abelian
varieties.

Condition (3) is responsible for the use of the theory of stability conditions over a base in
the argument, as opposed to the more familiar stability of (twisted) sheaves with respect to a
polarization. This is for a purely practical reason, which we now explain. Suppose we wished
to run the argument using stability of sheaves with respect to a relative polarization H on X
over S. Generically, X1 has Picard rank 1, so we have no choice when it comes to the relative
polarization itself. On the other hand, X0 has Picard rank at least 2 from the previous step,
which means we have little control over whether strictly H0-semistable twisted sheaves of class
v0 exist. Instead, we use Lemma 16.5 to construct a relative stability condition σ such that
strictly σ0-semistable objects of class v0 do not exist.

Condition (4) is the first of three appearances in the proof of a remarkable feature of the
cohomology of abelian threefolds, which also plays an important role in [OPT22]. There is a
Q-valued quartic form ∆, called Igusa’s discriminant, on the rational even cohomology of an
abelian threefold. It turns out that if X0 is simple, then for v0 ∈ Ktop(X0), the condition

∆(ch(v0)) 6= 0
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is enough to guarantee that the quotient stack in (4) is Deligne–Mumford (Lemma 19.6). One

can arrange that X0 is simple from the beginning of the proof; this amounts to choosing θ̃1
in (2) so that the general member of its Hodge locus has multiplication by a totally real cubic
field.

Condition (5) is the most intricate step, and impacts a number of choices made at the begin-
ning of the proof. Very little is directly known about the DT invariants of higher rank classes
on abelian threefolds, so the strategy is to transform the problem of computing DTσ0(v0) into
the problem of counting certain curves on X0.

To explain how this works, we first recall a result from [OPT22]: If ∆(v0) ≥ 0, where ∆
is Igusa’s discriminant, then DTσ0(v0) is invariant under wall-crossing of stability conditions
and the action of autoequivalences of Dperf(X0) on v0. With this in mind, we arrange (through
the choice of v at the beginning of the proof) that v0 can be transformed by autoequivalences
into a class of Chern character (1, 0,−β,−n), which is the shape of the Chern character
of an ideal sheaf of a curve. By invariance under wall-crossing, it is enough to calculate
DTH0

(1, 0,−β,−n), where H0 is any polarization on X0.
We have therefore reduced to a curve count. If β ∈ H2(X0,Z) is a curve class and H0 is

any polarization, then a formula for the generating series
∑

n

DTH0
(1, 0,−β,−n)qn (17.1)

is known by work of Oberdieck–Shen [OS20] under the assumption that β is of type (1, 1, d)
for some d > 0. This condition means that β is of the form e1 ∧ e2 + e3 ∧ e4 + d · e5 ∧ e6, for
{ei} a basis of H1(X0,Z). An analysis of the series (17.1) leads to the observation that one
has

DTH0
(1, 0,−β,−n) 6= 0

whenever Igusa’s discriminant is nonnegative: ∆(1, 0,−β,−n) ≥ 0. (Though we have no need
of it, the converse is nearly true). This curve counting argument is carried out in §20.

Arranging that ∆(ch(v0)) ≥ 0 is not difficult, and since Igusa’s discriminant is invariant
under the action of autoequivalences, one gets that ∆(1, 0,−β,−n) ≥ 0. Unfortunately, choos-
ing the initial class v which guarantees that β is ultimately of type (1, 1, d) is subtle. At first
glance, the only way to check that β is of type (1, 1, d) seems to be to verify that it has at
least 4 after reduction modulo every prime number p. Fortunately, it is possible to arrange
the situation so that there is a finite set of primes {ℓ1, . . . , ℓn}, depending rather loosely on v,
such that if β has rank at least 4 modulo each ℓi, then β is of type (1, 1, d). This, along with
some flexibility afforded by the choice of v, allows us to arrange for β to have type (1, 1, d).
We have collected in Appendix A a number of auxiliary results on abelian varieties which are
used in this argument and in arranging condition (2).

18. Hodge classes on twisted abelian varieties

Definition 18.1. Let X be an abelian variety. Given a class B ∈ H2(X,Q(1)), the twisted

Mukai structure H̃(X,B;Z) is the integral Hodge structure of weight 0 on the even cohomology
Hev(X,Z) such that the homomorphism

H̃(X,B;Z) ⊗Q→
⊕

H2i(X,Q)(i), v 7→ exp(B) · v.

is an isomorphism of Q-Hodge structures. We also set H̃(X,B;Q) = H̃(X,B;Z) ⊗Q.
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Remark 18.2. In the K3 surfaces literature (e.g. [HS05]), it is standard to consider twisted
Mukai structures as having weight 2, which differs from our convention.

Remark 18.3. The case of abelian varieties is rather special, since the topological K-theory
Ktop

0 (X) coincides with the integral cohomology Hev(X,Z) under the Chern character. For a
general variety with a topologically trivial Brauer class, the two differ, and one should use the
lattice of topological K-theory to define twisted Mukai structures [Hot22].

Definition 18.4. Let X be an abelian variety. Given a class θ ∈ H2(X,µn), a θ-field is a
class B ∈ H2(X,Q(1)) such that the nth multiple is integral, i.e., nB ∈ H2(X,Z(1)), and the
image of nB under the map

exp(−/n) : H2(X,Z(1)) → H2(X,µn)

is θ.

Lemma 18.5. Let f : X → S be a flat family of abelian varieties, and let X → X be a
µn-gerbe of class θ ∈ H2(X,µn), with Brauer class α.

(1) There is an isomorphism of Q-variations of Hodge structure

ch : Ktop
0 ((X,α)/S) ⊗Q→ Revf∗Q :=

⊕

k≥0

R2kf∗Q(k).

The formation of ch is compatible with base change S′ → S. Here, Dperf(X,α) implic-
itly refers to the category of 1-twisted sheaves on a µn-gerbe of class α.

(2) For s ∈ S(C) and any θs-field Bs, there is an isomorphism of integral Hodge structures

ϕs : K
top
0 (Xs, αs)→ H̃(Xs, Bs;Z)

such that the diagram

Ktop
0 (Xs, αs) Hev(Xs,Q)

Hev(Xs, Bs;Z)

ϕs

chs

exp(Bs)·
(18.1)

commutes.

(3) (Parallel transport) Given s, s′ ∈ S(C) and a continuous path γ from s to s′, the
diagram (18.1) is compatible with parallel transport. More precisely, if Φγ is the parallel
transport isomorphism from Hev(Xs,Q) to Hev(Xs′ ,Q), then

Φγ (exp(Bs) · ϕs) = exp(Φγ(Bs)) · ϕs′

(4) In the situation of (2), a class v ∈ Ktop
0 (Xs, α) lifts to a global section of the variation

Ktop
0 ((X,α)/S) if and only if exp(Bs) · ϕs(v) lifts to a global section of Revf∗Q.

Proof. This is a reformulation of the results of [Hot22]. �

Remark 18.6 (Fibers with trivial Brauer class). In the situation of Lemma 18.5, suppose
that there is a point 0 ∈ S(C) and a θ0-field B0 which is algebraic, i.e., lies in NS(X0). Then
we may choose an equivalence

Dperf(X0, α0)→ Dperf(X0) (18.2)
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such that the induced isomorphism H̃(X0, B0;Z) ≃ H̃(X0,Z) is the identity on the abelian
group Hev(X0,Z) which underlies both Hodge structures.

The point is that if X → X is a µn-gerbe of class θ, then X0 = X×XX0 is isomorphic to the
gerbe of nth roots of a line bundle L on X0 with first Chern class n ·B0 [Lie07, 2.3.4.2]. Then

X0 carries an n-twisted line bundle L1/n such that (L1/n)n descends to L. The equivalence

(18.2) is given by twisting down by L1/n, and the diagram

Ktop
0 (X0, α0) H̃(X0, B0;Z) = Hev(X0,Z)

Ktop
0 (X0) H̃(X0,Z) = Hev(X0,Z).

·(L1/n)∨

ϕ0

id

ch

(18.3)

commutes: ϕ0 is given by twisting down by any topological 1-twisted line bundle with twisted
first Chern class B0, and L

1/n is an example of such [Hot22].

We now specialize to the case of threefolds.

Lemma 18.7. Let f : (X,H) → S be a flat, polarized family of abelian threefolds over a
connected base, with a class θ ∈ H2(X,µn) of Brauer class α ∈ Br(X). Fix a basepoint
1 ∈ S(C), and a θ1-field B1.

(1) For any x, y ∈ Q, the class
(
n2,−n2B1,

n2

2
B2

1 + x · H
2

2
, y · [pt]

)
∈ H̃(X1, B1;Q)

is equal to ϕ1(v1) for a global section v of Ktop
0 ((X,α)/S) ⊗ Q which is everywhere

Hodge.

(2) Given an arbitrary point s ∈ S(C) and the choice of a parallel transport Bs of B1,
one has

ϕs(vs) =

(
n2,−n2Bs,

n2

2
B2
s + x · H

2

2
, y · [pt]

)
∈ H̃(Xs, Bs;Q).

Proof. For (1), let z be the displayed class. Note that

z = n2 exp(−B1) + x′H2 + y′[pt] ∈ Hev(X,Q)

for appropriate constants x′, y′ ∈ Q, so

exp(B1) · z = n2 + x′H2 + y′′[pt]

for y′′ = y′ + x′B1H
2. Then it is clear that exp(B1) · z is Hodge in each degree and extends

to a global section of Revf∗Q; from the Theorem of the Fixed Part [Del71, Théorème 4.1.1],
the latter must be everywhere Hodge, since it is Hodge at 1 ∈ S(C). Then everything follows
from Lemma 18.5. �

19. The discriminant

19.1. Spin representations. We begin by recalling some basic facts about spin representa-
tions. We refer the reader to [FH91, §20].



80 JAMES HOTCHKISS AND ALEXANDER PERRY

Let H be a Q-vector space of dimension n. The vector space V = H⊕H∨ is equipped with
a natural quadratic form q from the pairing between H and H∨. The even part of the Clifford
algebra Cl+(V, q) admits a decomposition of algebras

Cl+(V, q) = End (
∧evH)⊕ End

(∧oddH
)
. (19.1)

There is a natural action of the spin group Spin(V, q) on
∧evH and

∧oddH; these are the
half-spin representations of Spin(V, q).

19.2. Igusa’s formula. In this section, we specialize to the case when dimH = 6.

Theorem 19.1 (Igusa). Let H be a Q-vector space of dimension 6, and let ω ∈
∧6 H be a

nonzero volume element. There is a unique quartic form

∆ :
∧evH→ Q,

satisfying the following properties:

(1) ∆ is invariant under the action of Spin(V, q).

(2) ∆(1 + ω) = −1
4 .

Proof. See [OPT22, Appendix A]. �

Igusa [Igu70, §3, Proposition 3] gives an explicit formula for ∆, as follows. Let x1, . . . , x6
be a basis for H such that

ω = x1 ∧ x2 ∧ · · · ∧ x6.
Any element v of

∧ev H may be written

v = a+
∑

i<j

bijxij +
∑

i<j

cijx
∗
ij + d · ω, a, bij , cij , d ∈ Q

where xij = xi ∧ xj , and x∗ij satisfies xij ∧ x∗ij = ω. We use the following notation:

• B is the 6× 6 alternating matrix with Bij = bij for i < j.

• C is the 6× 6 alternating matrix with Cij = cij for i < j.

• For any pair of integers 1 ≤ i, j ≤ 6, B(i,j) is the 4×4 alternating matrix obtained from
B by simultaneously deleting the ith row and column and the jth row and column
from B.

• The 4× 4 alternating matrix C(i,j) is defined analogously.

Theorem 19.2 (Igusa). With notation as above,

∆(v) = −aPf(C)− dPf(B)

+
∑

i<j

Pf(B(i,j)) Pf(C(i,j))−
1

4


ad−

∑

i<j

bijcij




2

,
(19.2)

where Pf denotes the Pfaffian.

Proof. See [Igu70, §3, Proposition 3]. We note, however, that the formula there appears to
contain an inaccuracy in the sign of the first two terms (as one may see from the fact that it
does not vanish for v = exp(x12 + x34 + x56), as it ought). �
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19.3. Discriminants for abelian threefolds.

Definition 19.3. Let X be an abelian threefold. The discriminant on Ktop
0 (X) is the quartic

form

∆ : Ktop
0 (X) ⊗Q ≃ ∧evH1(X,Q) −→ Q

associated to [pt] ∈ H6(X,Q) as in Theorem 19.1.

The group of autoequivalences Aut(Dperf(X)/C) acts on Ktop
0 (X) via Fourier–Mukai trans-

forms. On the other hand, Spin(V, q) acts on Ktop
0 (X)⊗Q through the half-spin representation,

where

V = H1(X,Q)⊕H1(X,Q).

Theorem 19.4 (Mukai). The group Aut(Dperf(X)/C) acts on Ktop
0 (X) via half-spin trans-

formations.

Proof. See [Muk98]. �

Corollary 19.5. The discriminant ∆ is invariant under the action of Aut(Dperf(X)/C).

Lemma 19.6. Let X be a simple abelian threefold over C, and let v ∈ Ktop
0 (X) be a Hodge

class with ∆(v) 6= 0 and rk(v) 6= 0. Let σ be a stability condition on Dperf(X) over C such
that there do not exist strictly σ-semistable objects of class v. Let φ ∈ R be a phase compatible
with v. Then the stack

Mσ(v, φ)/Aut0(Dperf(X)/C)

is proper and Deligne–Mumford.

Remark 19.7. If H is a polarization on X such that there do not exist strictly H-semistable
sheaves of class v, then the same result holds withMH(v) in place ofMσ(v, φ).

Proof. Note that Mσ(v, φ) consists of stable (in particular simple) objects, and its good
moduli space Mσ(v, φ) is proper [BLM+21, Theorem 21.24]. Moreover, by Lemma 8.14 the
identity component of the space of autoequivalences Aut0(Dperf(X)/C) is proper; in fact, it
is isomorphic to X ×X∨. By Remark 14.2, we have an isomorphism

Mσ(v, φ)/Aut 0(Dperf(X)/C) ∼=Mσ(v, φ)/Aut
0(Dperf(X)/C).

Therefore the properness of the quotient stack follows from Lemma 15.4.
To prove the quotient is also Deligne–Mumford, we show that any stable object E with

nonzero rank and positive-dimensional stabilizer in Aut0(Dperf(X)/C) has ∆(ch(E)) = 0.
This is essentially [OPT22, Lemma 4.7], which uses Fourier–Mukai transforms to reduce to
the classification of semihomogeneous vector bundles due to Mukai [Muk78], but we give a
direct proof using the classification of semihomogeneous complexes from [dJO22].

Let GE ⊂ X × X∨ = Aut0(Dperf(X)/C) be the stabilizer of E. Concretely, GE is the
subgroup of pairs (x,L) such that there exists an isomorphism t∗xE ⊗ L ∼= E. We claim that
the projection GE → X is surjective. The fiber over 0 ∈ X consists of line bundles L such
that E ⊗ L ∼= E. Observe, however, that

det(E ⊗ L) = det(E)⊗ LrkE,

so L is contained in the finite subgroup X∨[rkE]. It follows that the projection GE → X is
finite over its image; since GE is positive-dimensional and X is simple, the image is X.
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It follows that E is a semihomogeneous complex on X (cf. [dJO22]). From the classification
of semihomogeneous complexes (cf. [dJO22, Proposition 4.7]), there is an isogeny π : X ′ → X
and a line bundle L on X ′ such that E ≃ π∗L′[s], for some shift s ∈ Z. Writing c1(L

′) = π∗w
for some rational class w ∈ H2(X,Q), one sees that ch(E) = ±(deg π) exp(w). Then

∆(ch(E)) = (deg π)4∆(1, 0, 0, 0) = 0

because multiplication by exp(w) is a spin transformation (cf. [Obe18, Appendix A]). �

20. Nonvanishing of curve invariants

Given an abelian threefold X, the type of a class in H4(X,C) is an associated tuple of
integers (d1, d2, d3) ∈ Z3

≥0, whose definition is recalled in §A.1. In what follows, by Q-effective

curve class β ∈ H4(X,Z), we mean that β is a positive Q-linear combination of cycle classes
[Ci], Ci ⊂ X (cf. Lemma A.1).9

Proposition 20.1. Let X be an abelian threefold. Let β ∈ H4(X,Z) be a Q-effective curve
class of type (1, 1, d) for some d > 0, and let n be an integer. Consider the class

v = (1, 0,−β,−n),
and assume that ∆(v) ≥ 0. Then, for any polarization H on X, DTH(v) > 0.

In the above statement, we slightly abuse notation by identifying (1, 0,−β,−n) ∈ Hev(X,Z)

with a class v ∈ Ktop
0 (X) via the Chern character isomorphism Ktop

0 (X) ∼= Hev(X,Z). More-
over, implicit in Proposition 20.1 is the claim that the assumptions of Definition 15.6 are
satisfied, so that DTH(v) is well-defined:

Remark 20.2 (Well-definedness). We explain why the invariant DTH(v) is well-defined,
which amounts to showing that the quotient stack

MH(v)/X ×X∨

is Deligne–Mumford, so the assumptions of Definition 15.6 are met. In fact, the action of X∨

on MH is free, and the embedding HilbX(v) → MH(v) (sending Z ⊂ X to its ideal sheaf)
induces an isomorphism of quotient stacks

HilbX(v)/X →MH(v)/X ×X∨. (20.1)

The left-hand side is Deligne–Mumford: this is due to Gulbrandsen [Gul13] when n 6= 0,
while for n = 0, a case which is unimportant for our application, it follows from a variant of
Gulbrandsen’s argument due to Oberdieck (cf. [Obe18, §2.1] for the analog for stable pairs,
which adapts straightforwardly to Hilbert schemes).

Remark 20.3 (Deformation type of curve classes). Any two pairs (X1, β1), (X2, β2), where
X1, X2 are abelian g-folds and β1, β2 are effective curve classes of rank 2g and the same
type (d1, . . . , dg), can be connected by a deformation which keeps β1, β2 of Hodge type and
transports β1 to β2.

Indeed, passing to dual abelian varieties and applying Lemma A.1, this is equivalent to the
claim that the polarized abelian g-folds (X∨

1 , L1) and (X∨
2 , L2) (where Li is the dual to βi)

can be connected by a polarized deformation. Since L1 and L2 have the same type, the claim
follows from the fact that the moduli space of abelian g-folds with fixed polarization type is

9We mention in passing that if β ∈ H4(X,Z) is Q-effective, it is not a priori clear that β is Z-effective in
the evident sense. However, when β has type (1, 1, d), Z-effectivity follows a posteriori from Proposition 20.1.
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connected (e.g., the classical analytic construction presents the moduli space as a quotient of
Siegel’s upper half-space [BL04, §8]).

From Remark 20.3, DTH(v) depends only on the type of the effective class β and the integer
n. For simplicity, in what follows we write

DTd,n = DTH(1, 0,−β,−n),
where β is an effective class of type (1, 1, d) on an abelian threefold X.

We prove Proposition 20.1 by analyzing the generating function for DT invariants of
curve classes of type (1, 1, d) on abelian threefolds. The generating function has recently
been determined by Oberdieck–Shen [OS20], building on earlier work of Bryan–Oberdieck–
Pandharipande–Yin [BOPY18] on the generating function for topological Euler characteris-
tics:

Theorem 20.4 (Oberdieck–Shen). The generating series for the invariants DTd,n is given
as follows:

∑

d,n

DTd,n q
ntd = (q + 2 + q−1)

∏

m≥1

(1 + qtm)2(1 + q−1tm)2

(1− tm)4 (20.2)

Proof. The version of Theorem 20.4 for PT invariants is described in [OS20, §5.7]. In what
follows, we merely compare their notation and setup with ours.

They consider a series

PTA×E2 (q, t) =
∞∑

d=0

∑

n∈Z
Pred
n,H+dF q

ntd,

where:

• A is a simple, principally polarized abelian surface, and E is an elliptic curve;

• F is the cohomology class of any {pt} × E embedded in A× E;

• H is the pushforward of the curve of type (1, 1) (also called H) on A embedded via
any A× {pt} into A× E, so that H + dF is a curve class of type (1, 1, d) on A× E;

• the subscript “2” refers to the genus of a curve C in A of class H.

The definition of Pred
n,H+dF is the following: Fix a curve C in A of class (1, 1); such a curve

turns out to be smooth of genus 2, uniquely determined up to translation, with Jacobian A.
Inside the moduli space of stable pairs Pn(A×E,H + dF ), there is a locus Pn(A×E, (C, d))
consisting of pairs (F, s) such that the set-theoretic support of F pushes forward to C along
the projection A× E → A. (In [OS20], C is written simply as H.) Then one defines

Pred
n,H+dF =

∫

Pn(A×E,(C,d))/E
ν, (20.3)

where Pn(A× E, (C, d))/E is the quotient by the translation action of {0} ×E, and ν is the
Behrend function.

On the other hand, the inclusion of Pn(A× E, (C, d)) into Pn(A× E,H + dF ) induces an
isomorphism of Deligne–Mumford stacks

Pn(A× E, (C, d))/E ≃ Pn(A× E,H + dF )/A × E,
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so (20.3) may be written

Pred
n,H+dF =

∫

Pn(A×E,H+dF )/A×E
ν,

where ν is now the Behrend function on Pn(A× E,H + dF )/A × E.
Next, we explain why Pred

n,H+dF = DTd,n. From Remark 20.3, the class β which appears in
the definition of DTd,n is deformation equivalent to H + dF , since both are effective and of
type (1, 1, d). In other words, we may take X = A × E and β = H + dF in the definition of
DTd,n. We claim that

Pred
n,H+dF =

∫

HilbA×E(H+dF,n)/A×E
ν,

where HilbA×E(H + dF, n) is the Hilbert scheme of 1-dimensional subschemes Z ⊂ A × E
with [Z] = H + dF and χ(OZ) = n. This is essentially [Obe18, Theorem 3(i)], but the result
is stated there for the product of a K3 surface with an elliptic curve E. Nonetheless, the proof
goes through for A× E after replacing the action of E with the action of A× E everywhere
in sight. As in Remark 20.2, there is an isomorphism of Deligne–Mumford stacks

HilbA×E(H + dF, n)/A× E ∼=MH(1, 0,−H − dF,−n)]/A× E × (A× E)∨

induced by the embedding HilbA×E(H + dF, n)→MH(1, 0,−H,−dF,−n) sending Z ⊂ X to
its ideal sheaf. Now a result of Behrend [Beh09] asserts that

DTd,n =

∫

MH(1,0,−H−dF,−n)]/A×E×(A×E)∨
ν,

where ν is the Behrend function on MH(1, 0,−H − dF,−n)]/A× E × (A× E)∨. Altogether,
this proves the claimed equality Pred

n,H+dF = DTd,n.

Finally, in [OS20, §5.7, Proposition 5], it is shown that

PTA×E2 (q, t) = φ−2,1(q, t),

where the right-hand side (as defined in [OS20, §0.5]) is precisely the right-hand side of
(20.2). �

Remark 20.5. The coefficient of qatb in the expansion of the product
∏

m≥1

(1 + qtm) (20.4)

is the number of partitions of b into a distinct parts. For example, if Tk is the kth triangular
number, then the coefficient of qntTk in (20.4) is nonzero for all 1 ≤ n ≤ k.
Lemma 20.6. Let d, n > 0 be integers such that n2 ≤ 4d. In the expansion of the product

∏

m≥1

(1 + qtm)2, (20.5)

the coefficient of qn−1td is positive.

Proof. Let k = ⌊
√
d⌋, and write d = k2 + ǫ. Since d < (k + 1)2, we have ǫ < 2k + 1, which

implies n ≤ 2k + 1.
Consider the case n ≤ 2k. Then d = Tk + Tk−1 + ǫ, with notation as in Remark 20.5. Since

n−1 ≤ 2k−1, we may write n−1 = n1+n2, where n1 ≤ k and n2 ≤ k−1. In particular, the
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coefficients of qn1tTk and qn2tTk−1+ǫ in (20.4) are positive by Remark 20.5, so their multiple
qn−1td has a nonzero coefficient in (20.5).

Finally, consider the case n = 2k + 1. From the inequality

4k2 + 4k + 1 ≤ 4k2 + 4ǫ,

we see that k < ǫ. It follows that we may write d = k2 + k + ǫ′ for some ǫ′ > 0. Equivalently,
d = Tk + Tk + ǫ′. A similar argument as in the previous paragraph shows that the coefficient
of qn−1td in (20.5) is positive. �

Proof of Proposition 20.1. Let d > 0, n be integers. We observe that ∆(v) = d−n2/4, so our
assumption is that 4d−n2 ≥ 0. Since the coefficients of (20.2) are symmetric under q 7→ q−1,
we may suppose that n ≥ 0. The case n = 0 is straightforward to see, so we take n ≥ 1. In
that case, from Lemma 20.6, the product (20.5) contributes a nonzero qn−1td term, which we
multiply with (q + 1 + q−1) to obtain the desired qntd term. �

21. Proof of the main result

21.1. Preliminary reduction. Given an abelian threefold X, the type of a class in H2(X,C)
is an associated tuple of integers (d1, d2, d3) ∈ Z3

≥0, whose definition is recalled in §A.1.

Definition 21.1. A class θ ∈ H2(X,µn) has type (d1, d2, d3) if it admits a lift to an integral
class u ∈ H2(X,Z(1)) of type (d1, d2, d3). In fact, the reduction map

SL6(Z)→ SL6(Z/n)

is surjective (transvections, which generate the right-hand side, may be lifted [Lan02, XIII,
§9]), so θ has type (d1, d2, d3) if and only if there is an integral basis x1, . . . , x6 of H1(X,µn)
such that

θ = d1x1 ∧ x4 + d2x2 ∧ x5 + d3x3 ∧ x6.
The integers d1, d2, d3 are only well-defined up to multiplication by units in Z/n, and if n = pe

is a prime power, then any class has type (pa, pb, pc) for some a, b, c > 0.
If we may choose a lift u of type (d1, d2, d3) with u3 > 0, then we say that θ is of type

(d1, d2, d3) and admits a positive lift.

Given an abelian threefold X and a class θ ∈ H2(X,µn), we say that the period-index
conjecture holds for the pair (X, θ) if ind(α) | n2, where α is the image of θ in Br(X).

Remark 21.2 (Isogeny trick). In the proof of Lemma 21.3 below, we repeatedly use the
following: for an integral class u of type (d1, d2, d3) on an abelian threefold X and nonzero
integers e1, e2, e3 with e1 | e2 | e3, there is an isogeny π : X ′ → X of degree e1e2e3 such that
π∗u is of type (e1d2, e2d2, e3d3). The same holds for classes θ ∈ H2(X,µn).

For the proof, writing

u = d1x1 ∧ x4 + d2x2 ∧ x5 + d3x3 ∧ x6,
we define the sublattice

Λ′ =

〈
x1
e1
,
x2
e2
,
x3
e3
, x4, x5, x6

〉
⊂ H1(X,Q).

Then π : X ′ → X is dual to the isogeny H0,1(X)/Λ→ H0,1(X)/Λ′, where Λ = H1(X,Z).

Lemma 21.3. Suppose that the period-index conjecture holds for all pairs (X, θ) where X is
an abelian threefold and θ ∈ H2(X,µn) such that:
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(1) X admits a polarization H of type (d1, d2, d3) for integers di dividing a power of n.

(2) The class θ ∈ H2(X,µn) is of type (1, 1, 1), and admits a positive lift.

Then for an arbitrary abelian variety X with a class θ ∈ H2(X,µn), the period-index conjecture
holds for (X, θ).

Proof. Let (X, θ) be arbitrary. The class θ admits a prime decomposition

θ = θ1 + θ2 + · · ·+ θk

into pi-power torsion classes θi, for a set of primes pi dividing n. The period-index conjecture
for all (X, θi) is equivalent to the period-index conjecture for (X, θ), so we may suppose that
n = pe is a prime power [GS06, Proposition 4.5.16].

Let H be a polarization on X of type (d1, d2, d3). There is an isogeny X ′ → X of degree
prime to p such that X ′ admits a polarization H ′ of type (d′1, d

′
2, d

′
3), where each d′i divides a

power of n. (Use the isogeny trick from Remark 21.2 to make the pullback of H a multiple of a
class H ′ of the desired form.) The period-index conjecture for (X ′, θ′), where θ′ is the pullback
of θ, implies the period-index conjecture for (X, θ). Replace (X,H, θ) with (X ′,H ′, θ′).

Now, θ is of type (pa, pb, pc) for some a, b, c > 0, as explained in Definition 21.1. Then
there is an isogeny X ′ → X of degree p2c−a−b so that the pullback θ′ is of type (pc, pc, pc).
If α′ is the image of θ′ in Br(X ′), then α′ is the image of a class θ′0 ∈ H2(X ′,µpe−c) of type

(1, 1, 1). After replacing θ with θ−1 (which does not change the index), we may suppose that
θ′0 is of type (1, 1, 1) and admits a positive lift. Since the pullback H ′ of H remains of the
required type, the triple (X ′,H ′, θ′0) satisfies hypotheses (1) and (2), so we may assume that
the period-index conjecture holds for θ′0. In particular, the index of α′ is at most p2e−2c.

If α is the image of θ in Br(X), then

ind(α) | p2c−a−b · p2e−2c | p2e−a−b,
which implies that the period-index conjecture holds for (X, θ). �

21.2. Choosing initial data.

Situation 21.4. Let (X1,H1, θ1) be a triple, where:

(1) X1 is an abelian threefold.

(2) For an integer n > 1, θ1 ∈ H2(X1,µn) is of type (1, 1, 1) and admits a positive lift.

(3) The polarization H1 is of type (d1, d2, d3), where each di divides a power of n.

Lemma 21.5. In Situation 21.4, there exists a lift u1 ∈ H2(X1,Z(1)) of θ1 which satisfies
the following properties:

(1) The class u1 is of type (1, 1, 1) with u31 > 0.

(2) There exists a polarized deformation from (X1,H1) to (X0,H0) such that X0 is a
simple abelian threefold and a parallel transport u0 of u1 lies in NS(X0); moreover, u0
is a principal polarization.

(3) There exists an integer A > 0, prime to n, and an integer k > 0, which is arbitrarily
large with respect to A, such that the class

1

2

(
A2 · 1

2
(u21)

∗ − nk · 1
2
(H2

1 )
∗
)2

+ n · Au∗1 ∈ H4((X∨
1 ),Z) (21.1)
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is of type (1, 1, d), for some integer d > 0, where (−)∗ denotes the duality isomorphism
Hi(X1,Z) ≃ H6−i((X∨

1 ),Z).

Proof. From Proposition A.15, we see that the set of lifts u1 satisfying (1) and (2) is nonempty,
and its image in P = P(H2(X1,C)) is Zariski dense. In particular, if C ⊂ P is the join of
Gr(2,H1(X,C)) with the point [H1], then we may choose u1 to lie in the complement of C.
For such a choice of u1, the vector space 〈u1,H1〉C does not contain any rank 2 elements.

We show that u1 satisfies (3). First, the statement of (3) is deformation invariant, so by (2)
we may assume that u1,H1 ∈ NS(X1), where X1 is simple. Let u = (u21)

∗/2 and H = (H2
1 )

∗/2.
We must show that Proposition A.17 applies to (21.1), which amounts to checking that the
following hold:

(1) u is of type (1, 1, 1): This one computes from the fact that u1 is of type (1, 1, 1).

(2) H is of type (d′1, d
′
2, d

′
3) where each d′i divides a power of n: This one computes from

the fact that H is of type (d1, d2, d3), where each di divides a power of n.

(3) 〈u2,H2〉C does not contain rank 2 elements: This is because u2 and H2 are identified
with u1 and H1 under the given duality isomorphism, up to scaling. We chose u1 above
so that 〈u1,H1〉C does not contain rank 2 elements.

(4) u2/2 = u∗0: As above, one chooses a basis and computes, noting that u3 > 0. �

21.3. The deformation step. Let (X1,H1, θ1) be as in Situation 21.4. Choose a class u1
satisfying the conclusions of Lemma 21.5, and integers A, k as in Lemma 21.5(3). By Igusa’s
formula (Theorem 19.2), we may take k to be sufficiently large so that the class

v1 =

(
n2,−n · Au1,

1

2
(A2u21 − nkH2

1 ), 1

)
∈ Hev(X1,Z) (21.2)

has positive discriminant. In fact, we ultimately take k to be sufficiently large so that, in the
distant future, Remark 21.9 below applies.

From Lemma 21.5(2), we may choose a flat, polarized family f : (X,H) → S of abelian
threefolds over a connected affine curve S, with points 1, 0 ∈ S(C), satisfying the following
properties:

• The fiber over 1 ∈ S(C) is (X1,H1).

• The fiber over 0 ∈ S(C) is (X0,H0), where X0 is a simple abelian threefold.

• A parallel transport u0 ∈ H2(X0,Z(1)) of u1 is algebraic.

After finite base change, we may suppose that θ1 lifts to a global section of R2f∗µn. From the
Leray spectral sequence, it lifts to a class θ ∈ H2(X,µn).

Remark 21.6. Let B1 = Au1/n. Since A is prime to n, we may regard B1 as a θ-field
for a power θt of θ, where t is prime to n. Observe that v1 is of the form described in
Lemma 18.7. After applying Lemma 18.7, we conclude that there is a global section v of
Ktop

0 (Dperf(X,α
t)/S) (here α ∈ Br(X) is the image of θ), such that the following hold:

(1) The section v is everywhere of Hodge type.

(2) The restriction of v to the stalk at 1 corresponds (under the isomorphism from

Lemma 18.5) to the class v1 ∈ H̃(X1, B1;Z) described above.
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(3) The restriction of v to the stalk at 0 corresponds to the class v0 ∈ H̃(X0, B0;Z), where
B0 = Au0/n and

v0 =

(
n2,−n · Au0,

1

2
(A2u20 − nkH2

0 ), 1

)
.

Remark 21.7. In the situation above, the class B0 = Au0/n is algebraic, so the restriction
αt0 ∈ Br(X0) is trivial, where α

t is the image of θt in Br(X). The upshot is that the twisted
derived category Dperf(X0, α

t
0) is non-uniquely equivalent to Dperf(X0). From Remark 18.6,

we may choose an equivalence between categories such that the induced isomorphism between

Mukai structures H̃(X0, B0;Z) and H̃(X0,Z) is the identity on the abelian group Hev(X,Z)
which underlies both Hodge structures. The chosen equivalence is used implicitly throughout

the remainder of the proof, e.g., to identify Bridgeland-stable objects of class v ∈ H̃(X0, B0;Z)

in Dperf(X0, α
t
0) with Bridgeland-stable objects of class v ∈ H̃(X0,Z) in Dperf(X0).

We have finally arrived at a situation where we may verify the hypotheses of Corollary 16.4.

Proposition 21.8. In the situation of Remark 21.6, there exists a stability condition σ on
Dperf(X,α) over S with respect to a topological Mukai homomorphism, such that the following
conditions hold:

(1) There do not exist strictly σ0-semistable objects of class v0.

(2) Mσ0(v0, φ)/Aut(Dperf(X0, α
t
0)/C) is Deligne–Mumford, where φ is a phase compatible

with v0.

(3) DTσ0(v0) 6= 0.

The proof of Proposition 21.8 will be given in the next section. Using Corollary 16.4, we
are now able to prove Theorem 17.1:

Proof of Theorem 17.1. For the convenience of the reader, we trace the thread of the argu-
ment. By Lemma 21.3, we reduce to proving the desired period-index bound for (X1, θ1) as
in Situation 21.4. In fact, it is enough to prove the desired period-index bound for θt1, since t
is prime to n. (The period-index problem for α is equivalent to the period-index problem for
αt, whenever t is prime to the period.)

We have constructed a Hodge class v1 of rank n
2 in the twisted Mukai structure for (X1, θ

t
1),

and it suffices to show that v1 is algebraic. Proposition 21.8 shows that the hypotheses of
Corollary 16.4 are satisfied, so v1 is algebraic. �

21.4. Proof of Proposition 21.8. First, the existence of a relative stability condition is
granted by Corollary 12.12. Once the existence of a single stability condition for Dperf(X,α)
over S is known, we can find by Lemma 16.5 a (potentially different) stability condition σ
over S such that strictly σ0-semistable objects of class v0 do not exist.

Recall from Lemma 21.5 that the class u0 ∈ H2(X0,Z) is a principal polarization on X0. Let
Φ : Dperf(X0) → Dperf(X

∨
0 ) be the standard Fourier–Mukai transform, and let φ : X → X∨

be the isomorphism provided by the principal polarization. We write Ψ = φ∗ ◦Φ, which is an
autoequivalence of Dperf(X0).

By our assumptions on A and k, the class v0 has positive discriminant, so the moduli space
Mσ0(v0, φ)/Aut0(Dperf(X0)/C) is Deligne–Mumford by Lemma 19.6, and we may define the
DT invariant DTσ0(v0). In fact, by [OPT22, Theorem 4.9 and Lemma 4.12], DTσ′(v0) does
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not depend on the stability condition σ′ ∈ Stab†(X0), where Stab†(X0) is the distinguished
component of the stability manifold (see Remark 12.10), so we may simply write DT(v0).

According to [OPT22, Theorem 1.1 and Proposition 1.2], we have the identity

DT(v0) = DT(Ψ∗v0).

In addition, by Corollary 19.5, ∆(Ψ∗v0) = ∆(v0) > 0. On the other hand, since φ∗ comes
from an isomorphism of the underlying varieties X and X∨, it preserves DT invariants and
the discriminant ∆, so one has

DT(v0) = DT(w0), ∆(v0) = ∆(w0),

where w0 = Φ∗v0. Therefore, it suffices to show that DT(w0) 6= 0. (We work with w0 over
Ψ∗v simply to avoid additional notational clutter.)

From [Huy06, Lemma 9.23], one computes that

w0 =

(
1,−1

2
(A2(u20)

∗ − nk(H2
0 )

∗),−n ·Au∗0,−n2
)
,

where (−)∗ denotes the duality isomorphism Hi(X1,Z) ≃ H6−i((X∨
1 ),Z). Again by [OPT22,

Theorem 1.1 and Proposition 1.2], we have DT(w0) = DT(Θ∗w0) for any autoequivalence Θ
of Dperf(X

∨
0 ); taking Θ = −⊗ L, where L is a line bundle on X∨

0 of class c1(L) ∈ H2(X∨
0 ,Z)

equal to the degree 2 term of w0, we see that we may replace w0 with exp(−c1(L)) · w0.
Computing, we find

exp(−c1(L)) · w0 =

(
1, 0,−1

2

(
A2 · 1

2
(u20)

∗ − nk · 1
2
(H2

0 )
∗
)2

− n · Au∗0, . . .
)
.

We write it simply as (1, 0,−β,−n).
In Lemma 21.5, we arranged it so that β is of type (1, 1, d) for some d > 1, and as above,

∆(1, 0,−β,−n) = ∆(v0) > 0.

From Remark 21.9 below, the class β is Q-effective for k sufficiently large, which we may
arrange from the beginning. From Proposition 20.1 and the existence of a Gieseker chamber,
[OPT22, Proposition 3.26] (see Remark 21.10 below), we have

DT(v0) = DT(1, 0,−β,−n) > 0,

as needed. �

Remark 21.9 (Effectivity of the curve class). For k ≫ 0, the curve class

β =
1

2

(
A2 · 1

2
(u20)

∗ − nk · 1
2
(H2

0 )
∗
)2

+ n · Au∗0

is Q-effective in the sense of Lemma A.1.
Indeed, since u0 and H0 are ample, Lemma A.1 shows that u∗0 is Q-effective and the classes

x := (u20)
∗/2 and y := (H2

0 )
∗/2 are ample. Expanding the first term, we need to show that

n2ky2 − 2A2nkxy +A4x2 = nk(nky2 − 2A2xy) +A4x2

is effective for k ≫ 0. This reduces to showing that nky2−2A2xy is effective for k ≫ 0, which
follows from a claim: y2 lies in the interior of the cone of Q-effective curve classes.

To prove the claim, observe that since y is ample, multiplication by y sends the ample
cone in NS(X)Q isomorphically onto an open cone in Hdg4(X,Q) contained in the cone of
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Q-effective curve classes. Since y lies in the interior of the ample cone, y2 lies in the interior
of the cone of Q-effective curve classes.

Remark 21.10. In [OPT22], there is a sign convention in play (cf. [OPT22, Remark 2.16]),
which we do not adopt here. As a result, one cannot näıvely invoke [OPT22, Proposition 4.2]
to ensure the existence of a Gieseker chamber. Instead, [OPT22, Proposition 3.26] ensures its
existence when the leading term of the Chern character is an effective algebraic class.

Appendix A. Auxiliary results on abelian threefolds

A.1. Rank and type. Let X be an abelian variety of dimension g, and let u ∈ H2(X,C).
The rank of u is the rank of the corresponding map

ϕu : H1(X,C)→ H1(X,C) (A.1)

given by the skew-symmetric form associated to u ∈ ∧2 H1(X,C)∨. In particular, the rank
belongs to {0, 2, 4, . . . , 2g}. An element u has rank ≤ 2r if and only if ur+1 = 0.

If u lies in H2(X,Z), then there is a unique sequence of nonnegative integers d1, . . . , dg such
that d1 | · · · | dg and

u = d1e1 ∧ eg+1 + · · · + dgeg ∧ e2g
for some integral basis e1, . . . , e2g of H1(X,Z). The sequence (d1, . . . , dg) is the type of u.

The rank of an element of H2(X,C) ∼=
∧2 H1(X,C) and type of an element of H2(X,Z)

are defined similarly.
A class β ∈ H2(X,Q) is Q-effective if it is a positive Q-linear combination of cycle classes

[Ci], for curves Ci ⊂ X.

Lemma A.1. Let β ∈ H2(X,Q) be a class of rank 2g on an abelian g-fold X. The du-
ality H2(X,Q) ≃ H2(X∨,Q) induced by the natural isomorphism H1(X,Q) ≃ H1(X∨,Q)
exchanges the following two cones:

(1) The cone of Q-effective curve classes of rank 2g in H2(X,Q).

(2) The ample cone in NS(X∨)Q.

Proof. Before embarking on the proof, we note that if π : X → Y is an isogeny between
abelian varieties, and β ∈ H2(X,Q) is a class, then

(π∗β)
∗ = (π∨)∗(β∗), (A.2)

where (−)∗ denotes the duality isomorphism and π∨ : Y ∨ → X∨ is the dual isogeny.
Let β be a Q-effective curve class. After scaling, we may assume that β is a positive Z-linear

combination
∑
ni[Ci], where Ci ⊂ X are integral curves. The fact that β has rank 2g implies

that
∑
Ci is nondegenerate, i.e., is not contained in any abelian subvariety of X. From (A.2),

the dual of β is the pullback of
∑
ni[Θi] along the induced map

π : X∨ →
∏

Jac(Cνi ). (A.3)

where Cνi → Ci is the normalization, and Θi is the theta divisor on Jac(Cνi ), which is dual to
[Cνi ] ∈ H2(Alb(C

ν
i ),Z). Since

∑
Ci is nondegenerate, π

∨ is surjective, so π has a finite kernel.
In particular, the pullback of a polarization along π remains a polarization.

Let L ∈ NS(X)Q be an ample class, and write β = L∗. From (A.1), we are allowed to work
up to finite isogeny, so we may assume that L is a multiple of a principal polarization P .
Then the dual of P (hence L) is effective, since it is identified with P g−1/(g − 1)! under the
isomorphism φP : X → X∨. �
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A.2. The characteristic Pfaffian. Let (X,H) be a polarized abelian variety of dimension
g. Throughout, we abuse notation and write H for both the line bundle and its first Chern
class. Given an element u ∈ H2(X,C), the characteristic Pfaffian of u is

pu(t) = Pf(tH − u) ∈ C[t].

Here, the right-hand side is the Pfaffian of a complex-valued skew-symmetric matrix associated
to tH − u; our sign convention in forming the Pfaffian is that pu(t) has positive leading
coefficient. The roots of pu(t) correspond to values of t for which tH −u is a degenerate form.
Although it is not reflected in the notation, pu(t) depends on the choice of polarization.

Lemma A.2. For u ∈ H2(X,C),

pu(t) =

g∑

i=0

(−1)g−i (H
iug−i)

(g − i)!i! t
i. (A.4)

Proof. Let qu(t) be the right-hand side of (A.4). From the binomial theorem,

qu(t) =
1

g!

∫

X
(tH − u)g.

The roots of qu(t) are the values of t where (tH − u)g = 0, which occurs precisely when
rk(tH − u) < 2g. It follows that pu(t) and qu(t) have the same roots; since the leading
coefficients match, the lemma follows. �

The following is an analogue of the fact that a matrix with distinct eigenvalues which belong
to the base field can be diagonalized:

Lemma A.3. Let k be a field, and let (V,H) be a symplectic vector space of dimension 2g

over k. Let u ∈
∧2 V ∨ be an alternating form such that pu(t) = Pf(tH − u) has distinct roots

a1, . . . , ag ∈ k. Then there is a symplectic basis x1, . . . , x2g of V such that

H = x∨1 ∧ x∨g+1 + · · ·+ x∨g ∧ x∨2g
u = a1x

∨
1 ∧ x∨g+1 + · · ·+ agx

∨
g ∧ x∨2g,

where x∨1 , . . . , x
∨
2g is the dual basis of x1, . . . , x2g.

Proof. For each i, let Vi be the kernel of the alternating form u − aiH. For each x ∈ Vi and
any y ∈ V ,

〈x, y〉u = ai〈x, y〉H .
For x ∈ Vi and y ∈ Vj ,

〈x, y〉H = a−1
i 〈x, y〉u = a−1

j 〈x, y〉u.
If i 6= j (so that ai 6= aj , by assumption), then 〈x, y〉H = 〈x, y〉u = 0. In particular, the
subspaces Vi and Vj are H-orthogonal for i 6= j. On the other hand, since H is nondegenerate,
H|Vi is nondegenerate for each i. It follows that the map

g⊕

i=1

Vi → V

is an isomorphism, since for each i,
⊕

j 6=i Vj is H-orthogonal to Vi.
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Putting everything together, there is an isomorphism of symplectic vector spaces

(V,H) =

g⊕

i=1

(Vi,H|Vi). (A.5)

To conclude, one takes xi, xg+i ∈ Vi to be any symplectic basis for H|Vi = a−1
i · u|Vi . �

A.3. Endomorphisms. Let (X,H) be a polarized abelian g-fold. Consider the first homology
H1 = H1(X,Z), regarded as a Hodge structure of weight 1, with a Hodge decomposition

H1,C = H1,0 ⊕H0,1.

Given an element u ∈ H1,1(X), consider the homomorphism

ϕu : H1,C → H1
C = H1(X,C)

induced by the alternating form associated to u. The composition

ρ(u) : H1,C H1
C H1,C,

ϕu ϕ−1
H (A.6)

preserves H1,0, and from the Hodge decomposition one sees that the induced map

ρ : H1,1(X)→ End(H1,0) (A.7)

is an isomorphism which sends H to id. Although it is not reflected in the notation, ρ depends
on the choice of polarization H.

Let Ends(X) be the subring of End(X) fixed by the Rosati involution [BL04, §5.1]. There
is a commutative diagram

NS(X)Q Ends(X)Q

NS(X)C Ends(X)C

H1,1(X) End(H1,0),

ρ̃

∼

∼

ρ
∼

(A.8)

where ρ̃ is given by sending u to the rational endomorphism of X induced by the Hodge-
structure endomorphism ϕu ◦ϕ−1

H of H1,Q from (A.6). Moreover, the right vertical arrows are
ring homomorphisms.

Lemma A.4. Let u ∈ H1,1(X). The characteristic polynomial of ρ(u) ∈ End(H1,0) is given
by pu(t), up to a nonzero scalar.

Proof. Let χu(t) = det(t · id− ρ(u)) be the characteristic polynomial of ρ(u). It is enough to
show that χu(t) and pu(t) have the same roots.

For any v ∈ H1,1(X), the compatibility of v with the Hodge decomposition implies that v
is a degenerate form if and only if ρ(v) has rank < g. Therefore, Pf(v) vanishes if and only
if det(ρ(v)) = 0. Taking v = aH − u ∈ H1,1(X) for each a ∈ C, we see that χu(t) and pu(t)
have the same roots. �
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Lemma A.5. Let X be a polarized abelian g-fold, and let u ∈ NS(X)Q. Then there is a ring
homomorphism

Q[t]/pu(t)→ Ends(X)Q

sending t to ρ̃(u). In particular, if pu(t) is irreducible over Q, then Ends(X)Q contains the
field Q[t]/pu(t).

Proof. From Lemma A.4, the map Q[t] → End(H1,0) factors through Q[t]/pu(t). There is a
commutative diagram of ring homomorphisms

Q[t] Q[t]/pu(t)

Ends(X)C End(H1,0).

t7→ρ̃(u) t7→ρ(u)

The injectivity of the bottom arrow, and hence the existence of the dotted arrow, follows from
chasing the diagram (A.8). �

Remark A.6. If X is a simple abelian threefold, then End(X)Q/Q is either the trivial
extension, an imaginary quadratic extension, a totally real cubic extension, or a CM extension
of degree 6. It follows that the rank of NS(X)Q ≃ Ends(X)Q is either 1 or 3, and in the latter
case, Ends(X)Q is a totally real cubic field [BL04, Proposition 5.5.7].

Lemma A.7. Let X be a simple abelian g-fold such that Ends(X)Q is a product of fields (e.g.,
a simple abelian threefold). If u ∈ NS(X)C has rank 2, then there exists a constant c ∈ C so
that c · ρ̃(u) is idempotent.

Proof. Since the rank of u is 2, we have u2 = 0. Thus, it follows from Lemma A.4 that

C[t]/pu(t) ≃ C[t]/(tg−1(t− λ))
for some constant λ. Since Ends(X)C is nilpotent-free and ρ̃(u) is nonzero, λ is nonzero.
Similarly, since t(t − λ) is nilpotent in Ru, ρ̃(u)

2 − λ · ρ̃(u) = 0. It follows that 1/λ · ρ̃(u) is
idempotent. �

Proposition A.8. Let X be an abelian g-fold such that Ends(X)Q is a product of fields (e.g.,
a simple abelian threefold). Then the intersection

P(NS(X)C) ∩Gr(2,H1
C) ⊂ P(H2(X,C)) (A.9)

is finite.

Proof. The intersection (A.9) is the set of rank 2 points in P(NS(X)C). We choose a polar-
ization on X. From Lemma A.7, the image of (A.9) in P(Ends(X)C) under P(ρ̃) is contained
in the image in P(Ends(X)C) of the set of nonzero idempotents in Ends(X)C. The set of
idempotents of Ends(X)C is in bijection with the set of clopen subsets of SpecEnds(X)C,
hence is finite. �

A.4. Hodge loci. Let f : Y → S be a smooth projective morphism of complex varieties, and
let u ∈ H2k(Ys,Q) for some s ∈ S(C). The Hodge locus Hdg(u) ⊂ S is the set of points t such
that there exists a path γ from s to t which transports u to a Hodge class in H2k(Yt,Q).

Given a polarized abelian g-fold (X,H) and a class u ∈ H2(X,Q), there is an equation for
the Hodge locus of u in the moduli space of polarized abelian g-folds, or rather its universal
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cover Hg. Recall that Siegel’s upper half-space Hg is the space of symmetric complex matrices
Z such that Im Z is positive-definite.

For simplicity, we treat only the case of principally polarized abelian varieties. On the
other hand, it is convenient to allow real classes u ∈ H2(X,R). Each Z ∈ Hg determines
a principally polarized abelian variety X is follows: The g × 2g matrix (Z, 1g) induces an
R-linear map R2g → Cg. Then X = Cg/Λ, where Λ is the image of Z2g.

Let M be the real skew-symmetric matrix corresponding to u ∈ H2(X,R) in an H-
symplectic basis of Z2g. We write M as matrix of g × g blocks

M =

(
A B
−Bt C

)
,

where A and C are skew-symmetric.

Lemma A.9. In the above situation, the class u lies in H1,1(X) if and only if

A−BZ + ZBt + ZCZ = 0 (A.10)

Proof. This is [BL99, §1, Proposition 3.4]. Note, however, that our matrix Z is symmetric,
and also that the cited result is a criterion for an integral class u ∈ H2(X,Z) to belong to
the Néron–Severi group NS(X) = H2(X,Z) ∩ H1,1(X). The argument applies to real classes
u ∈ H2(X,R) without change. �

Remark A.10. Lemma A.9 shows that the codimension of Hdg(u) inside of Hg is at most
g(g− 1)/2. Indeed, the expression (A.10) is skew-symmetric in the entries of Z, so it imposes
at most g(g − 1)/2 conditions on Hg. The same holds in the (coarse) moduli space Ag of
principally polarized abelian varieties: the Hodge locus Hdg(u) ⊂ Ag, which is simply the
image of Hdg(u) ⊂ Hg, is a subvariety of codimension ≤ g(g−1)/2. By working up to polarized
isogeny, one gets the same bound for Hodge loci in a moduli space of abelian varieties with
any fixed polarization type.

Proposition A.11. Let (X,H) be a polarized abelian variety, and let u ∈ H2(X,Z) be an
element such that pu(t) is irreducible over Q and has real roots. Then there is a polarized
deformation from (X,H) to (X ′,H ′) such that the following hold:

(1) X ′ is simple.

(2) A parallel transport u′ of u from X to X ′ lies in NS(X ′). If, in addition, the roots of
pu(t) are positive, then u′ is a polarization.

Remark A.12. Let (X,H) be a polarized abelian g-fold, and let u ∈ NS(X) be a class such
that pu(t) has positive real roots. Then u is a polarization. Indeed, if pu(t) has positive real
roots, then the coefficients of ti in pu(t) are nonzero and alternate in sign. By Lemma A.4,

H iug−i > 0,

for all i, so it follows from [BL04, 4.3.3] that u is a polarization.

Remark A.13 (The real symplectic group). Given a principally polarized abelian variety
(X,H) and a real symplectic transformation g ∈ Sp(H1(X,R),H), one may construct a
new principally polarized abelian variety (Xg,H), given as follows: the weight-one Hodge
structure corresponding to Xg is determined by the real Hodge structure H1(X,R) with
lattice g(H1(X,Z)). Since g is symplectic, Xg is principally polarized; moreover, an element
u ∈ H2(X,Q) lies in NS(X)Q if and only if g∗u lies in H1,1(Xg). The association (g,X) 7→ Xg

corresponds to the natural action of Sp2g(R) on Siegel’s upper half-space Hg.
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Proof of Proposition A.11. Assume for the moment that we have found a parallel transport u′

of u which is Hodge. Then we may take X ′ to be simple. Indeed, pu(t) = pu′(t), so EndQ(X
′)

will contain the totally real field F = Q[t]/pu(t) by Lemma A.5. In the moduli space of abelian
g-folds with fixed polarization type, the locus of abelian varieties with multiplication by F
is a union of codimension g(g − 1)/2 subvarieties whose generic elements are simple abelian
varieties of Picard rank g [DL90]. On the other hand, the Hodge locus of u is contained in
this locus and has codimension at most g(g − 1)/2 (Remark A.10), so we may indeed take
X ′ to be simple. If, in addition, the roots of pu(t) are positive, then u′ is a polarization by
Remark A.12.

Working up to polarized isogeny, we may assume that H is a principal polarization. By
Lemma A.3 and the assumption that pu(t) has real roots (which are in fact distinct, since pu(t)
is assumed to be irreducible over Q), there is a real symplectic transformation g ∈ Sp2g(R)
which diagonalizes u. Replacing X by Xg and u by g∗u as in Remark A.13, it is enough to
show that if u ∈ H2(X,R) is a diagonal form, then then there is a polarized deformation
(X ′,H ′) such that u is Hodge. Suppose that the skew-symmetric matrix corresponding to u
is of the form

M =

(
0 B
−B 0

)
where B =



b1

b2
b3


 . (A.11)

Let XZ be a principally polarized abelian variety associated to an element Z ∈ Hg. From
Lemma A.9, a parallel transport of u to XZ belongs to H1,1(XZ) if and only if

−BZ + ZB = 0.

The relation is satisfied for any diagonal matrix Z ∈ Hg. �

A.5. Forms with positive discriminant. In this section, we specialize to the case of abelian
threefolds. Roughly, the goal is to show that a class ū ∈ H2(X,Z/n) can be lifted to a large
number of classes u ∈ H2(X,Z) such that the cubic polynomial pu(t) has positive real roots.

For an integer N > 0, we write Γ6(N) for the finite-index subgroup of SL6(Z) consisting of
matrices which reduce to the identity modulo N . For u ∈ H2(X,Z) and g ∈ SL6(Z) (regarded
as SL6(H1(X,Z))), we write g∗u for the action of g.

Lemma A.14. Let (X,H) be a polarized abelian 3-fold, u ∈ H2(X,Z) be a class with u3 > 0,
and N > 0 be an integer.

(1) Let O(u) be the Γ6(N)-orbit of u. Then the image of O(u) in P(H2(X,C)) is Zariski
dense.

(2) Let O+(u) ⊂ O(u) be the subset of classes v such that pv(t) has positive real roots
Then O+(u) is nonempty and has Zariski dense image in P(H2(X,C)).

Proof. For (1), Γ6(N) is Zariski dense in SL6(C) (since SL6(Z) is), so it is enough to show
that the SL6(C)-orbit of u is Zariski dense in P(H2(X,C)). Since u has rank 6, the orbit is
the complement of the Pfaffian hypersurface Pf = 0.

For (2), we first let V ⊂ P(H2(X,C)) be an arbitrary closed proper subset. To prove
Zariski-density of O+(u), we will show below that there is an element of O+(u) whose image
in P(H2(X,C)) does not lie in V . From (1), we may choose v ∈ O(u) whose image does not
lie in V . Let A = (aij) be the alternating matrix associated to v in an integral H-symplectic
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basis. Applying (1) once more, we may assume that

a16 6= 0, a13a26 − a16a23 − a12a36 6= 0. (A.12)

In our chosen integral H-symplectic basis, the matrix for H (also denoted by H) is

H =

(
0 D
−D 0

)
where D =



d1

d2
d3


 ,

and (d1, d2, d3) is the type of H. To conclude the setup, consider the upper-triangular matrix

E =




1 x xy 0 0 0
1 y 0 0 0

1 z 0 0
1 0 0

1 0
1



, (A.13)

where x, y, z are variables. If we specialize x, y, z to integer multiples of N , then E specializes
to an element of Γ6(N).

Consider the characteristic Pfaffian

Pf(tH − EtAE) = at3 + bt2 + ct+ d.

The coefficients are polynomials in x, y, z. A computation shows that:

a = d1d2d3,

b = −d1d2a16xy + · · · ,
c = d2(a13a26 − a16a23 − a12a36)yz + · · · ,
d = −Pf(A) = −u3/6,

where the omitted terms are of lower degree in x, y, z. Note that b and c are polynomials in
x, y, z, whereas a and d are constants. Writing ∆ for the discriminant of the cubic polynomial
Pf(tH − EtAE), we get that

∆ = b2c2 + · · · ,
where the omitted terms have degree < 8 in x, y, z.

By our assumption (A.12) on v above, the leading coefficients of b and c are nonzero. From
the formulas above, it is easy to see that we may specialize (x, y, z) to (x0, y0, z0) ∈ N ·Z3 so
that

b < 0, c > 0, ∆ > 0. (A.14)

In fact, if (x′0, y
′
0, z

′
0) ∈ N · Z3 is any element so that

−d1d2a16x′0y′0 < 0, d2(a13a26 − a16a23 − a12a36)y′0z′0 > 0,

then we can take (x0, y0, z0) = m · (x′0, y′0, z′0) for m ≫ 0. We refer to a choice of element
(x0, y0, z0) ∈ N · Z3 such that (A.14) holds as a good choice.

A good choice (x0, y0, z0) determines an element g ∈ Γ6(N) by specializing the coefficients
of E. The cubic Pf(tH−EtAE) specializes to the characteristic Pfaffian pg∗v(t). From (A.14),
pg∗v(t) has positive discriminant ∆ > 0, hence real roots. Moreover, pg∗v(t) has alternating
coefficients a > 0, b < 0, c > 0, d < 0, which implies that the roots of pg∗v(t) are positive. It
follows that g∗v lies in O+(u).
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We show that O+(u) is Zariski dense. The set of good choices (x0, y0, z0) is Zariski dense
in C3: as explained above, it contains every element of Z3 with nonzero coordinates, modulo
flipping signs in each coordinate and scaling by a sufficiently large positive integer. Given
(x0, y0, z0) ∈ C3 with associated g ∈ SL6(C), it is a Zariski closed condition on the entries of
(x0, y0, z0) for [g

∗v] ∈ P(H2(X,C)) to lie in the closed subset V chosen above. By assumption,
[v] /∈ V , so the Zariski closed condition is nontrivial. By Zariski density of the set of good
choices, there is a good choice (x0, y0, z0) such that [g∗v] does not lie in V . �

A.6. Generic lifting.

Proposition A.15 (Generic lifting). Let (X,H) be a polarized abelian threefold. Fix a class
ū ∈ H2(X,Z/n) for an integer n > 1, and suppose that ū admits a lift to a class u0 ∈ H2(X,Z)
of type (1, 1, 1) with u30 > 0. Let L be the set of u ∈ H2(X,Z) satisfying the following properties:

(a) u is of type (1, 1, 1),

(b) u ≡ ū mod n,

(c) There exists a polarized deformation from (X,H) to (X ′,H ′), where X ′ is simple and
some parallel transport u′ of u to X lies in NS(X ′) and is a polarization.

Then the image of L in P(H2(X,C)) is Zariski dense.

Remark A.16. Let (X,H) be a simple, polarized abelian threefold with multiplication by a
cyclic cubic field K/Q. In particular, K is totally real, and the construction of such (X,H) can
be found in [BL04, Ch. 9]. Let v ∈ NS(X) be a class which does not lie in 〈H〉. Then Z[t]/pv(t)
is an order in K, and there exists an infinite set P of primes ℓ such that the reduction of pv(t)
modulo ℓ is irreducible. Indeed, up to a finite set, P coincides with the inert primes for the
cyclic extension K/Q, and the latter is an infinite set of primes with density 2/3. This is a
consequence of Chebotarev’s density theorem [Jan73, Ch. IV, Corollary 5.3].

Proof. We begin by choosing a prime ℓ which does not divide n and a class v̄ ∈ H2(X,Z/ℓ)
such that the polynomial pv̄(t) = Pf(tH̄ − v̄) is irreducible. The fact that v̄ may be found for
an infinite set of primes follows, for instance, from Remark A.16.

Let u ∈ H2(X,Z) be a class of type (1, 1, 1) with u3 > 0 lifting both ū and v̄. One way to
construct u is through the observation that the reduction-mod-ℓ map

Γ6(n)→ SL6(Z/ℓ)

is surjective, since the right-hand side is generated by transvections, which can be lifted
[Lan02, XIII, §9]. To construct u, recall that we assumed the existence of a class u0 of type
(1, 1, 1) with u30 > 0 lifting ū. Since SL6(Z/ℓ) acts transitively on the set of rank 6 classes in
H2(X,Z/ℓ), we can find an element g ∈ Γ6(n) such that

g∗u0 ≡ v̄ mod ℓ.

Take u = g∗u0.
We observe that pu(t) is irreducible, and the same is true for any v in the Γ6(N)-orbit O(u)

of u, where N = n · ℓ. Indeed, irreducibility may be checked after reduction mod ℓ, and the
reduction of pv(t) modulo ℓ is pv̄(t). Moreover, for any v ∈ O(u), we have v3 = u3 = u30 > 0,
since the Pfaffian Pf(u) = u3/6 is preserved under orientation-preserving change of basis.
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Finally, let O+(u) be the set considered in Lemma A.14. The image of O+(u) inP(H2(X,C))
is Zariski dense by Lemma A.14, so if we can show that O+(u) is a subset of L, i.e., any el-
ement v ∈ O+(u) satisfies (a)–(c), then the image of L in P(H2(X,C)) is Zariski dense and
we are done.

Item (a) holds because any element of the Γ6(N)-orbit (or, indeed, the SL6(Z)-orbit) of
u is of type (1, 1, 1). Item (b) holds because the action of Γ6(N) on H2(X,Z) preserves the
reduction modulo N = n · ℓ, hence also the reduction modulo n. Finally, for any v ∈ O+(u),
pv(t) is irreducible as explained above, and has positive real roots by assumption. Then
Proposition A.11 gives (c). �

A.7. Prime avoidance.

Proposition A.17. Let X be a simple abelian threefold, and let n > 1 be an integer. Let
u,H ∈ NS(X) be classes satisfying the following properties:

(1) The class u ∈ NS(X) is of type (1, 1, 1).

(2) The class H ∈ NS(X) is of type (d1, d2, d3), where each di is nonzero and divides a
power of n.

(3) The C-linear span 〈u2,H2〉C ⊂ H4(X,C) has dimension 2, and does not contain any
rank 2 elements.

There exists an integer A > 0, relatively prime to n, and an integer k > 0, which is arbitrarily
large with respect to A, such that the class

1

2
(A2u− nkH)2 +

1

2
An · u2 (A.15)

is of type (1, 1, d), for some integer d > 0.

Notation A.18. With the assumptions of Proposition A.17, we write V ⊂ H4(X,Z) for the
sublattice of integral Hodge classes. We observe that rkZ V = 3, by Remark A.6.

Notation A.19. • We write P0 for the set of primes which divide the order of the
torsion part of V/〈u2/2, u ·H,H2/2〉.
• Let Z ⊂ P(V ) be a closed subscheme. We write P(Z) for the (possibly infinite) set of
primes p ∈ Z such that the Z-scheme

Z ∩Gr(2, 6) ⊂ P(H4(X,Z)). (A.16)

has a nonempty fiber over Fp, where Gr(2, 6) = Gr(2,H1(X,Z)) is embedded via
Poincaré duality.

Remark A.20. Let Z ⊂ P(V ) be a closed subscheme such that the complex fiber ZC∩Gr(2, 6)
of the intersection above is empty. Then P(Z) is finite.
Lemma A.21. Let a, b, and c be integers, and consider the class z = au2/2 + buH + cH2/2.
Assume the following:

(1) gcd(a, b, c) = 1.

(2) For each p ∈ P0, the reduction of z modulo p is nonzero.

(3) The point [z] ∈ P(V )(Z) is contained in Z(Z), for some closed subscheme Z ⊂ P(V ),
and for each p ∈ P(Z), the reduction of z modulo p has rank at least 4.

Then z is of type (1, 1, d), for some d > 0.
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Proof. Conditions (1) and (2) imply that z is primitive, i.e., that it is of type (1, d, e) for some
d > 0. If p is a prime which divides d, then the reduction [z]p of [z] modulo p lies in the
intersection Zp∩Gr(2, 6), so p is contained in P(Z). On the other hand, [z]p has rank at most
2, contradicting (3). �

Lemma A.22. Proposition A.17 holds if rkZ〈u2/2, u ·H,H2/2〉 = 2.

Proof. By assumption (3) of Proposition A.17, P(V ) satisfies the conditions of Remark A.20,
so P(P(V )) is finite.

Let A be the product of the primes in P0 ∪ P(P(V )) which do not divide n, and consider
the class

z =
1

2
(A2u− nkH)2 +

1

2
nA · u2

=
1

2
(A4 + nA)u2 − nkA2 · uH +

1

2
n2k ·H2

for any k > 0.
Given a prime p in P0 ∪ P(P(V )), p either divides n or A, and the reduction of z modulo

p is nonzero by assumptions (1) or (2) of Proposition A.17. Since A is prime to n, z satisfies
the assumptions of Lemma A.21, and k may be taken to be arbitrarily large. �

The case when rkZ〈u2/2, u ·H,H2/2〉 = 3 is more complicated, because the complex fiber
Γ of its intersection with Gr(2, 6) is equal to P(V )C ∩Gr(2, 6), which is not empty. However,
by Proposition A.8, Γ is supported on a finite set. Therefore, our strategy in the rank 3 case
is to produce subvarieties of P(V ) which avoid Γ and contain the classes (A.15) from the
proposition.

Situation A.23. Throughout the remainder of the section, we work in the context of Propo-
sition A.17. In particular, n > 1, u, and H are fixed. We write

π : P2
Z → P(V )

for the morphism over Spec(Z) induced by the map Z3 → V sending the standard basis to
u2/2, u ·H,H2/2.

Example A.24 (Conics). For any integer t, consider the map

ft : P
1
Z → P2

Z, [x, y] 7→ [(t4 + nt)x2,−t2xy, y2].
Let C ′

t be the scheme-theoretic image of ft in P2
Z, and let Ct ⊂ P(V ) be the image of C ′

t

under π.

Example A.25 (Quartics). Let t be an integer, and consider the map

gt : P
1
Z → P2

Z, [x, y] 7→ [x4 + nxy3,−t · x2y2, t2 · y4].
Let Q′

t be the scheme-theoretic image of g in P2
Z, and let Qt be the image of Q′

t under π.

Remark A.26. In the context of Proposition A.17, the point (A.15) is contained in the
intersection CA ∩Qnk(Z).

Lemma A.27. Suppose that rkZ〈u2/2, u ·H,H2/2〉 = 3. For all but finitely many integers t,
the intersections

(Ct)C ∩Gr(2, 6), (Qt)C ∩Gr(2, 6)

are empty.
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Proof. By Proposition A.8, the intersection Γ = Gr(2, 6) ∩ NS(X)C is supported on a finite
set of points, and it suffices to show that the basepoints of the families {Ct} and {Qt} do not
intersect Γ over C. We claim that (in each case) the only basepoints are [1, 0, 0] and [0, 0, 1].
The lemma follows, since both points correspond to forms of rank 6. For the duration of the
proof, we write Ct and Qt to refer to the complex fibers (Ct)C and (Qt)C, respectively.

We begin with the conic case. Suppose that [a, b, c] is a point which is contained in Ct for
all t ∈ Z. Let D ⊂ P2

C be the standard conic, defined as the image of the map P1
C → P2

C

given by

[x, y] 7→ [x2, xy, y2].

For a general choice of t ∈ C, there is a linear change of coordinates Lt : P
2
C → P2

C carrying
Ct to D, given by

[x, y, z] 7→
[
(t4 + nt)−1 · x,−t−2y, z

]
.

It follows that Lt([a, b, c]) lies on D for generic t, so we obtain a family of points

pt = [(t4 + nt)−1a,−t−2b, c]

contained in D, for almost all t ∈ C.
If both a, b 6= 0, then the Zariski closure of {pt} is positive-dimensional, contained in D,

and is given by the set

Z = {[s4ta,−(s2t3 + ns5)b, t(t4 + ns3t)c]}, [s, t] ∈ P1.

Setting t = 0, we see that Z contains the point [0, nb, 0]. But [0, nb, 0] is not contained in
D, contradicting our assumption that both a, b 6= 0. Therefore, either a or b is 0; from the
formula for the curves Ct which contain [a, b, c] by assumption, only [1, 0, 0] and [0, 0, 1] are
possible. This concludes the conic case.

We now turn to the quartic case. Arguing as above, let [a, b, c] be a basepoint, and for
generic t let Lt : P

2
C → P2

C be the linear change of coordinates

[x, y, z] 7→ [x,−t−1y, t−2z],

which carries Qt onto Q−1 = {[x4+nxy3, x2y2, y4]}. Clearing denominators, one sees that the
Zariski closure of the points {qt = Lt([a, b, c])} is given by

W = {[at2,−bst, cs2]}, [s, t] ∈ P1.

There are three possible cases:

(1) If a, b, c 6= 0, then W is a conic which is not contained in Q−1, so this case cannot
occur.

(2) If exactly one of a, b, c is 0, then W is a line. But we claim that Q−1 does not contain
a line, so this case cannot occur. Since Q−1 is irreducible (as it is the image of a
map from P1), it is enough to show that Q−1 is not supported on a line. But the
intersection Q−1 ∩ {y = z} contains at least the points [1 + n, 1, 1] and [1 − n, 1, 1],
which are distinct since we have assumed that n > 1.

(3) The case [a, b, c] = [0, 1, 0] cannot occur, since [0, 1, 0] is not contained in Qt for any t.

The only remaining possibilities are [a, b, c] = [1, 0, 0] or [0, 0, 1]. �

We are now in a position to complete the proof of Proposition A.17. Some care is needed
in the proof to ensure that one may take k to be arbitrarily large with respect to A.



THE PERIOD-INDEX CONJECTURE FOR ABELIAN THREEFOLDS AND DT THEORY 101

Proof of Proposition A.17. By Lemma A.22, we may suppose that rkZ〈u2/2, u ·H,H2/2〉 = 3.
From Lemma A.27, we may choose an integer k0 such the intersection

(Qnk0 )C ∩Gr(2, 6)

is empty. From Remark A.20, the set P(Qnk0 ) is finite.
Let A0 be the product of the primes in P(Qnk0 )∪P0 which do not divide n. By Lemma A.27,

we may choose a power A of A0 such that the intersection

(CA)C ∩Gr(2, 6)

is empty. Again from Remark A.20, P(CA) is finite.
The class

z =
1

2
(A2u− nk0H)2 +

1

2
nA · u2

= (A4 + nA) · u
2

2
− nk0A2 · uH + n2k0 · H

2

2

lies in the intersection of CA(Z) and Qnk0 (Z). An identical calculation as in Lemma A.22
shows that z is of type (1, 1, d) for some d > 1. However, it is not clear that we can take k0
to be sufficiently large with respect to A.

To remedy this, let P ′ be the set of primes in P0 ∪P(CA) which do not divide n, and let ǫ
be any integer such that

nǫ ≡ 1 mod p

for any p ∈ P ′. Then the class

z′ =
1

2
(A4 + nA)u2 − nk0+ǫA2 · uH +

1

2
n2k0+2ǫ ·H2

lies in CA(Z), and
z′ ≡ z mod p

for any p ∈ P ′. In particular, z′ satisfies the assumptions of Lemma A.21, so z′ is of type
(1, 1, d′) for some d′ > 0. Since ǫ may be arbitrarily large, we can arrange for k = k0 + ǫ to be
arbitrarily large with respect to A. �
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Part VI. Complements

Throughout Part VI, we work over the complex numbers.

22. Applications to the integral Hodge conjecture

In this section, we prove Theorem 1.10 from the introduction, concerning the Voisin group of
a twisted Calabi–Yau threefold. Using Corollary 1.11 from the introduction, we also construct
an example of a Severi–Brauer variety P for which the integral Hodge conjecture holds for
Dperf(P ) but fails for P .

22.1. The twisted Atiyah–Hirzebruch spectral sequence. To prove Theorem 1.10, we
need to compute Ktop

0 (X,α) when α is not necessarily topologically trivial. This is done using
the twisted Atiyah–Hirzebruch spectral sequence [AS04].

In the following lemma, we write

Z(q/2) =

{
Z q ≡ 0 mod 2

0 q ≡ 1 mod 2.
(22.1)

Succinctly, Z(q/2) = Ktop
−q (pt).

Lemma 22.1 (Twisted Atiyah–Hirzebruch). Let X be a smooth quasiprojective complex va-
riety, with α ∈ Br(X). There is a strongly convergent spectral sequence

Ep,q2 = Hp(X,Z(q/2)) =⇒ Ktop
−p−q(X,α), (22.2)

satisfying the following properties:

(1) The differentials are torsion.

(2) If X is projective, the resulting filtration of Ktop
−i (X,α) is a filtration by pure Hodge

substructures of weight i.

Proof. Since X is quasi-projective, we may choose a Severi–Brauer variety π : P → X of class
α. The spectral sequence (22.2) is constructed in [AW14] as the descent spectral sequence for
the sheaf of spectra Ktop((X,α)/X), which is the relative topological K-theory discussed in
§5.3.

From Bernardara’s decomposition (Lemma 4.3), there is a direct sum decomposition

Ktop(P/X) = Ktop(X/X)⊕Ktop((X,α)/X) ⊕ · · ·
for the sheaf of spectra Ktop(P/X) [Mou19, Theorem 1.3]. Then (22.2) is a summand of the
descent spectral sequence

Ep,q2 = Hp(X,Ktop
−q (P/X)) =⇒ Ktop

−p−q(P ) (22.3)

for Ktop(P/X), so it suffices to show that (22.3) has torsion differentials and is a spectral
sequence of Hodge structures. This is a general fact, as discussed in Remark 22.2 below. �

Remark 22.2. Let π : Y → X be a smooth, projective morphism of complex varieties. The
descent spectral sequence for Ktop(Y/X) takes the form

Ep,q2 = Hp(X,Ktop
−q (Y/X)) =⇒ Ktop

−p−q(Y ). (22.4)

Then (22.4) has torsion differentials and is a spectral sequence of Hodge structures.
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Indeed, the Chern character induces an isomorphism of generalized cohomology theories

ch : Ktop
−q (−)⊗Q ≃ H2∗+q(−,Q), (22.5)

as in [AH61, §2.4]. Then (22.5) induces an isomorphism between (22.4) tensored with Q and
the descent spectral sequence for H2∗+q(−,Q):

Ep,q2 = Hp(X,R2∗+qf∗Q) =⇒ H2∗+p+q(Y,Q). (22.6)

In fact, (22.6) is a direct sum of vertical shifts of the usual Leray spectral sequence

Ep,q2 = Hp(X,Rqf∗Q) =⇒ Hp+q(Y,Q), (22.7)

Then (22.7) degenerates by a classical result of Deligne [Del68], and the filtration from the
Leray spectral sequence (22.7) is a filtration by mixed Hodge substructures [Ara05], which
are pure if X is proper. Unwinding the identifications, we get that the differentials of (22.4)
are torsion and the resulting filtration is by Hodge substructures (as the Hodge structures on

Ktop
−q (Y ) correspond to those on H2∗+q(Y,Q) under the Chern character).

Lemma 22.3. Let X be a smooth projective complex variety over C with α ∈ Br(X). Let
E be a torsion-free α|Z -twisted coherent sheaf on an integral closed subscheme i : Z → X of

codimension c. Then the leading term of [i∗E] ∈ Ktop
0 (X) is the image of rk(E)[Z] in E2c,0

∞ .

Proof. The leading term of i∗E lies in the kernel of the pullback map

H2c(X,Z)→ H2c(X − Z,Z), (22.8)

which is generated by the cycle class [Z] [Voi02, §11.1.2]. Therefore, the leading term of i∗E
is of the form m[Z] for some m ∈ Z. To check that m = rk(E), we reduce to the case α = 0
by pulling back along a morphism f : Y → X from a smooth projective variety Y such that
f∗α = 0, e.g., a Severi–Brauer variety of class α.

When α = 0, the desired claim is that the leading term of [i∗E] ∈ Ktop
0 (X) is rk(E)[Z], for

the filtration on Ktop
0 (X) obtained from the Atiyah–Hirzebruch spectral sequence

Hp(X,Z(q/2)) =⇒ Ktop
−p−q(X).

After tensoring with Q, the Chern character induces an isomorphism between the spectral
sequence for Ktop

∗ (−)⊗Q and the spectral sequence for H∗(−,Q) ([AH61, §2.4], or Remark 22.2
for the relative situation). The isomorphism identifies the leading term of [i∗E] with the leading
term of ch(E). �

Lemma 22.4. Let X be a smooth projective complex threefold, and let F• be the double-speed
filtration on Ktop

0 (X,α) from the Atiyah–Hirzebruch spectral sequence (22.2). Then

gr0F = ind(ᾱ) · Z ⊂ H0(X,Z)

gr1F = ker(− ∪ ᾱ : H2(X,Z)→ H5(X,Z))

gr2F = H4(X,Z)/〈H1(X,Z) ∪ ᾱ〉
gr3F = H6(X,Z).

Here, ᾱ ∈ H3(X,Z)tors is the topological Brauer class associated to α, and ind(ᾱ) is its
(topological) index.

Proof. Up to periodicity (i.e., vertical shift), the only nonzero differentials which contribute

to Ktop
0 (X,α) are:
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• d0,03 and d0,05 , which determine gr0F;

• d2,03 , which determines gr1F;

• d1,03 , which determines gr2F.

The description of gr0F is [AW14, Lemma 2.23], which says that ind(ᾱ) is the generator of

E0,0
∞ ⊂ H0(X,Z), i.e., the product of the orders of the differentials originating at E0,0.
For gr1F, we invoke a formula for d3 due to Atiyah and Segal [AS06, §4]:

d3(x) = (β ◦ Sq2)(x̄)− ᾱ ∪ x, (22.9)

Here, x̄ is reduction of x mod 2, Sq2 is the Steenrod square (whose definition and basic
properties may be found in [Hat02, §4.L], for instance), and β : H∗(X,Z/2) → H∗+1(X,Z)
is the mod 2 Bockstein, i.e., the connecting homomorphism in cohomology coming from the
sequence

0 Z Z Z/2 0.·2

In degree 2 cohomology, Sq2 sends x̄ ∈ H2(X,Z/2) to x̄ ∪ x̄ ∈ H4(X,Z/n). If x̄ is the
reduction mod 2 of some integral class x ∈ H2(X,Z), then x̄ ∪ x̄ is the reduction mod 2 of
x ∪ x ∈ H4(X,Z), hence is killed by the Bockstein. In other words,

d3(x) = β(x̄ ∪ x̄)− ᾱ ∪ x = 0− ᾱ ∪ x,
as needed.

We using the same description of d3 to calculate the image of d3 : H1(X,Z) → H3(X,Z).

It is a general fact that Sq2 vanishes on H<2(X,Z/2), so d0,13 is again given by cup-product
with ᾱ. �

Given a nonzero class v ∈ Ktop
0 (X,α), the leading term of v is the image of v in griF, for i

the least integer such that v does not lie in Fi+1. If v is nonzero, then the leading term of v is
nonzero. From Lemma 22.1, F• is a filtration by Hodge substructures, so if v is Hodge, then
the leading term of v is Hodge.

22.2. Proof of Theorem 1.10. We freely use Lemma 22.4 and Lemma 22.3 throughout.
Theorem 1.10 is equivalent to the statement that any Hodge class v in F1Ktop

0 (X,α), i.e. any
class v ∈ Hdg(X,α,Z) of rank 0, is algebraic. Indeed, the rank map induces a surjection

V(X,α) =
Hdg(X,α,Z)

K0(X,α)
→ indHdg(α) · Z

ind(α) · Z

whose kernel is precisely the subgroup of rank 0 Hodge classes in Ktop
0 (X,α) modulo the

algebraic classes of rank 0.
We proceed by induction on the degree of the leading term of v. If the leading term lies in

gr3F, then v is a multiple of the class of a (twisted) skyscraper sheaf, so v is algebraic.
Suppose that the leading term, say y, lies in gr2F ≃ H4(X,Z)/〈H1(X,Z) ∪ ᾱ〉. From the

integral Hodge conjecture for X [Tot21], y is the image of a Z-linear combination of cycle
classes of curves in H4(X,Z). It suffices to show that for each integral curve C ⊂ X, there is

an algebraic class in Ktop
0 (X,α) with leading term [C]. The pullback of the Brauer class α to

the function field of C is trivial. If M is the coherent extension to X of an α|C -twisted line
bundle on an open subscheme of C, then the leading term of [M ] is [C].
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The only remaining case is when the leading term, say x, lies in gr1F ⊂ H2(X,Z). First,
let |H| be a very ample linear system on X, and consider the case when x = n[H], where
n = per(α). If S ∈ |H| is a smooth surface, then the restriction of α to S has period at most
n, so the index of α|S is at most n by de Jong’s theorem [dJ04]. Therefore, there exists an
α|S-twisted sheaf E on S of rank n, and the pushforward of E to X gives an algebraic class
of leading term n[H].

Now we treat the general case when x ∈ gr1F. From the previous paragraph, we may replace
x with x+n[H ′], for H ′ a very ample divisor. For instance, we may assume that x = [H], for
H an ample divisor. Again from the previous paragraph, it suffices to show that there is an
integer m, relatively prime to n, and an algebraic class of leading term m[H]. By Lemma 22.5
below, we may choose m so that the following holds:

Lemma 22.5 ([Tot21, Proposition 5.3]). For m ≫ 0 and S0 ∈ |mH| a very general smooth
surface, there is a nonempty open cone C ⊂ H2(S0,R)van such that the following holds: every
element of H2(S0,Z)van whose image in H2(S0,R)van lies in C becomes a Hodge class after
parallel transport to a smooth surface St ∈ |mH|. Here, H2(S0,Z)van denotes the kernel of the
Gysin map H2(S0,Z)→ H4(X,Z) (and similarly for R-coefficients).

We choose m and S0 such that m is relatively prime to n and Lemma 22.5 applies. We
may assume further that S0 has minimal Picard rank among surfaces in |mH|. Let α0 be the
restriction of α to S0.

We claim that α0 is topologically trivial. To prove the claim, let ᾱ ∈ H3(X,Z) be the
topological part of α. Observe that ᾱ ∪ [S0] = 0, by our description of gr1F as the kernel of
− ∪ ᾱ in H2(X,Z). On the other hand, the Gysin map

ι∗ : H
3(S0,Z)→ H5(X,Z), ι : S0 → X

is an isomorphism by Lefschetz’s hyperplane theorem, and ι∗ι∗ᾱ = ᾱ ∪ [S0].

Lemma 22.6. There is a short exact sequence

0 H2(S0,Z)van Ktop
0 (S0, α0) M 0,

ι∗ (22.10)

where M ⊂ Ktop
0 (X,α) is the subgroup of elements whose leading term is a multiple of [S0].

Proof. The map ι∗ : K
top
0 (S0, α0)→M sends Fi to Fi+1, where F denotes the twisted Atiyah–

Hirzebruch filtration on both sides. The lemma follows from considering the induced mor-
phisms of associated graded pieces:

H0(S0,Z)→ Z · [S0]
H2(S0,Z)→ H4(X,Z)

H4(S0,Z)→ H6(X,Z)

Note that the first line is an isomorphism since α0 is topologically trivial. �

Let w be a Hodge class with leading term [S0]. Since the integral Hodge conjecture holds
for twisted surfaces such as (S0, α0) [Hot22], it suffices to show that there is a Hodge class in

Ktop
0 (S0, α0) mapping to w, up to deforming S0 in |mH|. We may choose:
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• A Hodge class w′ ∈ Ktop
0 (S0, α0) ⊗ Q mapping to w. Indeed, the pushforward map

ι∗ : K
top
0 (S0, α0)→ Ktop

0 (X,α) is a morphism of Hodge structures, hence (its complex-
ification) is strict for the Hodge filtrations. Since S0 has minimal Picard rank among
surfaces in |mH| by assumption, any parallel transport of w′ is of Hodge type.

• An integral class w′′ ∈ Ktop
0 (S0, α0) mapping to w. Indeed, w′′ exists by Lemma 22.6.

Then the leading term of w′ −w′′ lies in H2(S0,Q)van. By Lemma 22.5, there exists a surface
St in |mH| such that a parallel transport of w′−w′′ is of Hodge type. It follows that a parallel

transport of w′′ is a Hodge class in Ktop
0 (St, αt) of rank 1, as needed. �

22.3. Computing the Hodge-theoretic index. In the case of abelian varieties, it is not
difficult to compute the Hodge-theoretic index explicitly. For simplicity, we stick to the case
of abelian threefolds.

Lemma 22.7. Let X be an abelian threefold, and let B ∈ H2(X,Q(1)). Then the Hodge-
theoretic index of α = exp(B) ∈ Br(X) is the least positive integer N such that there exist
H1 ∈ NS(X)Q and H2 ∈ Hdg4(X,Q) with

N · B −H1 ≡ 0 mod H2(X,Z), (22.11)

N · 1
2
B2 −B ·H1 +H2 ≡ 0 mod H4(X,Z). (22.12)

Proof. According to Lemma 18.5, a rank r Hodge class in Ktop
0 (X,α) corresponds to an

element (r, x, y, z) ∈ Hev(X,Z) with

exp(B) · (r, x, y, z) = (r, r · B + x, r · 1
2
B2 +B · x+ y, . . . )

of Hodge type in each degree. We set H1 = r ·B + x and

H2 = r · 1
2
B2 +B · x+ y

= r · 1
2
B2 +B(H1 − r · B) + y

= −r · 1
2
B2 +B ·H1 + y.

We see that r satisfies the assumptions of N in the lemma. This implies that N ≤ indHdg(α).
On the other hand, given N,H1, and H2 as in the statement, we set

x = −N ·B +H1, y = N · 1
2
B2 −B ·H1 +H2.

Then it is easy to see that (N,x, y, 0) ∈ Hev(X,Z) has the property that exp(B) ·(N,x, y, 0) is
of Hodge type in each degree, and hence corresponds to a rank N Hodge class in Ktop

0 (X,α).
We conclude indHdg(α) ≤ N . �

22.4. A pathology. In this section, we observe that there are Severi–Brauer varieties P over
the product of three elliptic curves such that the integral Hodge conjecture holds in topological
K-theory, but fails in integral cohomology.
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Example 22.8 (Gabber). Let E1, E2, E3 be pairwise non-isogenous elliptic curves. Choose
integral bases

H1(E1,Z) = 〈x1, x2〉
H1(E2,Z) = 〈y1, y2〉
H1(E3,Z) = 〈z1, z2〉.

Let X = E1 × E2 × E3, for any prime ℓ let

B =
1

ℓ
(x1 ∧ z1 + y1 ∧ z2) ∈ H2(X,Q),

and let α = exp(2πi ·B) ∈ Br(X)[ℓ]. Then it is straightforward to compute using Lemma 22.7
that indHdg(α) = ℓ2. Since indHdg(α) divides ind(α) and it is easy to see that ind(α) divides ℓ2

(Lemma 23.3), we find that ind(α) = ℓ2, which recovers a result of Gabber [CT02]. Let us also
note that there exists a Severi–Brauer variety P → X of class α and relative dimension ℓ2−1,
since α is the class of the product of two degree ℓ cyclic algebras; cf. [dJP22, Proposition 5.19],
which also gives a slightly different argument for the equality ind(α) = ℓ2.

Corollary 22.9. There exists a Severi–Brauer variety P → X of relative dimension 3 over
a product of elliptic curves X = E1 × E2 × E3 such that the following hold:

(1) The integral Hodge conjecture fails in H6(P,Z).

(2) The integral Hodge conjecture holds in Ktop
0 (P ).

Proof. We adopt the situation of Example 22.8 for ℓ = 2, and choose a Severi–Brauer variety
P → X of class α and relative dimension 3. Since indHdg(α) = ℓ2, we conclude that the integral
Hodge conjecture holds for (X,α) by Corollary 1.11. Bernardara’s decomposition [Ber09] has
the shape

Dperf(P ) = 〈Dperf(X),Dperf (X,α),Dperf (X),Dperf (X,α)〉,
where we have omitted the functors giving the admissible embeddings. It follows that the
integral Hodge conjecture holds for Dperf(P ), since the integral Hodge conjecture for categories
is compatible with semiorthogonal decompositions [Per22, Lemma 5.20]. On the other hand,
by [Hot22, Theorem 6.1], the integral Hodge conjecture fails in H6(P,Z). �

23. Symbol length

In this section, we describe symbol length bounds for Brauer classes on abelian varieties, and
give an example (Example 23.4) to show that they are not sufficient to prove Theorem 17.1.

Definition 23.1. Let X be an abelian variety of dimension g.

(1) Given θ ∈ H2(X,µn), we define ℓ(θ) to be the least integer such that θ may be written

θ = x1 ∧ y1 + · · ·+ xℓ(θ) ∧ yℓ(θ) (23.1)

in H2(X,µn), with xi, yi ∈ H1(X,µn).

(2) Let α ∈ Br(X) be a Brauer class of period n. We define the symbol length of α to be

ℓ(α) = min{ℓ(θ) : θ ∈ H2(X,µn), θ 7→ α}.
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Remark 23.2. Unlike the index, the symbol length of α ∈ Br(X) defined above does not
necessarily agree with the symbol length of the restriction of α to the function field C(X).
For instance, if X is a general abelian surface, then by direct calculation as in Example 23.4
below, one may write down Brauer classes α ∈ Br(X) with symbol length 2 in the sense of
Definition 23.1. According to a folklore conjecture, however, any Brauer class on the function
field of a surface over an algebraically closed field has symbol length 1.

Lemma 23.3 (Symbol length bound). Let X be an abelian variety of dimension g. For each
α ∈ Br(X) of period n, ind(α) | nℓ(α). In particular, ind(α) | ng.

Proof. One can kill α on an isogeny π : X ′ → X of degree nℓ(α) as follows: Take θ ∈ H2(X,µn)
with ℓ(α) = ℓ(θ). Then take X ′ to be the fiber product over X of the µn-covers corresponding
to x1, . . . , xℓ(θ) in (23.1). Since π∗θ = 0, π∗α = 0. �

The following example shows that symbol length bounds are not sufficient to prove Theo-
rem 17.1.

Example 23.4. Let (X,H) be a principally polarized abelian threefold of Picard rank 1. We
write

H = x1 ∧ y1 + x2 ∧ y2 + x3 ∧ y3
for xi, yi ∈ H1(X,Z). Consider the Brauer class α of period 2 corresponding to the reduction
mod 2 of

b = x1 ∧ (y1 + y2) + x2 ∧ (y1 + y3) + x3 ∧ (y1 + y2 + y3).

Note that

b+H = x1 ∧ (2y1 + y2) + x2 ∧ (y1 + y2 + y3) + x3 ∧ (y1 + y2 + 2y3).

Then, writing b̄ and H̄ for the reductions mod 2, we have

ℓ(b̄) = ℓ(b̄+ H̄) = 3.

Note that, since X has Picard rank 1, the exact sequence (2.1) takes the form

0→ Z/2→ H2(X,µ2)→ Br(X)[2]→ 0,

where 1 ∈ Z/2 maps to H̄ ∈ H2(X,µ2) and b̄ ∈ H2(X,µ2) maps to α. It follows that ℓ(α) = 3.

24. Twisted Fourier–Mukai partners

In this section, we show that there are twisted abelian varieties such that Dperf(X,α) is
not equivalent to Dperf(Y ) for a smooth proper variety Y .

To do so, we will consider a natural pairing on topological K-theory. In general, we recall
from [Per19, Lemma 5.2] that for any proper C-linear category C, there is a canonical a
bilinear form

χ(−,−) : Ktop
0 (C)⊗Ktop

0 (C)→ Z,

called the (topological) Euler pairing. On algebraic K-theory, there is also an Euler pairing
χ(−,−) : K0(C)⊗K0(C)→ Z given on objects E,F ∈ C by

χ(E,F ) =
∑

i

(−1)i dimExtiC(E,F ),

and the natural map K0(C) → Ktop
0 (C) preserves the Euler pairings. When C = Dperf(X,α)

for a twisted variety with α topologically trivial, the Euler pairing can be described in terms
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of pairings of Chern classes in singular cohomology. In the case of an abelian variety, this
result takes the following form.

Lemma 24.1. Let X be an abelian variety and α = exp(2πi ·B) ∈ Br(X) for B ∈ H2(X,Q).

Then under the isomorphism ϕ : Ktop(X,α)→ H̃(X,B;Z) of Lemma 18.5(2), we have

χ(v,w) =

∫

X
ϕ(v)∨ϕ(w),

where we have used the following notation: given γ = (γi) ∈ H̃(X,B;Z) with γi ∈ H2i(X,Z)

we write γ∨ = ((−1)iγi) ∈ H̃(X,B;Z).

Proof. By [Hot22, Corollary 4.14], this reduces to the case where B = α = 0. In this case, the
formula reads

χ(v,w) =

∫

X
ch(v)∨ ch(w),

which holds by Hirzebruch–Riemann–Roch on Ktop
0 (X) since the Todd class of X is trivial. �

Lemma 24.2. Let X be a very general principally polarized abelian threefold. There exists a
class b ∈ H2(X,Z) and a prime ℓ such that for α = exp

(
2πi
ℓ · b

)
∈ Br(X), the restriction of

the Euler pairing χ(−,−) to the subgroup Hdg(X,α,Z) ⊂ Ktop
0 (X,α) is divisible by ℓ.

Proof. We choose (X,H), b, and ℓ such that the following hold:

(1) (X,H) is a polarized abelian threefold with NS(X) = ZH.

(2) The class α = exp
(
2πi
ℓ · b

)
has Hodge-theoretic index ℓ2.

(3) b ·H is not congruent to an integral Hodge class modulo ℓ.

We can choose (X,H) and b so that (1) holds and (2) holds for any ℓ by using the construction
of Gabber described in Example 22.8 for a product of elliptic curves, and then passing to a
general deformation of it to ensure that X has Picard rank 1; alternatively, one can bypass
considering the product of elliptic curves and argue directly as in Example 22.8 on a Picard
rank 1 abelian threefold. For condition (3), note that b ·H is not a Hodge class, since by the
hard Lefschetz theorem ·H : H2(X,Q) → H4(X,Q) is an isomorphism of Hodge structures
and b is not Hodge since α is nontrivial. Thus b ·H has nonzero image b′ in the torsion-free
group H4(X,Z)/Hdg4(X,Z), and choosing any ℓ such that b′ is not ℓ-divisible suffices.

We will show that with the above choices, the restriction of the pairing χ(−,−) to the
subgroup Hdg(X,α,Z) is divisible by ℓ. By Lemma 24.1, it is equivalent to prove that

the pairing (γ, δ) =
∫
X γ

∨δ on Hdg(H̃(X,B;Z)) is divisible by ℓ, where B = b/ℓ. Let

γ = (r, x, y, z) ∈ Hdg(H̃(X,B;Z)). By condition (2), we have ℓ2 | r. We claim that fur-
thermore ℓ divides x in H2(X,Z), which directly implies the desired divisibility of the pairing

on Hdg(H̃(X,B;Z)).

Note that (ℓ2, ℓ · b, 12b2, 0) ∈ Hdg(H̃(X,B;Z)) is a Hodge class with the claimed property,
so by subtracting a suitable multiple of it from γ, we may suppose that r = 0. Then the
condition that γ is Hodge shows that x and B · x+ y are Hodge. This implies x = mH for an
integer m due to condition (1), and

mb ·H + ℓy ∈ Hdg4(X,Z).

By condition (3), this implies that ℓ | m, as claimed. �
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Corollary 24.3. Let (X,α) be as in the statement of Lemma 24.2. Then Dperf(X,α) is not
equivalent to Dperf(Y ) for any smooth proper variety Y .

Proof. If Y is a smooth proper variety, then the Euler form on the subgroup of Hodge classes
Hdg(Y,Z) ⊂ Ktop

0 (Y ) is primitive, since e.g. χ(OY , κ(y)) = 1 for any skyscraper sheaf κ(y). �
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[BMT14] Arend Bayer, Emanuele Macr̀ı, and Yukinobu Toda, Bridgeland stability conditions on threefolds I:

Bogomolov-Gieseker type inequalities, J. Algebraic Geom. 23 (2014), no. 1, 117–163.
[BOPY18] Jim Bryan, Georg Oberdieck, Rahul Pandharipande, and Qizheng Yin, Curve counting on abelian

surfaces and threefolds, Algebr. Geom. 5 (2018), no. 4, 398–463.



112 JAMES HOTCHKISS AND ALEXANDER PERRY

[BP23] Arend Bayer and Alexander Perry, Kuznetsov’s Fano threefold conjecture via K3 categories and
enhanced group actions, J. Reine Angew. Math. 800 (2023), 107–153.

[Bri07] Tom Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007),
no. 2, 317–345.

[Bri08] , Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), no. 2, 241–291.
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[CT06] , Algèbres simples centrales sur les corps de fonctions de deux variables (d’après A. J. de
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morphismes de schémas. Troisième partie, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28,
255.
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Progr. Math., vol. 324, Birkhäuser/Springer, Cham, 2017, pp. 99–129.

[Kle05] Steven L. Kleiman, The Picard scheme, Fundamental algebraic geometry, Math. Surveys Monogr.,
vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 235–321.

[KO18] Kotaro Kawatani and Shinnosuke Okawa, Nonexistence of semiorthogonal decompositions and sec-
tions of the canonical bundle, arXiv:1508.00682 (2018).

[Kre99] Andrew Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495–536.
[KS08] Maxim Kontsevich and Yan Soibelman, Stability structures, motivic Donaldson-Thomas invariants

and cluster transformations, arXiv:0811.2435 (2008).
[Kuz15] Alexander Kuznetsov, Height of exceptional collections and Hochschild cohomology of quasiphantom

categories, J. Reine Angew. Math. 708 (2015), 213–243.
[Kuz19] , Calabi–Yau and fractional Calabi–Yau categories, J. Reine Angew. Math. 753 (2019),

239–267.
[Lan02] Serge Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New

York, 2002.
[Li19a] Chunyi Li, On stability conditions for the quintic threefold, Invent. Math. 218 (2019), no. 1, 301–340.
[Li19b] , Stability conditions on Fano threefolds of Picard number 1, J. Eur. Math. Soc. (JEMS) 21

(2019), no. 3, 709–726.
[Lie06] Max Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006), no. 1,

175–206.
[Lie07] , Moduli of twisted sheaves, Duke Math. J. 138 (2007), no. 1, 23–118.
[Lie08] , Twisted sheaves and the period-index problem, Compos. Math. 144 (2008), no. 1, 1–31.
[Lur04] Jacob Lurie, Derived algebraic geometry, ProQuest LLC, Ann Arbor, MI, 2004, Thesis (Ph.D.)–

Massachusetts Institute of Technology.
[Lur17] , Higher algebra, available at https://www.math.ias.edu/~lurie/, 2017.
[Lur18] , Spectral algebraic geometry, available at https://www.math.ias.edu/~lurie/, 2018.
[Mat16] Eliyahu Matzri, Symbol length in the Brauer group of a field, Trans. Amer. Math. Soc. 368 (2016),

no. 1, 413–427.
[Mat20] Akhil Mathew, Kaledin’s degeneration theorem and topological Hochschild homology, Geom. Topol.

24 (2020), no. 6, 2675–2708.
[Mou19] Tasos Moulinos, Derived Azumaya algebras and twisted K-theory, Adv. Math. 351 (2019), 761–803.
[MP15] Antony Maciocia and Dulip Piyaratne, Fourier-Mukai transforms and Bridgeland stability condi-

tions on abelian threefolds, Algebr. Geom. 2 (2015), no. 3, 270–297.
[MP16] , Fourier-Mukai transforms and Bridgeland stability conditions on abelian threefolds II, In-

ternat. J. Math. 27 (2016), no. 1, 1650007, 27.
[MS17] Emanuele Macr̀ı and Benjamin Schmidt, Lectures on Bridgeland stability, Moduli of curves, Lect.

Notes Unione Mat. Ital., vol. 21, Springer, Cham, 2017, pp. 139–211.
[Muk78] Shigeru Mukai, Semi-homogeneous vector bundles on an Abelian variety, J. Math. Kyoto Univ. 18

(1978), no. 2, 239–272.
[Muk98] , Abelian variety and spin representation, available at

https://www.kurims.kyoto-u.ac.jp/~mukai/paper/warwick13.pdf.

https://www.math.ias.edu/~lurie/
https://www.math.ias.edu/~lurie/
https://www.kurims.kyoto-u.ac.jp/~mukai/paper/warwick13.pdf


114 JAMES HOTCHKISS AND ALEXANDER PERRY
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